Executive Summary	2
Credits and Acknowledgements	3
Introduction	4
Background	7
General Information	9
Existing Concrete Structure	11
Option #1: Concrete Structure	26
Option #2: Non-Composite Steel Structure	36
Breadth #1: Construction Management Issues	46
Breadth #2: Architectural Issues	50
Fireproofing for Steel Design	53
Summary and Conclusions	58
Appendix One: Loads	61
Appendix Two: Structural Details, Schedules and Tables	80
Appendix Three: Floor Plans	99
Appendix Four: Miscellaneous	130

The following is the work of an entire year combined into one paper. The building picked for this senior thesis was Two Freedom Square, located in Reston, Virginia. The objective of the project was to understand the existing structural system and then propose alternative solutions for the design of the building. After researching Two Freedom Square, it was determined that a proposed solution was to rearrange the columns to the column lines and then redesign the building in steel and concrete to see what difference could be found from the existing structure.

The proposed changes also affect other areas of the design of the building, for example changing to a steel building from a concrete building requires the addition of fireproofing all steel members. Also changing to a steel building increases the floor to floor height to allow room for the ductwork to be run.

The structures were designed to IBC 2000 instead of BOCA 1996, which was the original code, to see how the new code affects the design of the building. Also not all areas of the building was investigated because the time frame does not allow for the same kind of design an engineering firm would take to design the entire building.

Most of the design centered on the wind loading and torsion affects due the height of the building and also the unique shape of the building. These considerations drove the design of the concrete and steel structures. And spreadsheets and structural analysis programs were used to aid in the redesign of the building.

Owner:	Boston Properties, Inc. 111 Huntington Avenue Boston, MA 02199-7602
Architect:	SmithGroup 1825 Eye Street NW Washington, DC 20006
Structural:	Tadjer Cohen Edelson Associates, Inc. 1109 Spring St. Silver Spring, MD 20910
Mechanical:	Tolk, Inc. 8401 Arlington Boulevard Suite 600 Fairfax, VA 22031
Lighting:	Moran Coventry
General Contractor:	Centex Construction 3924 Pender Dr. Fairfax, VA 22030

Special thanks to William Hendrix and Joel Kelty from SmithGroup for providing Two Freedom Square as a thesis building for this year's project. Also thanks for their willingness to answering questions which arose during the research portion of this project.

Introduction

Introduction

Throughout the fall of 2002 and the spring of 2003 I have been working on a Senior Thesis Project for the Architectural Engineering Program at Penn State University. The fall requirements were to do three technical assignments in our focus, which happens to be structural engineering for me, and then do a variety of other assignments to get a broader scope of the entire building process. The first of the technical assignments was to get a better understanding of the building by find basic loading of the building and codes used for design. The second technical assignment was to understand the existing floor system and then to investigate several different floor systems which could possibly replace the existing system. The final technical assignment was to do a full lateral analysis of the build to find out which controlled the design of the lateral system, seismic or wind.

At the conclusion of the fall semester, a proposal was created to define what areas of research would be followed up on in the spring semester. Also the creation of a thesis problem/statement was created to guide the research. After finishing the fall assignments I concluded that the column layout for the building needed to change to allow for symmetric design and easier calculations. This also allowed for the removal of some of the interior columns, however, this created the need for a redesign of the core of the building. This solution also posed the question of how the building's columns would be different if moved and then redesigned in concrete. Another proposed solution was to investigate the building if it was designed out of steel instead of concrete, with the proposed new column layout. This proposed solution created the problem of where to put the mechanical ductwork if the floor to floor height remained the same. So the steel design also proposed an increased floor to floor height to allow the installation of ductwork. The final proposed

page 5

solution was to investigate how the intermediate beams would be different if design compositely compared to non-compositely.

The spring semester was spent investigating these different options and figuring out which solution was the best for the building. The following pages are the compilation of the research done throughout the year.

Background

Background

To be able to understand this project some basic background information about Two Freedom Square is necessary. More in depth information about the structural system and architectural features can be found in later sections.

The Two Freedom Square Building is a 450,000 square foot building located at 11995 Freedom Drive, Reston, Virginia which is in a community surrounding Washington D.C. The building is 16-stories in addition to two basements and its primary use is an office building; however the first floor is occupied by shops. Two Freedom Square is also part of a building complex with its neighboring building being One Freedom Square and a shared parking garage lies between the two buildings. Two Freedom Square is owned by Boston Properties and designed by SmithGroup. The Structural Engineer was Tadjer Cohen Edelson, the Mechanical Engineer was Tolk, Inc., and the General Contractor was Centex Construction. The project was started on October 24, 2000 and finished June 15, 2002. The major codes used were BOCA 1996 and the Virginia Uniform Statewide Building Code 1996.

The Two Freedom Square project was a negotiated bid between Boston Properties and SmithGroup because the two companies had already worked together on the One Freedom Square project. The original bid was for \$39,500,000 which ended up being \$42,000,000 after all the change orders which mostly involved changes to the street level shops.

The Two Freedom Square site is located seven miles from Dulles Airport in the heart of the Reston Town Center. The building's major tenets are Wilson Sonsini, Finnegan Henderson, and Latham & Watkins Daniel Painter page 8 5th Year Thesis – Two Freedom Square

General Information

As mentioned before, Two Freedom Square is part of a building complex in Reston, VA. It was the second building built in the complex and as part of the construction an addition was to be made to the existing parking garage. Also it was a negotiated bid between Boston Properties and SmithGroup. SmithGroup also designed One Freedom Square and because of that prior relationship with Boston Properties they got the Two Freedom Square project. Even though both One and Two Freedom Square were design by the same architecture firm they have distinct difference which can be seen in the rendering of the buildings on the abstract of the building right after the title page.

Architecturally One and Two Freedom Square look different but do have some similarities. They are both office buildings with pre-cast concrete panels making up the facade. The main structure of both buildings are cast-in-place concrete with a two-way drop panel flat slab floor system with some areas of posttensioning. The main difference is One Freedom Square has a crowned top with a company's name on top, while Two Freedom Square is larger however it looks more like a plain office building.

Existing Concrete Structure

Introduction to the Structural System:

The structural system for Two Freedom Square is primarily a cast-in-place concrete system. All interior and exterior columns are cast-in-place concrete with varying concrete strength from 4,000 psi to 10,000 psi. Column widths vary from 12" to 32", depths vary from 12" to 36", and floor to floor height is 11'-11". The beams and girders are also cast-in-place concrete with widths varying from 8" to 66" and depths varying from 16" to 81". Sloping columns can be found on floors C2, C1, 4, 10, and 14; while post tensioning can be found on floors 2, 3, 5, 11, and 14. The distance between columns ranges from 14'-7 $\frac{1}{4}$ " to 31'-6". The floor system is a two-way drop panel flat slab which is 8" on all the floors except for on levels C2, C1, and ground. The floor area between column lines 7 and 8 ceases after the 5th floor, the floor area between column lines 5 and 6 also ceases after the 11th floor, and the remaining floor area between column lines 5 and 6 ceases after the 14th floor. The exterior of the building is primarily pre-cast concrete panels, with some curtin wall and a few metal panels.

The building code used for Two Freedom Square was BOCA 1996. Concrete construction followed the ACI Code 318-95. Reinforcement steel for the concrete followed ASTM-A615 with grade 60 steel. The detailing of the reinforcement steel followed ACI 315-88. For checking the design loads, BOCA 1996 was used for live, wind, seismic and snow loads. The CRSI Handbook was used to spot check the two-way drop panel flat slab floor system.

National Design Code: BOCA 1996

Live Load:

Table 1

Roof (minimum)	30 psf
Penthouse Machine Room	150 psf
Floor	80 psf + 20 psf partitions
Stairways & Corridors	100 psf

Dead Loads:

Table 2

Superimposed Dead Load	25 psf
Slab Self-weight	100 psf
Beams & Girders Self-weight	400 plf

Snow Loads:

Table 3

Snow Load	$P_{f} = C_{e}IP_{g} = 0.7*1*30 = 21 \text{ psf}$
Roof Snow Load (Pg)	30 psf
Snow Exposure Factor (C_e)	0.7
Importance Factor (I)	1.0
Snow Drift	P _{dmax} = 30 psf

Accumulation of Loads: available upon request, they are listed in my column schedule

Wind Load:

BOCA 1996 was used to find wind and seismic loads. The wind load is controlling over seismic in the design of the lateral system. This is known from the analysis performed on the different frames comparing the wind loading to the seismic loading, this also proves the assumption that wind will control on the east coast. This building is in a seismic area of category A which is the lowest level while the wind is in an exposure B which is in the middle to low end of wind loads. The

Daniel Painter 5th Year Thesis - Two Freedom Square windward, leeward and sidewall pressures can be found in Table 4. A graphical

representation of the distribution of the windward and leeward pressures on the

building can be found in Diagrams 1 and 2.

- Based on 80 mph, exposure B and importance factor I = 1 with frame design pressure P = 22 psf to 30 psf.
- Windward wall design pressure, $P = P_v I [K_z G_h C_p K_h (G C_{pi})]$
- Leeward wall, side walls and roof design pressure, $P = P_v I [K_h G_h C_p K_h (G C_{pi})]$

Height					
above			Windward	Leeward	Side wall
ground	Coefficients	Coefficients	wall design	wall design	design
level, z	K_z and K_h	G_z and G_h	pressure, P	pressure, P	pressure, P
(feet)	Exposure B	Exposure B	(psf)	(psf)	(psf)
0-15	0.37	1.65	6.5	-17.7	-22.7
20	0.42	1.59	7.0	-17.7	-22.7
25	0.46	1.54	7.4	-17.7	-22.7
30	0.50	1.51	7.9	-17.7	-22.7
40	0.57	1.46	8.6	-17.7	-22.7
50	0.63	1.42	9.2	-17.7	-22.7
60	0.68	1.39	9.6	-17.7	-22.7
70	0.73	1.36	10.0	-17.7	-22.7
80	0.77	1.34	10.4	-17.7	-22.7
90	0.82	1.32	10.8	-17.7	-22.7
100	0.86	1.31	11.3	-17.7	-22.7
120	0.93	1.28	11.8	-17.7	-22.7
140	0.99	1.26	12.3	-17.7	-22.7
160	1.05	1.24	12.8	-17.7	-22.7
180	1.11	1.23	13.4	-17.7	-22.7
200	1.16	1.21	13.7	-17.7	-22.7
250	1.28	1.19	14.7	-17.7	-22.7

Table 4

Wall Pressures Coefficients (Cp):

Table 5

Surface	L/B	Cp	For use with
Windward wall	All Values	0.8	Kz
	0 to 1	-0.5	
Leeward wall	2	-0.3	K _h
	<u>≥</u> 4	-0.2	
Side walls	all values	-0.7	K _h

Table 6

Importance Factor (I)	1
Basic Wind Speed	80 mph
Basic Velocity Pressure (P _v)	16.4
G * C _{pi}	0.25

Diagram 1 - Elevation

Seismic Loads:

For the seismic calculations an average column size was used to calculate the floor weights, which can be found in Table 10. The results of distributing the base shear to each story can be found in Table 8. A graphical representation of the story forces can be found on Diagram 3. For the seismic calculations an average column size was used to calculate the floor weights. The total weight of the building was found to be 50,077.7 kips. The results of distributing the base shear to each story can be found in Table 7. In the appendix, tables can be found showing the

Daniel Painter 5th Year Thesis – Two Freedom Square

distribution of the forces to each frame; these numbers can also be found in Table

14. A graphical representation of the total story forces can be found on Diagram

3. The calculations of the forces for Diagram 3 can be found on a spreadsheet in the appendix.

Table 7

Peak Velocity (A _V)	0.05
Peak Acceleration (A_A)	0.05
Seismic Hazard Group	1
Seismic Performance Category	A
Soil-type Profile	53
Deflection Modification Factor (C_D)	4
Response Modification Factor (R)	7
Approximate Fundamental Period (T_A)	1.83
Seismic Coefficient (C_5)	0.0086
Maximum Seismic Coefficient (C _{Smax})	0.0178
Seismic Base Shear (V)	430.7 ^k

- Basic Structural System Building frame system with eccentrically braced frame
- Analysis Procedure Utilized calculation of base shear

	Floor Force	Floor Shear	Floor Force per Frame for 5	Floor Force per Frame for 7
	F _x (kips)	V _× (kips)	frames (kips)	frames (kips)
Ground	1.225	452.535	0.25	0.18
2 nd Floor	2.646	451.309	0.53	0.38
3 rd Floor	4.827	448.664	0.97	0.69
4 th Floor	8.634	443.836	1.73	1.23
5 th Floor	9.891	435.203	1.98	1.41
6 th Floor	13.011	425.312	2.60	1.86
7 th Floor	16.416	412.301	3.28	2.35
8 th Floor	20.116	395.885	4.02	2.87
9 th Floor	24.106	375.769	4.82	3.44
10 th Floor	28.360	351.663	5.67	4.05

Table 8

5th Year Thesis - Two Freedom Square

11 th Floor	32.351	323.302	6.47	4.62
12 th Floor	36.842	290.951	7.37	5.26
13 th Floor	41.728	254.109	8.35	5.96
14 th Floor	45.812	212.381	9.16	6.54
15 th Floor	50.508	166.569	10.10	7.22
16 th Floor	53.224	116.061	10.64	7.60
Penthouse Roof	62.837	62.837	12.57	8.98

Diagram 3 - Story Forces

- 62.837 k ───►	Penthouse Roof
53,224 k 50,508 k 45,812 k 41,728 k 32,351 k 32,351 k 28,360 k 20,116 k 20,116 k 13,011 k 9,891 k 8,634 k 4,827 k	Roof 16 15 14 13 12 11 10 9 8 7 6 5 4 3
2.646 k 1.225 k	2 Ground

Soil Bearing Capacity:

- 20,000 psf for Footings
- 100,000 psf for Caissons

Concrete: ACI Code 318-95

- 28-day concrete strength
- stone concrete: coarse aggregate shall conform to ASTM C33

Table 9

f'c = 3,000 psi	for footings and grade beams, slab on grade, interior and exterior beams
f'c = 4,000 psi	for framed floor, basement wall columns, columns on 13 th to penthouse roof
f'c = 6,000 psi	for precast concrete units, columns on 9 th to 12 th floors
f'c = 8,000 psi	for columns on 4 th to 8 th floors
f'c = 10,000 psi	for columns on cellar 2 to 3 rd floors

Daniel Painter 5th Year Thesis - Two Freedom Square

Table 10							
		# of	Average Column	Weight of Floors			
Level	Elevation	columns	Size				
Cellar 2	377'-0"	82	21.9" x 24.9"	3275.1 kips			
Cellar 1	389'-0"	78	21.8" x 25.5"	3275.1 kips			
Ground Floor	401'-0"	90	22.3"x 26.3"	3275.1 kips			
2 nd Floor	417'-0"	86	22" x 26.3"	2905.2 kips			
3 rd Floor	428'-11"	86	22" x 26.2"	3002.8 kips			
4 th Floor	440'-10"	84	21.6" x 25.7"	2966.3 kips			
5 th Floor	452'-9"	78	21.4" x 25.1"	2907.6 kips			
6 th Floor	464'-8"	78	21.4" x 25.1"	2907.6 kips			
7 th Floor	476'-7"	78	21.3" x 25"	2903.1 kips			
8 th Floor	488'-6"	78	21.2" x 25"	2900.7 kips			
9 th Floor	500'-5"	78	21.2" x 25"	2900.7 kips			
10 th Floor	512'-4"	78	21.2" x 25"	2900.7 kips			
11 th Floor	524'-3"	72	20.6" x 25.4"	2855.1 kips			
12 th Floor	536'-2"	67	20.8" x 26.2"	2840.7 kips			
13 th Floor	548'-1"	67	20.8" x 26.2"	2840.7 kips			
14 th Floor	560'-0"	63	20" x 25"	2778.5 kips			
15 th Floor	571'-11"	63	19.1" x 24.3"	2750.5 kips			
16 th Floor	583'-10"	63	19.1" x 24.3"	2600.6 kips			
Penthouse	596'-8"	20	18.8" × 27.8"	2600.6 kips			
Penthouse Roof	618'-1"	16	21.3" × 25"	2600.6 kips			

Floor Heights and Miscellaneous Information: elevation is from sea level

Framing System:

The framing system for Two Freedom Square is a combination of cast-in-place concrete columns and a two-way drop panel flat slab. The slab takes the lateral load while the columns transfer everything to the foundation which in turn transfers the loads out to the ground. Diagrams 4 and 5 show a typical column; Diagram 4 shows an example of one with a drop panel and Diagram 5 shows an example of one without a drop panel. Diagram 6 shows an example of on of the bays in Two Freedom Square.

The existing floor system is a two-way drop panel flat slab, which has an 8 inch slab and 10 to 12 inch drop panels. This system is an excellent system to use when face with shallow floor to floor heights and also it is used around the Washington D.C. area because concrete is the primary material used for buildings so the general contracting firms specialize in concrete construction and the construction of two-way slabs.

Some of the issues which arise when designing two-way slabs are the area around the columns. Of major concern are the columns punching through the slab. When this problem arises, drop panels have to be designed to prevent the columns from punching through the slab.

In Tables 11 and 12 are information from the CRSI Handbook which was used to design two-slabs. However these charts lack some basic information need to accurately design for the existing conditions of my building. First the concrete strength is only 3,000 psi and my building has concrete strengths of 4,000 to 10,000 psi. Also the greatest span is only 24 feet and the spans in Two Freedom Square reach 31'-6".

Tab	le	11
-----	----	----

1001										
f'c = 3,000 psi, Grade 60 bars			Square Edge Panel							
	Factored	Square Drop		Square	Reinforcing			g Bars (E. W.)		
							middle			
	Superimposed	Panel		Column	col	umn st	rip	sti	rip	Total
Span	Load (psf)	Depth	Width	Size	Тор	Bot.	Тор	Bot.	Тор	Steel
	el Painter						рс	ige 19		

5th Year Thesis - Two Freedom Square

(f†.)		(in)	(in)	(in)	Ext.		Int.		Int.	(psf)
					12-	15-	14-	10-	12-	
24	100	5.00	8.00	12	#4	#5	#5	#5	#4	2.33
					12-	11-	12-	20-	11-	
24	200	6.50	8.00	14	#4	#7	#6	#4	#5	3.11
					12-	18-	14-	9-	10-	
24	300	8.00	8.00	16	#4	#6	#6	#7	#6	3.92

f'c = 3,000 psi, Grade 60 bars					Squar	re Interio	r Pane	:	
	Factored	Squar	e Drop	Square	Reinforcing Bars ((E. W.)	-
							middle		
	Superimposed	Pa	nel	Column	columi	n strip	strip		Total
Span	5pan		Width	Size					Steel
(ft.)	Load (psf)	(in)	(in)	(in)	Тор	Bot.	Тор	Bot.	(psf)
							12-	11-	
24	100	5.00	8.00	12	19-#4	14-#4	#4	#4	2.01
							10-	13-	
24	200	6.50	8.00	17	15-#5	13-#5	#5	#4	2.65
							19-	16-	
24	300	8.00	8.00	20	12-#6	9-#7	#4	#4	3.36

Below is information about existing columns in Two Freedom Square and the amount

of reinforcing in the drop panels.

<u>Edge Panel</u>: Column 75 is a 28"x20" throughout the building, with reinforcing bars of 16-#6 & 10-#6 in the drop panels

<u>Interior Panel</u>: Column 65 is a 32"x32" at the ground floor and 24"x24" at the 16th floor, with reinforcing bars of 22-#6 & 22-#6 in the drop panels

The existing system in Two Freedom Square has an 8" concrete slab with 10" to 12" drop panels. The drop panels are as large as 11'-6" square. The overall depth of the floor system is 20" maximum. One advantage of the two-way drop panel flat slab system is because of the 8" slab the system has a fire rating of at least 2-

Daniel Painter 5th Year Thesis - Two Freedom Square hours, actually more. One possible investigation to further develop this system is to increase the slab thickness which would in turn decrease the size of the drop panels.

Distance between Columns Lines:

Diagram 6

Lateral Load Resisting Elements:

14'-7 1/4"

7 to 8

Two Freedom Square is a concrete building with a two-way flat slab 8" thick with 12" drop panels around the columns. The primary lateral system is a building frame system with eccentrically braced frames. The frames are in both directions of the

Daniel Painter 5th Year Thesis - Two Freedom Square

building making for a system that resists torsion and wind loads in whatever what they are applied to the building.

In the north-south direction the frames are considered to have equal relative stiffness (k) and therefore take an equal amount of the wind load. However in the east-west direction two different frames are considered to take the loads. In these five frames have a relative stiffness equal to 1.107 while the remaining two frames have a relative stiffness equal to 0.729. The distribution of the wind force to each frame can be found in Table 14 and in the appendix the calculations can be seen.

Torsion was investigated and found to have and eccentricity of 73.3 inches, however the accidental eccentricity was found to be 101.4 inches. The accidental eccentricity was taken to be 5% of the total building length. Also the eccentricity was found to only happen for the E-W frames because the N-S frames were symmetric. The 73.3 inch displacement was found in the y-direction, which can be seen in the end of the appendix. The results of the torsion where found to be very small, in the magnitude of 1 to 2 inch-pounds/foot. This makes sense considering the building is a relatively big concrete building having the shape of a cube. Because of the shape being like a cube it is less likely to rotate or bend much.

This building has a few areas of concern when looking at lateral loading. First, on the side closest to One Freedom Square, the building steps down like a staircase. The second area of concern is the area around the elevators. In this area, instead of continuing with the typical series of columns spaced along the column lines, there are numerous columns scattered throughout the area. However this area Daniel Painter page 22 5th Year Thesis - Two Freedom Square around the elevators is in the center of the building which means it is along the bending and torsion lines and so columns outside of the core take more of the loads.

	Wind Force in N-S (kips)	Wind Force in E-W (kips)	Wind Force in E-W (kips)
	frames 1-5	frames C-G	frames A-B
2 nd Floor	5.5	6.09	4.01
3 rd Floor	6.5	7.20	4.74
4 th Floor	7.1	7.86	5.18
5 th Floor	7.7	8.52	5.61
6 th Floor	8.1	8.97	5.90
7 th Floor	8.5	9.41	6.20
8 th Floor	8.9	9.85	6.49
9 th Floor	9.3	10.30	6.78
10 th Floor	9.6	10.63	7.0
11 th Floor	9.8	10.85	7.14
12 th Floor	10.1	11.18	7.36
13 th Floor	10.3	11.40	7.51
14 th Floor	10.6	11.73	7.73
15 th Floor	10.8	11.96	7.87
16 th Floor	11.1	12.29	8.09
Penthouse Roof	11.3	12.51	8.24

Table 14

Strength, Drift, Story Drift, and Overturning:

Two Freedom Square is a unique building in many aspects and simple in others. Because it is a concrete building, the building itself is very massive, and heavy, yet the interior has a relatively open floor area great for offices. The buildings strength was to resist live and dead loads, but because it is shaped like a cube is easily resists lateral loads as well. Once again the overall controlling factor was wind over seismic for design. In some cases it was almost two to one. The overall drift in the N-S direction was 2.181 inches for wind loading and 1.679 inches for seismic loading. In the E-W direction the overall drift for wind was 2.45 inches which was adjusted from 2.216 inches in frames C to G and 3.367 inches in frames A and B, all of which can be seen in the appendix. For seismic the it was 1.25 inches in frames C to G and 1.861 inches in frames A and B. The allowable drift for the building taken from h/400 is equal to 6.51 inches, and since in all cases the actual drift is less than h/400. Below in Table 15 are the story drifts for the wind cases.

	Story Drift N-S	Story Drift E-W
	(inches)	(inches)
Ground	0	0
2 nd Floor	0.190	0.193
3 rd Floor	0.206	0.222
4 th Floor	0.206	0.228
5 th Floor	0.199	0.222
6 th Floor	0.192	0.216
7 th Floor	0.18	0.203
8 th Floor	0.169	0.193
9 th Floor	0.155	0.176
10 th Floor	0.14	0.16
11 th Floor	0.124	0.144
12 th Floor	0.11	0.126
13 th Floor	0.096	0.114
14 th Floor	0.079	0.094
15 th Floor	0.062	0.074
16 th Floor	0.043	0.053
Penthouse Roof	0.03	0.036

Table 15

The two different directions of wind loading, as seen above, have slightly different

story drift values. This make sense that the E-W direction would be larger

Daniel Painter

5th Year Thesis - Two Freedom Square

because the actual length of the frames is shorter than in the N-S direction, causing the drift to be slightly larger.

The overturning moment for this building was found to be significantly smaller than the allowable overturning moment of 1.5 times the weight times the distance from the center of the building to the edge of the building. The difference was over 300 times more. Two Freedom Square has two basements making it that much harder to turn over. So the impact of overturning due to the wind loading is almost insignificant. This has to do with the weight of the building being large and the length almost equal to the height.

Drift Values vs. Allowable Code:

The largest drift value calculated was 2.45 inches which a little less than half of the allowable drift from h/400. As stated before this makes sense because the building is a stiff building due to the fact it is made out of concrete.

Foundation System:

The foundation system is a combination on caissons, footings and slab on grade. Footings are 3,000 psi strength concrete poured on soil with a 20,000 psi bearing capacity. Footings are to project at least 1'-0" into undisturbed soil and exterior footings are to be at least 2'-6" under finished grade. Caissons are to be placed on soil with a 100,000 psi bearing capacity. The slab on grade is to 4" of concrete placed on a layer of 4" gravel. Control joints are to be placed in every 20'-0" O.C. for exterior slabs and 30'-0" max O.C. for interior slabs.

Depth Option #1: Concrete Structure

Introduction to Structural System:

The first redesign option for Two Freedom Square is simplify the column layout and then design in concrete with a two-way flat slab with drop panels. The columns will be placed on the column lines to simplify the design and reduce the number of columns. However this design will cause the redesign of the core of the building, which will be discussed later in this report. The framing system for the lateral loads will continue to be an eccentrically braced frame and the slab will be increased from 8 inches to 10 inches. The drop panels have a depth of 12 inches. The floor plans for the new layout of the columns can be found in Appendix 3, and will be discussed further in later sections.

For the design of this new structural system the IBC 2000 code will be used instead of BOCA 1996 which was used in the original design. The concrete construction followed the ACI Code 318-95 and the design of the reinforcement steel was designed according to ASTM-A615 with grade 60 steel, while the detailing of the reinforcement follows ACI 315-88.

