Executive Summary ..... 2
Credits and Acknowledgements ..... 3
Introduction ..... 4
Background ..... 7
General Information ..... 9
Existing Concrete Structure ..... 11
Option \#1: Concrete Structure ..... 26
Option \#2: Non-Composite Steel Structure ..... 36
Breadth \#1: Construction Management Issues ..... 46
Breadth \#2: Architectural Issues ..... 50
Fireproofing for Steel Design ..... 53
Summary and Conclusions ..... 58
Appendix One: Loads ..... 61
Appendix Two: Structural Details, Schedules and Tables ..... 80
Appendix Three: Floor Plans ..... 99
Appendix Four: Miscellaneous ..... 130

The following is the work of an entire year combined into one paper. The building picked for this senior thesis was Two Freedom Square, located in Reston, Virginia. The objective of the project was to understand the existing structural system and then propose alternative solutions for the design of the building. After researching Two Freedom Square, it was determined that a proposed solution was to rearrange the columns to the column lines and then redesign the building in steel and concrete to see what difference could be found from the existing structure.

The proposed changes also affect other areas of the design of the building, for example changing to a steel building from a concrete building requires the addition of fireproofing all steel members. Also changing to a steel building increases the floor to floor height to allow room for the ductwork to be run.

The structures were designed to IBC 2000 instead of BOCA 1996, which was the original code, to see how the new code affects the design of the building. Also not all areas of the building was investigated because the time frame does not allow for the same kind of design an engineering firm would take to design the entire building.

Most of the design centered on the wind loading and torsion affects due the height of the building and also the unique shape of the building. These considerations drove the design of the concrete and steel structures. And spreadsheets and structural analysis programs were used to aid in the redesign of the building.

Daniel Painter
page 2
$5^{\text {th }}$ Year Thesis - Two Freedom Square

| Owner: | Boston Properties, Inc. 111 Huntington Avenue Boston, MA 02199-7602 |
| :---: | :---: |
| Architect: | SmithGroup <br> 1825 Eye Street NW <br> Washington, DC 20006 |
| Structural: | Tadjer Cohen Edelson Associates, Inc. 1109 Spring St. <br> Silver Spring, MD 20910 |
| Mechanical: | Tolk, Inc. 8401 Arlington Boulevard Suite 600 Fairfax, VA 22031 |
| Lighting: | Moran Coventry |
| General Contractor: | Centex Construction 3924 Pender Dr. <br> Fairfax, VA 22030 |

Special thanks to William Hendrix and Joel Kelty from SmithGroup for providing Two Freedom Square as a thesis building for this year's project. Also thanks for their willingness to answering questions which arose during the research portion of this project.

## Introduction

Throughout the fall of 2002 and the spring of 2003 I have been working on a Senior Thesis Project for the Architectural Engineering Program at Penn State University. The fall requirements were to do three technical assignments in our focus, which happens to be structural engineering for me, and then do a variety of other assignments to get a broader scope of the entire building process. The first of the technical assignments was to get a better understanding of the building by find basic loading of the building and codes used for design. The second technical assignment was to understand the existing floor system and then to investigate several different floor systems which could possibly replace the existing system. The final technical assignment was to do a full lateral analysis of the build to find out which controlled the design of the lateral system, seismic or wind.

At the conclusion of the fall semester, a proposal was created to define what areas of research would be followed up on in the spring semester. Also the creation of a thesis problem/statement was created to guide the research. After finishing the fall assignments I concluded that the column layout for the building needed to change to allow for symmetric design and easier calculations. This also allowed for the removal of some of the interior columns, however, this created the need for a redesign of the core of the building. This solution also posed the question of how the building's columns would be different if moved and then redesigned in concrete. Another proposed solution was to investigate the building if it was designed out of steel instead of concrete, with the proposed new column layout. This proposed solution created the problem of where to put the mechanical ductwork if the floor to floor height remained the same. So the steel design also proposed an increased floor to floor height to allow the installation of ductwork. The final proposed
solution was to investigate how the intermediate beams would be different if design compositely compared to non-compositely.

The spring semester was spent investigating these different options and figuring out which solution was the best for the building. The following pages are the compilation of the research done throughout the year.

## Background

To be able to understand this project some basic background information about Two Freedom Square is necessary. More in depth information about the structural system and architectural features can be found in later sections.

The Two Freedom Square Building is a 450,000 square foot building located at 11995 Freedom Drive, Reston, Virginia which is in a community surrounding Washington D.C. The building is 16 -stories in addition to two basements and its primary use is an office building; however the first floor is occupied by shops. Two Freedom Square is also part of a building complex with its neighboring building being One Freedom Square and a shared parking garage lies between the two buildings. Two Freedom Square is owned by Boston Properties and designed by SmithGroup. The Structural Engineer was Tadjer Cohen Edelson, the Mechanical Engineer was Tolk, Inc., and the General Contractor was Centex Construction. The project was started on October 24, 2000 and finished June 15, 2002. The major codes used were BOCA 1996 and the Virginia Uniform Statewide Building Code 1996.

The Two Freedom Square project was a negotiated bid between Boston Properties and SmithGroup because the two companies had already worked together on the One Freedom Square project. The original bid was for $\$ 39,500,000$ which ended up being $\$ 42,000,000$ after all the change orders which mostly involved changes to the street level shops.

The Two Freedom Square site is located seven miles from Dulles Airport in the heart of the Reston Town Center. The building's major tenets are Wilson Sonsini, Finnegan Henderson, and Latham \& Watkins Daniel Painter
page 8 $5^{\text {th }}$ Year Thesis - Two Freedom Square

## General Information

As mentioned before, Two Freedom Square is part of a building complex in Reston, VA. It was the second building built in the complex and as part of the construction an addition was to be made to the existing parking garage. Also it was a negotiated bid between Boston Properties and SmithGroup. SmithGroup also designed One Freedom Square and because of that prior relationship with Boston Properties they got the Two Freedom Square project. Even though both One and Two Freedom Square were design by the same architecture firm they have distinct difference which can be seen in the rendering of the buildings on the abstract of the building right after the title page.

Architecturally One and Two Freedom Square look different but do have some similarities. They are both office buildings with pre-cast concrete panels making up the facade. The main structure of both buildings are cast-in-place concrete with a two-way drop panel flat slab floor system with some areas of posttensioning. The main difference is One Freedom Square has a crowned top with a company's name on top, while Two Freedom Square is larger however it looks more like a plain office building.

## Existing Concrete Structure

## Introduction to the Structural System:

The structural system for Two Freedom Square is primarily a cast-in-place concrete system. All interior and exterior columns are cast-in-place concrete with varying concrete strength from 4,000 psi to 10,000 psi. Column widths vary from $12^{\prime \prime}$ to $32^{\prime \prime}$, depths vary from $12^{\prime \prime}$ to $36^{\prime \prime}$, and floor to floor height is $11^{\prime \prime}-11^{\prime \prime}$. The beams and girders are also cast-in-place concrete with widths varying from 8" to $66^{\prime \prime}$ and depths varying from $16^{\prime \prime}$ to $81^{\prime \prime}$. Sloping columns can be found on floors C2, C1, 4, 10, and 14; while post tensioning can be found on floors $2,3,5,11$, and 14. The distance between columns ranges from $14^{\prime}-7 \frac{1}{4}{ }^{\prime \prime}$ to $31^{\prime}-6^{\prime \prime}$. The floor system is a two-way drop panel flat slab which is 8 " on all the floors except for on levels $C 2$, $C 1$, and ground. The floor area between column lines 7 and 8 ceases after the $5^{\text {th }}$ floor, the floor area between column lines 6 and 7 ceases after the $11^{\text {th }}$ floor, $25 \%$ of the area between column lines 5 and 6 also ceases after the $11^{\text {th }}$ floor, and the remaining floor area between column lines 5 and 6 ceases after the $14^{\text {th }}$ floor. The exterior of the building is primarily pre-cast concrete panels, with some curtin wall and a few metal panels.

The building code used for Two Freedom Square was BOCA 1996. Concrete construction followed the ACI Code 318-95. Reinforcement steel for the concrete followed ASTM-A615 with grade 60 steel. The detailing of the reinforcement steel followed ACI 315-88. For checking the design loads, BOCA 1996 was used for live, wind, seismic and snow loads. The CRSI Handbook was used to spot check the two-way drop panel flat slab floor system.

## National Design Code: BOCA 1996

## Live Load:

Table 1

| Roof (minimum) | 30 psf |
| :--- | :--- |
| Penthouse Machine Room | 150 psf |
| Floor | 80 psf +20 psf partitions |
| Stairways \& Corridors | 100 psf |

## Dead Loads:

Table 2

| Superimposed Dead Load | 25 psf |
| :--- | :---: |
| Slab Self-weight | 100 psf |
| Beams \& Girders Self-weight | 400 plf |

## Snow Loads:

Table 3

| Snow Load | $P_{f}=C_{e} I P_{g}=0.7^{\star} 1 * 30=21$ psf |
| :--- | :--- |
| Roof Snow Load $\left(P_{g}\right)$ | 30 psf |
| Snow Exposure Factor $\left(C_{e}\right)$ | 0.7 |
| Importance Factor $(I)$ | 1.0 |
| Snow Drift | $P_{\text {dmax }}=30$ psf |

Accumulation of Loads: available upon request, they are listed in my column schedule

## Wind Load:

BOCA 1996 was used to find wind and seismic loads. The wind load is controlling over seismic in the design of the lateral system. This is known from the analysis performed on the different frames comparing the wind loading to the seismic loading, this also proves the assumption that wind will control on the east coast. This building is in a seismic area of category A which is the lowest level while the wind is in an exposure $B$ which is in the middle to low end of wind loads. The
windward, leeward and sidewall pressures can be found in Table 4. A graphical representation of the distribution of the windward and leeward pressures on the building can be found in Diagrams 1 and 2.

- Based on 80 mph , exposure $B$ and importance factor $I=1$ with frame design pressure $P=22$ psf to 30 psf.
- Windward wall design pressure, $P=P_{v} I\left[K_{z} G_{h} C_{p}-K_{h}\left(G C_{p i}\right)\right]$
- Leeward wall, side walls and roof design pressure, $P=P_{v} I\left[K_{h} G_{h} C_{P}-K_{h}(G\right.$ $C_{\text {pi) }}$ ]

Table 4

| Height <br> above <br> ground <br> level, z <br> (feet) | Coefficients <br> $K_{z}$ and $K_{h}$ <br> Exposure B | Coefficients <br> $G_{z}$ and $G_{h}$ <br> Exposure B | Windward <br> wall design <br> pressure, $P$ <br> (psf) | Leeward <br> wall design <br> pressure, $P$ <br> (psf) | Side wall <br> design <br> pressure, $P$ <br> (psf) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0-15$ | 0.37 | 1.65 | 6.5 | -17.7 | -22.7 |
| 20 | 0.42 | 1.59 | 7.0 | -17.7 | -22.7 |
| 25 | 0.46 | 1.54 | 7.4 | -17.7 | -22.7 |
| 30 | 0.50 | 1.51 | 7.9 | -17.7 | -22.7 |
| 40 | 0.57 | 1.46 | 8.6 | -17.7 | -22.7 |
| 50 | 0.63 | 1.42 | 9.2 | -17.7 | -22.7 |
| 60 | 0.68 | 1.39 | 9.6 | -17.7 | -22.7 |
| 70 | 0.73 | 1.36 | 10.0 | -17.7 | -22.7 |
| 80 | 0.77 | 1.34 | 10.4 | -17.7 | -22.7 |
| 90 | 0.82 | 1.32 | 10.8 | -17.7 | -22.7 |
| 100 | 0.86 | 1.31 | 11.3 | -17.7 | -22.7 |
| 120 | 0.93 | 1.28 | 11.8 | -17.7 | -22.7 |
| 140 | 0.99 | 1.26 | 12.3 | -17.7 | -22.7 |
| 160 | 1.05 | 1.24 | 12.8 | -17.7 | -22.7 |
| 180 | 1.11 | 1.23 | 13.4 | -17.7 | -22.7 |
| 200 | 1.16 | 1.21 | 13.7 | -17.7 | -22.7 |
| 250 | 1.28 | 1.19 | 14.7 | -17.7 | -22.7 |

