HPR INTEGRATED DESIGN

Jeremy Heilman
CONSTRUCTION

Nico Pugliese
LIGHTING/ELECTRICAL

Josh Progar
STRUCTURAL

James Rodgers
MECHANICAL

Mission Statement:
HPR Integrated Design combines innovative, cutting edge concepts with a collaborative multi-disciplinary approach through the utilization of state-of-the-art BIM technologies to exceed owner expectations both in system efficiencies and the enrichment of the human experience within its aesthetic.

Presentation #3:
Design Presentation
Penn State Ice Hockey Arena
The Pennsylvania State University

INTRODUCTION
BIM-EX
REDESIGN
FACADE
MAIN ARENA
INTRODUCTION

BIM - EX MAIN ARENA REDESIGN FACADE

HPR Integrated Design’s Project Touchstones for the Penn State Ice

- Improve the Game Day experience for both the fans and players
- Create an environment that fosters hockey excellence
- Minimize the amount of energy the facility consumes
- Create an architecturally recognizable facility
- Maximize value with minimizing cost
- Earn a LEED Gold rating

Project Goals

- Create a loud and exciting environment for NCAA Division 1 Men’s & Women’s Hockey
- 6000 seat facility
- 2 sheets of ice (competition and community)
- Championship Ice
- Ice Hockey only training facility (weight room)
- Mt. Nittany Room and Club Level Restaurant
- Create a facility that ultimately generates revenue

Team Goals

- Seamless work flow integration of all disciplines
- Increased Sustainability
- LEED Gold
- Improve System Design Efficiency
- Efficient Constructability
- Reduced Budget and Schedule

INTRODUCTION

BIM - EX MAIN ARENA REDESIGN FACADE

HPR Integrated Design’s Project Touchstones for the Penn State Ice

- Improve the Game Day experience for both the fans and players
- Create an environment that fosters hockey excellence
- Minimize the amount of energy the facility consumes
- Create an architecturally recognizable facility
- Maximize value with minimizing cost
- Earn a LEED Gold rating

Project Goals

- Create a loud and exciting environment for NCAA Division 1 Men’s & Women’s Hockey
- 6000 seat facility
- 2 sheets of ice (competition and community)
- Championship Ice
- Ice Hockey only training facility (weight room)
- Mt. Nittany Room and Club Level Restaurant
- Create a facility that ultimately generates revenue

Team Goals

- Seamless work flow integration of all disciplines
- Increased Sustainability
- LEED Gold
- Improve System Design Efficiency
- Efficient Constructability
- Reduced Budget and Schedule
Introduction

8 hour minimum

Monday
6:10p - 6:40p
Design & Coord.
6:40p - 8:00p
Weekly General
11:40p - 12:00p
Design Coord.
3:00p - 5:30p
Coordination Meeting
6:00p - 8:00p
Coordination Meeting

Tuesday
6:10p - 8:00p
Coordination Meeting
3:00p - 5:30p
Coordination Meeting

Wednesday
6:10p - 8:00p
Coordination Meeting
3:00p - 5:30p
Coordination Meeting

Thursday
6:10p - 8:00p
Coordination Meeting
3:00p - 5:30p
Coordination Meeting

Friday
6:10p - 8:00p
Coordination Meeting
3:00p - 5:30p
Coordination Meeting

Saturday
By appt. - 6:00p
Design Coord.
6:00p - 8:00p
Coordination Meeting

Sunday
By appt. - 6:00p
Design Coord.
6:00p - 8:00p
Coordination Meeting

Needed Improvement

- Group needed to improve the collaborative nature of our design process
- Simple coordination meetings were not enough to effectively share information and ideas

Solution

- 8 hour minimum on the amount of time the whole group must spend together each week
- This made sharing ideas much easier and effective
INTRODUCTION

BIM EX

MAIN ARENA

INTRODUCTION

BIM EX

MAIN ARENA

Overview of Team Investigation & Redesign

HPR Touchstones

- Improve the Game Day experience for both the fans and players
- Create an environment that fosters hockey excellence
- Minimize the amount of energy the facility consumes
- Create an architecturally recognizable facility
- Maximize value with minimizing cost
- Earn a LEED Gold rating

<table>
<thead>
<tr>
<th>Leader</th>
<th>What we looked at</th>
<th>Why we looked at it</th>
<th>Decision Factors</th>
<th>Who was involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daylighting in the Concourse</td>
<td>By utilizing daylighting strategies in the concourse we would be able to reduce the energy use of the lighting systems of the building and improve the fans experience.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daylighting in the Practice Arena</td>
<td>By utilizing daylighting strategies in the practice arena we would be able to reduce the energy use of the lighting systems of the building.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Façade Redesign</td>
<td>A façade redesign could have a positive architectural impact and cause a reduction in envelope load on the building.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Span Truss Redesign</td>
<td>Architectural considerations for a new, more pronounced roof profile created the need for a new long span truss system with the possibility of increased structural efficiency.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative flooring systems</td>
<td>An investigation into alternate flooring systems could reveal options that either save on cost or decrease the depth of the floor, therefore increasing plenum space.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Profile</td>
<td>By redesigning the roof profile we believe we can create a more architecturally recognizable arena as well as improve on storm water drainage and acoustical properties within the building.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavation Techniques</td>
<td>With the addition of the new Millennium Science Complex it became important to reduce the vibrations caused by excavation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campus Utilities vs. Isolated System</td>
<td>Determining which plant option is most economical for this ice arena is important in reducing both the first cost and lifecycle cost of the arena as well as energy consumption.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[RE]DESIGN:
East Façade Redesign