National Design Code: IBC 2000

Live Load:

Table 16

Roof (minimum)	30 psf
Penthouse Machine Room	150 psf
Floor	80 psf + 20 psf partitions
Stairways & Corridors	100 psf

Dead Loads:

Table 17

Superimposed Dead Load	25 psf
Slab Self-weight	100 psf

Snow Loads:

Table 18

Snow Load	P _f = C _e IP _g = 0.7*1*30 = 21 psf
Roof Snow Load (Pg)	30 psf
Snow Exposure Factor (C_e)	0.7
Importance Factor (I)	1.0
Snow Drift	P _{dmax} = 30 psf

Wind Load:

IBC 2000 was used to find wind and seismic loads. The wind load is controlling over seismic in the design of the lateral system. This is known from the analysis performed on the different frames comparing the wind loading to the seismic loading. This building is in a seismic area of category A which is the lowest level while the wind is in an exposure B which is in the middle to low end of wind loads. The windward and leeward pressures can be found in Table 19. A graphical representation of the distribution of the windward and leeward pressures on the building can be found in Diagrams 7 and 8.

- Based on 90 mph, exposure B and importance factor I = 1.15
- Windward wall design pressure, $P = q_z G C_p$
- Leeward wall design pressure, $P = q_h G C_p$
- q_z = 0.00256 K_z K_{zr} K_d V² I
- $q_h = K_z$ (at top of building) q_z

•
$$G = 0.925 \left(\frac{1 + 1.7 g_Q I_z Q}{1 + 1.7 g_V I_z} \right)$$

•
$$I_z = c \left(\frac{33}{z}\right)^{1/6}$$
, z = 0.6 h, c = 0.30

• Q =
$$\sqrt{\frac{1}{1+.063\left(\frac{B+h}{L_z}\right)^{0.63}}}$$

•
$$L_z = I\left(\frac{z}{33}\right)^{\circ}$$
, $\dot{\epsilon} = 1/3$, $I = 320$

Height				Windward +
above		Windward	Leeward	Leeward
ground	Coefficients	wall design	wall design	wall design
level, z	K_z and K_h	pressure, P	pressure, P	pressure, P
(feet)	Exposure B	(psf)	(psf)	(psf)
0-15	0.57	8.14	-8.44	16.58
20	0.62	8.85	-8.44	17.30
25	0.66	9.42	-8.44	17.87
30	0.70	10.00	-8.44	18.44
40	0.76	10.85	-8.44	19.30
50	0.81	11.57	-8.44	20.01
60	0.85	12.14	-8.44	20.58
70	0.89	12.71	-8.44	21.15
80	0.93	13.28	-8.44	21.72
90	0.96	13.71	-8.44	22.15
100	0.99	14.14	-8.44	22.58
120	1.04	14.85	-8.44	23.30
140	1.09	15.56	-8.44	24.01
160	1.13	16.14	-8.44	24.58
180	1.17	16.71	-8.44	25.15
200	1.20	17.14	-8.44	25.58
250	1.28	18.28	-8.44	26.72

Wall Pressures Coefficients (C_p):

Table 20

Surface	L/B	Cp	For use with
Windward wall	All Values	0.8	qz
Leeward wall	All Values	-0.5	q h

Daniel Painter

5th Year Thesis - Two Freedom Square

Side walls All Values -0.7	q h	
----------------------------	------------	--

Importance Factor (I)	1.15
Basic Wind Speed	90 mph
G	0.822
Iz	0.238
L/B	0.68
Q	0.808
Z	132 ft
Lz	507.97
K _d	0.85

Diagram 7

Diagram 8

Seismic Loads:

The results of distributing the base shear to each story can be found in Table 23. A graphical representation of the story forces can be found on Diagram 9. For the seismic calculations an average column size was used to calculate the floor weights. The total weight of the building was found to be 46,000 kips. The results of distributing the base shear to each story can be found in Table 23.

Table 22	
Peak Velocity (A _V)	0.05
Peak Acceleration (A _A)	0.05
Seismic Hazard Group	1

Daniel Painter 5th Year Thesis - Two Freedom Square

Seismic Performance Category	A
Soil-type Profile	53
Deflection Modification Factor (C_D)	4
Response Modification Factor (R)	7
Approximate Fundamental Period (T_A)	1.70
Seismic Coefficient (C_5)	0.0090
Maximum Seismic Coefficient (C _{Smax})	0.0178
Seismic Base Shear (V)	433.7 ^k

- Basic Structural System Building frame system with eccentrically braced frame
- Analysis Procedure Utilized calculation of base shear

	Floor	Floor	Floor Force per	Floor Force per
	Force	Shear	Frame for 5	Frame for 7
	F _× (kips)	V _× (kips)	frames (kips)	frames (kips)
Ground	1.174496	433.7593	0.23	0.17
2 nd Floor	2.536125	432.5848	0.51	0.36
3 rd Floor	4.626852	430.0486	0.93	0.66
4 th Floor	8.275569	425.4218	1.66	1.18
5 th Floor	9.480152	417.1462	1.90	1.35
6 th Floor	12.47144	407.6661	2.49	1.78
7 th Floor	15.73518	395.1946	3.15	2.25
8 th Floor	19.28131	379.4595	3.86	2.75
9 th Floor	23.10587	360.1781	4.62	3.30
10 th Floor	27.18373	337.0723	5.44	3.88
11 th Floor	31.0091	309.8885	6.20	4.43
12 th Floor	35.31373	278.8794	7.06	5.04
13 th Floor	39.99652	243.5657	8.00	5.71
14 th Floor	43.91082	203.5692	8.78	6.27
15 th Floor	48.41263	159.6584	9.68	6.92
16 th Floor	51.01623	111.2457	10.20	7.29
Penthouse Roof	60.22952	60.22952	12.05	8.60

Framing System:

The framing system for Two Freedom Square is a combination of cast-in-place concrete columns and a two-way drop panel flat slab. The slab takes the lateral load while the columns transfer everything to the foundation which in turn transfers the loads out to the ground. Diagrams 4 and 5 (above) show a typical column; Diagram 4 shows an example of one with a drop panel and Diagram 5 shows an example of one without a drop panel. Diagram 6 (above) shows an example of on of the bays in Two Freedom Square.

The redesigned floor system is a two-way drop panel flat slab, which has a 10 inch slab and 12 inch drop panels. This system, like the existing system, is an excellent system to use when face with shallow floor to floor heights and also it is used around the Washington D.C. area because concrete is the primary material used for buildings so the general contracting firms specialize in concrete construction and the construction of two-way slabs.

Some of the issues which arise when designing two-way slabs are the area around the columns. Of major concern are the columns punching through the slab. When this problem arises, drop panels have to be designed to prevent the columns from punching through the slab. Because the columns were designed to be 24 by 24 inches, this forced the drop panels to be 12 inches deep and the slab to be 10 inches instead of 9 inches. The drop panels are also 12 foot squares around columns. The reinforcement information can be found in Appendix 2, which includes ADOSS runs for both the N-S and E-W directions.

Lateral Load Resisting Elements:

The primary lateral load resisting elements for the redesigned building is a twoway flat slab 10" thick with 12" drop panels around the columns. The elements make up a frame system composed of eccentrically braced frames. The frames are in both directions of the building making for a system that resists torsion and wind loads in whatever what they are applied to the building.

In the north-south direction the frames are considered to have equal relative stiffness (k) and therefore take an equal amount of the wind load. However in the east-west direction two different frames are considered to take the loads. In these five frames have a relative stiffness equal to 1.107 while the remaining two frames have a relative stiffness equal to 0.729. The distribution of the wind force to each frame can be found in Table 1, located in Appendix 1.

This building has a few areas of concern when looking at lateral loading. First, on the side closest to One Freedom Square, the building steps down like a staircase. In the area around the elevators, columns have been added along the column lines to reduce the number of columns scattered throughout the area. However this area around the elevators is in the center of the building which means it is along the bending and torsion lines and so columns outside of the core take more of the loads.

Strength, Drift, Story Drift, and Overturning:

Two Freedom Square is a unique building in many aspects and simple in others. Because it is a concrete building, the building itself is very massive, and heavy, yet

Daniel Painter 5th Year Thesis - Two Freedom Square

the interior has a relatively open floor area great for offices. The buildings strength was to resist live and dead loads.

Once again the overall controlling factor was wind over seismic for design. In some cases it was almost two to one. The overall drift in the N-S direction was 4.212 inches for wind loading. In the E-W direction the overall drift for wind was 5.994 inches. The allowable drift for the building taken from h/400 is equal to 6.51 inches, and since in all cases the actual drift is less than h/400. Below in Table 25 are the story drifts for the wind cases.

Story Drift N-S	Story Drift E-W
(inches)	(inches)
0	0
0.266	0.36
0.605	0.829
0.963	1.333
1.317	1.832
1.659	2.327
1.983	2.792
2.287	3.229
2.57	3.636
2.836	4.017
3.088	4.38
3.315	4.706
3.514	4.991
3.686	5.238
3.829	5.444
3.946	5.613
4.044	5.752
	(inches) 0 0.266 0.605 0.963 1.317 1.659 1.983 2.287 2.57 2.836 3.088 3.315 3.514 3.686 3.829 3.946

Table 25

The two different directions of wind loading, as seen above, have slightly different story drift values. This make sense that the E-W direction would be larger because the actual length of the frames is shorter than in the N-S direction, causing the drift to be slightly larger.

The overturning moment for this building was found to be significantly smaller than the allowable overturning moment of 1.5 times the weight times the distance from the center of the building to the edge of the building. The difference was over 300 times more. Two Freedom Square has two basements making it that much harder to turn over. So the impact of overturning due to the wind loading is almost insignificant. This has to do with the weight of the building being large and the length almost equal to the height.

Drift Values vs. Allowable Code:

The largest drift value calculated was 5.99 inches which a little less than the allowable drift from h/400. As stated before this makes sense because the building is a stiff building due to the fact it is made out of concrete.

Depth Option #2: Non-Composite Steel Structure

Introduction to Structural System

For my final design, I looked at the modified column layout, which can be seen in Appendix 3, with a steel structure compared to a concrete structure. For the lateral system moment frames were used in both direction and shear walls in the core around some of the elevator shafts. The slab is a combination of 2 inch LOK deck with $4\frac{1}{2}$ inches of cover to provide enough depth to not require additional fireproofing on the underside of the deck. Also with this design the intermediate beams were designed both compositely and non-compositely.

The IBC 2000 was used as the primary code to determine loading of the building. It was also used to provide information about the requirements for fireproofing, torsion, and accidental torsion.

National Design Code: IBC 2000

Live Load:

Table 26

Roof (minimum)	30 psf
Penthouse Machine Room	150 psf
Floor	80 psf + 20 psf partitions
Stairways & Corridors	100 psf

Dead Loads:

Table 27

Superimposed Dead Load	25 psf	
Slab Self-weight	81.25 psf	

Snow Loads:

Table 28

Snow Load	P _f = C _e IP _g = 0.7*1*30 = 21 psf
Roof Snow Load (Pg)	30 psf
Snow Exposure Factor (C_e)	0.7
Importance Factor (I)	1.0
Snow Drift	P _{dmax} = 30 psf

Wind Load:

Wind loads were determined by IBC 2000 which references ASCE 7-02. The wind load is controlling over seismic in the design of the lateral system. And actually because of the shape of my building accidental torsion is the controlling factor in the lateral system based on relative stiffness. This is known from the analysis performed on the different frames comparing the wind loading to the seismic loading. This building is in a seismic area of category A which is the lowest level while the wind is in an exposure B which is in the middle to low end of wind loads. The windward and leeward pressures can be found in Table 29. A graphical representation of the distribution of the windward and leeward pressures on the building can be found in Diagrams 9 and 10.

- Based on 90 mph, exposure B and importance factor I = 1.15
- Windward wall design pressure, $P = q_z G C_p$
- Leeward wall design pressure, $P = q_h G C_p$
- q_z = 0.00256 K_z K_{zr} K_d V² I
- $q_h = K_z$ (at top of building) q_z

•
$$G = 0.925 \left(\frac{1 + 1.7 g_Q I_z Q}{1 + 1.7 g_V I_z} \right)$$

•
$$I_z = c \left(\frac{33}{z}\right)^{1/6}$$
, $z = 0.6 h$, $c = 0.30$

•
$$Q = \sqrt{\frac{1}{1 + .063 \left(\frac{B+h}{L_z}\right)^{0.63}}}$$

• $L_z = I \left(\frac{z}{33}\right)^{\varepsilon}$, $\dot{\varepsilon} = 1/3$, $I = 320$

Table 29

Height				Windward +
above		Windward	Leeward	Leeward
ground	Coefficients	wall design	wall design	wall design
level, z	K_z and K_h	pressure, P	pressure, P	pressure, P
(feet)	Exposure B	(psf)	(psf)	(psf)
0-15	0.57	7.57	-10.62	18.19
20	0.62	8.23	-10.62	18.86
25	0.66	8.77	-10.62	19.39
30	0.70	9.30	-10.62	19.92
40	0.76	10.09	-10.62	20.72
50	0.81	10.76	-10.62	21.38
60	0.85	11.29	-10.62	21.91
70	0.89	11.82	-10.62	22.44
80	0.93	12.35	-10.62	22.97
90	0.96	12.75	-10.62	23.37
100	0.99	13.15	-10.62	23.77
120	1.04	13.81	-10.62	24.43
140	1.09	14.48	-10.62	25.10
160	1.13	15.01	-10.62	25.63
180	1.17	15.54	-10.62	26.16
200	1.20	15.94	-10.62	26.56
250	1.28	17.00	-10.62	27.62

Wall Pressures Coefficients (C_p):

Table 30

Surface	L/B	Cp	For use with
Windward wall	All Values	0.8	qz
Leeward wall	All Values	-0.5	q h
Side walls	All Values	-0.7	q h

TUDIE 51	
Importance Factor (I)	1.15
Basic Wind Speed	90 mph
G	0.822
Iz	0.238
L/B	0.68
Q	0.808
Z	132 ft
Lz	507.97
K _d	0.85

Diagram 9

Table 31

Diagram 10

Seismic Loads:

The results of distributing the base shear to each story can be found in Table 33. A graphical representation of the story forces can be found on Diagram 12. For the seismic calculations an average column size was used to calculate the floor weights. The total weight of the building was found to be 43,495 kips. The results of distributing the base shear to each story can be found in Table 33.

Table 32

Peak Velocity (A _V)	0.05
Peak Acceleration (A _A)	0.05
Seismic Hazard Group	1
Seismic Performance Category	A
Soil-type Profile	53

Deflection Modification Factor (C_D)	4
Response Modification Factor (R)	7
Approximate Fundamental Period (T_A)	1.88
Seismic Coefficient (C_5)	0.0084
Maximum Seismic Coefficient (C _{Smax})	0.0178
Seismic Base Shear (V)	366.3 ^k

- Basic Structural System moment frame system with shear walls
- Analysis Procedure Utilized calculation of base shear

	Floor	Floor Floor Force per		Floor Force per
	Force	Shear	Frame for 5	Frame for 7
	F _× (kips)	V _× (kips)	frames (kips)	frames (kips)
Ground	0.678634	366.2511	0.14	0.10
2 nd Floor	1.797616	365.5725	0.36	0.26
3 rd Floor	3.323065	363.7748	0.66	0.47
4 th Floor	5.068556	360.4518	1.01	0.72
5 th Floor	7.229201	355.3832	1.45	1.03
6 th Floor	9.693839	348.154	1.94	1.38
7 th Floor	12.39858	338.4602	2.48	1.77
8 th Floor	15.41499	326.0616	3.08	2.20
9 th Floor	18.69501	310.6466	3.74	2.67
10 th Floor	21.8828	291.9516	4.38	3.13
11 th Floor	25.60499	270.0688	5.12	3.66
12 th Floor	29.56315	244.4638	5.91	4.22
13 th Floor	33.3358	214.9007	6.67	4.76
14 th Floor	37.69395	181.5649	7.54	5.38
15 th Floor	42.26887	143.8709	8.45	6.04
16 th Floor	46.84762	101.602	9.37	6.69
Penthouse Roof	54.75443	54.75443	10.95	7.82

Table 33

Framing System:

The framing system for the redesign of Two Freedom Square into steel is a combination of both moment frames and shear walls. The moment frames are made

up of the columns and beams along the column likes. There are seven frames in the E-W direction and eight frames in the N-S direction. Frames 1 and 5 are the same and frames 2 and 4 are the same however the rest of the frames are different due to the shape of the building and the distribution of the loading. Pictures of the frames can be seen in Appendix 4. In the E-W direction there are two shear walls along the outside walls of the stairwells. Those shear walls are each 20 feet long and 8 inches thick. Details for the reinforcement and distribution for the loading can be found in Appendix 2. In the N-S direction there are four shear walls along the elevator shafts each 10 feet long and 18 inches thick. Details for reinforcement and distribution for the context of the share the share the share the share the share are four shear walls along the elevator shafts each 10 feet long and 18 inches thick. Details for the reinforcement and distribution for the context of the share the shar

Along with the moment frames and the shear walls, as mentioned before the floor system is concrete on 2 inch LOK deck which spans a maximum distance of 10 feet. The specification for the deck was found in a decking manual put out by industry. Two options were looked at for the floor system. First was just a normal noncomposite slab on deck. The second was a composite system for the intermediate beams only. This reduced the size of the intermediate beams from W18s to W12s.

One thing which changed when switching from concrete to steel was what the floor to floor height was going to be. One advantage in using a two-way flat slab system was being about the place mechanical ductwork around the drop panels and thus get a lower floor to floor height. With a steel frame, ductwork cannot be place between the beams, and therefore it has to be hung underneath the beams. This adds height to the overall height of the floors because the depth about the drop ceiling is comprised of ductwork plus beam and slab depth compare to the great of ductwork plus slab depth or drop panel and slab depth. For the redesign of Two Daniel Painter page 42 5th Year Thesis - Two Freedom Square Freedom Square into steel with keeping in mind the mechanical ductwork, added two feet to the floor to floor height of each floor to keep the same drop ceiling height. Also by adding height to the floor to floor height, this required that an additional 4 to 5 feet be added to the excavation depth. Below in Table 34 are the new elevations of each floor level.

Table 34	-
Level	Elevation
Cellar 2	373'-0"
Cellar 1	387'-0"
Ground Floor	401'-0"
2 nd Floor	419'-0"
3 rd Floor	433'-0"
4 th Floor	447'-0"
5 th Floor	461'-0"
6 th Floor	475'-0"
7 th Floor	489'-0"
8 th Floor	503'-0"
9 th Floor	517'-0"
10 th Floor	531'-0"
11 th Floor	545'-0"
12 th Floor	559'-0"
13 th Floor	573'-0"
14 th Floor	587'-0"
15 th Floor	601'-0"
16 th Floor	615'-0"
Penthouse	629'-0"
Penthouse Roof	651'-0"

Table 34

Lateral Load Resisting Elements:

As mentioned above the lateral load resisting elements are a combination of moment frames and shear walls. The distribution of the lateral loads and torsion affects is determined by the relative stiffness of each frame or shear wall. To

Daniel Painter 5th Year Thesis - Two Freedom Square page 43

analyze the different frames RISA was used in combination with an extensive spreadsheet, which can be found in Appendix 1.

After analyzing each frame for wind loading, wind plus torsion and wind plus accidental torsion, it was determined that the wind plus accidental torsion would be the controlling lateral loading on the building. This is due to the shape of the building which causes the center of mass to change position as one moves up through the building. The center of masses for each floor can be seen in Table 35. All the distances are taken from the intersection of column line 1 and column line *G*, which can be found in Appendix 3.

Table 35

	x bar	y bar
Ground to 4 th	87.72 ft	75.02 ft
5 th to 10 th	82.36 ft	76.41 ft
11 th to 13 th	68.24 ft	83.21 ft
14 th to roof	59.5 ft	83 ft

Drift and Story Drift:

The maximum drift in the E-W direction is 7.336 inches and in the N-S direction is 7.246 inches due to wind plus accidental torsion loading. This is under maximum loading; however it might be a little too much for the pre-cast concrete panels to take without cracking. This was not part of my research, but further work could be put into the design of the connections of the pre-cast panels to the frame to allow for more movement. Below in Table 36, story forces for both the N-S and E-W directions.

	Story Drift		Story Drift	
	N-S (inches)	% of Ht.	E-W (inches)	% of Ht.
Ground	0	0	0	0
2 nd Floor	0.399	0.185	0.415	0.192
3 rd Floor	0.464	0.276	0.412	0.245
4 th Floor	0.484	0.288	0.412	0.245
5 th Floor	0.554	0.33	0.504	0.3
6 th Floor	0.53	0.316	0.488	0.29
7 th Floor	0.497	0.296	0.468	0.279
8 th Floor	0.523	0.311	0.535	0.318
9 th Floor	0.473	0.282	0.501	0.298
10 th Floor	0.425	0.253	0.464	0.276
11 th Floor	0.448	0.267	0.502	0.299
12 th Floor	0.388	0.231	0.454	0.27
13 th Floor	0.325	0.194	0.391	0.233
14 th Floor	0.463	0.275	0.476	0.283
15 th Floor	0.36	0.214	0.384	0.229
16 th Floor	0.256	0.153	0.293	0.174
Penthouse Roof	0.294	0.175	0.276	0.164

Table 36

Drift Values vs. Allowable Code:

The redesign of Two Freedom Square into steel increased the height of the building which in turn increased the h/400 drift limit from 6.5 inches to 7.5 inches. The actual drift the building undergoes is at a maximum 7.336 inches in the E-W direction and 7.246 inches in the N-S direction. Both of these numbers are less than the allowable drift, however more time would have allowed for a more research into limiting the drift vales more.

Breadth #1: Construction Management Issues

As investigation into alternative structural systems developed, construction management issues became more important. Some of the obvious areas of concern were cost differences between a concrete structure and a steel structure, the need for a crane large enough to erect a steel structure, and then the amount of time difference for a concrete verses a steel structure construction.

First, the cost differences between a concrete building and a steel building. R.S. Means was used to do a square foot estimate for Two Freedom Square. The model number used was M.480, which is an 11-20 story office building.

R.S. Means Estimate: Steel building

Two Freedom Floor Area:		=	405,881 sq. ft.
Two Freedom Basement Area:		=	44,349 sq. ft.
Two Freedom Total Area:		=	450,230 sq. ft.
Two Freedom Perimeter:		=	750 ft.
Cost per Sq. Ft.:		=	\$86.28
Cost per Sq. Ft. Basement:		=	\$24.65
Perimeter Adjustment:	1.88×1.46	=	\$2.74
Story Height Adjustment:	4×1.09	=	\$4.36
Adjusted Cost per Sq. Ft.:	86.28 + 2.74 + 4.36	=	\$93.38
Floor Area:	405,881×93.38	=	\$37,901,167.78
Basement Area:	44,349×24.65	=	\$1,093,202.85
Elevator Adjustment:	4×226,000	=	\$904,000.00
Total Cost:		=	\$39,898,370.63
Total Cost per Sq. Ft.:		=	\$88.62
Location Factor (Alexandria, VA	4):	=	0.92
Historical Factor (Alexandria, V	/A):	=	0.91
Adjusted Cost per Sq. Ft.:		=	\$74.19
Contractor Fee 25%:		=	\$18.55
Architect Fee 6%:		=	\$4.45
Final Cost per Sq. Ft.:	74.19 + 18.55 + 4.45	=	\$97.19

R.S. Means Estimate: Concrete building

Two Freedom Floor Area: Two Freedom Basement Area: Two Freedom Total Area: Two Freedom Perimeter: Cost per Sq. Ft.: Cost per Sq. Ft. Basement: Perimeter Adjustment: Story Height Adjustment: Adjusted Cost per Sq. Ft.:	1.88×1.46 2×1.09 82.13+2.74+2.18	= = = = = = =	405,881 sq. ft. 44,349 sq. ft. 450,230 sq. ft. 750 ft. \$82.13 \$24.65 \$2.74 \$2.18 \$87.05
Floor Area: Basement Area:	405,881×87.05 44,349×24.65	= =	\$35,331,941.05 \$1,093,202.85
Elevator Adjustment:	4×226,000	=	\$904,000.00
Total Cost:		=	\$37,329,143.90
Total Cost per Sq. Ft.:		=	\$82.91
Location Factor (Alexandria, V	4):	=	0.92
Historical Factor (Alexandria, V	VA):	=	0.91
Adjusted Cost per Sq. Ft.:		=	\$69.41
Contractor Fee 25%:		=	\$17.35
Architect Fee 6%:		=	\$4.16
Final Cost per Sq. Ft.:	69.41+17.35+4.16	=	\$90.92

A comparison of the two estimates shows that the concrete design is cheaper. Mainly this is due to the fact that the steel building has a larger floor to floor height.

Table 37	
	Cost
Estimated Project Cost	\$39,500,000.00
Total Project Cost (TC)	\$42,000,000.00
R.S. Means Estimate - Concrete Building	\$40,934,911.60
R.S. Means Estimate - Steel Building	\$43,757,853.70

Secondly, the need to size a crane large enough for the erection of the steel structure was investigated. For this the largest steel member was chosen at the largest reach which happened to be a W30x191, thirty feet in length which is a weight of 5,730 pounds. This member is located 200 feet from the placement of the crane, which can be seen on a site plan in Appendix 3. To find a crane the Liebherr website was accessed. The 290 HC crane, which is a tower crane, was chosen because of its reach and ability to lift the weight at the distance away from the tower. The cost to rent this crane is \$11,500 per month and it has a capacity of 9,070 pounds at a distance of 197 ft from the tower. Specifications for this specific crane can be found in Appendix 4.

Finally, the time to erect a steel structure compared to a concrete structure was determined. The time to erect a steel structure was determined from the R.S. Means unit cost per square foot estimate. The steel structure weighs 6,932.958 kips or 3,466.479 tons. The Means estimate is the daily output is 13.9 tons per day of steel with one crew; which translates into 250 days. A summary of the information from Means can be found in Table 38. The numbers in Table 38 are based on one crew working, which in reality could be sped up by increasing the number of people working on each area of work.