## Wall Pressures Coefficients ( $C_{p}$ ):

Table 5

| Surface | L/B | $\boldsymbol{C}_{\mathrm{p}}$ | For use with |
| :---: | :---: | :---: | :---: |
| Windward wall | All Values | 0.8 | $\mathrm{~K}_{\mathrm{z}}$ |
| Leeward wall | 0 to 1 | -0.5 |  |
|  | 2 | -0.3 | $\mathrm{~K}_{\mathrm{h}}$ |
|  | $\geq 4$ | -0.2 |  |
| Side walls | all values | -0.7 | $\mathrm{~K}_{\mathrm{h}}$ |

Table 6

| Importance Factor (I) | 1 |
| :--- | :--- |
| Basic Wind Speed | 80 mph |
| Basic Velocity Pressure (Pv) | 16.4 |
| $G^{*} C_{\text {pi }}$ | 0.25 |

Diagram 1 - Elevation


Diagram 2 - Plan


## Seismic Loads:

For the seismic calculations an average column size was used to calculate the floor weights, which can be found in Table 10. The results of distributing the base shear to each story can be found in Table 8. A graphical representation of the story forces can be found on Diagram 3. For the seismic calculations an average column size was used to calculate the floor weights. The total weight of the building was found to be $50,077.7 \mathrm{kips}$. The results of distributing the base shear to each story can be found in Table 7. In the appendix, tables can be found showing the
distribution of the forces to each frame; these numbers can also be found in Table 14. A graphical representation of the total story forces can be found on Diagram 3. The calculations of the forces for Diagram 3 can be found on a spreadsheet in the appendix.

Table 7

| Peak Velocity $\left(A_{V}\right)$ | 0.05 |
| :--- | :--- |
| Peak Acceleration $\left(A_{A}\right)$ | 0.05 |
| Seismic Hazard Group | 1 |
| Seismic Performance Category | $A$ |
| Soil-type Profile | S 3 |
| Deflection Modification Factor $\left(C_{D}\right)$ | 4 |
| Response Modification Factor $(R)$ | 7 |
| Approximate Fundamental Period $\left(T_{A}\right)$ | 1.83 |
| Seismic Coefficient $\left(C_{S}\right)$ | 0.0086 |
| Maximum Seismic Coefficient $\left(C_{\text {Smax }}\right)$ | 0.0178 |
| Seismic Base Shear $(V)$ | $430.7^{k}$ |

- Basic Structural System - Building frame system with eccentrically braced frame
- Analysis Procedure Utilized - calculation of base shear

Table 8

|  | Floor <br> Force <br> $F_{x}(\mathbf{k i p s})$ | Floor <br> Shear <br> $\mathbf{V}_{\times}(\mathrm{kips})$ | Floor Force per <br> Frame for 5 <br> frames (kips) | Floor Force per <br> Frame for 7 <br> frames (kips) |
| :--- | :---: | :---: | :---: | :---: |
| Ground | 1.225 | 452.535 | 0.25 | 0.18 |
| $2^{\text {nd }}$ Floor | 2.646 | 451.309 | 0.53 | 0.38 |
| $3^{\text {rd }}$ Floor | 4.827 | 448.664 | 0.97 | 0.69 |
| $4^{\text {th }}$ Floor | 8.634 | 443.836 | 1.73 | 1.23 |
| $5^{\text {th }}$ Floor | 9.891 | 435.203 | 1.98 | 1.41 |
| $6^{\text {th }}$ Floor | 13.011 | 425.312 | 2.60 | 1.86 |
| $7^{\text {th }}$ Floor | 16.416 | 412.301 | 3.28 | 2.35 |
| $8^{\text {th }}$ Floor | 20.116 | 395.885 | 4.02 | 2.87 |
| $9^{\text {th }}$ Floor | 24.106 | 375.769 | 4.82 | 3.44 |
| $10^{\text {th }}$ Floor | 28.360 | 351.663 | 5.67 | 4.05 |

Daniel Painter
$5^{\text {th }}$ Year Thesis - Two Freedom Square

Existing Concrete Structure

| $11^{\text {th }}$ Floor | 32.351 | 323.302 | 6.47 | 4.62 |
| :--- | :---: | :---: | :---: | :---: |
| $12^{\text {th }}$ Floor | 36.842 | 290.951 | 7.37 | 5.26 |
| $13^{\text {th }}$ Floor | 41.728 | 254.109 | 8.35 | 5.96 |
| $14^{\text {th }}$ Floor | 45.812 | 212.381 | 9.16 | 6.54 |
| $15^{\text {th }}$ Floor | 50.508 | 166.569 | 10.10 | 7.22 |
| $16^{\text {th }}$ Floor | 53.224 | 116.061 | 10.64 | 7.60 |
| Penthouse Roof | 62.837 | 62.837 | 12.57 | 8.98 |

Diagram 3 - Story Forces


Soil Bearing Capacity:

- 20,000 psf for Footings
- 100,000 psf for Caissons

Concrete: ACI Code 318-95

- 28-day concrete strength
- stone concrete: coarse aggregate shall conform to ASTM C33

Table 9

| $f^{\prime} c=3,000 \mathrm{psi}$ | for footings and grade beams, slab on grade, interior and <br> exterior beams |
| :--- | :--- |
| $\mathrm{f}^{\prime} \mathrm{c}=4,000 \mathrm{psi}$ | for framed floor, basement wall columns, columns on $13^{\text {th }}$ <br> penthouse roof |
| $\mathrm{f}^{\prime} c=6,000 \mathrm{psi}$ | for precast concrete units, columns on $9^{\text {th }}$ to $12^{\text {th }}$ floors |
| $\mathrm{f}^{\prime} c=8,000 \mathrm{psi}$ | for columns on $4^{\text {th }}$ to $8^{\text {th }}$ floors |
| $\mathrm{f}^{\prime} c=10,000 \mathrm{psi}$ | for columns on cellar 2 to $3^{\text {rd }}$ floors |

Existing Concrete Structure

Floor Heights and Miscellaneous Information: elevation is from sea level
Table 10

| Level | Elevation | \# of <br> columns | Average Column <br> Size | Weight of Floors |
| :---: | :---: | :---: | :---: | :---: |
| Cellar 2 | $377^{\prime}-0^{\prime \prime}$ | 82 | $21.9^{\prime \prime} \times 24.9^{\prime \prime}$ | 3275.1 kips |
| Cellar 1 | $389^{\prime}-0^{\prime \prime}$ | 78 | $21.8^{\prime \prime} \times 25.5^{\prime \prime}$ | 3275.1 kips |
| Ground Floor | $401^{\prime \prime}-0^{\prime \prime}$ | 90 | $22.3^{\prime \prime} \times 26.3^{\prime \prime}$ | 3275.1 kips |
| $2^{\text {nd }}$ Floor | $417^{\prime}-0^{\prime \prime}$ | 86 | $22^{\prime \prime} \times 26.3^{\prime \prime}$ | 2905.2 kips |
| $3^{\text {rd }}$ Floor | $428^{\prime}-11^{\prime \prime}$ | 86 | $22^{\prime \prime} \times 26.2^{\prime \prime}$ | 3002.8 kips |
| $4^{\text {th }}$ Floor | $440^{\prime}-10^{\prime \prime}$ | 84 | $21.6^{\prime \prime} \times 25.7^{\prime \prime}$ | 2966.3 kips |
| $5^{\text {th }}$ Floor | $452^{\prime}-9^{\prime \prime}$ | 78 | $21.4^{\prime \prime} \times 25.1^{\prime \prime}$ | 2907.6 kips |
| $6^{\text {th }}$ Floor | $464^{\prime}-8^{\prime \prime}$ | 78 | $21.4^{\prime \prime} \times 25.1^{\prime \prime}$ | 2907.6 kips |
| $7^{\text {th }}$ Floor | $476^{\prime}-7^{\prime \prime}$ | 78 | $21.3^{\prime \prime} \times 25^{\prime \prime}$ | 2903.1 kips |
| $8^{\text {th }}$ Floor | $488^{\prime}-6^{\prime \prime}$ | 78 | $21.2^{\prime \prime} \times 25^{\prime \prime}$ | 2900.7 kips |
| $9^{\text {th }}$ Floor | $500^{\prime}-5^{\prime \prime}$ | 78 | $21.2^{\prime \prime} \times 25^{\prime \prime}$ | 2900.7 kips |
| $10^{\text {th }}$ Floor | $512^{\prime}-4^{\prime \prime}$ | 78 | $21.2^{\prime \prime} \times 25^{\prime \prime}$ | 2900.7 kips |
| $11^{\text {th }}$ Floor | $524^{\prime \prime}-3^{\prime \prime}$ | 72 | $20.6^{\prime \prime} \times 25.4^{\prime \prime}$ | 2855.1 kips |
| $12^{\text {th }}$ Floor | $536^{\prime}-2^{\prime \prime}$ | 67 | $20.8^{\prime \prime} \times 26.2^{\prime \prime}$ | 2840.7 kips |
| $13^{\text {th }}$ Floor | $548^{\prime}-1^{\prime \prime}$ | 67 | $20.8^{\prime \prime} \times 26.2^{\prime \prime}$ | 2840.7 kips |
| $14^{\text {th }}$ Floor | $560^{\prime}-0^{\prime \prime}$ | 63 | $20^{\prime \prime} \times 25^{\prime \prime}$ | 2778.5 kips |
| $15^{\text {th }}$ Floor | $571^{\prime}-11^{\prime \prime}$ | 63 | $19.1^{\prime \prime} \times 24.3^{\prime \prime}$ | 2750.5 kips |
| $16^{\text {th }}$ Floor | $583^{\prime \prime}-10^{\prime \prime}$ | 63 | $19.1^{\prime \prime} \times 24.3^{\prime \prime}$ | 2600.6 kips |
| Penthouse | $596^{\prime}-8^{\prime \prime}$ | 20 | $18.8^{\prime \prime} \times 27.8^{\prime \prime}$ | 2600.6 kips |
| Penthouse Roof | $618^{\prime}-1^{\prime \prime}$ | 16 | $21.3^{\prime \prime} \times 25^{\prime \prime}$ | 2600.6 kips |

## Framing System:

The framing system for Two Freedom Square is a combination of cast-in-place concrete columns and a two-way drop panel flat slab. The slab takes the lateral load while the columns transfer everything to the foundation which in turn transfers the loads out to the ground. Diagrams 4 and 5 show a typical column; Diagram 4 shows an example of one with a drop panel and Diagram 5 shows an
example of one without a drop panel. Diagram 6 shows an example of on of the bays in Two Freedom Square.

The existing floor system is a two-way drop panel flat slab, which has an 8 inch slab and 10 to 12 inch drop panels. This system is an excellent system to use when face with shallow floor to floor heights and also it is used around the Washington D.C. area because concrete is the primary material used for buildings so the general contracting firms specialize in concrete construction and the construction of two-way slabs.

Some of the issues which arise when designing two-way slabs are the area around the columns. Of major concern are the columns punching through the slab. When this problem arises, drop panels have to be designed to prevent the columns from punching through the slab.

In Tables 11 and 12 are information from the CRSI Handbook which was used to design two-slabs. However these charts lack some basic information need to accurately design for the existing conditions of my building. First the concrete strength is only 3,000 psi and my building has concrete strengths of 4,000 to 10,000 psi. Also the greatest span is only 24 feet and the spans in Two Freedom Square reach $31^{\prime \prime}-6^{\prime \prime}$.