REASON: To improve the architecture and reduce load on the east façade

Touchstones
- Minimize the amount of energy the facility consumes
- Create an architecturally recognizable facility
- Maximize value with minimizing cost
- Earn a LEED Gold rating

EXISTING

- http://architettura.it/architetture/20050325/index.htm

Courtesy: Crawford Architects
INTRODUCTION

BIM - EX

MAIN ARENA - ROOF PROFILE

“Engineering Driven, Architecturally Appealing”

Mt. Nittany Room
- View of Mount Nittany – Needs Glazing

Club Level Dining
- View of Mount Nittany & Bryce Jordan Center – Needs Glazing

Above Ceiling
- Does NOT need glazing

Lobby
- Needs Glazing for Appearance & Pronounced Function as Entrance

Concourse
- Can minimize amount of glazing but still needs some daylighting

Parking Lot and Corner of Curtain and University

8Jc and Beaver Stadium

California Transportation HQ Building

Brick Piers & Recessed Curtain Wall
- Reduced Glazing and Vertical Shading from Brick Piers
- Influence: Penn State Campus Architecture

Curved Entrance & Curtain Wall System
- Creates a more pronounced entrance
- Influence: Wembley Stadium

Concourse
- Can minimize amount of glazing but still needs some day lighting

Materials Based On Functions

Metal Panels
- Sheet for framing views and spandrel glass
- Influence: California Transportation Building

Brick Piers & Recessed Curtain Wall
- Reduced Glazing and Vertical Shading from Brick Piers
- Influence: Penn State Campus Architecture

Curved Entrance & Curtain Wall System
- Creates a more pronounced entrance
- Influence: Wembley Stadium

South East Perspective – New Facade

July 7am

July 8am

July 9am

Functions and Views of East Facade

Materials Based On Functions

Brick Piers & Recessed Curtain Wall
- Reduced Glazing and Vertical Shading from Brick Piers
- Influence: Penn State Campus Architecture

Curved Entrance & Curtain Wall System
- Creates a more pronounced entrance
- Influence: Wembley Stadium

Wembley Stadium

California Transportation HQ Building

Brick Piers & Recessed Curtain Wall
- Reduced Glazing and Vertical Shading from Brick Piers
- Influence: Penn State Campus Architecture

Curved Entrance & Curtain Wall System
- Creates a more pronounced entrance
- Influence: Wembley Stadium

Wembley Stadium
Façade Redesign: To improve the architecture and reduce load on the east façade.

Cost Reduction on East Façade = 5.74%

“Engineering Driven, Architecturally Appealing”
Roof Profile Redesign

REASON: To create a more architecturally iconic roof profile

Touchstones
- Improve the Game Day experience for both the fans and players
- Create an architecturally recognizable facility
New rendering in the new facade.

"Architecturally Driven, Technically Sound"

N-S Section – New Roof Profile

Duct relocated due to clash with truss. Changes included duct and extra diffuser locations.

Catwalks located outside vierendeel truss configuration with easy access to lights attached to underside of the catwalks.

The new truss design requires moment connections which add cost and time to the schedule.

New truss design and configuration allows for new roof profile and smaller member sizes.

Coppin State FEC

Coordinated Roof Framing and MEP Systems

http://jerichostageinc.com/archives/tag/small-stages
INTRODUCTION

BIM – EX

MAIN ARENA – ROOF PROFILE

FACADE

PROCESS

60" diameter round supply duct with additional diffusers on stands side of duct and shut off dampers

1000W Metal Halide Luminaires with "Black Out" shutters

Prefabricated trusses that will assembled on site and lifted as one piece.

Split long span truss system with moment connections and a vierendeel truss for supply duct coordination.

N-S Section – Lighting Incident Angle Reflection

"Architecturally Driven, Technically Sound"
INTRODUCTION

BIM

MAIN ARENA – ROOF PROFILE

New Roof Profile – Saddle

Architecturally Driven, Technically Sound

Air Distribution Diagram

- High Supply
- 2/3 Low Return
- High Point
- Low Point

Cost Impact of Truss Redesign = +1.5%

Top Chord (Curved): W14x90
Bottom Chord: W14x109
Verticals: W14x61
Diagonals: Angles LLB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Illuminance (fc)</td>
<td>130.98</td>
</tr>
<tr>
<td>Emax/Emin</td>
<td>1.35</td>
</tr>
<tr>
<td>Coefficient of Variance</td>
<td>0.06</td>
</tr>
<tr>
<td>Uniformity Ratio</td>
<td>1.29</td>
</tr>
</tbody>
</table>

PROCESS
Roof Profile: To create a more architectural recognizable facility

- Improve the Game Day experience for both the fans and players
- Create an architecturally recognizable facility

Cost Impact of Truss Redesign: +1.5%

New rendering in the new facade

To create a more architectural recognizable facility

Improve the Game Day experience for both the fans and players

Create an architecturally recognizable facility
Thank You For Your Time!

Cost Reduction on East Façade = 5.74%

Load Reduction on East Façade = 26.9%

Cost Increase for Truss Redesign = +1.5%

Please feel free to ask questions.