TUDIE JU				
	Daily Output	Amount	Days	Crews
Steel Erection	13.9 ton/day	3,466.479 tons	249.39	E-6
Non-Composite Deck	4,000 sq. ft./day	450,230 sq. ft.	112.56	E-4
Composite Deck	3,600 sq. ft./day	450,230 sq. ft.	125.06	E-4
Slab - pumped	140 cy/day	18,759.58 су	134	C-20
Slab – crane & bucket	100 cy/day	18,759.58 су	187.6	C-7

Table 38

Breadth #2: Architectural Issues

For the second breath option architectural issues were investigated. This seems like a logical area to look at in depth because the column layout was rearranged which disturbed the core of the building. So a redesign of the core of the building was necessary to make room for the new columns introduced to that area. The major problem which arose was one of the columns was right in the middle of an elevator shaft. Also some of the bathrooms where rearranged to placement of the columns in that space.

The solution to the problem of the elevator going through the middle of an elevator was to separate the elevators to two on each side of the column to allow room for the beams to be placed through the core of the building. Also the whole core was moved towards the northern part of the building, which places the column in the floor space between the elevators, however this was necessary to be able to put a beam in from of the elevator shaft. All of this can be seen in Diagram 11.

Some other things which were changed were the Men's and Women's bathrooms where switched due to the configuration around the introduction of a new column. The bathrooms are still in the same spot, however because the addition width added from separating the elevators, an addition stall was added to each restroom. Also by moving the core, the core is now closer to some columns, so a check was done to make sure there was still adequate room to get around the columns.

Most of the layout of the building stayed the same because it was just open office space. And because the way the core was designed not much in the core changed. Most of the elements in the core are stacked which allowed for fluid redesign.

One thing which was not address was the exterior of the building. My focus was to look at the interior space, however if the building was redesigned in steel the floor to floor height would be increased two feet which would necessitate the redesign of the exterior elevations and most likely the pre-cast concrete panels used to make up the facade of the building.

Fireproofing for Steel Design

One final area of interest which arose while investigating other structural systems for Two Freedom Square was how to fireproof the steel structure. This was not a concern in the original design because it was made out of concrete which is inherently fire resistant. Upon further investigation it was found that only the beams and columns would require fireproofing. The metal deck would not have to be fireproofed if the slab depth on top of the slab was $4\frac{1}{2}$ inch on top of the corrugation. When investigating options for fireproofing, several options arose.

For the beams, the D916 assembly was determined to work. Diagram 12 shows a picture of the assembly. The requirement for a 2-hour fire rating is 1-1/16 inches of spray-on fireproofing.

For the column fireproofing, there are several options. The first is X516 which is three layers of gypsum board, each being at least 5/8 in thick to get the required 2-hour fire rating. A picture of the assembly can be seen in Diagram 13.

The second assembly for columns is X525, which is a combination of spray on fireproofing and gypsum board. The required thickness of the spray on fire proofing is 1-1/4 inches and the gypsum board is to be 5/8 inches thick. Also the corners are supposed to be sealed. A picture of the assembly can be seen in Diagram 14.

The third assembly is X603, which is just spray on fireproofing on the column. A picture of this can be seen in Diagram 15.

The final assembly is a mastic coating on the columns. This is normally used for exposed members, which leaves the option of exposing the columns in Two Freedom Square. A picture of the assembly can be seen in Diagram 16. To receive a 2-hour fire rating a thickness of 0.110 inches is required of the film.

Summary and Conclusions

Above is all the information about the structures investigated, mostly the loading and what went into the design process. It produced a lot of data which had to be interpreted.

So, after completing this thesis project some of the research leads to dead ends while others gave reasons to continue with further investigation. The original design of Two Freedom Square was a good design, efficient, constructible, and attractive.

Looking at the areas in which the research was developed, most of it came out of a new column layout which seems to make sense, however the proposed redesigns would still need some work to get to the point at which the existing structure is at. For the concrete structure, large columns would be required to achieve the same efficiency as the existing structure, also the addition of shear walls could drastically help drift. In the steel structure, a more in depth look which frames should be used as moment frames instead of using them all. Because the building is not symmetric, large affect from torsion exist. The affect from torsion greatly increased the size of a few of the frames which were distanced from the center of mass.

Other things to consider when analyzing the redesigns, for the steel structure specifically the need for fireproofing is required. Also the additional height to the building will increase the cost of the building, and increase the size of the crane needed. Focusing on the new column layout causes a redesign of the core and causes some interesting maneuvering around the elevators.

All of these problems or hitches are things which could be refined with more work and time to tweak the designs. They are both viable solutions to the design of Two Freedom Square.

In conclusion a lot was learned over the course of the year, mostly have to learn on my own and teach myself things needed to complete the design. Also it has helped me get a greater picture of what goes into the design a building.

Appendix 1: Loads

				Con	crete Bu	ilding: 2	20 ft				
		A&G	B&F	C&E	D	1&5	2&4	3	6	7	8
ground	254.05	3.81	7.37	6.73	6.35	3.87	7.56	7.37	7.62	5.72	1.91
2nd	251.7	3.78	7.30	6.67	6.29	3.84	7.49	7.30	7.55	5.66	1.89
3rd	264.45	3.97	7.67	7.01	6.61	4.03	7.87	7.67	7.93	5.95	1.98
4th	273.31	4.10	7.93	7.24	6.83	4.17	8.13	7.93	8.20	6.15	2.05
5th	281.08	4.22	8.15	7.45	7.03	4.29	8.36	8.15	8.43	6.32	2.11
6th	289.73	4.35	8.40	7.68	7.24	4.42	8.62	8.40	8.69	6.52	2.17
7th	295.91	4.44	8.58	7.84	7.40	4.51	8.80	8.58	8.88	6.66	2.22
8th	303.29	4.55	8.80	8.04	7.58	4.63	9.02	8.80	9.10	6.82	2.27
9th	308	4.62	8.93	8.16	7.70	4.70	9.16	8.93	9.24	6.93	2.31
10th	314.67	4.72	9.13	8.34	7.87	4.80	9.36	9.13	9.44	7.08	2.36
11th	317.1	4.76	9.20	8.40	7.93	4.84	9.43	9.20	9.51	7.13	2.38
12th	323.25	4.85	9.37	8.57	8.08	4.93	9.62	9.37	9.70	7.27	2.42
13th	326.22	4.89	9.46	8.64	8.16	4.97	9.70	9.46	9.79	7.34	2.45
14th	330.05	4.95	9.57	8.75	8.25	5.03	9.82	9.57	9.90	7.43	2.48
15th	333.83	5.01	9.68	8.85	8.35	5.09	9.93	9.68	10.01	7.51	2.50
16th	517.89	7.77	15.02	13.72	12.95	7.90	15.41	15.02	15.54	11.65	3.88
roof	382.85	5.74	11.10	10.15	9.57	5.84	11.39	11.10	11.49	8.61	2.87

Table 1 - Wind Loads

Table 2 - Wind Loads per Frame, Steel Design

TUDIC				0	ine, o	1001 0	<u> </u>	••						
1	2	3	4	5	6	7	8	Α	В	С	D	E	F	G
2.8705	2.8705	2.8705	2.8705	2.8705	9.1777	4.5888	0.2118	2.8896	2.8896	2.8896	2.8896	2.8896	2.8896	2.8896
4.5900	4.5900	3.0600	4.5900	4.5900	8.8633	4.4317	0.2127	2.6895	2.6895	2.6895	2.6895	2.6895	4.0343	8.0686
6.6735	5.0051	4.0041	5.0051	6.6735	9.6179	4.4391	0.3124	3.5773	3.5773	3.5773	3.5773	3.5773	4.4716	8.9432
7.7802	6.2242	4.4458	6.2242	7.7802	10.0728	4.5327	0.3108	4.4537	4.4537	3.8970	3.8970	3.8970	5.1960	10.3920
10.7758	7.6970	5.9866	7.6970	10.7758	10.4815	4.6585		4.6387	5.1541	4.6387	4.2170	4.6387	5.7984	11.5968
11.3721	7.5814	6.2030	7.5814	11.3721	10.6165	4.9960		4.9552	5.3682	4.9552	4.6013	4.9552	6.4418	12.8836
12.0307	7.6559	6.0153	7.6559	12.0307	11.3151	4.8149		5.2568	5.6073	5.2568	4.9476	5.2568	7.0091	14.0183
11.7782	8.1541	6.2355	8.1541	11.7782	11.5881	4.8284		5.4368	5.7388	5.4368	5.1649	5.7388	7.3785	14.7569
12.2000	8.1333	6.4210	8.1333	12.2000	11.8638	4.9432		5.5013	6.0252	5.5013	5.5013	6.0252	7.4429	15.8162
12.3412	8.2275	6.7316	8.2275	12.3412	11.7879	5.3326		5.9299	6.1671	5.9299	5.7103	6.1671	8.1146	15.4178
12.6798	8.2419	6.5935	8.2419	12.6798	17.3485			5.9822	6.1885	5.9822	5.7893	6.4095	8.1576	16.3152
12.5857	8.5812	6.7424	8.5812	12.5857	17.6050			6.1810	6.3683	6.1810	6.0044	6.7792	8.4062	16.1657
12.6100	8.7300	7.0931	8.7300	12.6100	1.2575			6.4113	6.4113	6.2510	6.0985	6.7578	8.6220	16.6693
12.8091	8.9663	7.2700	8.9663	12.8091				6.7066	6.7066	6.2785	6.1477	6.8626	8.6791	17.3583
12.8702	9.3602	7.3544	9.3602	12.8702				6.9904	6.8506	6.2278	6.2278	6.8506	9.0139	18.0278
16.1168	11.7928	9.4805	11.7928	16.1168				9.5908	8.9514	7.6727	7.3574	8.3920	10.9610	24.4130
9.6397	7.7117	6.0091	7.7117	9.6397				7.1853	4.9799	4.3736	3.8690	4.7006	5.9173	15.7178

Table 3 - Wind Loads per Shear Wall

Tuble .				ieur wu	
sw1	sw2	sw3	sw4	sw5	sw6
6.4749	6.4749	6.4749	6.4749	14.8186	14.8186
4.2287	4.2287	4.2287	4.2287	10.9694	10.9694
3.2180	3.2180	3.2180	3.2180	9.2702	9.2702
2.2864	2.2864	2.2864	2.2864	7.6741	7.6741
2.1249	2.1249	2.1249	2.1249	6.2512	6.2512
1.6065	1.6065	1.6065	1.6065	5.2417	5.2417
1.2764	1.2764	1.2764	1.2764	4.4373	4.4373
1.0941	1.0941	1.0941	1.0941	3.7288	3.7288
0.8956	0.8956	0.8956	0.8956	3.2594	3.2594
0.8006	0.8006	0.8006	0.8006	2.9317	2.9317
0.6750	0.6750	0.6750	0.6750	2.5897	2.5897
0.5995	0.5995	0.5995	0.5995	2.3550	2.3550
0.5702	0.5702	0.5702	0.5702	2.2189	2.2189
0.5437	0.5437	0.5437	0.5437	2.1088	2.1088
0.5098	0.5098	0.5098	0.5098	2.0001	2.0001
0.6599	0.6599	0.6599	0.6599	2.5952	2.5952
0.4792	0.4792	0.4792	0.4792	1.8453	1.8453

Table 4 - Wind plus Torsion per Frame

1	2	3	4	5	6	7	8	Α	В	С	D	E	F	G
2.8705	2.8705	2.8705	4.3654	7.1339	12.6708	7.0427	0.2118	2.8896	2.8896	2.8896	2.9252	4.4228	6.1001	7.8972
12.4290	9.1681	4.0450	4.5900	4.5900	8.8633	4.4317	0.2127	2.6895	2.6895	2.6895	2.6895	3.0515	5.6214	13.4804
14.5713	8.5165	4.9786	5.0051	6.6735	9.6179	4.4391	0.3124	3.5773	3.5773	3.5773	3.5773	3.6052	4.5696	9.2744
16.9578	10.5431	5.4776	6.2242	7.7802	10.0728	4.5327	0.3108	4.4537	4.4537	3.8970	3.8970	4.0912	5.9393	12.9164
32.1586	16.5215	8.0808	7.6970	10.7758	10.4815	4.6585		4.6387	5.1541	4.6387	4.2170	5.4751	8.9753	22.5179
35.5354	16.8421	8.4524	7.5814	11.3721	10.6165	4.9960		4.9552	5.3682	4.9552	4.6013	5.7165	9.7199	24.3438
37.5630	16.9247	8.0841	7.6559	12.0307	11.3151	4.8149		5.2568	5.6073	5.2568	4.9476	5.9947	10.5193	26.4524
35.6289	17.5587	8.2595	8.1541	11.7782	11.5881	4.8284		5.4368	5.7388	5.4368	5.1649	6.4318	10.7816	26.9464
36.2522	17.2095	8.3630	8.1333	12.2000	11.8638	4.9432		5.5013	6.0252	5.5013	5.5013	6.6505	10.6394	28.1277
32.4777	15.8050	8.3829	8.2275	12.3412	11.7879	5.3326		5.9299	6.1671	5.9299	5.7103	6.8255	11.4117	26.6307
49.4565	21.0111	8.3385	8.2419	12.6798	17.3485			5.9822	6.1885	5.9822	5.7893	7.9691	16.4037	46.2244
43.7705	19.8535	8.1360	8.5812	12.5857	17.6050			6.1810	6.3683	6.1810	6.0044	8.3290	16.0379	42.6072
38.5374	18.2416	8.3025	8.7300	12.6100	1.2575			6.4113	6.4113	6.2510	6.0985	8.0089	15.0987	39.3003
39.2851	18.0719	7.3849	8.9663	12.8091				6.7066	6.7066	6.2785	6.1477	8.2148	15.6331	42.5027
32.8890	16.5088	7.4351	9.3602	12.8702				6.9904	6.8506	6.2278	6.2278	7.8078	14.2984	37.2220
29.1166	16.4642	9.5358	11.7928	16.1168				9.5908	8.9514	7.6727	7.3574	8.9890	14.2656	37.7986
14.0407	9.4429	6.0321	7.7117	9.6397				7.1853	4.9799	4.3736	3.8690	4.9279	7.0137	20.9362

Tuble 5	- wina	pius it		er Sneu	r wan
sw1	sw2	sw3	sw4	sw5	sw6
6.4749	6.4749	8.0212	8.0212	28.0572	14.8186
5.3683	5.3683	4.2287	4.2287	14.2202	10.9694
3.8868	3.2180	3.2180	9.0709	9.4243	9.2702
-1.8396	-0.3426	2.2864	2.2864	8.5036	7.6741
2.7369	2.7369	2.1249	2.1249	8.8145	6.2512
2.0820	2.0820	1.6065	1.6065	7.2108	5.2417
1.6295	1.6295	1.2764	1.2764	6.0598	4.4373
1.3789	1.3789	1.0941	1.0941	4.9725	3.7288
1.1100	1.1100	0.8956	0.8956	4.2612	3.2594
0.9550	0.9550	0.8006	0.8006	3.7936	2.9317
0.7864	0.7864	0.6750	0.6750	4.4621	2.5897
0.6719	0.6719	0.5995	0.5995	3.8932	2.3550
0.6268	0.6268	0.5702	0.5702	3.4147	2.2189
0.5437	0.5437	0.5437	0.5437	3.3207	2.1088
0.5098	0.5098	0.5098	0.5098	2.8377	2.0001
0.6599	0.6599	0.6599	0.6599	3.1534	2.5952
0.4792	0.4792	0.4792	0.4792	2.0924	1.8453

Table 5 - Wind plus Torsion per Shear Wall

Table 6 - Wind plus Accidental Torsion per Frame

1	2	3	4	5	6	7	8	Α	В	С	D	E	F	G
8.3152	6.0098	3.8177	7.1053	14.9475	19.0730	11.5400	2.6390	11.6584	8.4661	5.4866	3.0241	8.6795	15.0136	21.8001
25.7770	16.9634	5.7222	5.7306	8.0222	11.7065	6.4387	0.9426	11.7042	8.8100	6.1086	3.6967	4.8182	13.3676	39.8930
30.6148	15.6496	6.9582	6.1141	11.4690	13.6469	7.0808	1.3985	15.2968	11.4965	7.9495	4.7826	5.5947	11.5534	32.8780
33.7934	18.4658	7.3702	7.4175	12.4251	13.5156	6.7265	1.3726	15.1538	11.7033	7.4224	4.9064	5.7921	12.4487	35.0243
48.3407	23.1996	9.6657	7.6970	10.7758	10.4815	4.6585		10.3094	9.4497	6.8203	4.8331	7.1377	15.2905	44.2274
51.6240	23.0081	9.9502	7.5814	11.3721	10.6165	4.9960		9.6524	8.8648	6.8113	5.1877	7.0708	15.5521	44.7329
53.1734	22.5916	9.3489	7.6559	12.0307	11.3151	4.8149		8.7792	8.2036	6.6751	5.4289	7.1281	15.9113	45.5521
49.3087	22.9529	9.4204	8.1541	11.7782	11.5881	4.8284		8.6460	8.0900	6.7480	5.6334	7.4679	15.8693	45.1697
49.2150	22.1011	9.4097	8.1333	12.2000	11.8638	4.9432		7.7482	7.7410	6.4329	5.8659	7.4974	14.9687	44.8025
44.0622	20.1643	9.3329	8.2275	12.3412	11.7879	5.3326		7.7995	7.5164	6.6933	5.9862	7.6818	15.7001	41.2147
58.3280	24.0914	8.7595	8.2419	12.6798	17.3485			5.9822	6.1885	5.9822	5.7893	8.6989	20.2628	60.2215
51.4288	22.6218	8.4782	8.5812	12.5857	17.6050			6.1810	6.3683	6.1810	6.0044	9.0321	19.5003	54.6033
44.8494	20.5571	8.5969	8.7300	12.6100	1.2575			6.4113	6.4113	6.2510	6.0985	8.5754	18.0314	49.5479
43.2866	19.4481	7.4022	8.9663	12.8091				6.7066	6.7066	6.2785	6.1477	8.7019	18.1380	51.5601
35.8863	17.5792	7.4472	9.3602	12.8702				6.9904	6.8506	6.2278	6.2278	8.1520	16.1991	44.1254
31.0574	17.1616	9.5441	11.7928	16.1168				9.5908	8.9514	7.6727	7.3574	9.2038	15.4547	42.6152
14.7188	9.7096	6.0356	7.7117	9.6397				7.1853	4.9799	4.3736	3.8690	5.0099	7.4093	22.8195

Tuble /		a pius Ai	cciuentu	1 101 3101	The Su
sw1	sw2	sw3	sw4	sw5	sw6
8.2277	8.2277	10.8552	10.8552	64.8120	38.7777
7.3088	7.3088	4.6623	4.6623	30.0859	32.5873
5.2454	3.4634	3.4634	20.9603	20.4067	27.0019
3.5582	3.5582	2.4539	2.4539	15.7683	18.4810
3.2000	3.2000	2.1249	2.1249	13.9098	10.7720
2.3986	2.3986	1.6065	1.6065	10.7141	8.2156
1.8454	1.8454	1.2764	1.2764	8.5520	6.2316
1.5422	1.5422	1.0941	1.0941	6.8319	5.0657
1.2255	1.2255	0.8956	0.8956	5.6179	4.0734
1.0438	1.0438	0.8006	0.8006	4.9145	3.4930
0.8132	0.8132	0.6750	0.6750	5.3384	2.5897
0.6897	0.6897	0.5995	0.5995	4.5910	2.3550
0.6405	0.6405	0.5702	0.5702	3.9562	2.2189
0.5437	0.5437	0.5437	0.5437	3.7572	2.1088
0.5098	0.5098	0.5098	0.5098	3.1390	2.0001
0.6599	0.6599	0.6599	0.6599	3.3543	2.5952
0.4792	0.4792	0.4792	0.4792	2.1816	1.8453

Table 7 - Wind plus Accidental Torsion per Shear Wall

ro	of	Wind Loads (kips)		40.7119		
Frame	Δ	1/∆	Stiffness	roof	plus torsion	plus actorsion
1	0.048	20.8333	0.2368	9.6397	14.0407	14.7188
2	0.06	16.6667	0.1894	7.7117	9.4429	9.7096
3	0.077	12.9870	0.1476	6.0091	6.0321	6.0356
4	0.06	16.6667	0.1894	7.7117	7.7117	7.7117
5	0.048	20.8333	0.2368	9.6397	9.6397	9.6397
sw1		1.0356	0.0118	0.4792	0.4792	0.4792
sw2		1.0356	0.0118	0.4792	0.4792	0.4792
sw3		1.0356	0.0118	0.4792	0.4792	0.4792
sw4		1.0356	0.0118	0.4792	0.4792	0.4792
Total		87.9870	1.0000	40.7119		

16	16th Wind Loads (kips)		66.6194			
Frame	Δ	1/∆	Stiffness	16th	plus torsion	plus actorsion
1	0.03	33.3333	0.2419	16.1168	29.1166	31.0574
2	0.041	24.3902	0.1770	11.7928	16.4642	17.1616
3	0.051	19.6078	0.1423	9.4805	9.5358	9.5441
4	0.041	24.3902	0.1770	11.7928	11.7928	11.7928
5	0.03	33.3333	0.2419	16.1168	16.1168	16.1168

sw1	1.3648	0.0099	0.6599	0.6599	0.6599
sw2	1.3648	0.0099	0.6599	0.6599	0.6599
sw3	1.3648	0.0099	0.6599	0.6599	0.6599
sw4	1.3648	0.0099	0.6599	0.6599	0.6599
Total	137.7847	1.0000	66.6194		

15 [.]	th	Wind Load	ds (kips)	51.8151		
Frame	Δ	1/∆	Stiffness	15th	plus torsion	plus actorsion
1	0.024	41.6667	0.2484	12.8702	32.8890	35.8863
2	0.033	30.3030	0.1806	9.3602	16.5088	17.5792
3	0.042	23.8095	0.1419	7.3544	7.4351	7.4472
4	0.033	30.3030	0.1806	9.3602	9.3602	9.3602
5	0.024	41.6667	0.2484	12.8702	12.8702	12.8702
sw1		1.6503	0.0098	0.5098	0.5098	0.5098
sw2		1.6503	0.0098	0.5098	0.5098	0.5098
sw3		1.6503	0.0098	0.5098	0.5098	0.5098
sw4		1.6503	0.0098	0.5098	0.5098	0.5098
Total		167.7489	1.0000	51.8151		

14 [.]	th	Wind Loads (kips)		50.8208		
Frame	Δ	1/∆	Stiffness	14th	plus torsion	plus actorsion
1	0.021	47.6190	0.2520	12.8091	39.2851	43.2866
2	0.03	33.3333	0.1764	8.9663	18.0719	19.4481
3	0.037	27.0270	0.1431	7.2700	7.3849	7.4022
4	0.03	33.3333	0.1764	8.9663	8.9663	8.9663
5	0.021	47.6190	0.2520	12.8091	12.8091	12.8091
sw1		2.0212	0.0107	0.5437	0.5437	0.5437
sw2		2.0212	0.0107	0.5437	0.5437	0.5437
sw3		2.0212	0.0107	0.5437	0.5437	0.5437
sw4		2.0212	0.0107	0.5437	0.5437	0.5437
Total		188.9318	1.0000	50.8208		

13th		Wind Loads (kips)		49.7730		
Frame	Δ	1/∆	Stiffness	13th	plus torsion	plus actorsion
1	0.018	55.5556	0.2533	12.6100	38.5374	44.8494
2	0.026	38.4615	0.1754	8.7300	18.2416	20.5571
3	0.032	31.2500	0.1425	7.0931	8.3025	8.5969
4	0.026	38.4615	0.1754	8.7300	8.7300	8.7300
5	0.018	55.5556	0.2533	12.6100	12.6100	12.6100

sw1	2.5121	0.0115	0.5702	0.6268	0.6405
sw2	2.5121	0.0115	0.5702	0.6268	0.6405
sw3	2.5121	0.0115	0.5702	0.5702	0.5702
sw4	2.5121	0.0115	0.5702	0.5702	0.5702
Total	219.2842	1.0000	49.7730		

12 [.]	th	Wind Load	ds (kips)	49.0762		
Frame	Δ	1/∆	Stiffness	12th	plus torsion	plus actorsion
1	0.015	66.6667	0.2565	12.5857	43.7705	51.4288
2	0.022	45.4545	0.1749	8.5812	19.8535	22.6218
3	0.028	35.7143	0.1374	6.7424	8.1360	8.4782
4	0.022	45.4545	0.1749	8.5812	8.5812	8.5812
5	0.015	66.6667	0.2565	12.5857	12.5857	12.5857
sw1		3.1756	0.0122	0.5995	0.6719	0.6897
sw2		3.1756	0.0122	0.5995	0.6719	0.6897
sw3		3.1756	0.0122	0.5995	0.5995	0.5995
sw4		3.1756	0.0122	0.5995	0.5995	0.5995
Total		259.9567	1.0000	49.0762		

111	th	Wind Loads (kips)		48.4370		
Frame	Δ	1/∆	Stiffness	11th	plus torsion	plus actorsion
1	0.013	76.9231	0.2618	12.6798	49.4565	58.3280
2	0.02	50.0000	0.1702	8.2419	21.0111	24.0914
3	0.025	40.0000	0.1361	6.5935	8.3385	8.7595
4	0.02	50.0000	0.1702	8.2419	8.2419	8.2419
5	0.013	76.9231	0.2618	12.6798	12.6798	12.6798
sw1		4.0949	0.0139	0.6750	0.7864	0.8132
sw2		4.0949	0.0139	0.6750	0.7864	0.8132
sw3		4.0949	0.0139	0.6750	0.6750	0.6750
sw4		4.0949	0.0139	0.6750	0.6750	0.6750
Total		293.8462	1.0000	48.4370		

10th		Wind Loads (kips)		47.8688		
Frame	Δ	1/∆	Stiffness	10th	plus torsion	plus actorsion
1	0.012	83.3333	0.2578	12.3412	32.4777	44.0622
2	0.018	55.5556	0.1719	8.2275	15.8050	20.1643
3	0.022	45.4545	0.1406	6.7316	8.3829	9.3329
4	0.018	55.5556	0.1719	8.2275	8.2275	8.2275

5	0.012	83.3333	0.2578	12.3412	12.3412	12.3412
sw1		5.4058	0.0167	0.8006	0.9550	1.0438
sw2		5.4058	0.0167	0.8006	0.9550	1.0438
sw3		5.4058	0.0167	0.8006	0.8006	0.8006
sw4		5.4058	0.0167	0.8006	0.8006	0.8006
Total		323.2323	1.0000	47.8688		