Table 11

| $f^{\prime} \mathrm{c}=3,000$ psi, Grade 60 bars |  |  |  | Square Edge Panel |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Span | Factored <br> Superimposed Load (psf) | Square Drop <br> Panel |  | Square <br> Column Size | Reinforcing Bars (E. W.) |  |  |  |  |  |
|  |  |  |  |  | unn s |  |  |  | Total |
|  |  | Depth | Width |  | Top | Bot. | Top | Bot. | Top | Steel |

Daniel Painter

| (ft.) |  | (in) | (in) | (in) | Ext. |  | Int. |  | Int. | (psf) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $12-$ | $15-$ | $14-$ | $10-$ | $12-$ |  |
| 24 | 100 | 5.00 | 8.00 | 12 | $\# 4$ | $\# 5$ | $\# 5$ | $\# 5$ | $\# 4$ | 2.33 |
|  |  |  |  |  | $12-$ | $11-$ | $12-$ | $20-$ | $11-$ |  |
| 24 | 200 | 6.50 | 8.00 | 14 | $\# 4$ | $\# 7$ | $\# 6$ | $\# 4$ | $\# 5$ | 3.11 |
|  |  |  |  |  | $12-$ | $18-$ | $14-$ | $9-$ | $10-$ |  |
| 24 | 300 | 8.00 | 8.00 | 16 | $\# 4$ | $\# 6$ | $\# 6$ | $\# 7$ | $\# 6$ | 3.92 |

Table 12

| $\mathrm{f}^{\prime} \mathrm{c}=3,000$ psi, Grade 60 bars |  |  |  | Square Interior Panel |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Span(ft.) | Factored <br> Superimposed <br> Load (psf) | Square Drop <br> Panel |  | Square <br> Column Size (in) | Reinforcing Bars (E. W.) |  |  |  |  |
|  |  |  |  | colur | strip |  |  | Total |
|  |  | Depth <br> (in) | Width <br> (in) |  | Top | Bot. | Top | Bot. | Steel <br> (psf) |
| 24 | 100 | 5.00 | 8.00 |  | 12 | 19-\#4 | 14-\#4 | $\begin{aligned} & 12- \\ & \# 4 \end{aligned}$ | $\begin{aligned} & 11- \\ & \# 4 \\ & \hline \end{aligned}$ | 2.01 |
| 24 | 200 | 6.50 | 8.00 | 17 | 15-\#5 | 13-\#5 | $\begin{aligned} & 10- \\ & \# 5 \end{aligned}$ | $\begin{aligned} & 13- \\ & \# 4 \end{aligned}$ | 2.65 |
| 24 | 300 | 8.00 | 8.00 | 20 | 12-\#6 | 9-\#7 | $\begin{aligned} & 19- \\ & \# 4 \end{aligned}$ | $\begin{aligned} & 16- \\ & \# 4 \\ & \hline \end{aligned}$ | 3.36 |

Below is information about existing columns in Two Freedom Square and the amount of reinforcing in the drop panels.

Edge Panel: $\quad$ Column 75 is a $28^{\prime \prime} \times 20^{\prime \prime}$ throughout the building, with reinforcing bars of $16-\# 6$ \& 10-\#6 in the drop panels

Interior Panel: Column 65 is a $32^{\prime \prime} \times 32^{\prime \prime}$ at the ground floor and $24 " \times 24$ "at the $16^{\text {th }}$ floor, with reinforcing bars of 22-\#6 \& 22-\#6 in the drop panels

The existing system in Two Freedom Square has an 8" concrete slab with $10^{\prime \prime}$ to $12^{\prime \prime}$ drop panels. The drop panels are as large as 11'-6" square. The overall depth of the floor system is $20^{\prime \prime}$ maximum. One advantage of the two-way drop panel flat slab system is because of the 8 " slab the system has a fire rating of at least 2-
hours, actually more. One possible investigation to further develop this system is to increase the slab thickness which would in turn decrease the size of the drop panels.

Diagram 4


TYP. COLUMN STRIP W/ DROP PANELS

Distance between Columns Lines:
Table 13

| $A$ to B | $30^{\prime}-0^{\prime \prime}$ |
| :---: | :---: |
| $B$ to $C$ | $28^{\prime}-0^{\prime \prime}$ |
| $C$ to $D$ | $25^{\prime}-0^{\prime \prime}$ |
| $D$ to $E$ | $25^{\prime}-0^{\prime \prime}$ |
| $E$ to F | $28^{\prime}-0^{\prime \prime}$ |
| $F$ to $G$ | $30^{\prime}-0^{\prime \prime}$ |
| 1 to 2 | $30^{\prime}-6^{\prime \prime}$ |
| 2 to 3 | $29^{\prime}-0^{\prime \prime}$ |
| 3 to 4 | $29^{\prime}-0^{\prime \prime}$ |
| 4 to 5 | $30^{\prime}-6^{\prime \prime}$ |
| 5 to 6 | $30^{\prime}-0^{\prime \prime}$ |
| 6 to 7 | $31^{\prime}-1 \frac{3}{4}$ |
| 7 to 8 | $14^{\prime}-7 \frac{1}{4}{ }^{\prime \prime}$ |

Diagram 5


TYP. COLUMN STRIP W/O DROP PANELS
Diagram 6


## Lateral Load Resisting Elements:

Two Freedom Square is a concrete building with a two-way flat slab 8" thick with $12 "$ drop panels around the columns. The primary lateral system is a building frame system with eccentrically braced frames. The frames are in both directions of the
building making for a system that resists torsion and wind loads in whatever what they are applied to the building.

In the north-south direction the frames are considered to have equal relative stiffness ( $k$ ) and therefore take an equal amount of the wind load. However in the east-west direction two different frames are considered to take the loads. In these five frames have a relative stiffness equal to 1.107 while the remaining two frames have a relative stiffness equal to 0.729 . The distribution of the wind force to each frame can be found in Table 14 and in the appendix the calculations can be seen.

Torsion was investigated and found to have and eccentricity of 73.3 inches, however the accidental eccentricity was found to be 101.4 inches. The accidental eccentricity was taken to be $5 \%$ of the total building length. Also the eccentricity was found to only happen for the E-W frames because the N-S frames were symmetric. The 73.3 inch displacement was found in the $y$-direction, which can be seen in the end of the appendix. The results of the torsion where found to be very small, in the magnitude of 1 to 2 inch-pounds/foot. This makes sense considering the building is a relatively big concrete building having the shape of a cube. Because of the shape being like a cube it is less likely to rotate or bend much.

This building has a few areas of concern when looking at lateral loading. First, on the side closest to One Freedom Square, the building steps down like a staircase. The second area of concern is the area around the elevators. In this area, instead of continuing with the typical series of columns spaced along the column lines, there are numerous columns scattered throughout the area. However this area Daniel Painter
around the elevators is in the center of the building which means it is along the bending and torsion lines and so columns outside of the core take more of the loads.

Table 14

|  | Wind Force in <br> N-S (kips) <br> frames 1-5 | Wind Force in <br> E-W (kips) <br> frames C-G | Wind Force in <br> E-W (kips) <br> frames A-B |
| :--- | :---: | :---: | :---: |
| $2^{\text {nd }}$ Floor | 5.5 | 6.09 | 4.01 |
| $3^{\text {rd }}$ Floor | 6.5 | 7.20 | 4.74 |
| $4^{\text {th }}$ Floor | 7.1 | 7.86 | 5.18 |
| $5^{\text {th }}$ Floor | 7.7 | 8.52 | 5.61 |
| $6^{\text {th }}$ Floor | 8.1 | 8.97 | 5.90 |
| $7^{\text {th }}$ Floor | 8.5 | 9.41 | 6.20 |
| $8^{\text {th }}$ Floor | 8.9 | 9.85 | 6.49 |
| $9^{\text {th }}$ Floor | 9.3 | 10.30 | 6.78 |
| $10^{\text {th }}$ Floor | 9.6 | 10.63 | 7.0 |
| $11^{\text {th }}$ Floor | 9.8 | 10.85 | 7.14 |
| $12^{\text {th }}$ Floor | 10.1 | 11.18 | 7.36 |
| $13^{\text {th }}$ Floor | 10.3 | 11.40 | 7.51 |
| $14^{\text {th }}$ Floor | 10.6 | 11.73 | 7.73 |
| $15^{\text {th }}$ Floor | 10.8 | 11.96 | 7.87 |
| $16^{\text {th }}$ Floor | 11.1 | 12.29 | 8.09 |
| Penthouse Roof | 11.3 | 12.51 | 8.24 |

## Strength, Drift, Story Drift, and Overturning:

Two Freedom Square is a unique building in many aspects and simple in others.
Because it is a concrete building, the building itself is very massive, and heavy, yet the interior has a relatively open floor area great for offices. The buildings strength was to resist live and dead loads, but because it is shaped like a cube is easily resists lateral loads as well.

Once again the overall controlling factor was wind over seismic for design. In some cases it was almost two to one. The overall drift in the N-S direction was 2.181 inches for wind loading and 1.679 inches for seismic loading. In the E-W direction the overall drift for wind was 2.45 inches which was adjusted from 2.216 inches in frames $C$ to $G$ and 3.367 inches in frames $A$ and $B$, all of which can be seen in the appendix. For seismic the it was 1.25 inches in frames $C$ to $G$ and 1.861 inches in frames $A$ and $B$. The allowable drift for the building taken from $h / 400$ is equal to 6.51 inches, and since in all cases the actual drift is less than $h / 400$. Below in Table 15 are the story drifts for the wind cases.

Table 15

|  | Story Drift N-S <br> (inches) | Story Drift E-W <br> (inches) |
| :--- | :---: | :---: |
| Ground | 0 | 0 |
| $2^{\text {nd }}$ Floor | 0.190 | 0.193 |
| $3^{\text {rd }}$ Floor | 0.206 | 0.222 |
| $4^{\text {th }}$ Floor | 0.206 | 0.228 |
| $5^{\text {th }}$ Floor | 0.199 | 0.222 |
| $6^{\text {th }}$ Floor | 0.192 | 0.216 |
| $7^{\text {th }}$ Floor | 0.18 | 0.203 |
| $8^{\text {th }}$ Floor | 0.169 | 0.193 |
| $9^{\text {th }}$ Floor | 0.155 | 0.176 |
| $10^{\text {th }}$ Floor | 0.14 | 0.16 |
| $11^{\text {th }}$ Floor | 0.124 | 0.144 |
| $12^{\text {th }}$ Floor | 0.11 | 0.126 |
| $13^{\text {th }}$ Floor | 0.096 | 0.114 |
| $14^{\text {th }}$ Floor | 0.079 | 0.094 |
| $15^{\text {th }}$ Floor | 0.062 | 0.074 |
| $16^{\text {th }}$ Floor | 0.043 | 0.053 |
| Penthouse Roof | 0.03 | 0.036 |

The two different directions of wind loading, as seen above, have slightly different story drift values. This make sense that the E-W direction would be larger Daniel Painter
because the actual length of the frames is shorter than in the N-S direction, causing the drift to be slightly larger.

The overturning moment for this building was found to be significantly smaller than the allowable overturning moment of 1.5 times the weight times the distance from the center of the building to the edge of the building. The difference was over 300 times more. Two Freedom Square has two basements making it that much harder to turn over. So the impact of overturning due to the wind loading is almost insignificant. This has to do with the weight of the building being large and the length almost equal to the height.

## Drift Values vs. Allowable Code:

The largest drift value calculated was 2.45 inches which a little less than half of the allowable drift from $h / 400$. As stated before this makes sense because the building is a stiff building due to the fact it is made out of concrete.

## Foundation System:

The foundation system is a combination on caissons, footings and slab on grade.
Footings are 3,000 psi strength concrete poured on soil with a 20,000 psi bearing capacity. Footings are to project at least $1^{\prime}-0^{\prime \prime}$ into undisturbed soil and exterior footings are to be at least $2^{\prime}-6^{\prime \prime}$ under finished grade. Caissons are to be placed on soil with a 100,000 psi bearing capacity. The slab on grade is to $4^{\prime \prime}$ of concrete placed on a layer of $4^{\prime \prime}$ gravel. Control joints are to be placed in every $20^{\prime}-0^{\prime \prime}$ O.C. for exterior slabs and $30^{\prime}-0^{\prime \prime} \max$ O.C. for interior slabs.