9†	'n	Wind Load	ds (kips)	47.0876		
Frame	Δ	1/Δ	Stiffness	9th	plus torsion	plus actorsion
1	0.01	100.0000	0.2591	12.2000	36.2522	49.2150
2	0.015	66.6667	0.1727	8.1333	17.2095	22.1011
3	0.019	52.6316	0.1364	6.4210	8.3630	9.4097
4	0.015	66.6667	0.1727	8.1333	8.1333	8.1333
5	0.01	100.0000	0.2591	12.2000	12.2000	12.2000
sw1		7.3411	0.0190	0.8956	1.1100	1.2255
sw2		7.3411	0.0190	0.8956	1.1100	1.2255
sw3		7.3411	0.0190	0.8956	0.8956	0.8956
sw4		7.3411	0.0190	0.8956	0.8956	0.8956
Total		385.9649	1.0000	47.0876		

8†	ĥ	Wind Loads (kips)		46.1000		
Frame	Δ	1/∆	Stiffness	8th	plus torsion	plus actorsion
1	0.009	111.1111	0.2555	11.7782	35.6289	49.3087
2	0.013	76.9231	0.1769	8.1541	17.5587	22.9529
3	0.017	58.8235	0.1353	6.2355	8.2595	9.4204
4	0.013	76.9231	0.1769	8.1541	8.1541	8.1541
5	0.009	111.1111	0.2555	11.7782	11.7782	11.7782
sw1		10.3211	0.0237	1.0941	1.3789	1.5422
sw2		10.3211	0.0237	1.0941	1.3789	1.5422
sw3		10.3211	0.0237	1.0941	1.0941	1.0941
sw4		10.3211	0.0237	1.0941	1.0941	1.0941
Total		434.8919	1.0000	46.1000		

71	7th Wind Loads (kips)		ds (kips)	45.3885		
Frame	Δ	1/∆	Stiffness	7th	plus torsion	plus actorsion
1	0.007	142.8571	0.2651	12.0307	37.5630	53.1734
2	0.011	90.9091	0.1687	7.6559	16.9247	22.5916
3	0.014	71.4286	0.1325	6.0153	8.0841	9.3489

4	0.011	90.9091	0.1687	7.6559	7.6559	7.6559
5	0.007	142.8571	0.2651	12.0307	12.0307	12.0307
sw1		15.1564	0.0281	1.2764	1.6295	1.8454
sw2		15.1564	0.0281	1.2764	1.6295	1.8454
sw3		15.1564	0.0281	1.2764	1.2764	1.2764
sw4		15.1564	0.0281	1.2764	1.2764	1.2764
Total		538.9610	1.0000	45.3885		

61	'n	Wind Load	ds (kips)	44.1101		
Frame	Δ	1/∆	Stiffness	6th	plus torsion	plus actorsion
1	0.006	166.6667	0.2578	11.3721	35.5354	51.6240
2	0.009	111.1111	0.1719	7.5814	16.8421	23.0081
3	0.011	90.9091	0.1406	6.2030	8.4524	9.9502
4	0.009	111.1111	0.1719	7.5814	7.5814	7.5814
5	0.006	166.6667	0.2578	11.3721	11.3721	11.3721
sw1		23.5440	0.0364	1.6065	2.0820	2.3986
sw2		23.5440	0.0364	1.6065	2.0820	2.3986
sw3		23.5440	0.0364	1.6065	1.6065	1.6065
sw4		23.5440	0.0364	1.6065	1.6065	1.6065
Total		646.4646	1.0000	44.1101		

51	ĥ	Wind Load	ds (kips)	42.9323		
Frame	Δ	1/∆	Stiffness	5th	plus torsion	plus actorsion
1	0.005	200.0000	0.2510	10.7758	32.1586	48.3407
2	0.007	142.8571	0.1793	7.6970	16.5215	23.1996
3	0.009	111.1111	0.1394	5.9866	8.0808	9.6657
4	0.007	142.8571	0.1793	7.6970	7.6970	7.6970
5	0.005	200.0000	0.2510	10.7758	10.7758	10.7758
sw1		39.4377	0.0495	2.1249	2.7369	3.2000
sw2		39.4377	0.0495	2.1249	2.7369	3.2000
sw3		39.4377	0.0495	2.1249	2.1249	2.1249
sw4		39.4377	0.0495	2.1249	2.1249	2.1249
Total		796.8254	1.0000	42.9323		

41	h	Wind Loads (kips)		41.6003		
Frame	Δ	1/∆	Stiffness	4th	plus torsion	plus actorsion
1	0.004	250.0000	0.1870	7.7802	16.9578	33.7934
2	0.005	200.0000	0.1496	6.2242	10.5431	18.4658

3	0.007	142.8571	0.1069	4.4458	5.4776	7.3702
4	0.005	200.0000	0.1496	6.2242	6.2242	7.4175
5	0.004	250.0000	0.1870	7.7802	7.7802	12.4251
sw1		73.4694	0.0550	2.2864	-1.8396	3.5582
sw2		73.4694	0.0550	2.2864	-0.3426	3.5582
sw3		73.4694	0.0550	2.2864	2.2864	2.4539
sw4		73.4694	0.0550	2.2864	2.2864	2.4539
Total		1336.7347	1.0000	41.6003		

3r	'n	Wind Load	ds (kips)	40.2335	ō	
Frame	Δ	1/∆	Stiffness	3rd	plus torsion	plus actorsion
1	0.003	333.3333	0.1659	6.6735	14.5713	30.6148
2	0.004	250.0000	0.1244	5.0051	8.5165	15.6496
3	0.005	200.0000	0.0995	4.0041	4.9786	6.9582
4	0.004	250.0000	0.1244	5.0051	5.0051	6.1141
5	0.003	333.3333	0.1659	6.6735	6.6735	11.4690
sw1		160.7366	0.0800	3.2180	3.8868	5.2454
sw2		160.7366	0.0800	3.2180	3.2180	3.4634
sw3		160.7366	0.0800	3.2180	3.2180	3.4634
sw4		160.7366	0.0800	3.2180	9.0709	20.9603
Total		2009.6131	1.0000	40.2335		

2r	ıd	Wind Loads (kips)		38.3347		
Frame	Δ	1/∆	Stiffness	2nd	plus torsion	plus actorsion
1	0.002	500.0000	0.1197	4.5900	12.4290	25.7770
2	0.002	500.0000	0.1197	4.5900	9.1681	16.9634
3	0.003	333.3333	0.0798	3.0600	4.0450	5.7222
4	0.002	500.0000	0.1197	4.5900	4.5900	5.7306
5	0.002	500.0000	0.1197	4.5900	4.5900	8.0222
sw1		460.6460	0.1103	4.2287	5.3683	7.3088
sw2		460.6460	0.1103	4.2287	5.3683	7.3088
sw3		460.6460	0.1103	4.2287	4.2287	4.6623
sw4		460.6460	0.1103	4.2287	4.2287	4.6623
Total		4175.9175	1.0000	38.3347		

gro	ground Wind Loads (kips)		40.2523			
Frame	Δ	1/∆	Stiffness	ground	plus torsion	plus actorsion
1	0.001	1000.0000	0.0713	2.8705	2.8705	8.3152

2	0.001	1000.0000	0.0713	2.8705	2.8705	6.0098
3	0.001	1000.0000	0.0713	2.8705	2.8705	3.8177
4	0.001	1000.0000	0.0713	2.8705	4.3654	7.1053
5	0.001	1000.0000	0.0713	2.8705	7.1339	14.9475
sw1		2255.6391	0.1609	6.4749	6.4749	8.2277
sw2		2255.6391	0.1609	6.4749	6.4749	8.2277
sw3		2255.6391	0.1609	6.4749	8.0212	10.8552
sw4		2255.6391	0.1609	6.4749	8.0212	10.8552
Total		14022.5564	1.0000	40.2523		

13th		Wind Loads (kips)		1.2575		
Frame	Δ	1/∆	Stiffness	13th	plus torsion	plus actorsion
6	0.075	13.3333	1.0000	1.2575	1.2575	1.2575
Total		13.3333	1.0000	1.2575		

12th		Wind Loc	ads (kips)	17.6050		
Frame	Δ	1/∆	Stiffness	12th	plus torsion	plus actorsion
6	0.063	15.8730	1.0000	17.6050	17.6050	17.6050
Total		15.8730	1.0000	17.6050		

11th		Wind Loc	ads (kips)	17.3485		
Frame	Δ	1/∆	Stiffness	11th	plus torsion	plus actorsion
6	0.05	20.0000	1.0000	17.3485	17.3485	17.3485
Total		20.0000	1.0000	17.3485		

10th		Wind Loc	ads (kips)	17.1205		
Frame	Δ	1/∆	Stiffness	10th	plus torsion	plus actorsion
6	0.038	26.3158	0.6885	11.7879	11.7879	11.7879
7	0.084	11.9048	0.3115	5.3326	5.3326	5.3326
Total		38.2206	1.0000	17.1205		

9th		Wind Loc	ads (kips)	16.8070		
Frame	Δ	1/∆	Stiffness	9th	plus torsion	plus actorsion
6	0.03	33.3333	0.7059	11.8638	11.8638	11.8638
7	0.072	13.8889	0.2941	4.9432	4.9432	4.9432
Total		47.2222	1.0000	16.8070		

8th		Wind Loads (kips)		16.4165		
Frame	Δ	1/∆	Stiffness	8th	plus torsion	plus actorsion
6	0.025	40.0000	0.7059	11.5881	11.5881	11.5881
7	0.06	16.6667	0.2941	4.8284	4.8284	4.8284
Total		56.6667	1.0000	16.4165		

7th		Wind Loc	ads (kips)	16.1300		
Frame	Δ	1/∆	Stiffness	7th	plus torsion	plus actorsion
6	0.02	50.0000	0.7015	11.3151	11.3151	11.3151
7	0.047	21.2766	0.2985	4.8149	4.8149	4.8149
Total		71.2766	1.0000	16.1300		

6th		Wind Loc	ads (kips)	15.6125		
Frame	Δ	1/∆	Stiffness	6th	plus torsion	plus actorsion
6	0.016	62.5000	0.6800	10.6165	10.6165	10.6165
7	0.034	29.4118	0.3200	4.9960	4.9960	4.9960
Total		91.9118	1.0000	15.6125		

5th	-	Wind Loc	ads (kips)	15.1400		
Frame	Δ	1/∆	Stiffness	5th	plus torsion	plus actorsion
6	0.012	83.3333	0.6923	10.4815	10.4815	10.4815
7	0.027	37.0370	0.3077	4.6585	4.6585	4.6585
Total		120.3704	1.0000	15.1400		

4th		Wind Loc	ads (kips)	14.6055		
Frame	Δ	1/∆	Stiffness	4th	plus torsion	plus actorsion
6	0.009	111.1111	0.6897	10.0728	10.0728	13.5156
7	0.02	50.0000	0.3103	4.5327	4.5327	6.7265
Total		161.1111	1.0000	14.6055		

3rd		Wind Loads (kips)		14.0570		
Frame	Δ	1/∆	Stiffness	3rd	plus torsion	plus actorsion
6	0.006	166.6667	0.6842	9.6179	9.6179	13.6469
7	0.013	76.9231	0.3158	4.4391	4.4391	7.0808
Total		243.5897	1.0000	14.0570		

2nd	Wind Loads (kips)	13.2950
N		-

Daniel Painter

5th Year Thesis - Two Freedom Square

	Frame	Δ	1/∆	Stiffness	2nd	plus torsion	plus actorsion
	6	0.004	250.0000	0.6667	8.8633	8.8633	11.7065
	7	0.008	125.0000	0.3333	4.4317	4.4317	6.4387
ſ	Total		375.0000	1.0000	13.2950		

ground		Wind Loads (kips)		13.7665		
Frame	Δ	1/∆	Stiffness	ground	plus torsion	plus actorsion
6	0.002	500.0000	0.6667	9.1777	12.6708	19.0730
7	0.004	250.0000	0.3333	4.5888	7.0427	11.5400
Total		750.0000	1.0000	13.7665		

4th		Wind Lo	ads (kips)	2.9211	11	
Frame	Δ	1/∆	Stiffness	4th	plus torsion	plus actorsion
8	0.047	21.2766	0.1064	0.3108	0.3108	1.3726
Total		21.2766	0.1064	0.3108		

3rd		Wind Lo	ads (kips)	2.8114	4	
Frame	Δ	1/∆	Stiffness	3rd	plus torsion	plus actorsion
8	0.036	27.7778	0.1111	0.3124	0.3124	1.3985
Total		27.7778	0.1111	0.3124		

2nd		Wind Lo	ads (kips)	2.6590		
Frame	Δ	1/∆	Stiffness	2nd	plus torsion	plus actorsion
8	0.025	40.0000	0.0800	0.2127	0.2127	0.9426
Total		40.0000	0.0800	0.2127		

ground		Wind Lo	ads (kips)	2.7533		
Frame	Δ	1/∆	Stiffness	ground	plus torsion	plus actorsion
8	0.013	76.9231	0.0769	0.2118	0.2118	2.6390
Total		76.9231	0.0769	0.2118		

roof		Wind Loads (kips)		50.4341		
Frame	Δ	1/∆	Stiffness	roof	plus torsion	plus actorsion
G	0.07	14.2857	0.1425	7.1853	7.1853	7.1853
F	0.101	9.9010	0.0987	4.9799	4.9799	4.9799
E	0.115	8.6957	0.0867	4.3736	4.3736	4.3736

D	0.13	7.6923	0.0767	3.8690	3.8690	3.8690
С	0.107	9.3458	0.0932	4.7006	4.9279	5.0099
В	0.085	11.7647	0.1173	5.9173	7.0137	7.4093
A	0.032	31.2500	0.3116	15.7178	20.9362	22.8195
sw5		3.6688	0.0366	1.8453	2.0924	2.1816
sw6		3.6688	0.0366	1.8453	1.8453	1.8453
Total		100.2727	1.0000	50.4341		

16th		Wind Load	ds (kips)	82.5286		
Frame	Δ	1/∆	Stiffness	16th	plus torsion	plus actorsion
G	0.056	17.8571	0.1162	9.5908	9.5908	9.5908
F	0.06	16.6667	0.1085	8.9514	8.9514	8.9514
E	0.07	14.2857	0.0930	7.6727	7.6727	7.6727
D	0.073	13.6986	0.0891	7.3574	7.3574	7.3574
С	0.064	15.6250	0.1017	8.3920	8.9890	9.2038
В	0.049	20.4082	0.1328	10.9610	14.2656	15.4547
А	0.022	45.4545	0.2958	24.4130	37.7986	42.6152
sw5		4.8319	0.0314	2.5952	3.1534	3.3543
sw6		4.8319	0.0314	2.5952	2.5952	2.5952
Total		153.6597	1.0000	82.5286		

15th		Wind Loa	ds (kips)	64.1889		
Frame	Δ	1/∆	Stiffness	15th	plus torsion	plus actorsion
G	0.049	20.4082	0.1089	6.9904	6.9904	6.9904
F	0.05	20.0000	0.1067	6.8506	6.8506	6.8506
E	0.055	18.1818	0.0970	6.2278	6.2278	6.2278
D	0.055	18.1818	0.0970	6.2278	6.2278	6.2278
С	0.05	20.0000	0.1067	6.8506	7.8078	8.1520
В	0.038	26.3158	0.1404	9.0139	14.2984	16.1991
A	0.019	52.6316	0.2809	18.0278	37.2220	44.1254
sw5		5.8391	0.0312	2.0001	2.8377	3.1390
sw6		5.8391	0.0312	2.0001	2.0001	2.0001
Total		187.3974	1.0000	64.1889		

14th		Wind Loads (kips)		62.9572		
Frame	Δ	1/∆	Stiffness	14th	plus torsion	plus actorsion
G	0.044	22.7273	0.1065	6.7066	6.7066	6.7066
F	0.044	22.7273	0.1065	6.7066	6.7066	6.7066
E	0.047	21.2766	0.0997	6.2785	6.2785	6.2785

D	0.048	20.8333	0.0976	6.1477	6.1477	6.1477
С	0.043	23.2558	0.1090	6.8626	8.2148	8.7019
В	0.034	29.4118	0.1379	8.6791	15.6331	18.1380
А	0.017	58.8235	0.2757	17.3583	42.5027	51.5601
sw5		7.1464	0.0335	2.1088	3.3207	3.7572
sw6		7.1464	0.0335	2.1088	2.1088	2.1088
Total		213.3484	1.0000	62.9572		

13th		Wind Loa	ds (kips)	61.6590		
Frame	Δ	1/∆	Stiffness	13th	plus torsion	plus actorsion
G	0.039	25.6410	0.1040	6.4113	6.4113	6.4113
F	0.039	25.6410	0.1040	6.4113	6.4113	6.4113
E	0.04	25.0000	0.1014	6.2510	6.2510	6.2510
D	0.041	24.3902	0.0989	6.0985	6.0985	6.0985
С	0.037	27.0270	0.1096	6.7578	8.0089	8.5754
В	0.029	34.4828	0.1398	8.6220	15.0987	18.0314
A	0.015	66.6667	0.2703	16.6693	39.3003	49.5479
sw5		8.8743	0.0360	2.2189	3.4147	3.9562
sw6		8.8743	0.0360	2.2189	2.2189	2.2189
Total		246.5973	1.0000	61.6590		

12th		Wind Loads (kips)		60.7958		
Frame	Δ	1/∆	Stiffness	12th	plus torsion	plus actorsion
G	0.034	29.4118	0.1017	6.1810	6.1810	6.1810
F	0.033	30.3030	0.1047	6.3683	6.3683	6.3683
E	0.034	29.4118	0.1017	6.1810	6.1810	6.1810
D	0.035	28.5714	0.0988	6.0044	6.0044	6.0044
С	0.031	32.2581	0.1115	6.7792	8.3290	9.0321
В	0.025	40.0000	0.1383	8.4062	16.0379	19.5003
A	0.013	76.9231	0.2659	16.1657	42.6072	54.6033
<i>ร</i> พ5		11.2061	0.0387	2.3550	3.8932	4.5910
sw6		11.2061	0.0387	2.3550	2.3550	2.3550
Total		289.2914	1.0000	60.7958		

11th		Wind Loads (kips)		60.0040		
Frame	Δ	1/∆	Stiffness	11th	plus torsion	plus actorsion
G	0.03	33.3333	0.0997	5.9822	5.9822	5.9822

F	0.029	34.4828	0.1031	6.1885	6.1885	6.1885
E	0.03	33.3333	0.0997	5.9822	5.9822	5.9822
D	0.031	32.2581	0.0965	5.7893	5.7893	5.7893
С	0.028	35.7143	0.1068	6.4095	7.9691	8.6989
В	0.022	45.4545	0.1360	8.1576	16.4037	20.2628
A	0.011	90.9091	0.2719	16.3152	46.2244	60.2215
sw5		14.4299	0.0432	2.5897	4.4621	5.3384
sw6		14.4299	0.0432	2.5897	2.5897	2.5897
Total		334.3452	1.0000	60.0040		

10th		Wind Loads (kips)		59.3002		
Frame	Δ	1/∆	Stiffness	10th	plus torsion	plus actorsion
G	0.026	38.4615	0.1000	5.9299	5.9299	7.7995
F	0.025	40.0000	0.1040	6.1671	6.1671	7.5164
E	0.026	38.4615	0.1000	5.9299	5.9299	6.6933
D	0.027	37.0370	0.0963	5.7103	5.7103	5.9862
С	0.025	40.0000	0.1040	6.1671	6.8255	7.6818
В	0.019	52.6316	0.1368	8.1146	11.4117	15.7001
A	0.01	100.0000	0.2600	15.4178	26.6307	41.2147
sw5		19.0150	0.0494	2.9317	3.7936	4.9145
sw6		19.0150	0.0494	2.9317	2.9317	3.4930
Total		384.6217	1.0000	59.3002		

9th		Wind Loa	ds (kips)	58.3324		
Frame	Δ	1/∆	Stiffness	9th	plus torsion	plus actorsion
G	0.023	43.4783	0.0943	5.5013	5.5013	7.7482
F	0.021	47.6190	0.1033	6.0252	6.0252	7.7410
E	0.023	43.4783	0.0943	5.5013	5.5013	6.4329
D	0.023	43.4783	0.0943	5.5013	5.5013	5.8659
С	0.021	47.6190	0.1033	6.0252	6.6505	7.4974
В	0.017	58.8235	0.1276	7.4429	10.6394	14.9687
A	0.008	125.0000	0.2711	15.8162	28.1277	44.8025
sw5		25.7603	0.0559	3.2594	4.2612	5.6179
sw6		25.7603	0.0559	3.2594	3.2594	4.0734
Total		461.0170	1.0000	58.3324		

8th Wind Loads (kips)	57.1090
-----------------------	---------

Frame	Δ	1/Δ	Stiffness	8th	plus torsion	plus actorsion
G	0.019	52.6316	0.0952	5.4368	5.4368	8.6460
F	0.018	55.5556	0.1005	5.7388	5.7388	8.0900
E	0.019	52.6316	0.0952	5.4368	5.4368	6.7480
D	0.02	50.0000	0.0904	5.1649	5.1649	5.6334
С	0.018	55.5556	0.1005	5.7388	6.4318	7.4679
В	0.014	71.4286	0.1292	7.3785	10.7816	15.8693
A	0.007	142.8571	0.2584	14.7569	26.9464	45.1697
sw5		36.0971	0.0653	3.7288	4.9725	6.8319
sw6		36.0971	0.0653	3.7288	3.7288	5.0657
Total		552.8542	1.0000	57.1090		

7th		Wind Load	Wind Loads (kips)			
Frame	Δ	1/∆	Stiffness	7th	plus torsion	plus actorsion
G	0.016	62.5000	0.0935	5.2568	5.2568	8.7792
F	0.015	66.6667	0.0997	5.6073	5.6073	8.2036
E	0.016	62.5000	0.0935	5.2568	5.2568	6.6751
D	0.017	58.8235	0.0880	4.9476	4.9476	5.4289
С	0.016	62.5000	0.0935	5.2568	5.9947	7.1281
В	0.012	83.3333	0.1247	7.0091	10.5193	15.9113
Α	0.006	166.6667	0.2493	14.0183	26.4524	45.5521
sw5		52.7565	0.0789	4.4373	6.0598	8.5520
sw6		52.7565	0.0789	4.4373	4.4373	6.2316
Total		668.5033	1.0000	56.2275		

6th		Wind Load	ds (kips)	54.6439		
Frame	Δ	1/∆	Stiffness	6th	plus torsion	plus actorsion
G	0.013	76.9231	0.0907	4.9552	4.9552	9.6524
F	0.012	83.3333	0.0982	5.3682	5.3682	8.8648
E	0.013	76.9231	0.0907	4.9552	4.9552	6.8113
D	0.014	71.4286	0.0842	4.6013	4.6013	5.1877
С	0.013	76.9231	0.0907	4.9552	5.7165	7.0708
В	0.01	100.0000	0.1179	6.4418	9.7199	15.5521
A	0.005	200.0000	0.2358	12.8836	24.3438	44.7329
sw5		81.3706	0.0959	5.2417	7.2108	10.7141
sw6		81.3706	0.0959	5.2417	5.2417	8.2156
Total		848.2724	1.0000	54.6439		

5th		Wind Loa	ds (kips)	53.1847		
Frame	Δ	1/∆	Stiffness	5th	plus torsion	plus actorsion
G	0.01	100.0000	0.0872	4.6387	4.6387	10.3094
F	0.009	111.1111	0.0969	5.1541	5.1541	9.4497
E	0.01	100.0000	0.0872	4.6387	4.6387	6.8203
D	0.011	90.9091	0.0793	4.2170	4.2170	4.8331
С	0.01	100.0000	0.0872	4.6387	5.4751	7.1377
В	0.008	125.0000	0.1090	5.7984	8.9753	15.2905
Α	0.004	250.0000	0.2180	11.5968	22.5179	44.2274
sw5		134.7608	0.1175	6.2512	8.8145	13.9098
sw6		134.7608	0.1175	6.2512	6.2512	10.7720
Total		1146.5418	1.0000	53.1847		

4th		Wind Loads (kips)		51.5347		
Frame	Δ	1/∆	Stiffness	4th	plus torsion	plus actorsion
G	0.007	142.8571	0.0864	4.4537	4.4537	15.1538
F	0.007	142.8571	0.0864	4.4537	4.4537	11.7033
E	0.008	125.0000	0.0756	3.8970	3.8970	7.4224
D	0.008	125.0000	0.0756	3.8970	3.8970	4.9064
С	0.008	125.0000	0.0756	3.8970	4.0912	5.7921
В	0.006	166.6667	0.1008	5.1960	5.9393	12.4487
A	0.003	333.3333	0.2017	10.3920	12.9164	35.0243
sw5		246.1538	0.1489	7.6741	8.5036	15.7683
sw6		246.1538	0.1489	7.6741	7.6741	18.4810
Total		1653.0220	1.0000	51.5347		

3rd		Wind Load	ds (kips)	49.8415		
Frame	Δ	1/∆	Stiffness	3rd	plus torsion	plus actorsion
G	0.005	200.0000	0.0718	3.5773	3.5773	15.2968
F	0.005	200.0000	0.0718	3.5773	3.5773	11.4965
E	0.005	200.0000	0.0718	3.5773	3.5773	7.9495
D	0.005	200.0000	0.0718	3.5773	3.5773	4.7826
С	0.005	200.0000	0.0718	3.5773	3.6052	5.5947
В	0.004	250.0000	0.0897	4.4716	4.5696	11.5534
Α	0.002	500.0000	0.1794	8.9432	9.2744	32.8780
sw5		518.2839	0.1860	9.2702	9.4243	20.4067
sw6		518.2839	0.1860	9.2702	9.2702	27.0019
Total		2786.5678	1.0000	49.8415		