## Depth Option \#1: Concrete Structure

## Introduction to Structural System:

The first redesign option for Two Freedom Square is simplify the column layout and then design in concrete with a two-way flat slab with drop panels. The columns will be placed on the column lines to simplify the design and reduce the number of columns. However this design will cause the redesign of the core of the building, which will be discussed later in this report. The framing system for the lateral loads will continue to be an eccentrically braced frame and the slab will be increased from 8 inches to 10 inches. The drop panels have a depth of 12 inches. The floor plans for the new layout of the columns can be found in Appendix 3, and will be discussed further in later sections.

For the design of this new structural system the IBC 2000 code will be used instead of BOCA 1996 which was used in the original design. The concrete construction followed the ACI Code 318-95 and the design of the reinforcement steel was designed according to ASTM-A615 with grade 60 steel, while the detailing of the reinforcement follows ACI 315-88.

National Design Code: IBC 2000

## Live Load:

Table 16

| Roof (minimum) | 30 psf |
| :--- | :--- |
| Penthouse Machine Room | 150 psf |
| Floor | 80 psf +20 psf partitions |
| Stairways \& Corridors | 100 psf |

## Dead Loads:

Table 17

| Superimposed Dead Load | 25 psf |
| :--- | :---: |
| Slab Self-weight | 100 psf |

## Snow Loads:

Table 18

| Snow Load | $P_{f}=C_{e} I P_{g}=0.7 \star 1 \star 30=21 \mathrm{psf}$ |
| :--- | :--- |
| Roof Snow Load $\left(\mathrm{P}_{\mathrm{g}}\right)$ | 30 psf |
| Snow Exposure Factor $\left(C_{e}\right)$ | 0.7 |
| Importance Factor (I) | 1.0 |
| Snow Drift | $\mathrm{P}_{\text {dmax }}=30 \mathrm{psf}$ |

## Wind Load:

IBC 2000 was used to find wind and seismic loads. The wind load is controlling over seismic in the design of the lateral system. This is known from the analysis performed on the different frames comparing the wind loading to the seismic loading. This building is in a seismic area of category $A$ which is the lowest level while the wind is in an exposure $B$ which is in the middle to low end of wind loads. The windward and leeward pressures can be found in Table 19. A graphical representation of the distribution of the windward and leeward pressures on the building can be found in Diagrams 7 and 8.

- Based on 90 mph , exposure $B$ and importance factor $I=1.15$
- Windward wall design pressure, $P=q_{z} G C_{p}$
- Leeward wall design pressure, $P=q_{n} G C_{p}$
- $q_{z}=0.00256 K_{z} K_{z r} K_{d} V^{2} I$
- $q_{\mathrm{h}}=\mathrm{K}_{\mathrm{z}}$ (at top of buiding) $q_{z}$
- $G=0.925\left(\frac{1+1.7 g_{Q} I_{z} Q}{1+1.7 g_{v} I_{z}}\right)$
- $I_{z}=c\left(\frac{33}{z}\right)^{1 / 6}, z=0.6 \mathrm{~h}, \mathrm{c}=0.30$
- $\mathbf{Q}=\sqrt{\frac{1}{1+.063\left(\frac{B+h}{L_{z}}\right)^{0.63}}}$
- $L_{z}=I\left(\frac{z}{33}\right)^{\varepsilon}, \dot{\varepsilon}=1 / 3, I=320$

Table 19

| Height <br> above <br> ground <br> level, z <br> (feet) | Coefficients <br> K_ and Kh $_{h}$ <br> Exposure B | Windward <br> wall design <br> pressure, $P$ <br> (psf) | Leeward <br> wall design <br> pressure, $P$ <br> (psf) | Windward + <br> Leeward <br> wall design <br> pressure, $P$ <br> (psf) |
| :---: | :---: | :---: | :---: | :---: |
| $0-15$ | 0.57 | 8.14 | -8.44 | 16.58 |
| 20 | 0.62 | 8.85 | -8.44 | 17.30 |
| 25 | 0.66 | 9.42 | -8.44 | 17.87 |
| 30 | 0.70 | 10.00 | -8.44 | 18.44 |
| 40 | 0.76 | 10.85 | -8.44 | 19.30 |
| 50 | 0.81 | 11.57 | -8.44 | 20.01 |
| 60 | 0.85 | 12.14 | -8.44 | 20.58 |
| 70 | 0.89 | 12.71 | -8.44 | 21.15 |
| 80 | 0.93 | 13.28 | -8.44 | 21.72 |
| 90 | 0.96 | 13.71 | -8.44 | 22.15 |
| 100 | 0.99 | 14.14 | -8.44 | 22.58 |
| 120 | 1.04 | 14.85 | -8.44 | 23.30 |
| 140 | 1.09 | 15.56 | -8.44 | 24.01 |
| 160 | 1.13 | 16.14 | -8.44 | 24.58 |
| 180 | 1.17 | 16.71 | -8.44 | 25.15 |
| 200 | 1.20 | 17.14 | -8.44 | 25.58 |
| 250 | 1.28 | 18.28 | -8.44 | 26.72 |

Wall Pressures Coefficients ( $C_{p}$ )
Table 20

| Surface | L/B | $\boldsymbol{C}_{\mathrm{p}}$ | For use with |
| :---: | :---: | :---: | :---: |
| Windward wall | All Values | 0.8 | $q_{\mathrm{z}}$ |
| Leeward wall | All Values | -0.5 | $q_{\mathrm{h}}$ |

Daniel Painter

| Side walls | All Values | -0.7 | $q_{h}$ |
| :--- | :--- | :--- | :--- |

Table 21

| Importance Factor (I) | 1.15 |
| :--- | :--- |
| Basic Wind Speed | 90 mph |
| $G$ | 0.822 |
| $I_{z}$ | 0.238 |
| $\mathrm{~L} / \mathrm{B}$ | 0.68 |
| $Q$ | 0.808 |
| $z$ | 132 ft |
| $L_{z}$ | 507.97 |
| $K_{d}$ | 0.85 |

Diagram 7


Seismic Loads:
The results of distributing the base shear to each story can be found in Table 23.
A graphical representation of the story forces can be found on Diagram 9. For the seismic calculations an average column size was used to calculate the floor weights. The total weight of the building was found to be $46,000 \mathrm{kips}$. The results of distributing the base shear to each story can be found in Table 23.

Table 22

| Peak Velocity $\left(A_{V}\right)$ | 0.05 |
| :--- | :--- |
| Peak Acceleration $\left(A_{A}\right)$ | 0.05 |
| Seismic Hazard Group | 1 |


| Seismic Performance Category | A |
| :--- | :--- |
| Soil-type Profile | S3 |
| Deflection Modification Factor $\left(C_{D}\right)$ | 4 |
| Response Modification Factor $(R)$ | 7 |
| Approximate Fundamental Period $\left(T_{A}\right)$ | 1.70 |
| Seismic Coefficient $\left(C_{S}\right)$ | 0.0090 |
| Maximum Seismic Coefficient $\left(C_{\text {Smax }}\right)$ | 0.0178 |
| Seismic Base Shear $(V)$ | $433.7^{k}$ |

- Basic Structural System - Building frame system with eccentrically braced frame
- Analysis Procedure Utilized - calculation of base shear

Table 23

|  | Floor <br> Force <br> F (kips) | Floor <br> Shear <br> $\mathbf{V}_{\times}$(kips) | Floor Force per <br> Frame for 5 <br> frames (kips) | Floor Force per <br> Frame for 7 <br> frames (kips) |
| :--- | ---: | :---: | :---: | :---: |
| Ground | 1.174496 | 433.7593 | 0.23 | 0.17 |
| $2^{\text {th }}$ Floor | 2.536125 | 432.5848 | 0.51 | 0.36 |
| $3^{\text {rd }}$ Floor | 4.626852 | 430.0486 | 0.93 | 0.66 |
| $4^{\text {th }}$ Floor | 8.275569 | 425.4218 | 1.66 | 1.18 |
| $5^{\text {th }}$ Floor | 9.480152 | 417.1462 | 1.90 | 1.35 |
| $6^{\text {th }}$ Floor | 12.47144 | 407.6661 | 2.49 | 1.78 |
| $7^{\text {th }}$ Floor | 15.73518 | 395.1946 | 3.15 | 2.25 |
| $8^{\text {th }}$ Floor | 19.28131 | 379.4595 | 3.86 | 2.75 |
| $9^{\text {th }}$ Floor | 23.10587 | 360.1781 | 4.62 | 3.30 |
| $10^{\text {th }}$ Floor | 27.18373 | 337.0723 | 5.44 | 3.88 |
| $11^{\text {th }}$ Floor | 31.0091 | 309.8885 | 6.20 | 4.43 |
| $12^{\text {th }}$ Floor | 35.31373 | 278.8794 | 7.06 | 5.04 |
| $13^{\text {th }}$ Floor | 39.99652 | 243.5657 | 8.00 | 5.71 |
| $14^{\text {th }}$ Floor | 43.91082 | 203.5692 | 8.78 | 6.27 |
| $15^{\text {th }}$ Floor | 48.41263 | 159.6584 | 9.68 | 6.92 |
| $16^{\text {th }}$ Floor | 51.01623 | 111.2457 | 10.20 | 7.29 |
| Penthouse Roof | 60.22952 | 60.22952 | 12.05 | 8.60 |

## Framing System:

The framing system for Two Freedom Square is a combination of cast-in-place concrete columns and a two-way drop panel flat slab. The slab takes the lateral load while the columns transfer everything to the foundation which in turn transfers the loads out to the ground. Diagrams 4 and 5 (above) show a typical column; Diagram 4 shows an example of one with a drop panel and Diagram 5 shows an example of one without a drop panel. Diagram 6 (above) shows an example of on of the bays in Two Freedom Square.

The redesigned floor system is a two-way drop panel flat slab, which has a 10 inch slab and 12 inch drop panels. This system, like the existing system, is an excellent system to use when face with shallow floor to floor heights and also it is used around the Washington D.C. area because concrete is the primary material used for buildings so the general contracting firms specialize in concrete construction and the construction of two-way slabs.

Some of the issues which arise when designing two-way slabs are the area around the columns. Of major concern are the columns punching through the slab. When this problem arises, drop panels have to be designed to prevent the columns from punching through the slab. Because the columns were designed to be 24 by 24 inches, this forced the drop panels to be 12 inches deep and the slab to be 10 inches instead of 9 inches. The drop panels are also 12 foot squares around columns. The reinforcement information can be found in Appendix 2, which includes ADOSS runs for both the N-S and E-W directions.

## Lateral Load Resisting Elements:

The primary lateral load resisting elements for the redesigned building is a twoway flat slab $10^{\prime \prime}$ thick with $12^{\prime \prime}$ drop panels around the columns. The elements make up a frame system composed of eccentrically braced frames. The frames are in both directions of the building making for a system that resists torsion and wind loads in whatever what they are applied to the building.

In the north-south direction the frames are considered to have equal relative stiffness ( $k$ ) and therefore take an equal amount of the wind load. However in the east-west direction two different frames are considered to take the loads. In these five frames have a relative stiffness equal to 1.107 while the remaining two frames have a relative stiffness equal to 0.729 . The distribution of the wind force to each frame can be found in Table 1, located in Appendix 1.

This building has a few areas of concern when looking at lateral loading. First, on the side closest to One Freedom Square, the building steps down like a staircase. In the area around the elevators, columns have been added along the column lines to reduce the number of columns scattered throughout the area. However this area around the elevators is in the center of the building which means it is along the bending and torsion lines and so columns outside of the core take more of the loads.

## Strength, Drift, Story Drift, and Overturning:

Two Freedom Square is a unique building in many aspects and simple in others. Because it is a concrete building, the building itself is very massive, and heavy, yet
the interior has a relatively open floor area great for offices. The buildings strength was to resist live and dead loads.

Once again the overall controlling factor was wind over seismic for design. In some cases it was almost two to one. The overall drift in the N-S direction was 4.212 inches for wind loading. In the E-W direction the overall drift for wind was 5.994 inches. The allowable drift for the building taken from $h / 400$ is equal to 6.51 inches, and since in all cases the actual drift is less than $h / 400$. Below in Table 25 are the story drifts for the wind cases.

Table 25

|  | Story Drift N-S <br> (inches) | Story Drift E-W <br> (inches) |
| :--- | :---: | :---: |
| Ground | 0 | 0 |
| $2^{\text {nd }}$ Floor | 0.266 | 0.36 |
| $3^{\text {rd }}$ Floor | 0.605 | 0.829 |
| $4^{\text {th }}$ Floor | 0.963 | 1.333 |
| $5^{\text {th }}$ Floor | 1.317 | 1.832 |
| $6^{\text {th }}$ Floor | 1.659 | 2.327 |
| $7^{\text {th }}$ Floor | 1.983 | 2.792 |
| $8^{\text {th }}$ Floor | 2.287 | 3.229 |
| $9^{\text {th }}$ Floor | 2.57 | 3.636 |
| $10^{\text {th }}$ Floor | 2.836 | 4.017 |
| $11^{\text {th }}$ Floor | 3.088 | 4.38 |
| $12^{\text {th }}$ Floor | 3.315 | 4.706 |
| $13^{\text {th }}$ Floor | 3.514 | 4.991 |
| $14^{\text {th }}$ Floor | 3.686 | 5.238 |
| $15^{\text {th }}$ Floor | 3.829 | 5.444 |
| $16^{\text {th }}$ Floor | 3.946 | 5.613 |
| Penthouse Roof | 4.044 | 5.752 |

The two different directions of wind loading, as seen above, have slightly different story drift values. This make sense that the E-W direction would be larger because the actual length of the frames is shorter than in the N-S direction, causing the drift to be slightly larger.

The overturning moment for this building was found to be significantly smaller than the allowable overturning moment of 1.5 times the weight times the distance from the center of the building to the edge of the building. The difference was over 300 times more. Two Freedom Square has two basements making it that much harder to turn over. So the impact of overturning due to the wind loading is almost insignificant. This has to do with the weight of the building being large and the length almost equal to the height.

## Drift Values vs. Allowable Code:

The largest drift value calculated was 5.99 inches which a little less than the allowable drift from $h / 400$. As stated before this makes sense because the building is a stiff building due to the fact it is made out of concrete.

## Depth Option \#2: Non-Composite Steel Structure

## Introduction to Structural System

For my final design, I looked at the modified column layout, which can be seen in Appendix 3, with a steel structure compared to a concrete structure. For the lateral system moment frames were used in both direction and shear walls in the core around some of the elevator shafts. The slab is a combination of 2 inch LOK deck with $4 \frac{1}{2}$ inches of cover to provide enough depth to not require additional fireproofing on the underside of the deck. Also with this design the intermediate beams were designed both compositely and non-compositely.

The IBC 2000 was used as the primary code to determine loading of the building. It was also used to provide information about the requirements for fireproofing, torsion, and accidental torsion.

National Design Code: IBC 2000

## Live Load:

Table 26

| Roof (minimum) | 30 psf |
| :--- | :--- |
| Penthouse Machine Room | 150 psf |
| Floor | 80 psf +20 psf partitions |
| Stairways \& Corridors | 100 psf |

## Dead Loads:

Table 27

| Superimposed Dead Load | 25 psf |
| :--- | :---: |
| Slab Self-weight | 81.25 psf |

## Snow Loads:

Table 28

| Snow Load | $P_{f}=C_{e} I P_{g}=0.7^{\star} 1 \star 30=21 \mathrm{psf}$ |
| :--- | :--- |
| Roof Snow Load $\left(\mathrm{P}_{\mathrm{g}}\right)$ | 30 psf |
| Snow Exposure Factor $\left(C_{e}\right)$ | 0.7 |
| Importance Factor (I) | 1.0 |
| Snow Drift | $\mathrm{P}_{\text {dmax }}=30$ psf |

## Wind Load:

Wind loads were determined by IBC 2000 which references ASCE 7-02. The wind load is controlling over seismic in the design of the lateral system. And actually because of the shape of my building accidental torsion is the controlling factor in the lateral system based on relative stiffness. This is known from the analysis performed on the different frames comparing the wind loading to the seismic loading. This building is in a seismic area of category A which is the lowest level while the wind is in an exposure $B$ which is in the middle to low end of wind loads. The windward and leeward pressures can be found in Table 29. A graphical representation of the distribution of the windward and leeward pressures on the building can be found in Diagrams 9 and 10.

- Based on 90 mph , exposure $B$ and importance factor $I=1.15$
- Windward wall design pressure, $P=q_{z} G C_{p}$
- Leeward wall design pressure, $P=q_{n} G C_{p}$
- $q_{z}=0.00256 K_{z} K_{z r} K_{d} V^{2} I$
- $q_{h}=K_{z}$ (at top of buiding) $q_{z}$
- $G=0.925\left(\frac{1+1.7 g_{Q} I_{z} Q}{1+1.7 g_{v} I_{z}}\right)$
- $I_{z}=c\left(\frac{33}{z}\right)^{1 / 6}, z=0.6 \mathrm{~h}, \mathrm{c}=0.30$
- $Q=\sqrt{\frac{1}{1+.063\left(\frac{B+h}{L_{z}}\right)^{0.63}}}$
- $L_{z}=I\left(\frac{z}{33}\right)^{\varepsilon}, \dot{\varepsilon}=1 / 3, I=320$

Table 29

| Height <br> above <br> ground <br> level, z <br> (feet) | Coefficients <br> Kz and Kh $^{\text {Exposure B }}$ | Windward <br> wall design <br> pressure, P <br> (psf) | Leeward <br> wall design <br> pressure, P <br> (psf) | Windward + <br> Leeward <br> wall design <br> pressure, P <br> (psf) |
| :---: | :---: | :---: | :---: | :---: |
| $0-15$ | 0.57 | 7.57 | -10.62 | 18.19 |
| 20 | 0.62 | 8.23 | -10.62 | 18.86 |
| 25 | 0.66 | 8.77 | -10.62 | 19.39 |
| 30 | 0.70 | 9.30 | -10.62 | 19.92 |
| 40 | 0.76 | 10.09 | -10.62 | 20.72 |
| 50 | 0.81 | 10.76 | -10.62 | 21.38 |
| 60 | 0.85 | 11.29 | -10.62 | 21.91 |
| 70 | 0.89 | 11.82 | -10.62 | 22.44 |
| 80 | 0.93 | 12.35 | -10.62 | 22.97 |
| 90 | 0.96 | 12.75 | -10.62 | 23.37 |
| 100 | 0.99 | 13.15 | -10.62 | 23.77 |
| 120 | 1.04 | 13.81 | -10.62 | 24.43 |
| 140 | 1.09 | 14.48 | -10.62 | 25.10 |
| 160 | 1.13 | 15.01 | -10.62 | 25.63 |
| 180 | 1.17 | 15.54 | -10.62 | 26.16 |
| 200 | 1.20 | 15.94 | -10.62 | 26.56 |
| 250 | 1.28 | 17.00 | -10.62 | 27.62 |

## Wall Pressures Coefficients $\left(C_{p}\right)$ :

Table 30

| Surface | L/B | $C_{p}$ | For use with |
| :---: | :---: | :---: | :---: |
| Windward wall | All Values | 0.8 | $q_{z}$ |
| Leeward wall | All Values | -0.5 | $q_{h}$ |
| Side walls | All Values | -0.7 | $q_{h}$ |

Table 31

| Importance Factor (I) | 1.15 |
| :--- | :--- |
| Basic Wind Speed | 90 mph |
| $G$ | 0.822 |
| $I_{z}$ | 0.238 |
| $\mathrm{~L} / \mathrm{B}$ | 0.68 |
| $Q$ | 0.808 |
| $Z$ | 132 ft |
| $L_{z}$ | 507.97 |
| $K_{d}$ | 0.85 |

Diagram 9
Windward Two Freedom Square $\mid$

Diagram 10

Leeward windward


## Seismic Loads:

The results of distributing the base shear to each story can be found in Table 33. A graphical representation of the story forces can be found on Diagram 12. For the seismic calculations an average column size was used to calculate the floor weights. The total weight of the building was found to be $43,495 \mathrm{kips}$. The results of distributing the base shear to each story can be found in Table 33.

Table 32

| Peak Velocity $\left(A_{v}\right)$ | 0.05 |
| :--- | :--- |
| Peak Acceleration $\left(A_{A}\right)$ | 0.05 |
| Seismic Hazard Group | 1 |
| Seismic Performance Category | A |
| Soil-type Profile | S3 |


| Deflection Modification Factor $\left(C_{D}\right)$ | 4 |
| :--- | :--- |
| Response Modification Factor $(R)$ | 7 |
| Approximate Fundamental Period $\left(T_{A}\right)$ | 1.88 |
| Seismic Coefficient $\left(C_{S}\right)$ | 0.0084 |
| Maximum Seismic Coefficient $\left(C_{\text {Smax }}\right)$ | 0.0178 |
| Seismic Base Shear $(V)$ | $366.3^{\mathrm{k}}$ |

- Basic Structural System - moment frame system with shear walls
- Analysis Procedure Utilized - calculation of base shear

Table 33

|  | Floor <br> Force <br> F. <br> (kips) | Floor <br> Shear <br> $\mathbf{V}_{\times}$(kips) | Floor Force per <br> Frame for 5 <br> frames (kips) | Floor Force per <br> Frame for 7 <br> frames (kips) |
| :--- | :---: | :---: | :---: | :---: |
| Ground | 0.678634 | 366.2511 | 0.14 | 0.10 |
| $2^{\text {th }}$ Floor | 1.797616 | 365.5725 | 0.36 | 0.26 |
| $3^{\text {rd }}$ Floor | 3.323065 | 363.7748 | 0.66 | 0.47 |
| $4^{\text {th }}$ Floor | 5.068556 | 360.4518 | 1.01 | 0.72 |
| $5^{\text {th }}$ Floor | 7.229201 | 355.3832 | 1.45 | 1.03 |
| $6^{\text {th }}$ Floor | 9.693839 | 348.154 | 1.94 | 1.38 |
| $7^{\text {th }}$ Floor | 12.39858 | 338.4602 | 2.48 | 1.77 |
| $8^{\text {th }}$ Floor | 15.41499 | 326.0616 | 3.08 | 2.20 |
| $9^{\text {th }}$ Floor | 18.69501 | 310.6466 | 3.74 | 2.67 |
| $10^{\text {th }}$ Floor | 21.8828 | 291.9516 | 4.38 | 3.13 |
| $11^{\text {th }}$ Floor | 25.60499 | 270.0688 | 5.12 | 3.66 |
| $12^{\text {th }}$ Floor | 29.56315 | 244.4638 | 5.91 | 4.22 |
| $13^{\text {th }}$ Floor | 33.3358 | 214.9007 | 6.67 | 4.76 |
| $14^{\text {th }}$ Floor | 37.69395 | 181.5649 | 7.54 | 5.38 |
| $15^{\text {th }}$ Floor | 42.26887 | 143.8709 | 8.45 | 6.04 |
| $16^{\text {th }}$ Floor | 46.84762 | 101.602 | 9.37 | 6.69 |
| Penthouse Roof | 54.75443 | 54.75443 | 10.95 | 7.82 |

## Framing System:

The framing system for the redesign of Two Freedom Square into steel is a combination of both moment frames and shear walls. The moment frames are made
up of the columns and beams along the column likes. There are seven frames in the E-W direction and eight frames in the N-S direction. Frames 1 and 5 are the same and frames 2 and 4 are the same however the rest of the frames are different due to the shape of the building and the distribution of the loading. Pictures of the frames can be seen in Appendix 4. In the E-W direction there are two shear walls along the outside walls of the stairwells. Those shear walls are each 20 feet long and 8 inches thick. Details for the reinforcement and distribution for the loading can be found in Appendix 2. In the N-S direction there are four shear walls along the elevator shafts each 10 feet long and 18 inches thick. Details for reinforcement and distribution for loads can also be found in Appendix 2.