2nd		Wind Loa	ds (kips)	47.4893		
Frame	Δ	1/Δ	Stiffness	2nd	plus torsion	plus actorsion
G	0.003	333.3333	0.0566	2.6895	2.6895	11.7042
F	0.003	333.3333	0.0566	2.6895	2.6895	8.8100
E	0.003	333.3333	0.0566	2.6895	2.6895	6.1086
D	0.003	333.3333	0.0566	2.6895	2.6895	3.6967
С	0.003	333.3333	0.0566	2.6895	3.0515	4.8182
В	0.002	500.0000	0.0850	4.0343	5.6214	13.3676
A	0.001	1000.0000	0.1699	8.0686	13.4804	39.8930
sw5		1359.5166	0.2310	10.9694	14.2202	30.0859
sw6		1359.5166	0.2310	10.9694	10.9694	32.5873
Total		5885.6999	1.0000	47.4893		

ground		Wind Load	ds (kips)	49.8647		
Frame	Δ	1/∆	Stiffness	ground	plus torsion	plus actorsion
G	0.001	1000.0000	0.0579	2.8896	2.8896	11.6584
F	0.001	1000.0000	0.0579	2.8896	2.8896	8.4661
E	0.001	1000.0000	0.0579	2.8896	2.8896	5.4866
D	0.001	1000.0000	0.0579	2.8896	2.9252	3.0241
С	0.001	1000.0000	0.0579	2.8896	4.4228	8.6795
В	0.001	1000.0000	0.0579	2.8896	6.1001	15.0136
Α	0.001	1000.0000	0.0579	2.8896	7.8972	21.8001
sw5		5128.2051	0.2972	14.8186	28.0572	64.8120
sw6		5128.2051	0.2972	14.8186	14.8186	38.7777
Total		17256.4103	1.0000	49.8647		

Appendix 2: Structural Details, Schedules and Tables

ADOSS Runs - Concrete Redesign N-S Direction

NEGATIVE REINFORCEMENT

COLUMN	*PAT	T*LO	CAT	CIO	N * TOTAL	*	COLUMN	STRIP	*	MIDDLE	STRIP
NUMBER	* NO	.*@C	OL	FA	CE* DESIGN	*	AREA	WIDTH	*	AREA	WIDTH
					* (ft-k)	*	(sq.in) (ft)	*	(sq.in)	(ft)
1	4			R	492.6		6.24	14.5		3.13	14.5
2	4	L			-1024.1		8.50	14.3		6.92	14.8
3	1	L			-704.9		6.19	14.3		4.71	14.8
4	4			R	1024.1		8.50	14.3		6.92	14.8
5	4	L			-492.6		6.24	14.5		3.13	14.5

POSITIVE REINFORCEMENT

SPAN *	PATT	*LOCATION	* TOTAL	* COLUM	N STRIP	*	MIDDLE	STRIP
NUMBER*	NO.	*FROM LEF	'T* DESIGN	* AREA	WIDTH	*	AREA	WIDTH
		(ft)	* (ft-k)	* (sq.i	n) (ft)	*	(sq.in)	(ft)
2	4	13.0	289.6	4.65	14.5		3.13	14.5
3	2	15.2	182.4	3.08	14.3		3.19	14.8
4	3	13.8	182.4	3.08	14.3		3.19	14.8
5	4	17.5	289.6	4.65	14.5		3.13	14.5

DESIGN RESULTS

NEGATIVE REINFORCEMENT

*		COL	JMN STE	RIP				*	MIDD	LE STE	RIP
*	L(ONG BARS		*	SHO	ORT BA	ARS	*	LON	G BARS	5
COLUMN	*	-BAR-LEN	GTH-	*	-BAR	-LENG	ГН-	*	-BAR	-LENG1	ГН-
NUMBER	*NO	SIZE LEF	r right	[*NO	SIZE	LEFT	RIGHT	:*NO	SIZE	LEFT	RIGHT
*		(ft) (ft)	*		(ft)	(ft)	*		(ft)	(ft)
1	10	#5 2.00	10.41	10	#5	2.00	6.70	16	#4	2.00	9.41
2	10	#6 12.46	14.83	10	#6	7.12	8.31	23	#5	12.46	14.83
3	10	#5 11.86	11.86	10	#5	6.78	6.78	24	#4	11.84	11.84
4	10	#6 14.83	12.46	10	#6	8.31	7.12	23	#5	14.83	12.46
5	10	#5 10.41	2.00	10	#5	6.70	2.00	16	#4	9.41	2.00

POSITIVE REINFORCEMENT

* COLUMN STRIP * MIDDLE STRIP * LONG BARS * SHORT BARS * LONG BARS * SHORT BARS SPAN* ----BAR---- * ----BAR---- * ----BAR-----

Daniel Painter

5th Year Thesis - Two Freedom Square

Appendix 2: Structural Details, Schedules and Tables

#	*NO	SIZE	LENGTH	[*NO	SIZE	LENGTH	H*NO	SIZE	LENGTH	I*NO	SIZE	LENGTH
	*		(ft)	*		(ft)	*		(ft)	*		(ft)
2	12	#4	26.19	12	#4	26.19	8	#4	30.25	8	#4	25.42
3	8	#4	21.75	8	#4	21.75	8	#4	29.50	8	#4	20.30
4	8	#4	21.75	8	#4	21.75	8	#4	29.50	8	#4	20.30
5	12	#4	26.19	12	#4	26.19	8	#4	30.25	8	#4	25.42

ADDITIONAL INFORMATION AT SUPPORTS

*REINF.SUMM*ADD'L R/F REQ'D DUE TO UNBAL(U.)MOMENT TRANSFER COL. *-----*------# *W/O U.MOM.*MAX.U.*GAMMA*FLEXURAL* PATT * CRITICAL SECTION *REQ-PROV'D*MOMENT* -f *TRANSFER* NO. * SLABW-AREA-R/F $*(in^2) (in^2) * (ft-k) *$ * (ft-k) * * (ft) (in^2) 7.5 9.37 9.40 607.1 .60 364.3 4 4.01 #5 1 3 2 15.42 15.93 -343.8 .60 -206.3 7 7.5 2.26 #6 0 3 10.90 11.00 -255.9 7.5 1.68 #5 .60 -153.6 5 0 #6 4 15.42 15.93 343.8 .60 206.3 8 7.5 2.26 0 .60 5 9.37 9.40 -607.1 -364.3 4 7.5 4.01 3 #5

ADDITIONAL INFORMATION FOR IN-SPAN CONDITIONS

	* REINF. SUMMARY	*	
SPAN	*	*	TOTAL FACTORED SPAN
NUMBER	* AT MIDSPAN	*	STATIC DESIGN MOMENT
	* REQ'D PROV'D.	*	(W/O PARTIAL LOADS)
	* (sq.in) (sq.in)	*	(ft-k)
2	7.78 8.00		1001.1
3	6.26 6.40		898.5
4	6.26 6.40		898.5
5	7.78 8.00		1001.1

DEFLECTION ANALYSIS

	*		*			N STRI				IDDLE					
	*	DEAD	*I	DEFLE	CT:	ION DU	JE	TO:*DE	EFI	LECTIC	ΟN	DUE '	ГО	:	
SPAN	*	LOAD	*-												
NUMBER	*	Ieff.	*	DEAD	*	LIVE	*	TOTAL	*	DEAD	*	LIVE	*	TOTAL	*
	*	(in^4)	*	(in)	*	(in)	*	(in)	*	(in)	*	(in)	*	(in)	*
1		189449.	-	016	-	010		026	-	016	-	010	-	026	
2		109225.		.099		.059		.158		.062		.038		.099	
3		109225.		.039		.022		.061		.015		.008		.023	
4		109225.		.039		.022		.061		.015		.008		.023	

Daniel Painter

5th Year Thesis - Two Freedom Square

5	109225.	.099	.059	.158	.062	.038	.099	
6	189449.	016	010	026	016	010	026	

ADOSS Runs - Concrete Redesign E-W Direction

NEGATIVE REINFORCEMENT

COLUMN*	PATT	'*L(OCA'	TION	*	TOTAL	*	COLUMN	STRIP	*	MIDDLE	STRIP
NUMBER*	NO.	*@(COL	FAC	Ξ*	DESIGN	*	AREA	WIDTH	*	AREA	WIDTH
					*	(ft-k)	*	(sq.in)) (ft)	*	(sq.in)	(ft)
1	4			R	4	76.4		6.30	14.8		3.24	15.0
2	4	L		-	10	16.2		8.43	14.0		6.85	15.8
3	1	L			-6	40.2		5.81	12.5		4.26	17.3
4	1			R	5	70.5		5.81	12.5		3.79	17.3
5	1			R	6	40.2		5.81	12.5		4.26	17.3
6	4			R	10	16.2		8.43	14.0		6.85	15.8
7	4	L			-4	76.4		6.30	14.8		3.24	15.0

POSITIVE REINFORCEMENT

SPAN NUMBEI		T*LOCATION .*FROM LEI		* COLUM * AREA		*	MIDDLE AREA	STRIP WIDTH
		(ft)	* (ft-k)	* (sq.i	n) (ft)	*	(sq.in)	(ft)
2	4	12.8	292.3	4.69	14.8		3.24	15.0
3	2	14.7	173.3	3.02	14.0		3.40	15.8
4	3	13.1	152.2	2.70	12.5		3.73	17.3
5	2	11.9	152.2	2.70	12.5		3.73	17.3
6	3	13.3	173.3	3.02	14.0		3.40	15.8
7	4	17.3	292.5	4.69	14.8		3.24	15.0

DESIGN RESULTS

NEGATIVE REINFORCEMENT

*		COLUN	MN STRIP			د	k	MIDDLE STRIP
*	L	ONG BARS	*	SHO	ORT BA	ARS '	k	LONG BARS
COLUMN	*	-BAR-LENG	TH- *	-BAR	-LENGI	СН- ,	k	-BAR-LENGTH-
NUMBER	*NO	SIZE LEFT	RIGHT*NO	SIZE	LEFT	RIGHT'	۲NO	SIZE LEFT RIGHT
*		(ft)	(ft) *		(ft)	(ft)'	ł	(ft) (ft)
1	11	#5 2.00 2	10.24 10	#5	2.00	6.60	16	#4 2.00 9.25
2	10	#6 12.25 1	14.35 9	#6	7.00	8.05	22	#5 12.25 14.35
3	10	#5 11.51 2	12.96 9	#5	6.61	7.33	22	#4 11.43 12.88
4	10	#5 11.71 2	11.71 9	#5	6.71	6.71	19	#4 11.44 11.44
5	10	#5 12.96 1	11.51 9	#5	7.33	6.61	22	#4 12.88 11.43

Daniel Painter

5th Year Thesis - Two Freedom Square

6	10	#6 14.35	12.25	9	#6	8.05 7.00	22	#5	14.35	12.25
7	11	#5 10.24	2.00	10	#5	6.60 2.00	16	#4	9.25	2.00

POSITIVE REINFORCEMENT

*			COLUMN	J STI	RIP		*		MIDDL	E STI	RIP	
	*	LON	G BARS	*	SHOR	I BARS	*	LONG	BARS	*	SHORT	BARS
SPA	N*	B	AR	*	BAI	3	*	BA	AR	*	BAI	2
#	*NO	SIZE	LENGTH	I*NO	SIZE	LENGT	H*NO	SIZE	LENGT	H*NO	SIZE	LENGTH
	*		(ft)	*		(ft)	*		(ft)	*		(ft)
2	12	#4	25.75	12	#4	25.75	8	#4	29.75	8	#4	25.00
3	8	#4	21.00	7	#4	21.00	9	#4	28.50	8	#4	19.60
4	7	#4	18.75	7	#4	18.75	10	#4	25.50	9	#4	17.50
5	7	#4	18.75	7	#4	18.75	10	#4	25.50	9	#4	17.50
6	8	#4	21.00	7	#4	21.00	9	#4	28.50	8	#4	19.60
7	12	#4	25.75	12	#4	25.75	8	#4	29.75	8	#4	25.00

ADDITIONAL INFORMATION AT SUPPORTS

COL.	*REINE *	.SUMM	*ADD'L R *	/F RE	EQ'D DUE TO	UNBAI	U.)MOM	ENT TR	ANS	FER
#	*W/O (J.MOM.	*MAX.U.*	GAMMA	A*FLEXURAL*	PATT	* CRITI	CAL SE	CTI	ON
	*REQ-B	ROV'D'	*MOMENT*	-f	*TRANSFER*	NO.	* SLABW	-AREA-	R/F	
	*(in²)	(in²)	*(ft-k)*	٢	* (ft-k) *		* (ft)	(in²)		
1	9.54	9.71	591.0	.60	354.6	4	7.5	3.90	3	#5
2	15.18	15.18	-300.1	.60	-180.1	3	7.5	1.97	0	#6
3	10.07	10.29	-185.1	.60	-111.0	2	7.5	1.21	0	#5
4	9.60	9.69	182.9	.60	109.7	6	7.5	1.20	0	#5
5	10.07	10.29	185.1	.60	111.0	3	7.5	1.21	0	#5
6	15.18	15.18	300.1	.60	180.1	2	7.5	1.97	0	#6
7	9.54	9.71	-591.0	.60	-354.6	4	7.5	3.90	3	#5

ADDITIONAL INFORMATION FOR IN-SPAN CONDITIONS

	* REINF. SUMMARY	*	
SPAN	*	*	TOTAL FACTORED SPAN
NUMBER	* AT MIDSPAN	*	STATIC DESIGN MOMENT
	* REQ'D PROV'D.	*	(W/O PARTIAL LOADS)
	* (sq.in) (sq.in)	*	(ft-k)
2	7.93 8.00		991.3
3	6.40 6.40		854.7
4	6.43 6.60		668.9

Daniel Painter

5th Year Thesis - Two Freedom Square

page 84

5	6.43	6.60	668.9
6	6.40	6.40	854.7
7	7.93	8.00	991.3

DEFLECTION ANALYSIS

	*		*	COLU	JMI	N STR	ΓP	*	M	IDDLE	S	FRIP			
	*	DEAD	*I	DEFLE	CT I	ION DU	JE	TO:*DE	EF]	LECTI	ΟN	DUE :	ГО	:	
SPAN	*	LOAD	*-												
NUMBER	*	leff.	*	DEAD	*	LIVE	*	TOTAL	*	DEAD	*	LIVE	*	TOTAL	*
	*	(in^4)	*	(in)	*	(in)	*	(in)	*	(in)	*	(in)	*	(in)	*
1		191378.	-	016	-	010	-	026	-	016	-	010	-	026	
2		110564.		.095		.057		.152		.060		.036		.096	
3		110564.		.037		.021		.058		.012		.007		.019	
4		110564.		.031		.017		.048		.010		.006		.016	
5		110564.		.031		.017		.048		.010		.006		.016	
6		110564.		.037		.021		.058		.012		.007		.019	
7		110564.		.095		.057		.152		.060		.036		.096	
8		191378.	_	016	-	010	-	026	-	016	-	010	-	026	

<u>Shear Walls - Reinforcement Details</u>

- Walls 1 to 4 are in N-S direction
- Walls 5 and 6 are in E-W direction

Wall 1	Reinforcement Req'd	Vu	Mu	ΦVn	ΦMn
ground	10-#9 each side	63.89	4505.15	611.25	4819.41
2nd	9-#8 each side	50.73	3355.12	523.05	3471.93
3rd	9-#7 each side	39.03	2644.96	443.25	2657.28
4th	8-#7 each side	30.64	2098.51	443.25	2368.38
5th	8-#6 each side	24.95	1669.55	376.05	1746.75
6th	7-#6 each side	19.83	1320.30	376.05	1531.39
7th	5-#6 each side	15.99	1042.73	376.05	1098.12
8th	4-#6 each side	13.04	818.89	376.05	880.21
9th	3-#6 each side	10.57	636.39	376.05	661.44
10th	3-#6 each side	8.61	488.43	376.05	661.44
11th	2-#6 each side	6.94	367.92	376.05	441.81
12th	2-#6 each side	5.64	270.80	376.05	441.81
13th	1-#6 each side	4.53	191.89	376.05	221.33
14th	1-#6 each side	3.51	128.43	376.05	221.33
15th	1-#6 each side	2.64	79.31	376.05	221.33
16th	1-#6 each side	1.82	42.38	376.05	221.33
roof	1-#6 each side	0.77	16.87	376.05	221.33

Wall 2	Reinforcement Req'd	Vu	Mu	ΦVn	ΦMn
ground	10-#9 each side	61.04	4374.00	611.25	4819.41
2nd	9-#8 each side	47.88	3275.29	523.05	3471.93
3rd	9-#7 each side	36.18	2605.04	443.25	2657.28
4th	8-#7 each side	30.64	2098.51	443.25	2368.38
5th	8-#6 each side	24.95	1669.55	376.05	1746.75
6th	7-#6 each side	19.83	1320.30	376.05	1531.39
7th	5-#6 each side	15.99	1042.73	376.05	1098.12
8th	4-#6 each side	13.04	818.89	376.05	880.21
9th	3-#6 each side	10.57	636.39	376.05	661.44
10th	3-#6 each side	8.61	488.43	376.05	661.44
11th	2-#6 each side	6.94	367.92	376.05	441.81
12th	2-#6 each side	5.64	270.80	376.05	441.81
13th	1-#6 each side	4.53	191.89	376.05	221.33
14th	1-#6 each side	3.51	128.43	376.05	221.33
15th	1-#6 each side	2.64	79.31	376.05	221.33
16th	1-#6 each side	1.82	42.38	376.05	221.33
roof	1-#6 each side	0.77	16.87	376.05	221.33
Wall 3	Reinforcement Req'd	Vu	Mu	ΦVn	ΦMn
Wall 3 ground	Reinforcement Req'd 10-#8 each side	Vu 53.23	Mu 3587.93	ΦVn 523.05	ФМп 3843.93
	•				
ground	10-#8 each side	53.23	3587.93	523.05	3843.93
ground 2nd	10-#8 each side 9-#8 each side	53.23 35.86	3587.93 2629.75	523.05 523.05	3843.93 3471.93
ground 2nd 3rd	10-#8 each side 9-#8 each side 9-#7 each side	53.23 35.86 28.40	3587.93 2629.75 2127.66	523.05 523.05 443.25	3843.93 3471.93 2657.28
ground 2nd 3rd 4th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side	53.23 35.86 28.40 22.86	3587.93 2629.75 2127.66 1730.01	523.05 523.05 443.25 443.25	3843.93 3471.93 2657.28 2368.38
ground 2nd 3rd 4th 5th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side 8-#6 each side	53.23 35.86 28.40 22.86 18.94	3587.93 2629.75 2127.66 1730.01 1409.93	523.05 523.05 443.25 443.25 376.05 376.05 376.05	3843.93 3471.93 2657.28 2368.38 1746.75
ground 2nd 3rd 4th 5th 6th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side 8-#6 each side 7-#6 each side 5-#6 each side 4-#6 each side	53.23 35.86 28.40 22.86 18.94 15.54	3587.93 2629.75 2127.66 1730.01 1409.93 1144.82 927.31 745.79	523.05 523.05 443.25 443.25 376.05 376.05	3843.93 3471.93 2657.28 2368.38 1746.75 1531.39 1098.12 880.21
ground 2nd 3rd 4th 5th 6th 7th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side 8-#6 each side 7-#6 each side 5-#6 each side	53.23 35.86 28.40 22.86 18.94 15.54 12.97	3587.93 2629.75 2127.66 1730.01 1409.93 1144.82 927.31	523.05 523.05 443.25 443.25 376.05 376.05 376.05	3843.93 3471.93 2657.28 2368.38 1746.75 1531.39 1098.12
ground 2nd 3rd 4th 5th 6th 7th 8th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side 8-#6 each side 7-#6 each side 5-#6 each side 4-#6 each side	53.23 35.86 28.40 22.86 18.94 15.54 12.97 10.92	3587.93 2629.75 2127.66 1730.01 1409.93 1144.82 927.31 745.79	523.05 523.05 443.25 376.05 376.05 376.05 376.05	3843.93 3471.93 2657.28 2368.38 1746.75 1531.39 1098.12 880.21
ground 2nd 3rd 4th 5th 6th 7th 8th 9th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side 8-#6 each side 7-#6 each side 5-#6 each side 4-#6 each side 3-#6 each side	53.23 35.86 28.40 22.86 18.94 15.54 12.97 10.92 9.17	3587.93 2629.75 2127.66 1730.01 1409.93 1144.82 927.31 745.79 592.85	523.05 523.05 443.25 376.05 376.05 376.05 376.05 376.05	3843.93 3471.93 2657.28 2368.38 1746.75 1531.39 1098.12 880.21 661.44
ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side 8-#6 each side 7-#6 each side 5-#6 each side 4-#6 each side 3-#6 each side	53.23 35.86 28.40 22.86 18.94 15.54 12.97 10.92 9.17 7.74	3587.93 2629.75 2127.66 1730.01 1409.93 1144.82 927.31 745.79 592.85 464.42	523.05 523.05 443.25 376.05 376.05 376.05 376.05 376.05 376.05	3843.93 3471.93 2657.28 2368.38 1746.75 1531.39 1098.12 880.21 661.44 661.44
ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side 8-#6 each side 7-#6 each side 5-#6 each side 3-#6 each side 3-#6 each side 2-#6 each side	53.23 35.86 28.40 22.86 18.94 15.54 12.97 10.92 9.17 7.74 6.46	3587.93 2629.75 2127.66 1730.01 1409.93 1144.82 927.31 745.79 592.85 464.42 356.06	523.05 523.05 443.25 376.05 376.05 376.05 376.05 376.05 376.05 376.05	3843.93 3471.93 2657.28 2368.38 1746.75 1531.39 1098.12 880.21 661.44 661.44 441.81
ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side 8-#6 each side 7-#6 each side 5-#6 each side 3-#6 each side 3-#6 each side 2-#6 each side	53.23 35.86 28.40 22.86 18.94 15.54 12.97 10.92 9.17 7.74 6.46 5.38	3587.93 2629.75 2127.66 1730.01 1409.93 1144.82 927.31 745.79 592.85 464.42 356.06 265.62	523.05 523.05 443.25 376.05 376.05 376.05 376.05 376.05 376.05 376.05 376.05	3843.93 3471.93 2657.28 2368.38 1746.75 1531.39 1098.12 880.21 661.44 661.44 441.81 441.81
ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side 8-#6 each side 7-#6 each side 5-#6 each side 3-#6 each side 3-#6 each side 2-#6 each side 2-#6 each side 1-#6 each side	53.23 35.86 28.40 22.86 18.94 15.54 12.97 10.92 9.17 7.74 6.46 5.38 4.42	3587.93 2629.75 2127.66 1730.01 1409.93 1144.82 927.31 745.79 592.85 464.42 356.06 265.62 190.31	523.05 523.05 443.25 376.05 376.05 376.05 376.05 376.05 376.05 376.05 376.05 376.05	3843.93 3471.93 2657.28 2368.38 1746.75 1531.39 1098.12 880.21 661.44 661.44 441.81 441.81 221.33
ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th	10-#8 each side 9-#8 each side 9-#7 each side 8-#7 each side 8-#6 each side 7-#6 each side 5-#6 each side 3-#6 each side 3-#6 each side 2-#6 each side 1-#6 each side	53.23 35.86 28.40 22.86 18.94 15.54 12.97 10.92 9.17 7.74 6.46 5.38 4.42 3.51	3587.93 2629.75 2127.66 1730.01 1409.93 1144.82 927.31 745.79 592.85 464.42 356.06 265.62 190.31 128.43	523.05 523.05 443.25 376.05 376.05 376.05 376.05 376.05 376.05 376.05 376.05 376.05 376.05	3843.93 3471.93 2657.28 2368.38 1746.75 1531.39 1098.12 880.21 661.44 661.44 661.44 441.81 441.81 221.33 221.33

Wall 4	Reinforcement Req'd	Vu	Mu	ΦVn	ΦMn
ground	8-#10 each side	81.23	4875.70	724.65	4892.94
2nd	9-#8 each side	63.86	3413.61	523.05	3471.93
3rd	9-#7 each side	56.40	2519.59	443.25	2657.28
4th	8-#6 each side	22.86	1730.01	376.05	1746.75
5th	7-#6 each side	18.94	1409.93	376.05	1531.39
6th	6-#6 each side	15.54	1144.82	376.05	1315.19
7th	5-#6 each side	12.97	927.31	376.05	1098.12
8th	4-#6 each side	10.92	745.79	376.05	880.21
9th	3-#6 each side	9.17	592.85	376.05	661.44
10th	3-#6 each side	7.74	464.42	376.05	661.44
11th	2-#6 each side	6.46	356.06	376.05	441.81
12th	2-#6 each side	5.38	265.62	376.05	441.81
13th	1-#6 each side	4.42	190.31	376.05	221.33
14th	1-#6 each side	3.51	128.43	376.05	221.33
15th	1-#6 each side	2.64	79.31	376.05	221.33
16th	1-#6 each side	1.82	42.38	376.05	221.33
roof	1-#6 each side	0.77	16.87	376.05	221.33
1001	1 // 0 000// 0/00				
1001	2 // 0 000110100				
	Reinforcement Req'd	Vu	Mu	ΦVn	ΦMn
Wall 5					
Wall 5	Reinforcement Req'd	Vu	Mu	ΦVn	ΦMn
Wall 5 ground	Reinforcement Req'd 16-#11 each side	Vu 332.69	Mu 22706.41	ΦVn 1533.3	ФМп 22966.14
Wall 5 ground 2nd	Reinforcement Req'd 16-#11 each side 12-#11 each side	Vu 332.69 228.99	Mu 22706.41 16718.00	ΦVn 1533.3 1533.3	ФМп 22966.14 17804.37
Wall 5 ground 2nd 3rd	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side	Vu 332.69 228.99 180.85	Mu 22706.41 16718.00 13512.13	ΦVn 1533.3 1533.3 1281	ФМп 22966.14 17804.37 13616.05
Wall 5 ground 2nd 3rd 4th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side	Vu 332.69 228.99 180.85 148.20	Mu 22706.41 16718.00 13512.13 10980.19	ΦVn 1533.3 1533.3 1281 1281	ΦMn 22966.14 17804.37 13616.05 11284.5
Wall 5 ground 2nd 3rd 4th 5th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side 9-#9 each side	Vu 332.69 228.99 180.85 148.20 122.97	Mu 22706.41 16718.00 13512.13 10980.19 8905.36	ΦVn 1533.3 1533.3 1281 1281 1046.1	ΦMn 22966.14 17804.37 13616.05 11284.5 8993.98
Wall 5 ground 2nd 3rd 4th 5th 6th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side 9-#9 each side 8-#9 each side	Vu 332.69 228.99 180.85 148.20 122.97 100.72	Mu 22706.41 16718.00 13512.13 10980.19 8905.36 7183.74	ΦVn 1533.3 1533.3 1281 1281 1046.1 1046.1	ΦMn 22966.14 17804.37 13616.05 11284.5 8993.98 8034.35
Wall 5 ground 2nd 3rd 4th 5th 6th 7th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side 9-#9 each side 8-#9 each side 8-#8 each side	Vu 332.69 228.99 180.85 148.20 122.97 100.72 83.57	Mu 22706.41 16718.00 13512.13 10980.19 8905.36 7183.74 5773.71	ФVn 1533.3 1533.3 1281 1281 1046.1 1046.1 863.38	Φ Mn 22966.14 17804.37 13616.05 11284.5 8993.98 8034.35 6399.84
Wall 5 ground 2nd 3rd 4th 5th 6th 7th 8th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side 9-#9 each side 8-#9 each side 8-#8 each side 6-#8 each side	Vu 332.69 228.99 180.85 148.20 122.97 100.72 83.57 69.89	Mu 22706.41 16718.00 13512.13 10980.19 8905.36 7183.74 5773.71 4603.66	ΦVn 1533.3 1533.3 1281 1281 1046.1 1046.1 863.38 863.38	ΦΜn 22966.14 17804.37 13616.05 11284.5 8993.98 8034.35 6399.84 4837.05
Wall 5 ground 2nd 3rd 4th 5th 6th 7th 8th 9th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side 9-#9 each side 8-#9 each side 8-#8 each side 6-#8 each side	Vu 332.69 228.99 180.85 148.20 122.97 100.72 83.57 69.89 58.96	Mu 22706.41 16718.00 13512.13 10980.19 8905.36 7183.74 5773.71 4603.66 3625.19	ФVn 1533.3 1533.3 1281 1281 1046.1 1046.1 863.38 863.38 698.08	ФМn 22966.14 17804.37 13616.05 11284.5 8993.98 8034.35 6399.84 4837.05 3694.08
Wall 5 ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side 9-#9 each side 8-#9 each side 6-#8 each side 6-#7 each side 5-#7 each side	Vu 332.69 228.99 180.85 148.20 122.97 100.72 83.57 69.89 58.96 49.97	Mu 22706.41 16718.00 13512.13 10980.19 8905.36 7183.74 5773.71 4603.66 3625.19 2799.74	ΦVn 1533.3 1533.3 1281 1281 1046.1 1046.1 863.38 863.38 863.38 698.08	Φ Mn 22966.14 17804.37 13616.05 11284.5 8993.98 8034.35 6399.84 4837.05 3694.08 3087.33
Wall 5 ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side 9-#9 each side 8-#9 each side 8-#8 each side 6-#8 each side 5-#7 each side 5-#6 each side	Vu 332.69 228.99 180.85 148.20 122.97 100.72 83.57 69.89 58.96 49.97 42.11	Mu 22706.41 16718.00 13512.13 10980.19 8905.36 7183.74 5773.71 4603.66 3625.19 2799.74 2100.14	ФVn 1533.3 1533.3 1281 1281 1046.1 1046.1 863.38 863.38 698.08 698.08 558.88	ΦMn 22966.14 17804.37 13616.05 11284.5 8993.98 8034.35 6399.84 4837.05 3694.08 3087.33 2272.78
Wall 5 ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side 9-#9 each side 8-#9 each side 6-#8 each side 6-#7 each side 5-#7 each side 5-#6 each side 5-#5 each side	Vu 332.69 228.99 180.85 148.20 122.97 100.72 83.57 69.89 58.96 49.97 42.11 33.57	Mu 22706.41 16718.00 13512.13 10980.19 8905.36 7183.74 5773.71 4603.66 3625.19 2799.74 2100.14 1510.63	ФVn 1533.3 1533.3 1281 1281 1046.1 1046.1 863.38 863.38 698.08 698.08 698.08 558.88 445.78	ΦMn 22966.14 17804.37 13616.05 11284.5 8993.98 8034.35 6399.84 4837.05 3694.08 3087.33 2272.78 1606.28
Wall 5 ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th	Reinforcement Req'd 16-#11 each side 12-#11 each side 12-#10 each side 9-#10 each side 9-#10 each side 9-#9 each side 8-#9 each side 6-#8 each side 6-#7 each side 5-#7 each side 5-#5 each side 5-#5 each side 4-#5 each side	Vu 332.69 228.99 180.85 148.20 122.97 100.72 83.57 69.89 58.96 49.97 42.11 33.57 26.22	Mu 22706.41 16718.00 13512.13 10980.19 8905.36 7183.74 5773.71 4603.66 3625.19 2799.74 2100.14 1510.63 1040.69	ΦVn 1533.3 1533.3 1281 1281 1046.1 1046.1 863.38 863.38 698.08 698.08 558.88 445.78	ΦMn 22966.14 17804.37 13616.05 11284.5 8993.98 8034.35 6399.84 4837.05 3694.08 3087.33 2272.78 1606.28 1286.93
Wall 5 ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side 9-#9 each side 8-#9 each side 6-#8 each side 6-#7 each side 5-#6 each side 5-#5 each side 4-#5 each side 3-#5 each side	Vu 332.69 228.99 180.85 148.20 122.97 100.72 83.57 69.89 58.96 49.97 42.11 33.57 26.22 19.89	Mu 22706.41 16718.00 13512.13 10980.19 8905.36 7183.74 5773.71 4603.66 3625.19 2799.74 2100.14 1510.63 1040.69 673.59	ФVn 1533.3 1533.3 1281 1281 1046.1 1046.1 863.38 863.38 698.08 698.08 558.88 445.78 445.78	ΦMn 22966.14 17804.37 13616.05 11284.5 8993.98 8034.35 6399.84 4837.05 3694.08 3087.33 2272.78 1606.28 1286.93 966.63
Wall 5 ground 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th	Reinforcement Req'd 16-#11 each side 12-#11 each side 11-#10 each side 9-#10 each side 9-#9 each side 8-#9 each side 6-#8 each side 6-#7 each side 5-#7 each side 5-#5 each side 4-#5 each side 3-#5 each side 2-#4 each side	Vu 332.69 228.99 180.85 148.20 122.97 100.72 83.57 69.89 58.96 49.97 42.11 33.57 26.22 19.89 13.88	Mu 22706.41 16718.00 13512.13 10980.19 8905.36 7183.74 5773.71 4603.66 3625.19 2799.74 1510.63 1040.69 673.59 395.11	ΦVn 1533.3 1533.3 1281 1281 1046.1 1046.1 863.38 863.38 698.08 698.08 698.08 558.88 445.78 445.78 445.78 350.08	ΦMn 22966.14 17804.37 13616.05 11284.5 8993.98 8034.35 6399.84 4837.05 3694.08 3087.33 2272.78 1606.28 1286.93 966.63 416.81

Appendix 2: S	Structural Details,	Schedules	and Tables
---------------	---------------------	-----------	------------

Wall 6	Reinforcement Req'd	Vu	Mu	ΦVn	ΦMn
ground	12-#11 each side	272.66	17595.78	1533.3	17804.37
2nd	11-#10 each side	210.62	12687.91	1281	13616.05
3rd	10-#9 each side	158.48	9739.30	1046.1	9943.68
4th	8-#9 each side	115.27	7520.65	1046.1	8034.35
5th	8-#8 each side	85.70	5906.83	863.38	6399.84
6th	8-#7 each side	68.47	4707.00	698.08	4896.85
7th	7-#7 each side	55.32	3748.45	698.08	4297.25
8th	7-#6 each side	45.35	2973.93	558.88	3168.44
9th	6-#6 each side	37.25	2339.00	558.88	2721.57
10th	4-#6 each side	30.73	1817.55	558.88	1822.07
11th	5-#5 each side	25.14	1387.33	558.88	1606.28
12th	5-#4 each side	21.00	1035.36	350.08	1039.04
13th	4-#4 each side	17.23	741.40	350.08	832.02
14th	3-#4 each side	13.68	500.19	350.08	624.61
15th	2-#4 each side	10.30	308.69	350.08	416.81
16th	1-#4 each side	7.10	164.42	350.08	208.6
roof	1-#4 each side	2.95	64.95	350.08	208.6

Relative Stiffness Calculations for Shear Walls

	20'	She	ar W	all		10' Shear Wall						
	E	L	h	†	R		E	L	h	†	R	
ground	3600	20	18	8	5128.2051	ground	3600	10	18	18	2255.6391	
2nd	3600	20	32	8	1359.5166	2nd	3600	10	32	18	460.6460	
3rd	3600	20	46	8	518.2839	3rd	3600	10	46	18	160.7366	
4th	3600	20	60	8	246.1538	4th	3600	10	60	18	73.4694	
5th	3600	20	74	8	134.7608	5th	3600	10	74	18	39.4377	
6th	3600	20	88	8	81.3706	6th	3600	10	88	18	23.5440	
7th	3600	20	102	8	52.7565	7th	3600	10	102	18	15.1564	
8th	3600	20	116	8	36.0971	8th	3600	10	116	18	10.3211	
9th	3600	20	130	8	25.7603	9th	3600	10	130	18	7.3411	
10th	3600	20	144	8	19.0150	10th	3600	10	144	18	5.4058	
11th	3600	20	158	8	14.4299	11th	3600	10	158	18	4.0949	
12th	3600	20	172	8	11.2061	12th	3600	10	172	18	3.1756	
13th	3600	20	186	8	8.8743	13th	3600	10	186	18	2.5121	
14th	3600	20	200	8	7.1464	14th	3600	10	200	18	2.0212	
15th	3600	20	214	8	5.8391	15th	3600	10	214	18	1.6503	
16th	3600	20	228	8	4.8319	16th	3600	10	228	18	1.3648	
roof	3600	20	250	8	3.6688	roof	3600	10	250	18	1.0356	

<u>Column Schedules</u>

Column Line	1	2	3	4	5	6	7	8	9	10	11	12
Column Line	T	2	3	4	5	6	/	0	9	10	11	12
/Level	40.40	10 10	40.40	40.40	40.40	40.40	40.40	40.40	40.40	40.40	40.40	10 10
(18×18	18x18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
roof	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9	4-#10	4-#9	8-#9	4-#9	8-#9
	18×18	18x18	18×18	18×18	18×18	18×18	18x18	18×18	18x18	18×18	18×18	18×18
16	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9	4-#10	4-#9	8-#9	4-#9	8-#9
	18×18	18x18	18×18	18×18	18×18	18×18	18×18	18×18	18x18	18×18	18×18	18×18
15	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9	4-#10	4-#9	8-#9	4-#9	8-#9
	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18x18	18×18	18×18	18×18
14	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9	4-#10	4-#9	8-#9	4-#9	8-#9
10	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
13	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9	4-#10	4-#9	8-#9	4-#9	8-#9
	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
12	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9	4-#10	8-#10	8-#10	8-#9	8-#10
	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
11	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9	4-#10	8-#10	8-#10	8-#9	8-#10
	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
10	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9		8-#10	8-#10	8-#9	8-#10
	24x24	24x24	24x24	24x24	24x24						24x24	24x24
9	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11		4-#11	4-#11	4-#11
	24x24	24x24	24x24	24x24							24x24	24x24
8	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
	24x24	24x24	24x24		24x24				24x24	24×24	24x24	24x24
7	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
	24x24											
6	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11
	24x24											
5	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11
	24x24											
4	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11
	24x24											
3	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	8-#11	8-#11	8-#11	8-#11
	24x24											
2	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	8-#11	8-#11	8-#11	8-#11
	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24x24
ground	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	8-#11	8-#11	8-#11	8-#11
	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30
cellar 1	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	8-#11	8-#11	8-#11	8-#11
	30x30	30×30	30x30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30x30	30x30
cellar 2	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	8-#11	8-#11	8-#11	8-#11

Concrete Design Column Table

13	14	15	16	17	18	19	20	21	22	23	24	25	26
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
4-#9	4-#10	4-#10	4-#9	8-#9	4-#9	8-#9	4-#9	4-#10	4-#10	4-#9	8-#9	4-#9	8-#9
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
4-#9	4-#10	4-#10	4-#9	8-#9	4-#9	8-#9	4-#9	4-#10	4-#10	4-#9	8-#9	4-#9	8-#9
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
4-#9	4-#10	4-#10	4-#9	8-#9	4-#9	8-#9	4-#9	4-#10	4-#10	4-#9	8-#9	4-#9	8-#9
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
4-#9	4-#10	4-#10	4-#9	8-#9	4-#9	8-#9	4-#9	4-#10	4-#10	4-#9	8-#9	4-#9	8-#9
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
4-#9	4-#10	4-#10	4-#9	8-#9	4-#9	8-#9	4-#9	4-#10	4-#10	4-#9	8-#9	4-#9	8-#9
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
8-#10	4-#10	4-#10	8-#10	8-#10	8-#8	8-#10	8-#10	4-#10	4-#10	8-#10	8-#10	8-#9	8-#10
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
8-#10	4-#10	4-#10	8-#10	8-#10	8-#8	8-#10	8-#10	4-#10	4-#10	8-#10	8-#10	8-#9	8-#10
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
8-#10	4-#10	4-#10	8-#10	8-#10	8-#8	8-#10	8-#10	4-#10	4-#10	8-#10	8-#10	8-#9	8-#10
24x24	24×24	24x24	24x24	24x24	24x24	24×24	24×24	24×24	24x24	24x24	24x24	24x24	24x24
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24													
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24	24×24	24x24	24x24	24x24	24x24	24×24	24×24	24×24	24x24	24x24	24x24	24x24	24x24
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24	24×24	24x24	24x24	24x24	24x24	24×24	24×24	24×24	24x24	24x24	24x24	24x24	24x24
8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11	8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11
24x24													
8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11	8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11
24x24	24×24	24x24	24x24	24x24	24x24	24×24	24×24	24×24	24x24	24x24	24x24	24x24	24x24
8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11	8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11
24x24	24×24	24x24	24x24	24x24	24x24	24×24	24×24	24×24	24x24	24x24	24x24	24x24	24x24
8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11	8-#11	4-#11	4-#11	8-#11	8-#11	8-#11	8-#11
24x24	24×24	24×24	24x24	24×24	24×24	24×24	24×24	24×24	24x24	24×24	24×24	24×24	24x24
8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11	8-#11	4-#11	4-#11	8-#11	8-#11	8-#11	8-#11
24x24	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24×24	24x24
8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11	8-#11	4-#11	4-#11	8-#11	8-#11	8-#11	8-#11
30x30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30
8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11	8-#11	4-#11	4-#11	8-#11	8-#11	8-#11	8-#11
30x30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30
8-#11	4-#11	4-#11	8-#11	8-#11	4-#11	8-#11	8-#11	4-#11	4-#11	8-#11	8-#11	8-#11	8-#11

27	28	29	30	31	32	33	34	35	36	37	38	39	40
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18					
4-#9	4-#10	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9					
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18					
4-#9	4-#10	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9					
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18					
4-#9	4-#10	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9					
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18					
4-#9	4-#10	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9					
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18			18×18	18×18	18×18
4-#9	4-#10	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9			4-#9	4-#9	4-#9
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18			18×18	18×18	18×18
8-#10	4-#10	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9			4-#9	4-#9	4-#9
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18			18×18	18×18	18×18
8-#10	4-#10	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9			4-#9	4-#9	4-#9
18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18	18×18
8-#10	4-#10	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9	8-#9	4-#9	4-#9	4-#9	4-#9	4-#9
24x24													
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24													
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24													
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24													
8-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24													
8-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24													
8-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24													
8-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24													
8-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24													
8-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
30x30													
8-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
30x30													
8-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11

41	42	43	44	45	46	47	48	49	50	51
10,10										
18x18										
4-#9										
18×18 4-#9										
4-#9 18x18										
4-#9										
18x18	18x18	18×18	18×18	18×18	18×18					
4-#9	4-#9	4-#9		4-#9	4-#9					
		24x24								
		4-#11			4-#11					
		24x24								
	4-#11		4-#11		4-#11					
==		24x24								
		4-#11		4-#11						
		24x24	==							
		4-#11								
		24x24								
		4-#11								
24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24	24x24	24x24	24x24	24x24	24x24	24×24	24x24	24x24	24x24	24x24
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24	24x24
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
30x30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30×30	30x30
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11
30x30	30x30	30x30	30×30	30x30						
4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11	4-#11

Composite	and N	on-Cor	nposite	e Steel	Desig	n Colur	nn I ab	ole
Column Line	1	2	3	4	5	6	7	8
/Level								
	W18X86	W12X40	W16X36	W12X26	W16X36	W12X40	W18X86	W18X86
roof								
16	W18X86	W12X40	W16X36	W12X26	W16X36	W12X40	W18X86	W18X86
16	W/21¥111	W18X76	W/16¥67	W/21X62	W/16¥67	W/18¥76	W/21¥111	W/21¥111
15	***	W10///0	W 10/(0/	WEINOL	W10/(0/	W10///0	***	***
-	W21X111	W18X76	W16X67	W21X62	W16X67	W18X76	W21X111	W21X111
14								
	W21X111	W18X76	W16X67	W21X62	W16X67	W18X76	W21X111	W21X111
13		14/201/00	14/201/00	14/201/00	14/201/00	14/201/00	14/07/44/	14071444
12	W2/X146	W30X99	W30X99	W30X99	W30X99	W30X99	W2/X146	W2/X146
12	W27X146	W30X99	W30X99	W30X99	W30X99	W30X99	W27X146	W27X146
11								
	W27X146	W30X99	W30X99	W30X99	W30X99	W30X99	W27X146	W27X146
10								
	W30X173	W30X148	W30X148	W30X132	W30X148	W30X148	W30X173	W30X173
9	W20V173	W30X148	W/20V149	W/20V122	W/20V1/18	W/20V149	W/20V172	W/20V172
8	W 30/17 3	W 30/140	W 30/140	W 30/132	W 30/140	W 30/140	W 50/17 5	W 50/(1/ 5
-	W30X173	W30X148	W30X148	W30X132	W30X148	W30X148	W30X173	W30X173
7								
	W40X174	W40X167	W36X160	W40X149	W36X160	W40X167	W40X174	W40X192
6	14/401/474	14/401/4/7	MO()////	14/401/440	14/2/14/0	14/401/4/7	14/401/474	14/401/400
5	W40X174	W40X167	W36X160	W40X149	W36X160	W40X167	W40X174	W40X192
5	W40X174	W40X167	W36X160	W40X149	W36X160	W40X167	W40X174	W40X192
4								
	W44X290	W44X262	W44X230	W44X230	W44X230	W44X262	W44X290	W44X290
3								
2	W44X290	W44X262	W44X230	W44X230	W44X230	W44X262	W44X290	W44X290
2	W/44Y200	W/44¥262	W/44¥230	W/44¥230	W/44¥230	W/44¥262	W/44¥200	W44X290
ground	10447230	10 447202	10447230	10 + + / 2 30	10447230	10447202	10 + + / 2 90	10 7772 90
	W44X290	W44X262	W44X230	W44X230	W44X230	W44X262	W44X290	W44X290
cellar 1								
	W44X290	W44X262	W44X230	W44X230	W44X230	W44X262	W44X290	W44X290
cellar 2								

Composite	and	Non-Composite	: Steel	Design	Column	Table

9	10	11	12	13	14	15	16	17
W16X36	W12X30	W12X30	W12X30	W16X36	W18X86	W18X86	W12X30	W12X30
W16X36	W12X30	W12X30	W12X30	W16X36	W18X86	W18X86	W12X30	W12X30
W18X86	W16X67	W16X67	W16X67	W18X86	W21X111	W21X111	W18X86	W16X67
W18X86	W16X67	W16X67	W16X67	W18X86	W21X111	W21X111	W18X86	W16X67
W18X86	W16X67	W16X67	W16X67	W18X86	W21X111	W21X111	W18X86	W16X67
W24X131	W27X102	W30X99	W27X102	W24X131	W27X146	W27X146	W27X117	W24X104
W24X131	W27X102	W30X99	W27X102	W24X131	W27X146	W27X146	W27X117	W24X104
W24X131	W27X102	W30X99	W27X102	W24X131	W27X146	W27X146	W27X117	W24X104
W30X173	W30X148							
W30X173	W30X148							
W30X173	W30X148							
W40X174	W40X174	W40X174	W40X174	W40X174	W40X192	W40X192	W40X174	W40X174
W40X174	W40X174	W40X174	W40X174	W40X174	W40X192	W40X192	W40X174	W40X174
W40X174	W40X174	W40X174	W40X174	W40X174	W40X192	W40X192	W40X174	W40X174
W44X290	W44X230	W44X230	W44X230	W44X290	W44X290	W44X290	W44X262	W44X230
W44X290	W44X230	W44X230	W44X230	W44X290	W44X290	W44X290	W44X262	W44X230
W44X290	W44X230	W44X230	W44X230	W44X290	W44X290	W44X290	W44X262	W44X230
W44X290	W44X230	W44X230	W44X230	W44X290	W44X290	W44X290	W44X262	W44X230
W44X290	W44X230	W44X230	W44X230	W44X290	W44X290	W44X290	W44X262	W44X230

18	19	20	21	22	23	24	25	26
W12X30	W12X30	W12X30	W18X86	W18X86	W16X36	W12X30	W12X30	W12X30
W12X30	W12X30	W12X30	W18X86	W18X86	W16X36	W12X30	W12X30	W12X30
W16X67	W16X67	W18X86	W21X111	W21X111	W18X86	W16X67	W16X67	W16X67
W16X67	W16X67	W18X86	W21X111	W21X111	W18X86	W16X67	W16X67	W16X67
W24X104	W16X67	W18X86	W21X111	W21X111	W18X86	W16X67	W16X67	W16X67
W24X104	W24X104	W27X117	W27X146	W27X146	W24X131	W27X102	W30X99	W27X102
W24X104	W24X104	W27X117	W27X146	W27X146	W24X131	W27X102	W30X99	W27X102
W30X90	W24X104	W27X117	W27X146	W27X146	W24X131	W27X102	W30X99	W27X102
W30X148	W30X148	W30X173						
W30X148	W30X148	W30X173						
W30X148	W30X148	W30X173						
W40X174	W40X174	W40X174	W40X192	W40X192	W40X174	W40X174	W40X174	W40X174
W40X174	W40X174	W40X174	W40X192	W40X192	W40X174	W40X174	W40X174	W40X174
W40X174	W40X174	W40X174	W40X192	W40X192	W40X174	W40X174	W40X174	W40X174
W44X230	W44X230	W44X262	W44X290	W44X290	W44X290	W44X230	W44X230	W44X230
W44X230	W44X230	W44X262	W44X290	W44X290	W44X290	W44X230	W44X230	W44X230
W44X230	W44X230	W44X262	W44X290	W44X290	W44X290	W44X230	W44X230	W44X230
W44X230	W44X230	W44X262	W44X290	W44X290	W44X290	W44X230	W44X230	W44X230
W44X230	W44X230	W44X262	W44X290	W44X290	W44X290	W44X230	W44X230	W44X230

27	28	29	30	31	32	33	34	35
W16X36	W18X86	W18X86	W12X40	W16X36	W12X26	W16X36	W12X40	W18X86
W16X36	W18X86	W18X86	W12X40	W16X36	W12X26	W16X36	W12X40	W18X86
W18X86	W21X111	W21X111	W18X76	W16X67	W21X62	W16X67	W18X76	W21X111
W18X86	W21X111	W21X111	W18X76	W16X67	W21X62	W16X67	W18X76	W21X111
W18X86	W21X111	W21X111	W18X76	W16X67	W21X62	W16X67	W18X76	W21X111
W24X131	W27X146	W27X146	W30X99	W30X99	W30X99	W30X99	W30X99	W27X146
W24X131	W27X146	W27X146	W30X99	W30X99	W30X99	W30X99	W30X99	W27X146
W24X131	W27X146	W27X146	W30X99	W30X99	W30X99	W30X99	W30X99	W27X146
W30X173	W30X173	W30X173	W30X148	W30X148	W30X132	W30X148	W30X148	W30X173
W30X173	W30X173	W30X173	W30X148	W30X148	W30X132	W30X148	W30X148	W30X173
W30X173	W30X173	W30X173	W30X148	W30X148	W30X132	W30X148	W30X148	W30X173
W40X174	W40X192	W40X174	W40X167	W36X160	W40X149	W36X160	W40X167	W40X174
W40X174	W40X192	W40X174	W40X167	W36X160	W40X149	W36X160	W40X167	W40X174
W40X174	W40X192	W40X174	W40X167	W36X160	W40X149	W36X160	W40X167	W40X174
W44X290	W44X290	W44X290	W44X262	W44X230	W44X230	W44X230	W44X262	W44X290
W44X290	W44X290	W44X290	W44X262	W44X230	W44X230	W44X230	W44X262	W44X290
W44X290	W44X290	W44X290	W44X262	W44X230	W44X230	W44X230	W44X262	W44X290
W44X290	W44X290	W44X290	W44X262	W44X230	W44X230	W44X230	W44X262	W44X290
W44X290	W44X290	W44X290	W44X262	W44X230	W44X230	W44X230	W44X262	W44X290

W14X48 HP12X53 W14X48 W14X48 W14X48 W18X86 W18X86 W18X86 W18X86 W14X48 HP12X53 W14X48 W14X48 W14X48 W18X86 W18X86 W18X86 W18X86 W14X48 HP12X53 W14X48 W14X48 W14X48 W18X86 W18X86 W18X86 W18X86 W14X48 HP12X53 W14X48 W24X131 W24X131 W24X131 W24X131 W24X131 W24X131 W16X67 W18X86 W18X86 W24X131 W24X131 W24X131 W24X131 W24X131 W24X131 W16X67 W18X86 W18X86 W24X131 W24X131 W24X131 W24X131 W24X131 W24X131 W16X67 W18X86 W18X86 W30X191 W30X191 W30X191 W36X160 W36X160 W30X191 W21X101 W27X146 W27X146 W30X191 W30X191 W30X191 W36X160 W36X160 W30X191 W21X101 W27X146 W27X146 W30X191 W30X191 W30X191 W36X160 W36X160 W30X191 W21X101 W27X146 W27X146 W30X191 W30X191 W30X191 W36X160 W36X160 W30X191 W21X101 W27X146 W27X146 W30X191 W30X191 W30X191 W36X160 W36X160 W30X191 W21X101 W27X146 W27X146