Along with the moment frames and the shear walls, as mentioned before the floor system is concrete on 2 inch LOK deck which spans a maximum distance of 10 feet. The specification for the deck was found in a decking manual put out by industry. Two options were looked at for the floor system. First was just a normal noncomposite slab on deck. The second was a composite system for the intermediate beams only. This reduced the size of the intermediate beams from W18s to W12s.

One thing which changed when switching from concrete to steel was what the floor to floor height was going to be. One advantage in using a two-way flat slab system was being about the place mechanical ductwork around the drop panels and thus get a lower floor to floor height. With a steel frame, ductwork cannot be place between the beams, and therefore it has to be hung underneath the beams. This adds height to the overall height of the floors because the depth about the drop ceiling is comprised of ductwork plus beam and slab depth compare to the great of ductwork plus slab depth or drop panel and slab depth. For the redesign of Two Daniel Painter

Freedom Square into steel with keeping in mind the mechanical ductwork, added two feet to the floor to floor height of each floor to keep the same drop ceiling height. Also by adding height to the floor to floor height, this required that an additional 4 to 5 feet be added to the excavation depth. Below in Table 34 are the new elevations of each floor level.

Table 34

| Level | Elevation |
| :---: | :---: |
| Cellar 2 | $373^{\prime}-0^{\prime \prime}$ |
| Cellar 1 | $387^{\prime}-0^{\prime \prime}$ |
| Ground Floor | $401^{\prime}-0^{\prime \prime}$ |
| $2^{\text {nd }}$ Floor | $419^{\prime}-0^{\prime \prime}$ |
| $3^{\text {rd }}$ Floor | $433^{\prime}-0^{\prime \prime}$ |
| $4^{\text {th }}$ Floor | $447^{\prime}-0^{\prime \prime}$ |
| $5^{\text {th }}$ Floor | $461^{\prime}-0^{\prime \prime}$ |
| $6^{\text {th }}$ Floor | $475^{\prime}-0^{\prime \prime}$ |
| $7^{\text {th }}$ Floor | $489^{\prime}-0^{\prime \prime}$ |
| $8^{\text {th }}$ Floor | $503^{\prime}-0^{\prime \prime}$ |
| $9^{\text {th }}$ Floor | $517^{\prime}-0^{\prime \prime}$ |
| $10^{\text {th }}$ Floor | $531^{\prime}-0^{\prime \prime}$ |
| $11^{\text {th }}$ Floor | $545^{\prime}-0^{\prime \prime}$ |
| $12^{\text {th }}$ Floor | $559^{\prime}-0^{\prime \prime}$ |
| $13^{\text {th }}$ Floor | $573^{\prime}-0^{\prime \prime}$ |
| $14^{\text {th }}$ Floor | $587^{\prime}-0^{\prime \prime}$ |
| $15^{\text {th }}$ Floor | $601^{\prime}-0^{\prime \prime}$ |
| $16^{\text {th }}$ Floor | $615^{\prime}-0^{\prime \prime}$ |
| Penthouse | $629^{\prime}-0^{\prime \prime}$ |
| Penthouse Roof | $651^{\prime}-0^{\prime \prime}$ |

## Lateral Load Resisting Elements:

As mentioned above the lateral load resisting elements are a combination of moment frames and shear walls. The distribution of the lateral loads and torsion affects is determined by the relative stiffness of each frame or shear wall. To
analyze the different frames RISA was used in combination with an extensive spreadsheet, which can be found in Appendix 1.

After analyzing each frame for wind loading, wind plus torsion and wind plus accidental torsion, it was determined that the wind plus accidental torsion would be the controlling lateral loading on the building. This is due to the shape of the building which causes the center of mass to change position as one moves up through the building. The center of masses for each floor can be seen in Table 35. All the distances are taken from the intersection of column line 1 and column line $G$, which can be found in Appendix 3.

Table 35

|  | $x$ bar | $y$ bar |
| :--- | :---: | :---: |
| Ground to $4^{\text {th }}$ | 87.72 ft | 75.02 ft |
| $5^{\text {th }}$ to $10^{\text {th }}$ | 82.36 ft | 76.41 ft |
| $11^{\text {th }}$ to $13^{\text {th }}$ | 68.24 ft | 83.21 ft |
| $14^{\text {th }}$ to roof | 59.5 ft | 83 ft |

## Drift and Story Drift:

The maximum drift in the E-W direction is 7.336 inches and in the N-S direction is 7.246 inches due to wind plus accidental torsion loading. This is under maximum loading: however it might be a little too much for the pre-cast concrete panels to take without cracking. This was not part of my research, but further work could be put into the design of the connections of the pre-cast panels to the frame to allow for more movement. Below in Table 36, story forces for both the N-S and EW directions.

Table 36

|  | Story Drift <br> N-S (inches) | \% of Ht. | Story Drift <br> E-W (inches) | \% of Ht. |
| :--- | :---: | :---: | :---: | :---: |
| Ground | 0 | 0 | 0 | 0 |
| $2^{\text {nd }}$ Floor | 0.399 | 0.185 | 0.415 | 0.192 |
| $3^{\text {rd }}$ Floor | 0.464 | 0.276 | 0.412 | 0.245 |
| $4^{\text {th }}$ Floor | 0.484 | 0.288 | 0.412 | 0.245 |
| $5^{\text {th }}$ Floor | 0.554 | 0.33 | 0.504 | 0.3 |
| $6^{\text {th }}$ Floor | 0.53 | 0.316 | 0.488 | 0.29 |
| $7^{\text {th }}$ Floor | 0.497 | 0.296 | 0.468 | 0.279 |
| $8^{\text {th }}$ Floor | 0.523 | 0.311 | 0.535 | 0.318 |
| $9^{\text {th }}$ Floor | 0.473 | 0.282 | 0.501 | 0.298 |
| $10^{\text {th }}$ Floor | 0.425 | 0.253 | 0.464 | 0.276 |
| $11^{\text {th }}$ Floor | 0.448 | 0.267 | 0.502 | 0.299 |
| $12^{\text {th }}$ Floor | 0.388 | 0.231 | 0.454 | 0.27 |
| $13^{\text {th }}$ Floor | 0.325 | 0.194 | 0.391 | 0.233 |
| $14^{\text {th }}$ Floor | 0.463 | 0.275 | 0.476 | 0.283 |
| $15^{\text {th }}$ Floor | 0.36 | 0.214 | 0.384 | 0.229 |
| $16^{\text {th }}$ Floor | 0.256 | 0.153 | 0.293 | 0.174 |
| Penthouse Roof | 0.294 | 0.175 | 0.276 | 0.164 |

## Drift Values vs. Allowable Code:

The redesign of Two Freedom Square into steel increased the height of the building which in turn increased the h/400 drift limit from 6.5 inches to 7.5 inches. The actual drift the building undergoes is at a maximum 7.336 inches in the E-W direction and 7.246 inches in the N-S direction. Both of these numbers are less than the allowable drift, however more time would have allowed for a more research into limiting the drift vales more.

## Breadth \#1: Construction Management Issues

As investigation into alternative structural systems developed, construction management issues became more important. Some of the obvious areas of concern were cost differences between a concrete structure and a steel structure, the need for a crane large enough to erect a steel structure, and then the amount of time difference for a concrete verses a steel structure construction.

First, the cost differences between a concrete building and a steel building. R.S. Means was used to do a square foot estimate for Two Freedom Square. The model number used was $M .480$, which is an 11-20 story office building.
R.S. Means Estimate: Steel building

| Two Freedom Floor Area: |  | $=$ | 405,881 sq. ft. |
| :---: | :---: | :---: | :---: |
| Two Freedom Basement Area: |  | = | 44,349 sq. ft. |
| Two Freedom Total Area: |  | = | 450,230 sq. ft. |
| Two Freedom Perimeter: |  | = | 750 ft . |
| Cost per Sq. Ft.: |  | = | \$86.28 |
| Cost per Sq. Ft. Basement: |  | $=$ | \$24.65 |
| Perimeter Adjustment: | $1.88 \times 1.46$ | = | \$2.74 |
| Story Height Adjustment: | $4 \times 1.09$ | = | \$4.36 |
| Adjusted Cost per Sq. Ft.: | $86.28+2.74+4.36$ | = | \$93.38 |
| Floor Area: | $405,881 \times 93.38$ | $=$ | \$37,901,167.78 |
| Basement Area: | $44,349 \times 24.65$ | = | \$1,093,202.85 |
| Elevator Adjustment: | $4 \times 226,000$ | = | \$904,000.00 |
| Total Cost: |  | = | \$39,898,370.63 |
| Total Cost per Sq. Ft.: |  | = | \$88.62 |
| Location Factor (Alexandria, VA): |  | = | 0.92 |
| Historical Factor (Alexandria, VA): |  | = | 0.91 |
| Adjusted Cost per Sq. Ft.: |  | $=$ | \$74.19 |
| Contractor Fee 25\%: |  | $=$ | \$18.55 |
| Architect Fee 6\%: |  | $=$ | \$4.45 |
| Final Cost per Sq. Ft.: | $74.19+18.55+4.45$ | $=$ | \$97.19 |

Daniel Painter
R.S. Means Estimate: Concrete building

| Two Freedom Floor Area: |  | $=$ | 405,881 sq. ft. |
| :---: | :---: | :---: | :---: |
| Two Freedom Basement Area: |  | = | 44,349 sq. ft. |
| Two Freedom Total Area: |  | $=$ | 450,230 sq. ft. |
| Two Freedom Perimeter: |  | = | 750 ft . |
| Cost per Sq. Ft.: |  | $=$ | \$82.13 |
| Cost per Sq. Ft. Basement: |  | $=$ | \$24.65 |
| Perimeter Adjustment: | $1.88 \times 1.46$ | $=$ | \$2.74 |
| Story Height Adjustment: | $2 \times 1.09$ | $=$ | \$2.18 |
| Adjusted Cost per Sq. Ft.: | $82.13+2.74+2.18$ | $=$ | \$87.05 |
| Floor Area: | $405,881 \times 87.05$ | $=$ | \$35,331,941.05 |
| Basement Area: | $44,349 \times 24.65$ | $=$ | \$1,093,202.85 |
| Elevator Adjustment: | $4 \times 226,000$ | - | \$904,000.00 |
| Total Cost: |  |  | \$37,329,143.90 |
| Total Cost per Sq. Ft.: |  |  | \$82.91 |
| Location Factor (Alexandria, VA): |  | $=$ | 0.92 |
| Historical Factor (Alexandria, VA): |  | $=$ | 0.91 |
| Adjusted Cost per Sq. Ft.: |  | $=$ | \$69.41 |
| Contractor Fee 25\%: |  | = | \$17.35 |
| Architect Fee 6\%: |  | $=$ | \$4.16 |
| Final Cost per Sq. Ft.: | $69.41+17.35+4.16$ | $=$ | \$90.92 |

A comparison of the two estimates shows that the concrete design is cheaper. Mainly this is due to the fact that the steel building has a larger floor to floor height.

Table 37

|  | Cost |
| :--- | :---: |
| Estimated Project Cost | $\$ 39,500,000.00$ |
| Total Project Cost (TC) | $\$ 42,000,000.00$ |
| R.S. Means Estimate - Concrete Building | $\$ 40,934,911.60$ |
| R.S. Means Estimate - Steel Building | $\$ 43,757,853.70$ |

Secondly, the need to size a crane large enough for the erection of the steel structure was investigated. For this the largest steel member was chosen at the largest reach which happened to be a W30x191, thirty feet in length which is a weight of 5,730 pounds. This member is located 200 feet from the placement of the crane, which can be seen on a site plan in Appendix 3. To find a crane the Liebherr website was accessed. The 290 HC crane, which is a tower crane, was chosen because of its reach and ability to lift the weight at the distance away from the tower. The cost to rent this crane is $\$ 11,500$ per month and it has a capacity of 9,070 pounds at a distance of 197 ft from the tower. Specifications for this specific crane can be found in Appendix 4.

Finally, the time to erect a steel structure compared to a concrete structure was determined. The time to erect a steel structure was determined from the R.S. Means unit cost per square foot estimate. The steel structure weighs 6,932.958 kips or $3,466.479$ tons. The Means estimate is the daily output is 13.9 tons per day of steel with one crew; which translates into 250 days. A summary of the information from Means can be found in Table 38. The numbers in Table 38 are based on one crew working, which in reality could be sped up by increasing the number of people working on each area of work.

Table 38

|  | Daily Output | Amount | Days | Crews |
| :--- | :---: | :---: | :---: | :---: |
| Steel Erection | 13.9 ton/day | $3,466.479$ tons | 249.39 | $\mathrm{E}-6$ |
| Non-Composite Deck | $4,000 \mathrm{sq} . \mathrm{ft} . /$ day | $450,230 \mathrm{sq} . \mathrm{ft}$. | 112.56 | $\mathrm{E}-4$ |
| Composite Deck | $3,600 \mathrm{sq} . \mathrm{ft} . /$ day | $450,230 \mathrm{sq} ft$. | 125.06 | $\mathrm{E}-4$ |
| Slab - pumped | $140 \mathrm{cy} /$ day | $18,759.58 \mathrm{cy}$ | 134 | $\mathrm{C}-20$ |
| Slab - crane \& bucket | $100 \mathrm{cy} /$ day | $18,759.58 \mathrm{cy}$ | 187.6 | $\mathrm{C}-7$ |

## Breadth \#2: Architectural Issues

For the second breath option architectural issues were investigated. This seems like a logical area to look at in depth because the column layout was rearranged which disturbed the core of the building. So a redesign of the core of the building was necessary to make room for the new columns introduced to that area. The major problem which arose was one of the columns was right in the middle of an elevator shaft. Also some of the bathrooms where rearranged to placement of the columns in that space.

The solution to the problem of the elevator going through the middle of an elevator was to separate the elevators to two on each side of the column to allow room for the beams to be placed through the core of the building. Also the whole core was moved towards the northern part of the building, which places the column in the floor space between the elevators, however this was necessary to be able to put a beam in from of the elevator shaft. All of this can be seen in Diagram 11.

Some other things which were changed were the Men's and Women's bathrooms where switched due to the configuration around the introduction of a new column. The bathrooms are still in the same spot, however because the addition width added from separating the elevators, an addition stall was added to each restroom. Also by moving the core, the core is now closer to some columns, so a check was done to make sure there was still adequate room to get around the columns.

Most of the layout of the building stayed the same because it was just open office space. And because the way the core was designed not much in the core changed. Most of the elements in the core are stacked which allowed for fluid redesign.

One thing which was not address was the exterior of the building. My focus was to look at the interior space, however if the building was redesigned in steel the floor to floor height would be increased two feet which would necessitate the redesign of the exterior elevations and most likely the pre-cast concrete panels used to make up the facade of the building.

Diagram 11 - picture of building core


## Fireproofing for Steel Design

One final area of interest which arose while investigating other structural systems for Two Freedom Square was how to fireproof the steel structure. This was not a concern in the original design because it was made out of concrete which is inherently fire resistant. Upon further investigation it was found that only the beams and columns would require fireproofing. The metal deck would not have to be fireproofed if the slab depth on top of the slab was $4 \frac{1}{2}$ inch on top of the corrugation. When investigating options for fireproofing, several options arose.

For the beams, the D916 assembly was determined to work. Diagram 12 shows a picture of the assembly. The requirement for a 2 -hour fire rating is $1-1 / 16$ inches of spray-on fireproofing.

Diagram 12


For the column fireproofing, there are several options. The first is X 516 which is three layers of gypsum board, each being at least $5 / 8$ in thick to get the required 2-hour fire rating. A picture of the assembly can be seen in Diagram 13.

Diagram 13


The second assembly for columns is $\mathbf{X} 525$, which is a combination of spray on fireproofing and gypsum board. The required thickness of the spray on fire proofing is 1-1/4 inches and the gypsum board is to be $5 / 8$ inches thick. Also the corners are supposed to be sealed. A picture of the assembly can be seen in Diagram 14.

Diagram 14


The third assembly is X 603 , which is just spray on fireproofing on the column. A picture of this can be seen in Diagram 15.

Diagram 15


Daniel Painter

The final assembly is a mastic coating on the columns. This is normally used for exposed members, which leaves the option of exposing the columns in Two Freedom Square. A picture of the assembly can be seen in Diagram 16. To receive a 2 -hour fire rating a thickness of 0.110 inches is required of the film.


## Summary and Conclusions

Above is all the information about the structures investigated, mostly the loading and what went into the design process. It produced a lot of data which had to be interpreted.

So, after completing this thesis project some of the research leads to dead ends while others gave reasons to continue with further investigation. The original design of Two Freedom Square was a good design, efficient, constructible, and attractive.

Looking at the areas in which the research was developed, most of it came out of a new column layout which seems to make sense, however the proposed redesigns would still need some work to get to the point at which the existing structure is at. For the concrete structure, large columns would be required to achieve the same efficiency as the existing structure, also the addition of shear walls could drastically help drift. In the steel structure, a more in depth look which frames should be used as moment frames instead of using them all. Because the building is not symmetric, large affect from torsion exist. The affect from torsion greatly increased the size of a few of the frames which were distanced from the center of mass.

Other things to consider when analyzing the redesigns, for the steel structure specifically the need for fireproofing is required. Also the additional height to the building will increase the cost of the building, and increase the size of the crane needed. Focusing on the new column layout causes a redesign of the core and causes some interesting maneuvering around the elevators.

All of these problems or hitches are things which could be refined with more work and time to tweak the designs. They are both viable solutions to the design of Two Freedom Square.

In conclusion a lot was learned over the course of the year, mostly have to learn on my own and teach myself things needed to complete the design. Also it has helped me get a greater picture of what goes into the design a building.

## Appendix 1: Loads

Table 1 - Wind Loads

| Concrete Building: 220 ft |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A\&G | B\&F | C\&E | D | 185 | 2\&4 | 3 | 6 | 7 | 8 |
| ground | 254.05 | 3.81 | 7.37 | 6.73 | 6.35 | 3.87 | 7.56 | 7.37 | 7.62 | 5.72 | 1.91 |
| 2nd | 251.7 | 3.78 | 7.30 | 6.67 | 6.29 | 3.84 | 7.49 | 7.30 | 7.55 | 5.66 | 1.89 |
| 3rd | 264.45 | 3.97 | 7.67 | 7.01 | 6.61 | 4.03 | 7.87 | 7.67 | 7.93 | 5.95 | 1.98 |
| 4th | 273.31 | 4.10 | 7.93 | 7.24 | 6.83 | 4.17 | 8.13 | 7.93 | 8.20 | 6.15 | 2.05 |
| 5th | 281.08 | 4.22 | 8.15 | 7.45 | 7.03 | 4.29 | 8.36 | 8.15 | 8.43 | 6.32 | 2.11 |
| 6th | 289.73 | 4.35 | 8.40 | 7.68 | 7.24 | 4.42 | 8.62 | 8.40 | 8.69 | 6.52 | 2.17 |
| 7th | 295.91 | 4.44 | 8.58 | 7.84 | 7.40 | 4.51 | 8.80 | 8.58 | 8.88 | 6.66 | 2.22 |
| 8th | 303.29 | 4.55 | 8.80 | 8.04 | 7.58 | 4.63 | 9.02 | 8.80 | 9.10 | 6.82 | 2.27 |
| 9th | 308 | 4.62 | 8.93 | 8.16 | 7.70 | 4.70 | 9.16 | 8.93 | 9.24 | 6.93 | 2.31 |
| 10th | 314.67 | 4.72 | 9.13 | 8.34 | 7.87 | 4.80 | 9.36 | 9.13 | 9.44 | 7.08 | 2.36 |
| 11th | 317.1 | 4.76 | 9.20 | 8.40 | 7.93 | 4.84 | 9.43 | 9.20 | 9.51 | 7.13 | 2.38 |
| 12th | 323.25 | 4.85 | 9.37 | 8.57 | 8.08 | 4.93 | 9.62 | 9.37 | 9.70 | 7.27 | 2.42 |
| 13th | 326.22 | 4.89 | 9.46 | 8.64 | 8.16 | 4.97 | 9.70 | 9.46 | 9.79 | 7.34 | 2.45 |
| 14th | 330.05 | 4.95 | 9.57 | 8.75 | 8.25 | 5.03 | 9.82 | 9.57 | 9.90 | 7.43 | 2.48 |
| 15th | 333.83 | 5.01 | 9.68 | 8.85 | 8.35 | 5.09 | 9.93 | 9.68 | 10.01 | 7.51 | 2.50 |
| 16th | 517.89 | 7.77 | 15.02 | 13.72 | 12.95 | 7.90 | 15.41 | 15.02 | 15.54 | 11.65 | 3.88 |
| roof | 382.85 | 5.74 | 11.10 | 10.15 | 9.57 | 5.84 | 11.39 | 11.10 | 11.49 | 8.61 | 2.87 |

Table 2 - Wind Loads per Frame, Steel Design

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ | $G$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.8705 | 2.8705 | 2.8705 | 2.8705 | 2.8705 | 9.1777 | 4.5888 | 0.2118 | 2.8896 | 2.8896 | 2.8896 | 2.8896 | 2.8896 | 2.8896 | 2.8896 |
| 4.5900 | 4.5900 | 3.0600 | 4.5900 | 4.5900 | 8.8633 | 4.4317 | 0.2127 | 2.6895 | 2.6895 | 2.6895 | 2.6895 | 2.6895 | 4.0343 | 8.0686 |
| 6.6735 | 5.0051 | 4.0041 | 5.0051 | 6.6735 | 9.6179 | 4.4391 | 0.3124 | 3.5773 | 3.5773 | 3.5773 | 3.5773 | 3.5773 | 4.4716 | 8.9432 |
| 7.7802 | 6.2242 | 4.4458 | 6.2242 | 7.7802 | 10.0728 | 4.5327 | 0.3108 | 4.4537 | 4.4537 | 3.8970 | 3.8970 | 3.8970 | 5.1960 | 10.3920 |
| 10.7758 | 7.6970 | 5.9866 | 7.6970 | 10.7758 | 10.4815 | 4.6585 |  | 4.6387 | 5.1541 | 4.6387 | 4.2170 | 4.6387 | 5.7984 | 11.5968 |
| 11.3721 | 7.5814 | 6.2030 | 7.5814 | 11.3721 | 10.6165 | 4.9960 |  | 4.9552 | 5.3682 | 4.9552 | 4.6013 | 4.9552 | 6.4418 | 12.8836 |
| 12.0307 | 7.6559 | 6.0153 | 7.6559 | 12.0307 | 11.3151 | 4.8149 |  | 5.2568 | 5.6073 | 5.2568 | 4.9476 | 5.2568 | 7.0091 | 14.0183 |
| 11.7782 | 8.1541 | 6.2355 | 8.1541 | 11.7782 | 11.5881 | 4.8284 |  | 5.4368 | 5.7388 | 5.4368 | 5.1649 | 5.7388 | 7.3785 | 14.7569 |
| 12.2000 | 8.1333 | 6.4210 | 8.1333 | 12.2000 | 11.8638 | 4.9432 |  | 5.5013 | 6.0252 | 5.5013 | 5.5013 | 6.0252 | 7.4429 | 15.8162 |
| 12.3412 | 8.2275 | 6.7316 | 8.2275 | 12.3412 | 11.7879 | 5.3326 |  | 5.9299 | 6.1671 | 5.9299 | 5.7103 | 6.1671 | 8.1146 | 15.4178 |
| 12.6798 | 8.2419 | 6.5935 | 8.2419 | 12.6798 | 17.3485 |  |  | 5.9822 | 6.1885 | 5.9822 | 5.7893 | 6.4095 | 8.1576 | 16.3152 |
| 12.5857 | 8.5812 | 6.7424 | 8.5812 | 12.5857 | 17.6050 |  |  | 6.1810 | 6.3683 | 6.1810 | 6.0044 | 6.7792 | 8.4062 | 16.1657 |
| 12.6100 | 8.7300 | 7.0931 | 8.7300 | 12.6100 | 1.2575 |  |  | 6.4113 | 6.4113 | 6.2510 | 6.0985 | 6.7578 | 8.6220 | 16.6693 |
| 12.8091 | 8.9663 | 7.2700 | 8.9663 | 12.8091 |  |  |  |  | 6.7066 | 6.7066 | 6.2785 | 6.1477 | 6.8626 | 8.6791 |
| 17.3583 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12.8702 | 9.3602 | 7.3544 | 9.3602 | 12.8702 |  |  |  | 6.9904 | 6.8506 | 6.2278 | 6.2278 | 6.8506 | 9.0139 | 18.0278 |
| 16.1168 | 11.7928 | 9.4805 | 11.7928 | 16.1168 |  |  |  |  | 9.5908 | 8.9514 | 7.6727 | 7.3574 | 8.3920 | 10.9610 |
| 24.4130 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9.6397 | 7.7117 | 6.0091 | 7.7117 | 9.6397 |  |  |  | 7.1853 | 4.9799 | 4.3736 | 3.8690 | 4.7006 | 5.9173 | 15.7178 |