W14X48 W14X48 W14X48 W14X48

45	46	47	48	49	50	51
W10X49	W14X48					
W10X49	W14X48					
W10X49	W14X48					
W10X49	W14X48					
W16X67	W16X67					
W16X67	W16X67					
W16X67	W16X67	W18X60	W18X60	W18X50	W16X50	W12X35
W27X146	W21X101	W18X60	W18X60	W18X50	W16X50	W12X35
W27X146	W21X101	W18X60	W18X60	W18X50	W16X50	W12X35
W27X146	W21X101	W18X60	W18X60	W18X50	W16X50	W12X35
W27X146	W21X101	W18X60	W18X60	W18X50	W16X50	W12X35
W27X146	W21X101	W18X60	W18X60	W18X50	W16X50	W12X35

Appendix 3: Floor Plans

Column Layout:

<u>Cellar 2:</u>

<u>Cellar 1:</u>

Ground Floor:

4th Floor:

5th Floor:

6th, 7th, 8th Floors:

<u>10th Floor:</u>

Daniel Painter 5th Year Thesis – Two Freedom Square

<u>11th Floor:</u>

Daniel Painter 5th Year Thesis - Two Freedom Square

13th Floor:

14th Floor:

15th Floor:

<u>Penthouse:</u>

1	(2)) (3) (4	(5	e		78
(A)	W 44X146	W 44X146	W 44X262	Q N	/44X262	= •			
	W18X40	W18X35	W18X35		W18×40	Ξĥ			
161X08.M	W18X 40	018X35 W18X35	W18X35	w24X131	N18×40	Ŵ 30X191			
(B)	W27X146	W27X146	W27X146	- @V	V27X146				
	W18X 40		W18X35		N18×40	iel 77	W18X35	E.	
	₩18×40 Š	W18X35	<u> </u>	W2 4X117	N18X40	161X08.M	W18X40	\rightarrow	
(C)	W24X104	W24X104	W24X104	- φ - ν	V24X104	6-4	w2IX1II	¥	
	W18X 40 5	W18X35	W18X35	-g '	N18X40	161X	W18X35 IIIXI W18X35 X	W18X35	W18×35
	018X 4001 X X X X X X			W2IX101	W18X40	W 30X191	₩18×35	W18×35	W10X12
(D)	W21X101	W21X101	W21X101	- <u>b</u> v	V21×101	•	W18X86	W18X86	\$ W21X 44 \$
	W18X 40 [0] X1 W18X 40 [X2 W18X 40 [X2]	W18X35	W18X35	- <u>s</u>	w18×40	16DX	W18×35 II W18×35 X	W18X40	
I	W18X 40				W18×35	W 30	₩18×35	W18X40	
(E)	W21X101	W21X101	W21X101		V21×101	•	W18X97	W18X97	• W18×50
- E -	W18X 40		W18X35		W18X40	<u>16</u> —	W18×35	W18X 40	
ATXOE M	W18X40X W18X40X	W18X35		W24XII7	N18×40	161X08/M	₩18×35	W18X40	≷ <u>₩10X1</u> 2 ≩
(F)@-	W24X104	W21X101	W21X101	- <u>u</u> V	V24X104	•	W18X97 -	W18X97	
	W18X 40		W18X35		N18X40	161	<u>₩18×40</u> Ξ	W18X40	
	¥ ¥	₩18X35	W18X35		W18×40	161X08W	W18X40 ≥	W18X40	W10X12
(G)	W21X101	W21X101	W21X101	- lei - V	V21×101	- @	W18X97	W18X97	@W18X 46
İ									

Ground Floor Framing Plan: Non-Composite

			_	~ ~
(1)		(4) (5) (6)	(7)(8)
(A)	46 Ø W44X146 Ø W44	X262 Ø W44X262		
W12X19(20)	16(18) = W12X19(20) =		
× 12×19(지 지	16(18) ×		
(B)	46 w 27×146 w 27	1×146 @ W27×146 @	<u>_</u>	
E		16 (16) W12X19 (18)	W18X35	
W12×19(육	느 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
(C)	04 0 W24X104 0 W24	€×104 ₩2.4×10.4	w21x111	
w12X19(aa	14(15) 01 W12X19(15) 05 XX W12X19(15) 05 W12X19(15) 05 W12X19(15) 05	W12X16(16)W13	3×35 W18×35
			>	16 (18) W8X10 (5)
		14(15) = W12X19(15) =		
		14(15) 0 X X X X X X X X X X X X X	X	19 (15) W8X10 (5) 19 (15) W8X10 (5)
W2IXIO		×101 W21×101		8X.97 W18X.50
				19 (19) b W8X10 (5) g
×12×19(¥ ¥ I	W12X19 (18)	8	19 (19) S W8X 10 (5)
(F)	04 @ W21X101 @ W21	1×101 g W24×104 g		3X.97 + W18X.46
EW12X19(20)	16 (18) W12×19 (20)		19 (21) B W8×10 (5)
	김 김	16 (18) ¥X	8	19 (21)
w21×10	01 • W21X101 • W21	IX101 @ W2IX101 @		8×97 ¢W18×46 ¢
		<u></u>		
İ				

Ground Floor Framing Plan: Composite

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 1 2 3 4 5 6 7 8 1 1 2 3 4 5 6 7 8 1 10	, 3	, 4	, 9	1 1001	Πu	mingi	<u>1011.</u> INO	n-con	iposite	•				
Internet W18X35 W18X35 W18X40 W18X35 W18X40 W18X40 W18X35 W18X40 W18X35 W18X40 W18X35 W18X35 W18X40 W18X35 W18X40 W18X35 W18X35 W18X35 W18X35 W18X40 W18X35 W18X35 W18X40 W18X35 W18X35 W18X35 W18X40 W18X35 W18X35 W18X35 W18X35 W18X35 W18X35 W18X40 W18X35 W18X40 W18X35 W18X40 W10X12 W10X12 W18X40 W18X35 W18X40 W18X35 W18X40 W10X12 W10X12 W18X40 W18X35 W18X40 W18X40 W10X12 W10X12 W10X12					Ę)	3	4)	5	(6	(78
Internet W18X35 W18X35 W18X40 W18X35 W18X40 W18X40 W18X35 W18X40 W18X35 W18X40 W18X35 W18X35 W18X40 W18X35 W18X40 W18X35 W18X35 W18X35 W18X35 W18X40 W18X35 W18X35 W18X40 W18X35 W18X35 W18X35 W18X40 W18X35 W18X35 W18X35 W18X35 W18X35 W18X35 W18X40 W18X35 W18X40 W18X35 W18X40 W10X12 W10X12 W18X40 W18X35 W18X40 W18X35 W18X40 W10X12 W10X12 W18X40 W18X35 W18X40 W18X40 W10X12 W10X12 W10X12														
Internet W18X35 W18X35 W18X40 W18X35 W18X40 W18X40 W18X35 W18X40 W18X35 W18X40 W18X35 W18X35 W18X40 W18X35 W18X40 W18X35 W18X35 W18X35 W18X35 W18X40 W18X35 W18X35 W18X40 W18X35 W18X35 W18X35 W18X40 W18X35 W18X35 W18X35 W18X35 W18X35 W18X35 W18X40 W18X35 W18X40 W18X35 W18X40 W10X12 W10X12 W18X40 W18X35 W18X40 W18X35 W18X40 W10X12 W10X12 W18X40 W18X35 W18X40 W18X40 W10X12 W10X12 W10X12												ĺ		
W18X40 W18X35 W18X40 W18X35 W18X40 W18X35 W18X40 W18X35 W18X35 W18X40 W18X35 W18X40 W18X35 W18X35 W18X40 W18X35 W18X40 W18X35 W18X40 W18X40 W18X35 W18X40 W18X40 W18X40 W18X40 W18X40 W10X12 W18X40 W10X12 W18X40	<u></u>			W 44X1 46		W 44X146		262 4	W 44X262	<u> </u>				
Image: state stat	\cup		Ē	W18X40	_	W18X35	- w18X		W18×40	_ħ				
Image: state stat			6IX08		- 4413			- ¥		0				
W18X40 W18X35 W18X35 W18X40 W18X35 W18X40 W18X40 W18X35 W18X35 W18X40 W18X40 W18X40 W18X40 W18X35 W18X35 W18X40 W18X40 W18X40 W18X40 W18X35 W18X35 W18X40 W18X35 W18X35 W18X40 W18X35 W18X35 W18X35 W18X35 W18X35 W18X40 W18X35 W18X35 W18X40 W18X36 W18X35 W18X40 W18X35 W18X35 W18X40 W18X40 W18X40 W18X40 W18X40 W18X35 W18X35 W18X40 W18X37 W18X40 W18X40 W18X40 W18X40 W18X55 W18X35 W18X40 W18X40 W18X40 W18X40			- 18	W18X40	% _	W18X35	_\$ <u></u>	35_≩	W18X40	¥				
Int WIEX40 WIEX35 WIEX40 WIEX35 WIEX40 WIEX35 WIEX35 <th>В)</th> <th></th> <th></th> <th>W 27 X1 46</th> <th></th> <th>W 27 X1 46</th> <th> W27X1</th> <th>146</th> <th>W27X146</th> <th>-0-</th> <th></th> <th></th> <th></th> <th></th>	В)			W 27 X1 46		W 27 X1 46	W27X1	146	W27X146	-0-				
Image: Wigk 40 Wigk 40			<u> </u>	W18X40	_1 -	W18X35	-3 <u>W18X</u>	35 5	W18×40		W18×35	<u>-</u>		
W24X104 W24X104 W24X104 W24X104 W24X104 W24X104 W24X104 W21X111 W18X35 W18X40 W18X35 W18X40 W18X35 W18X40 W18X35 W18X40 W18X35 W18X40 W10X12 W18X40 W10X12 W10X12 W10X12 W10X12 W10X12 W10X12 W10X12 <th< td=""><td></td><td></td><td>X02.0M</td><td>W18X40</td><td>W24X1</td><td>W18X35</td><td>W2IX1</td><td>- w24X</td><td>W18X40</td><td></td><td>W18X40</td><td>N21XIII</td><td></td><td></td></th<>			X02.0M	W18X40	W24X1	W18X35	W2IX1	- w24X	W18X40		W18X40	N21XIII		
W18X40 W18X35 W18X35 W18X35 W18X35 W18X35 W10X12 W18X40 W18X35 W18X35 W18X35 W18X35 W18X35 W18X35 W10X12 W18X40 W18X40 W18X35 W18X35 W18X35 W18X35 W18X35 W18X35 W10X12 W18X40 W18X35 W18X35 W18X40 W18X35 W18X40 W10X12 W18X40 W18X35 W18X35 W18X40 W18X35 W18X40 W10X12 W18X40 W18X35 W18X40 W18X35 W18X40 W18X35 W18X40 W10X12 W18X40 W18X35 W18X40 W18X40 W18X40 W10X12	<u></u>		 	W24X104		W24X104	W24X1	104	W24X104	- 0-	W21×111			
OR W18X 40 OR W18X 35 W18X 35 W18X 35 W10X12 W10X12 W18X 40 W18X 40 W18X 35 W10X12 W10X12 W18X 40 W18X 35 W18X 35 W18X 35 W18X 35 W18X 35 W18X 35 W10X12 W10X12 W18X 40 W18X 35 W18X 35 W18X 35 W18X 35 W18X 35 W18X 40 W10X 12 W18X 40 W18X 40 W18X 35 W18X 35 W18X 35 W18X 40 W10X 12 W18X 40 W18X 35 W18X 35 W18X 35 W18X 35 W18X 35 W18X 35 W18X 40 W10X 12 W18X 40 W18X 35 W18X 35 W18X 40 W10X 12 W10X 12 W10X 12 W10X 12 W18X 40 W18X 35 W18X 40 W10X 12 W10X 12 W10X 12 W10X 12 W10X 12 W18X 40 W18X 35 W18X 40 W18X 35 W18X 40 W10X 12 W10X 12 W10X 12	\mathbb{C}		[<u>s</u>] _	W18X40		W18X35		35 3	W18×40	_61 _	W18×35	-=	W18X35	W18×35
W2DX101 W2DX101 W2DX101 W2DX101 W18X86 W18X12 W18X12 W18X12 W18X12 W18X12 W18X40 W10X12 W10			W3000	W18X40	W2DX		i i i i i i i i i i i i i i i i i i i	- ^{XS}	W18×40		W18×35	- W2IX	W18X35	₩10X12
W18X 40 W18X 35 W18X 35 W18X 35 W18X 40 W18X 35 W18X 40 W18X 35 W18X 40 W18X 35 W18X 40 W10X12	$\overline{\mathbb{A}}$			W21X101		W21×101			W21X101		W18X86		W18X86	₩21X 44
w18x40 w18x35 w18x35 w18x40 w18x40 w10x12	9		Ti .	W18X40	Ī	W18X35	T		W18×40	ī	W18×35	T	W18X40	Tunovia
W2IX101 W2IX101 W2IX101 W2IX101 W18X97 W18X40 W10X12 W10X12 <th></th> <th></th> <th></th> <th>W18X40</th> <th>/2IX1</th> <th>F</th> <th></th> <th></th> <th>W18×40</th> <th>1 10 1300X1</th> <th>W18×35</th> <th>V2IX1</th> <th>W18X40</th> <th>\$ w10x12</th>				W18X40	/2IX1	F			W18×40	1 10 1300X1	W18×35	V2IX1	W18X40	\$ w10x12
W18X40 W18X35 W18X35 W18X40 W18X35 W18X40 W18X35 W18X40 W10X12 W10X12<			8			W21X101		프						
W18X40 W18X35 W18X35 W18X40 W10X12 W18X40 W10X12 W10X12<	57		(L (9)					i				- <u>le</u>		T 11
w24x104 w21x101 w21x101 w24x104 w18x97 w18x97 <th></th> <th></th> <th>etxi —</th> <th>VV18X 40</th> <th>- </th> <th>VV 18A 3D</th> <th></th> <th>°-1 - √ ¥</th> <th>W18X40</th> <th>- [6] [0]</th> <th>VV18X3D</th> <th></th> <th>VV18X40</th> <th></th>			etxi —	VV18X 40	- 	VV 18A 3D		°-1 - √ ¥	W18X40	- [6] [0]	VV18X3D		VV18X40	
10 W18X40 W18X35 W18X35 W18X40 W10X12	_			W18X40	- 🕅 -	W18X35		<u> </u>	W18×40	- 🕅	W18×35	-8 -	W18X40	_Ş <u>₩10X1</u> 2 Ş
	F)			W24X104		W21×101		101 4	W24X104		W18×97		W18X97	- @W18X 46
	\smile		F –	W18X40	- 18 -	W18X35		35	W18X40		W18X 40	-=	W18X40	W10X12
			IX08.W	W18X40	W24X1	W18X35		- <u>75</u>	W18X40		W18X 40	W2IX1	W18X40	
	G)		Ľ.	W21×101	- @ -	W21X101		101	W21×101		W18X97	- 0	W18X97	W18X 46

2nd, 3rd, 4th, 5th Floor Framing Plan: Non-Composite

1 2 3 4 5 6 7 8 A 9 W48146 W480262 W480262 W480262 W12019 (20) gg	<u> </u>	<u>ricor rraning ran</u> composite	
B w12x19 (20) w12x16 (16) w12x16 (16) w12x16 (16) w12x19 (20) B w12x19 (20) w12x16 (16) w12x16 (16) w12x16 (16) w12x19 (20) W12x19 (20) w12x16 (16) w12x16 (16) w12x16 (16) w12x19 (20) w12x19 (20) W12x19 (20) w12x16 (16) w12x16 (16) w12x19 (16) w12x19 (16) w12x19 (16) W12x19 (16) w12x19 (16) w12x14 (16) w12x19 (16) w12x19 (16) w12x19 (16) W12x19 (16) w12x14 (15) w12x14 (15) w12x19 (15) w12x16 (16) w12x14 (15) W12x19 (15) w12x14 (15) w12x19 (15) w12x16 (16) w12x14 (15) w12x19 (15) W12x19 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x19 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x19 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x19 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x19 (16) w12x14 (15)			
B w12x19 (20) w12x16 (16) w12x16 (16) w12x19 (20) w12x19 (20) B w12x19 (20) w12x16 (16) w12x16 (16) w12x19 (20) w12x19 (20) W12x19 (20) w12x16 (16) w12x16 (16) w12x19 (20) w12x19 (20) w12x19 (20) B w12x19 (20) w12x16 (16) w12x16 (16) w12x19 (20) w12x19 (20) W12x19 (20) w12x19 (20) w12x16 (16) w12x19 (20) w12x19 (20) w12x19 (20) C w12x19 (15) w12x14 (15) w12x14 (15) w12x19 (15) w12x19 (15) w12x19 (15) W12x19 (15) w12x19 (15) w12x14 (15) w12x19 (15) w12x16 (16) w12x14 (15) W12x19 (15) w12x14 (15) w12x14 (15) w12x19 (15) w12x16 (16) w12x14 (15) W12x19 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x19 (15) w12x16 (16) W12x19 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x19 (15) w12x16 (16) w12x14 (15) W12x19 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x14 (15) w1			
B w12x19 (20) w12x16 (18) w12x16 (18) w12x19 (20) B w12x19 (20) w12x16 (18) w12x16 (18) w12x19 (20) w12x18 (18) W12x19 (18) w12x16 (18) w12x16 (18) w12x19 (18) w12x19 (18) w12x19 (18) W12x19 (18) w12x19 (18) w12x16 (18) w12x19 (18) w12x19 (18) w12x19 (18) W12x19 (15) w12x14 (15) w12x14 (15) w12x19 (15) w12x14 (15) w12x19 (16) W12x19 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x19 (16) w12x16 (18) W12x19 (15) w12x14 (15) w12x14 (15) w12x14 (15) w12x16 (18) w12x16 (18) W12x19 (15) w12x14 (15) w12x14 (15) w12x16 (16) w12x16 (16) w12x16 (16) W12x19 (15) w12x14 (15) w12x16 (16) w12x16 (16) w12x16 (16) w12x19 (15) w12x16 (16) W12x19 (15) w12x16 (16) w12x16 (16) w12x19 (15) w12x19 (15) w12x19 (15) w12x19 (15) W12x19 (15) w12x16 (16) w12x16 (16) w12x19 (15) w12x19 (16) w12x19 (16) w12x19 (16) w12x19 (1	A	W 44X146 @ W 44X262 @ W 44X262 @	
Image: state in the s		<u></u>	
Internet WIZX16 (16) WIZX16 (16) WIZX19 (18) WIZX19 (18) WIZX19 (18) WIZX19 (18) WIZX19 (18) WIZX19 (18) WIZX19 (17) WIZX19 (18) WIZX19 (18) WIZX19 (18) WIZX19 (18) WIZX19 (17) WIZX19 (18) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX14 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX14 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (15) WIZX19 (16)			
Image: state of the state	B	W27×146 W27×146 W27×146 W27×146	
Image: Constraint of the second se			
• •			
MI2X19 (15) WI2X19 (15)	(C)f	$w_{2}w_{104} \perp w_{2}w_{104} \perp w_{2}w_{104} \perp w_{2}w_{104} \perp w_{2}w_{104} \perp w_{2}w_{2}w_{104}$	
Image: marked state in the	- Le		
0 W2[X101 0 W2[X101 0 W18X86 0 W18X86 0 W18X86 0 W12X14(15) 0 W12X19(15) W12X19(15) W12X19(15) W12			
Image: W12x19 (15) W12x19 (16) W12x19 (16	(D)		
W2IX101 W2IX101 W2IX101 W2IX101 W18X97 W18X97 W18X97 W18X50 W12X19 (18) W12X16 (16) W12X16 (16) W12X16 (16) W12X19 (18) W12X19 (14) W12X19 (19) W8X10 (5) W12X19 (18) W12X10 (18) W12X10 (18) W12X19 (18) W12X19 (14) W12X19 (19) W8X10 (5) W12X19 (18) W12X10 (18) W12X19 (18) W12X19 (14) W12X19 (19) W8X10 (5) W12X19 (20) W12X101 W22X101 W24X104 W12X19 (16) W12X19 (16) W18X97 W18X97 W18X10 (5) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W8X10 (5) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W8X10 (5) W8X10 (5) W12X19 (20) W12X16 (18) W12X19 (20) W12X19 (20) W8X10 (5) W8X10 (5) W12X19 (20) W12X16 (18) W12X19 (20) W12X19 (20) W8X10 (5) W12X19 (21) W8X10 (5) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (21) W8X10		<u></u>	
w12x19 (18) w12x16 (16) w12x16 (16) w12x19 (18) w12x19 (14) w12x19 (19) w12x19 (19) w12x19 (18) w12x19 (18) w12x19 (18) w12x19 (14) w12x19 (19) w12x19 (19) w12x19 (19) w12x19 (18) w12x19 (18) w12x19 (18) w12x19 (14) w12x19 (19) w12x19 (19) w12x19 (19) w12x19 (18) w12x19 (18) w12x19 (14) w12x19 (19) w12x19 (19) w12x19 (19) w12x19 (13) w12x10 (16) w12x19 (18) w12x19 (14) w12x19 (19) w12x19 (19) w12x19 (20) w12x10 (18) w12x19 (20) w12x19 (20) w12x19 (20) w12x19 (20) w12x19 (20) w12x19 (20) w12x16 (18) w12x16 (18) w12x19 (20) w12x19 (20) w12x19 (21) w8x10 (5) w12x19 (20) w12x16 (18) w12x16 (18) w12x19 (20) w12x19 (20) w12x19 (21) w8x10 (5) w12x19 (20) w12x16 (18) w12x16 (18) w12x19 (20) w12x19 (21) w12x			
w24x104 w21x101 w22x101 w24x104 w18x97 w18	(E)L		
w24x104 w21x101 w22x101 w24x104 w18x97 w18		<u></u>	
	2020 	<u></u>	
	(F)		
		<u></u>	
	200		
	(G)	W2IX101 0 W2IX101 0 W2IX101 0 W18X97 0 W18X97 0 W18X97	
	\sim		
		i l i i i l i	

2nd, 3rd, 4th, 5th Floor Framing Plan: Composite

	1 2 3 4 5 6 78
(A)	w 44x146
\bigcirc	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(B)	W27X146 W27X146 W27X146 W27X146
\smile	
(C)	₩24X104 ₩24X104 ₩24X104 ₩24X104 ₩24X104 ₩21X111
S	
~	
(D)	
\sim	1 W18X 40 10 W18X 35 10 W18X 40 10 W18X 40 10 </th
\frown	
(E)	
	W18X 40 W18X 35 W18X 35 W18X 40 W18X 35 W18X 40 W18X 40 <t< th=""></t<>
\sim	
(F)	
	W18X 40 W18X 35 W18X 35 W18X 35 W18X 40 W18X 40 <t< th=""></t<>
	$\begin{bmatrix} 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
(G)	
\smile	

6th, 7th, 8th, 9th, 10th Floor Framing Plan: Non-Composite

A W 440146 W 460146 W 4401262 W 4402622 B W12x19 (20) W12x16 (19) W12x16 (19) W12x16 (19) W12x19 (20) W 12x19 (20) W12x16 (19) W12x16 (19) W12x16 (19) W12x19 (20) W12x19 (20) W 12x19 (20) W12x16 (19) W12x16 (10) W12x19 (20) W12x19 (20) W12x19 (20) W 12x19 (19) W12x16 (10) W12x16 (10) W12x10 (10) W12x19 (10) W12x19 (10) W 12x19 (19) W12x16 (10) W12x16 (10) W12x10 (10) W12x10 (10) W12x16 (10) W 12x19 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x16 (10) W12x16 (10) W 12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x16 (10) W12x16 (10) W 12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W 12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10) W12x10 (10)		(1) (2) (3) (4) (5) (6) (7) (8)
Image: Second state of the second s		
B w27X146 w27X146 w27X146 w12X16 (10) w12X19 (10) w12X16 (10) w12X16 (10) w12X19 (10) w12X19 (10) w12X19 (10) w12X16 (10) w12X16 (10) w12X19 (10) w12X19 (10) w12X19 (10) w12X10 (10) w12X10 (10) w12X19 (10) w12X19 (10) w12X19 (10) w12X10 (10) w12X14 (15) w12X10 (15) w12X16 (10) w12X16 (10) w12X19 (15) w12X10 (15) w12X14 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X16 (10) w12X16 (10) w12X19 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (10) w12X10 (15) w12X10 (15)	(A)	₩ 44X146 ₩ 44X146 ₩ 44X146 ₩ 44X262 ₩ 44X262
B w27X146 w27X146 w27X146 w12X16 (10) w12X19 (10) w12X16 (10) w12X16 (10) w12X19 (10) w12X19 (10) w12X19 (10) w12X16 (10) w12X16 (10) w12X19 (10) w12X19 (10) w12X19 (10) w12X10 (10) w12X10 (10) w12X19 (10) w12X19 (10) w12X19 (10) w12X10 (10) w12X14 (15) w12X10 (15) w12X16 (10) w12X16 (10) w12X19 (15) w12X10 (15) w12X14 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X16 (10) w12X16 (10) w12X19 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (15) w12X10 (10) w12X10 (15) w12X10 (15)	U	w12x19(20) w12x16(18) w12x16(18) w12x16(18) w12x19(20)
W12X19(18) W12X16(16) W12X16(16) W12X16(18) W12X19(18) W12X19(18) W12X19(18) W12X19(18) W12X19(18) W12X19(17) W12X19(18) W12X19(18) W12X19(18) W12X19(18) W12X19(17) W12X19(15) W12X14(15) W12X14(15) W12X19(15) W12X16(16) W12X16(16) W12X19(15) W12X14(15) W12X14(15) W12X19(15) W12X16(16) W12X16(16) W12X19(15) W12X14(15) W12X14(15) W12X19(15) W12X16(16) W12X16(16) W12X19(15) W12X14(15) W12X14(15) W12X19(15) W12X16(16) W12X19(15) W12X19(15) W12X16(16) W12X14(15) W12X19(15) W12X16(16) W12X19(15) W12X19(15) W12X16(16) W12X10(15) W12X16(16) W12X19(15) W12X19(15) W12X19(15) W12X10(15) W12X19(15) W12X19(16) W12X19(16) W12X19(16) W12X19(16) W12X10(15) W12X19(16) W12X19(16) W12X19(16) W12X19(16) W12X19(16) W12X19(16) W12X19(16) W12X19(16) W12X19(16) W12X19(16)		$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$
Image: Wizx19(18) Wizx16(18) Wizx16(18) Wizx19(18) Wizx19(12) Image: Wizx19(18) Wizx19(18) Wizx19(18) Wizx19(17) Wizx19(17) Image: Wizx19(18) Wizx19(15) Wizx19(15) Wizx19(15) Wizx19(15) Image: Wizx19(15) Wizx19(15) Wizx19(15) Wizx19(15) Wizx19(15) Image: Wizx19(15) Wizx19(15) Wizx14(15) Wizx19(15) Wizx16(16) Wizx16(16) Wizx19(15) Wizx19(15) Wizx14(15) Wizx14(15) Wizx19(15) Wizx16(16) Wizx16(16) Wizx19(15) Wizx19(15) Wizx14(15) Wizx14(15) Wizx19(15) Wizx16(16) Wizx19(15) Wizx19(15) Wizx14(15) Wizx14(15) Wizx19(15) Wizx16(16) Wizx19(15) Wizx19(15) Wizx14(15) Wizx14(15) Wizx19(15) Wizx16(16) Wizx19(15) Wizx19(15) Wizx14(15) Wizx14(15) Wizx19(15) Wizx16(16) Wizx19(15) Wizx19(15) Wizx14(15) Wizx14(15) Wizx19(15) Wizx16(16) Wizx19(15) Wizx19(16) Wizx14(15) Wizx14(15) Wizx16(16) Wiz	(R)	₩27X146 ₩27X146 ₩27X146 ₩27X146
W12X19 (19) W12X16 (16) W12X19 (17) W12X19 (17) W12X19 (15) W12X14 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X16 (16) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X16 (16) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X16 (16) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X16 (16) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X16 (16) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X16 (16) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X14 (15) W12X14 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X14 (15) </td <td>B</td> <td></td>	B	
W24X104 W24X104 W24X104 W24X104 W24X104 W21X111 W12X19(15) W12X19(15) W12X14(15) W12X19(15) W12X19(15) W12X16(16) W12X16(16) W12X19(15) W12X19(15) W12X14(15) W12X19(15) W12X19(15) W12X16(16) W12X16(16) W12X19(15) W12X19(15) W12X14(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X14(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X101 W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X101 W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X19(15) W12X101 W12X19(15) W12X19(16) W12X19(16) W12X19(16) W12X19(15) W12X16(16) W12X16(16) W12X19(16) W12X19(16) W12X19(16) W12X19(12) W12X19(10) W12X19(16) <td></td> <td></td>		
NU2X19 (15) W12X19 (15)	(C)	
W21X101 W22X101 W22X101 W21X101 W12X101 W12X10101 W12X101 W12X101	U	
ww21x101 ww21x101 ww21x101 ww12x19 (15) ww12x19 (15	\sim	
W12X19 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X19 (15) W12X10 (16) W12X10 (16) W12X19 (17) W12X19 (17) W12X19 (17) W12X19 (18) W12X19 (18) W12X19 (18) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (18) W12X19 (18) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (12) W12X19 (16) W12X19 (16) W12X19 (12) W12X19 (20) W12X19 (16) W12X19 (16) W12X19 (16) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18)	(D)	
W21X101 W21X101 W21X101 W21X101 W18X97 W18X97 W12X19 (18) W12X16 (16) W12X16 (16) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (18) W12X10 (18) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (18) W12X10 (16) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (18) W12X10 (18) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (18) W12X10 (18) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (18) W12X10 (18) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (20) W12X10 (18) W12X19 (18) W12X19 (16) W12X19 (12) W12X19 (20) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20)	~	
W12X19 (18) W12X16 (19) W12X16 (16) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (18) W12X16 (16) W12X16 (16) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (18) W12X19 (18) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (18) W12X10 (18) W12X19 (18) W12X19 (14) W12X19 (19) W12X19 (18) W12X10 (18) W12X19 (18) W12X19 (16) W12X19 (12) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20)	\bigcirc	
Image: W12x19 (18) W12x16 (16) W12x16 (16) W12x19 (18) W12x19 (14) W12x19 (19) Image: W12x19 (18) W12x19 (18) W12x19 (18) W12x19 (14) W12x19 (19) Image: W12x19 (20) W12x16 (18) W12x16 (18) W12x19 (20) W12x19 (20) Image: W12x19 (20) W12x16 (18) W12x16 (18) W12x19 (20) W12x19 (20) Image: W12x19 (20) W12x16 (18) W12x16 (18) W12x19 (20) W12x19 (20) Image: W12x19 (20) W12x16 (18) W12x16 (18) W12x19 (20) W12x19 (20) Image: W12x19 (20) W12x16 (18) W12x16 (18) W12x19 (20) W12x19 (20) Image: W12x19 (20) W12x16 (18) W12x16 (20) W12x19 (20) W12x19 (20) Image: W12x19 (20) W12x16 (18) W12x19 (20) W12x19 (20) W12x19 (20) Image: W12x19 (20) W12x16 (18) W12x19 (20) W12x19 (20) W12x19 (20) Image: W12x19 (20) W12x19 (20) W12x19 (20) W12x19 (20) W12x19 (20) Image: W12x19 (20) W12x19 (20) W12x19 (20) W12x19 (20) W12x19 (20)	9	
W2 4X104 W2 1X101 W2 1X101 W2 4X104 W18X97 W18X97 W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20) W12X19 (20) W12X16 (18) W12X16 (18) W12X19 (20) W12X19 (20) W12X19 (20)		
w12x19 (20) w12x16 (18) w12x16 (18) w12x19 (20)	(F)	
	\cup	
	<u></u>	
	Y	

<u>6th, 7th, 8th, 9th, 10th Floor Framing Plan:</u> Composite

		23	4	5	6	78
(A)	W44X146		14X262 g W44X26	2 4		
	W18×40	w18×35 g w	18×35 🛒 🕺 W18×40			
_	Let w18X40	X18×358X	18X 35 3 18X 35 3 18X 35 3 W18X 40	161X0		
(B)		W27X146 W2	27×146 w27×14	<u>6</u>		
\bigcirc	W18X40	w18×35 g	18X 35) [[9]	
	W18X40	W18X35 00 00 00 00 00 00 00 00 00 00 00 00 00		U 161 W18X40		
(n)		W24×104 W2	24X104 Ø W24X10	4 w 21×111	1 11	
\bigcirc	IT.	T T	T) <u>a</u> w18×35	TI	
	W18X40 5 8 8 8 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10	W18X35 6 W W18X35 8 W	18×35 []) [1] W18X35 [2] W18X35 [2] W18X35	W2IX111	
(D)	W21×101	W21×101	21×101 e W21×10	1 W18X86		
\subseteq	18 <u>w18×40</u>	<u></u>	18X 35 3 W18X 40	<u> </u>	—==	
	W18X40	W18X35 6 W	18×35 []W18×40) 51 W18X35) 51 W18X35 W18X35	W2X111	
(E)		w21×101 w2	21×101 @ W21×10	1 W18X97		
\bigcirc	₩18×40	w18×35 g	18X 35 B W18X 40)	M2IXII	
	W18X40) [6] W18X35		
(F)	₩24×104	• W21×101 • W2	21X101 @W24X10	4 +		
\bigcirc	W18X40	w18×35 _ w	18×35			
	BI 018×40 BI 02 BI		18×35 ₩ 18×40 4 18×35 ≩ ₩18×40			
	L					
6	W21×101	W21×101 W2	21×101 @ W21×10			

11th, 12th, 13th Floor Framing Plan: Non-Composite

<u>11th, 12th, 13th</u>	Floor Framing Plan	<u>n:</u> Composite

		23	4	5	6	78
(A)	W44X146	© W44X146 0 W4	14X262 p W44X26	2 4		
\smile	W12X19(20) W12X19(20)		×16(18) W12×19(3	20-5		
	W12×19(20)		<u>×16(18)</u> <u> ×16(18)</u> <u> </u> W12×19(3)	20) 16 16 20) 16 20) 16		
(B)		₩27×146 ₩2	27X146 W27X14	<u>6</u>		
\bigcirc	W12X19(18)		×16(16)			
		₩12×16 (16)		18) S W12×19 (17		
(C)			24X104 @ W24X10	4 W21×111		
\sim	W12X19(15)		×14(15) 6 W12×19(- A	M2IXIII (
(I)	W12X19(15)	- [6]	21X101 P W21X10 X14(15 z W12X19()	Y	——⊕———	
	W12X19(15) W12X19(15)		×14(15)	- TA		
(F)	W21×101		21×101 @ W21×10			
S	W12Y19(18)	-12 W12X16(16) - 22 W12	X16(16) . W12X19(18)		
	W12X19(18)	₩12×16(16)			M2	
(F)			21X101 @ W24X10	4		
\bigcirc	W12X19(20)	-g <u></u> g <u></u> g	×16(18) ====================================	20)		
	W12X19(20)	· 전 · · · · · · · · · · · · · · · · · ·	×16(18) ≩	20) 61 XXX 20) 8		
<u> </u>		w21×101 w	21×101 @ W21×10	↓ 1		
Y						

<u>, 13 , 10</u>	1 $(a$			(5)	(6)	(7)(8)
	γ					
A	W 44X 146	W44X146 0 W4	4X262 🔹 W 44X2	62		
\mathcal{O}	ट <u>W18X 40</u> ल		10Y 25 10/10Y	е В		
	161 W18X40 181W 47	 	18X35 § W18X4	8 M30X191		
R			7×146 w27×1	46		
IJ		10/10/25		, TI		
	40 2110240 W18X40 210047 W18X40 2004	W18X35		M 30X191		
<u></u>	W24X104	W24X104 W2	4X104 @ W24X1	04		
	01101 W18X40 W18X40 W18X40 W18X40 W18X40 W18X40	W18X35 [] W1	18X35 [] W18X4	<u> š</u>		
~	₩18X40 ^[7]			M 30X191		
D)	W21×101	0	17101 W21X1			
	16					
-\'	≥ <u>010000</u> ≥ W21×101	- W2IX101 - W2	21X101 @ W21X1	1.11		
	31			. 7/		
	W18X40 LTX42 M1X0E W18X40 W18X40			M 30X 131		
	• W24X104	W21×101 W2	21×101 • W24×10	04		
	W19X 40		18×35 W18×4			
	16 X02 M W18X40 K W18X40 M		18X35 × W18X4			
<u> </u>	W21×101	W21×101 W2	21×101 • W21×1			
リ						

14th, 15th, 16th Floor Framing Plan: Non-Composite

<u>1,10</u>	, 10 11001 1	Tuning Tuni	mposite			
	1	23	4	5	6	73
	W44X146	w44x146 /	/ 44X 262 🔹 W 44X 2	262		
\cup	W12X19 (2	m wiley14 (10) wi	12X16 (18) g	(20) =		
	W12X19 (2	작 집	12×16 (18)			
(B)	W27X146	5 W27X146 V	V27X146 W27X1	46		
\smile	W12X19(1	8)	12×16 (16) W12×19	(18) g		
(C)		4 W 24X104 V	V24X104 W24X1	.04		
\bigcirc	W12×19(1		12X14 (15) 6 W12X19	🛛 🛝		
\bigcirc	1 1					
	W21×101		221X101 W21X1 12X14(15) H W12X19			· +
	W12X19(1			Ř		
(F)	W21×101		V21X101 W21X1	//		
	W12X19(1	8 h w12×16(16) g w	12X16 (16) W12X19			
		8)X 8)X 8)X 8)X 8)X 8)X 12X16(16)Z 12X16(16)X 12X16(16)Z 12X16(16) _	W12X19			
(F)	W24X104	4 @ W21×101 @ V	V2IX101 W24XI	.04		
\smile	W12X19 (2	<u>0 g</u> <u>w12x16(18) g</u> <u>w</u> 2	12X16 (18)	⁽²⁰⁾ g		
	W12X19 (2	3 원	12X16 (18) 2 12X16	(20) 16 1X (20) 8		
(G)		W21×101 V	V21X101 @ W21X1			
\bigcirc						
	1		1	1	1	

<u>14th, 15th, 16th Floor Framing Plan:</u> Composite

($\begin{array}{cccccccccccccccccccccccccccccccccccc$
A	₩ 44×146 ₩ 44×146 ₩ 44×262
	<u></u>
B)	w27X146 w27X146 w27X146 w27X146 w
	<u></u>
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
C){	e w24×104 e w24×104 e w24×104 e
	W14X22 W14X22 W14X22 W14X22 W14X22 W14X22 W14X22 W14X22 W14X22
57 - 1	w21X101 w21X101 <t< td=""></t<>
	w14x22 mi4x22 mi4x22 mi4x22 mi4x22 w14x22 mi4x22 mi4x22 mi4x22 mi4x22 w14x22 mi4x22 mi4x22 mi4x22 w14x22 mi4x22 mi4x22 mi4x22 w14x22 mi4x22 mi4x22 w14x22 mi4x22 mi4x22
	w21x101 w21x101 w21x101 w
5	
a contraction of the second second second second second second second second second second second second second	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
F)	W24X104 W21X101 W
	W14x22 II W14x22 II W14x22 II W14x22 II W14x22 II W14x22 II III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	w21×101 w21×101 w21×101 w21×101
J	

Roof Framing Plan: Non-Composite

A W440146 W440126 W4401262 W4402262 W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10) W8010 (10)		1 2) 3	4	5	6	78
Image: Second second							
Image: Second second	A)		W 44X 146 6 W 44X 262	2 Ø W 44X262			
B w27X146 w27X146 w27X146 w27X146 W8X10(10) u00000 w8X10(10) w8X10(10) w8X10(10) W8X10(10) w8X10(10) w8X10(10) w8X10(10) w8X10(10) W8X10(10)	\smile	≝ <u>₩®×10(10)</u> ∰		10) W8X10 (10)	- <u>a</u> []		
Image: State of the state		₩®X10(10) ¥	X8X10(10)X	10) × w8×10(10)			
Image: State of the state	B)			6 @ W27X146			
• W24X104 • W24X104 • W24X104 • W24X104 • W24X104 • W24X104 • W24X104 • W24X104 • W24X104 • W24X104 • W24X104 • W24X104 • W24X104 • W24X101 • W21X101 • <t< td=""><td>\sim</td><td></td><td></td><td>10 b w&x10(10)</td><td></td><td></td><td></td></t<>	\sim			10 b w&x10(10)			
Image: Constraint of the second se		₩8×10(10) §	X8X10(10)	[™] 4 [™] 8×10(10)			
W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10)	<u></u>			4 W2 4X 10 4			
W2IX101 W2IX101 W2IX101 W2IX101 W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) </td <td>J</td> <td>//T T</td> <td></td> <td>10) g w8x10(10)</td> <td>-8</td> <td></td> <td></td>	J	//T T		10) g w8x10(10)	-8		
0 W8X10(10) W8X10(10) W8X10(10) W8X10(10) W8X10(10) W8X10(10) W8X10(10) W8X10(10) W8X10(10) W8X10(10) W8X10(10)		₩8X10(10)	XX10 (10)	₩8×10(10)	- M 30X		
W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10)	D)	W21X101		w21X101			
w21X101 w21X101 w21X101 w21X101 w8X10 (10) w8X10 (10) w8X10 (10) w8X10 (10)	\smile		<u>C </u>		_ <u>.</u>		
W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W21X101 W21X101 W24X104 W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10) W8X10 (10)	~	W8X10(10)	N8X10(10)	W8X10(10)			
w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10) w8x10 (10)	E)		W21×101 W21×101	1 • W21X101			
w24x104 w21x101 w21x101 w24x104 w8x10(10) w8x10(10) w8x10(10) w8x10(10) w8x10(10) w8x10(10) w8x10(10) w8x10(10) w8x10(10) w8x10(10) w8x10(10) w8x10(10)	\smile	₩ <u>₩\$×10(10)</u>			-34		
		₩ <u>8×10(10)</u>		₩8×10 (10)			
	F)	W 24X10.4		W24X104			
	\mathbf{O}	₩ <u>₩₩10(10)</u>		10) W8×10 (10)	_==		
		××	X8X10(10)	¥	X0X1		
	G		W21×101 W21×101	1 W21×101	┍┙ ┍╾╋┨╶──╶──		
	J				<u></u>		

Roof Framing Plan: Composite

Appendix 4: Miscellaneous

Frames A through G are in E-W direction and 1-8 are in N-S direction

Frames A and B:

Frames C:

Frame D and E:

Frame F and G:

Frame 1 to 5:

Frame 6:

Daniel Painter 5th Year Thesis - Two Freedom Square Frame 7:

Site Plan: Crane Location

LIEBHERR 290 HC

Morrow Equipment Co., L.L.C.

Configurations

LEBHERR 290 HC

Morrow Equipment Co., L.L.C.

Radius and Capacities

LIEBHERR Tower Crane Model 290 HC

2-Part Line

Morrow Equipment Co., L.L.C.

S P E C I F I C A T I O N S

LEBHERR Tower Crane Model 290 HC

Hoist Speed and Capacity

Hoist Unit	WiW291RX040			2-Part Lin	e	
108 hp (80 kW) AC hoist unit		Gear	Capacity	Line Speed	Capacity	Line Speed
4-speed gearbox Electromagnetic gear shifting Eddy current brake		1	up to 26,455 bs	@ 105 fpm	up to 12.000 kg	@ 32 m/min
		2	up to 15,650 bs	@ 200 fpm	up to 7 100 kg	@ 61 m/min
		3	up to 9,260 bs	@ 312 fpm	up to 4 200 kg	@ 95 m/min
	35275	4	up to 4,520 bs	@ 555 fpm	up to 2 0.50 kg	@ 169 m/min

NOTEL Capacities and line speeds indicated will vary depending on the amount of hoist sepe installed. This crane model may be equipped with a hoist will other than that specified in the data above. To verify, check the serial number of the crane and refer to the Liebher 290 HC Operation Manual for additional information.

Motor Information

Drive Unit	Horsepower	Kilowatts	Speed		
Trolley	7.4 hp	5.5 kW	26 - 52 - 164 - 312 fpm	8 - 16 - 50 - 95 m/min	
Swing (fired coupling)	2 x 6.7 hp	2 x 5.0 kW	0.7 rpm		
Traveling (fluid coupling)	2 x 10 hp	2 x 7.5 kW	98 fpm	30.0 m/min	

Power Requirements

480 V — 3-phase — 60 Hz — 225 Amperes

Specifications subject to change without prior notice. For additional information, contact Morrow Equipment.

Morrow Equipment Co., L.L.C.

Component List

EBHERR 290 HC

Description	Dimensions	Weight	Description		Dimensions	Weight
Tower Top	29'-3'' x 5'-5' x 6'-1' 8.9m x 1.65m x 1.85m	6,000 lbs 2 720 kg	.lib Section ① #611		39'-0" x 6'-1" x 6'-4" 11.89m x 1.85m x 1.92m	6,950 lbs 3 150 kg
Slewing Assembly	20'-7'' x 9'-0' x 8'-9' 6.27m x 2.74m x 2.67m	20,300 lbs 9 210 kg	.lib Section ② #621	www.wa	39'-5' x 5'-4' x 6'-2' 12.02m x 1.63mx 1.87m	4,870 lbs 2 270 kg
Slewing Assembly Deper Part ²	14'-8'' x 9'-0' x 8'-9' 4.47m x 2.74m x 2.67m	11,9 25 lbs 5 410 kg	Jib Section ③ #633	Ra Qi	17'-7' x 5'-4' x 6'-2' 5.36mx 1 63m x 1.87m	2,040 lbs 925 kg
Slewing Assembly Lower Part ³	6'-6' x 9'-0' x 7'-9' 1.98m x 2.74m x 2.36m	8,375 lbs 3 800 kg	Jib Section ④ #634	terrorean Q.	34'-0" x 5'-4" x 6'-1' 10:36m x 1:63m x 1:86m	4,1 10 lbs 7 865 kg
Hoist Unit with Frame * 👼 🛄 1 106 hp /80 k//i	8'-6' x 15'-10' x 7'-0' 2.59m x 4.83m x 2.13m	17,420 lbs 7 900 kg	Jib Section (5) #622	WAWA G	39'-5' x 5'-5' x 6'-1' 12.02m x 1 65m x 1.86m	4,565 lbs 2 070 kg
Counterijb Section #1	27'-9" x 5'-10" x 5'-7" 8.46mx 1 77mx 1 7m	4,760 bs 2.760 kg	Jib Section ® #632		23'-1" x 5'-4" x 6'-1' 7.03m x 1.63m x 1.86m	2,240 lbs 1 015 kg
Counterijb Section #2 📑 🕂 🖓	17'-2" x 5'-10" x 5'-7" 5.23mx 1 77mx 1 7m	4,000 bs 1 815 kg	.lib Section ⑦ #631	territoria da	39'-5' x 5'-4' x 6'-1' }2.02m x }.63m x }.86m	2,850 lbs 1 290 kg
Counterjib Section #3 (Outer)	27'-7'' x 8'-0' x 5'-7' 8.41mx 2.44mx 1.7m	6,200 bs 2 800 kg	.lib Section ⑧ #641	₽ ∰"	7'-4" x 6'-1" x 6'-10' 2.24mx 1.85m x 2.08m	730 bs 230 kg
Counterilo A 5	54'-8'' x 8'-0' x 5'-7' 16.67m x 2.44m x 1.7m	12,500 lbs 5 670 kg	.ib Assembly 7 230-ft (70:0m)	12345678	231'-0' x 6'-1' x 6'-10' 70.4m x 1.85m x 2.08m	32,405 lbs 14,700 kg
Counterib B *	71'-1'' x 8'-0' x 5'-7' 21 &7m x 2 A4m x 1 7m	16,500 lbs 7 485 kg	Jib Assembly ⁷ 213-ft (5.5.0m)	1245678	214'-7' x 6'-1' x 6'-10' 65 Amx 1.85m x 2.08m	29,980 lbs 13 600 Jg
Counterweight 🛛 🛱 💾 🖞	4'-4'' x 11'' x 8'-1' 1.32m x 0.28 x 2.46m	4,960 bs 2 250 kg	Jib Assembly ⁷ 197-ft (20:0m)	1235678	198'-2" x 6'-1" x 6'-10" 60.4mx 1.85m x 2.08m	27,560 lbs 12,500 kg
Counterweight Block B ₿	4'-4'' x 11'' x 5'-4' 1.32m x 0.28 x 1.63m	3,195 bs 1 450 kg	.fb Assembly" 180-ft (5.5.0m)	125575	181'-9" x 6'-1" x 6'-10' 55.4m x 1.85m x 2.08m	24,690 lbs 11 200 Jg
Base Tower Section	40'-9' x 7'-7' x 7'-7' 12.42m x 2.3mx 2.3m	17,505 lbs 7 940 kg	.ib Assembly 7 158-ft 48.3ml	12573	159'-11' x 6'-1' x 6'-10' 48.7mx 1.85m x 2.08m	22,485 lbs 10 200 kg
Long Tower Section	40'-9'' x 7'-7'' x 7'-7' 12.42m x 2.3m x 2.3m	12,170 lbs 5 520 kg	.ib Assembly 7 142-ft (4.3.3m)	12568	143'-6" x 6'-1" x 6'-10" 43.8mx 1.85m x 2.08m	21,605 lbs 9 800 kg
Standard Tower Section	13'-7'' x 7'-7'' x 7'-7' 4.14m x 2.3m x 2.3m	5,025 bs 2 280 kg	.ib Assembly7 120-ft β6.7ml	DQGG	121'-8' x 6'-1' x 6'-10'' 37.1mx 1.85m x 2.08m	19,400 lbs 8 800 kg
Transition Section 290HC/550HC	20'-7'' x 8'-5' x 8'-5' 6.28m x 2.57m x 2.57m	13,050 bs 5 920 kg	.fib Assembly™ 104-ft β1.Zml	(D)S@@	105'-3' ж б'-1' ж б'-10'' 32.1 т.х. 1.85т ж 2.08т	16,315lbs 7 400 kg
Standard Tower Section	20'-7' x 8'-0' x 8'-0' 6.28m x 2.44m x 2.44m	13,340 lbs 6.050 kg	Top Climbing Unit w/hydraulics	kapa Bi	27'-6' x 9'-2' x 8'-10' 8.38m x 2.79m x 2.69m	16,535 lbs 7 500 kg
Bottom Climbing Unit	16'-5' x 7'-6' x 7'-10' 5.0m x 2.28m x 2.4m	13,200 lbs 5 990 Jg	Hook Block	當當	2'-0' х 1'-7' х 3'-9' 0.62m х 0.48m х 1.14m	1,345 lbs 670 kg
Tie-in Collar 🔄 📮 📲	10'-10' x 1'-3' x 10'-1' 3.29m x 0.39m x 3.08m	4,850 bs	Trolley	₽ ¥"	6'-2" x 6'-0" x 3'-11' 1.89m x 1.83m x 1.2m	835 bs 380 kg

NOTE: Weights and dimensions are coprovince. Scale components before lifting.
 Includes operator's cob, swing moters, slewing ring, ring support and 4 dimking shoes. Two climbing shoes are detachable; deduct 100 bs #5 kgl each. Dimensions above are without detachable dimbing shoes.
 Includes searchor's cob and swing moters.
 Includes searchor's and handrais. Counteriph As is required for jbis 198 ft #55.04 and shorter.
 Includes jbis sections, pardant bars and handrais. Counteriph B is required for jbis 198 ft #55.04 and brease.
 Includes jbis sections, pardant bars and handrais. Counteriph B is required for jbis 190 ft #55.04 and brease.
 Includes jbis sections, pardant bars and bandrai

Morrow Equipment

3218 Pringle Road SE • P O Box 3306 • Salem, Oregon 97302-0306 USA

Tel. 503.585.5721 • Fax. 503.363.1172 • www.morrowequipment.com

Atlanta, GA • Charlotte, NC • Chkago, IL • Denver, CO • Honolulu, HI • Houston, TX • Los Angeles, CA • Los Vegas, NV Millwood, NY • St. Louis, MO • San Francisco, CA • Seattle, WA • Miamil, FL • Tampa, FL • Washington, DC Sydney, Australia • Wellington, New Zealand • Vancouver, BC, Canada • Toronto, ON, Canada • México DF, México Pantas In the U.S.A. MEC - 290HC - 0101 - 70F