Table 3 - Wind Loads per Shear Wall

| $s w 1$ | $s w 2$ | $s w 3$ | $s w 4$ | $s w 5$ | $s w 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6.4749 | 6.4749 | 6.4749 | 6.4749 | 14.8186 | 14.8186 |
| 4.2287 | 4.2287 | 4.2287 | 4.2287 | 10.9694 | 10.9694 |
| 3.2180 | 3.2180 | 3.2180 | 3.2180 | 9.2702 | 9.2702 |
| 2.2864 | 2.2864 | 2.2864 | 2.2864 | 7.6741 | 7.6741 |
| 2.1249 | 2.1249 | 2.1249 | 2.1249 | 6.2512 | 6.2512 |
| 1.6065 | 1.6065 | 1.6065 | 1.6065 | 5.2417 | 5.2417 |
| 1.2764 | 1.2764 | 1.2764 | 1.2764 | 4.4373 | 4.4373 |
| 1.0941 | 1.0941 | 1.0941 | 1.0941 | 3.7288 | 3.7288 |
| 0.8956 | 0.8956 | 0.8956 | 0.8956 | 3.2594 | 3.2594 |
| 0.8006 | 0.8006 | 0.8006 | 0.8006 | 2.9317 | 2.9317 |
| 0.6750 | 0.6750 | 0.6750 | 0.6750 | 2.5897 | 2.5897 |
| 0.5995 | 0.5995 | 0.5995 | 0.5995 | 2.3550 | 2.3550 |
| 0.5702 | 0.5702 | 0.5702 | 0.5702 | 2.2189 | 2.2189 |
| 0.5437 | 0.5437 | 0.5437 | 0.5437 | 2.1088 | 2.1088 |
| 0.5098 | 0.5098 | 0.5098 | 0.5098 | 2.0001 | 2.0001 |
| 0.6599 | 0.6599 | 0.6599 | 0.6599 | 2.5952 | 2.5952 |
| 0.4792 | 0.4792 | 0.4792 | 0.4792 | 1.8453 | 1.8453 |

Table 4 - Wind plus Torsion per Frame

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $A$ | $B$ | $C$ | $D$ | $E$ | $F$ | $G$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.8705 | 2.8705 | 2.8705 | 4.3654 | 7.1339 | 12.6708 | 7.0427 | 0.2118 | 2.8896 | 2.8896 | 2.8896 | 2.9252 | 4.4228 | 6.1001 | 7.8972 |  |
| 12.4290 | 9.1681 | 4.0450 | 4.5900 | 4.5900 | 8.8633 | 4.4317 | 0.2127 | 2.6895 | 2.6895 | 2.6895 | 2.6895 | 3.0515 | 5.6214 | 13.4804 |  |
| 14.5713 | 8.5165 | 4.9786 | 5.0051 | 6.6735 | 9.6179 | 4.4391 | 0.3124 | 3.5773 | 3.5773 | 3.5773 | 3.5773 | 3.6052 | 4.5696 | 9.2744 |  |
| 16.9578 | 10.5431 | 5.4776 | 6.2242 | 7.7802 | 10.0728 | 4.5327 | 0.3108 | 4.4537 | 4.4537 | 3.8970 | 3.8970 | 4.0912 | 5.9393 | 12.9164 |  |
| 32.1586 | 16.5215 | 8.0808 | 7.6970 | 10.7758 | 10.4815 | 4.6585 |  | 4.6387 | 5.1541 | 4.6387 | 4.2170 | 5.4751 | 8.9753 | 22.5179 |  |
| 35.5354 | 16.8421 | 8.4524 | 7.5814 | 11.3721 | 10.6165 | 4.9960 |  | 4.9552 | 5.3682 | 4.9552 | 4.6013 | 5.7165 | 9.7199 | 24.3438 |  |
| 37.5630 | 16.9247 | 8.0841 | 7.6559 | 12.0307 | 11.3151 | 4.8149 |  | 5.2568 | 5.6073 | 5.2568 | 4.9476 | 5.9947 | 10.5193 | 26.4524 |  |
| 35.6289 | 17.5587 | 8.2595 | 8.1541 | 11.7782 | 11.5881 | 4.8284 |  | 5.4368 | 5.7388 | 5.4368 | 5.1649 | 6.4318 | 10.7816 | 26.9464 |  |
| 36.2522 | 17.2095 | 8.3630 | 8.1333 | 12.2000 | 11.8638 | 4.9432 |  | 5.5013 | 6.0252 | 5.5013 | 5.5013 | 6.6505 | 10.6394 | 28.1277 |  |
| 32.4777 | 15.8050 | 8.3829 | 8.2275 | 12.3412 | 11.7879 | 5.3326 |  | 5.9299 | 6.1671 | 5.9299 | 5.7103 | 6.8255 | 11.4117 | 26.6307 |  |
| 49.4565 | 21.0111 | 8.3385 | 8.2419 | 12.6798 | 17.3485 |  |  | 5.9822 | 6.1885 | 5.9822 | 5.7893 | 7.9691 | 16.4037 | 46.2244 |  |
| 43.7705 | 19.8535 | 8.1360 | 8.5812 | 12.5857 | 17.6050 |  |  | 6.1810 | 6.3683 | 6.1810 | 6.0044 | 8.3290 | 16.0379 | 42.6072 |  |
| 38.5374 | 18.2416 | 8.3025 | 8.7300 | 12.6100 | 1.2575 |  |  | 6.4113 | 6.4113 | 6.2510 | 6.0985 | 8.0089 | 15.0987 | 39.3003 |  |
| 39.2851 | 18.0719 | 7.3849 | 8.9663 | 12.8091 |  |  |  |  | 6.7066 | 6.7066 | 6.2785 | 6.1477 | 8.2148 | 15.6331 | 42.5027 |
| 32.8890 | 16.5088 | 7.4351 | 9.3602 | 12.8702 |  |  |  | 6.9904 | 6.8506 | 6.2278 | 6.2278 | 7.8078 | 14.2984 | 37.2220 |  |
| 29.1166 | 16.4642 | 9.5358 | 11.7928 | 16.1168 |  |  |  | 9.5908 | 8.9514 | 7.6727 | 7.3574 | 8.9890 | 14.2656 | 37.7986 |  |
| 14.0407 | 9.4429 | 6.0321 | 7.7117 | 9.6397 |  |  |  | 7.1853 | 4.9799 | 4.3736 | 3.8690 | 4.9279 | 7.0137 | 20.9362 |  |

Daniel Painter
page 63
$5^{\text {th }}$ Year Thesis - Two Freedom Square

Table 5 - Wind plus Torsion per Shear Wall

| $s w 1$ | $s w 2$ | $s w 3$ | $s w 4$ | $s w 5$ | $s w 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6.4749 | 6.4749 | 8.0212 | 8.0212 | 28.0572 | 14.8186 |
| 5.3683 | 5.3683 | 4.2287 | 4.2287 | 14.2202 | 10.9694 |
| 3.8868 | 3.2180 | 3.2180 | 9.0709 | 9.4243 | 9.2702 |
| -1.8396 | -0.3426 | 2.2864 | 2.2864 | 8.5036 | 7.6741 |
| 2.7369 | 2.7369 | 2.1249 | 2.1249 | 8.8145 | 6.2512 |
| 2.0820 | 2.0820 | 1.6065 | 1.6065 | 7.2108 | 5.2417 |
| 1.6295 | 1.6295 | 1.2764 | 1.2764 | 6.0598 | 4.4373 |
| 1.3789 | 1.3789 | 1.0941 | 1.0941 | 4.9725 | 3.7288 |
| 1.1100 | 1.1100 | 0.8956 | 0.8956 | 4.2612 | 3.2594 |
| 0.9550 | 0.9550 | 0.8006 | 0.8006 | 3.7936 | 2.9317 |
| 0.7864 | 0.7864 | 0.6750 | 0.6750 | 4.4621 | 2.5897 |
| 0.6719 | 0.6719 | 0.5995 | 0.5995 | 3.8932 | 2.3550 |
| 0.6268 | 0.6268 | 0.5702 | 0.5702 | 3.4147 | 2.2189 |
| 0.5437 | 0.5437 | 0.5437 | 0.5437 | 3.3207 | 2.1088 |
| 0.5098 | 0.5098 | 0.5098 | 0.5098 | 2.8377 | 2.0001 |
| 0.6599 | 0.6599 | 0.6599 | 0.6599 | 3.1534 | 2.5952 |
| 0.4792 | 0.4792 | 0.4792 | 0.4792 | 2.0924 | 1.8453 |

Table 6 - Wind plus Accidental Torsion per Frame

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | A | B | C | D | E | F | G |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8.3152 | 6.0098 | 3.8177 | 7.1053 | 14.9475 | 19.0730 | 11.5400 | 2.6390 | 11.6584 | 8.4661 | 5.4866 | 3.0241 | 8.6795 | 15.0136 | 21.8001 |
| 25.7770 | 16.9634 | 5.7222 | 5.7306 | 8.0222 | 11.7065 | 6.4387 | 0.9426 | 11.7042 | 8.8100 | 6.1086 | 3.6967 | 4.8182 | 13.3676 | 39.8930 |
| 30.6148 | 15.6496 | 6.9582 | 6.1141 | 11.4690 | 13.6469 | 7.0808 | 1.3985 | 15.2968 | 11.4965 | 7.9495 | 4.7826 | 5.5947 | 11.5534 | 32.8780 |
| 33.7934 | 18.4658 | 7.3702 | 7.4175 | 12.4251 | 13.5156 | 6.7265 | 1.3726 | 15.1538 | 11.7033 | 7.4224 | 4.9064 | 5.7921 | 12.4487 | 35.0243 |
| 48.3407 | 23.1996 | 9.6657 | 7.6970 | 10.7758 | 10.4815 | 4.6585 |  | 10.3094 | 9.4497 | 6.8203 | 4.8331 | 7.1377 | 15.2905 | 44.2274 |
| 51.6240 | 23.0081 | 9.9502 | 7.5814 | 11.37 | 10.6165 | 4.9960 |  | 9.6524 | 8.8648 | 6.8113 | 5.1877 | 7.0708 | 15.5521 | 44.7329 |
| 53.1734 | 22.5916 | 9.3489 | 7.6559 | 12.0307 | 11.3151 | 4.8149 |  | 8.7792 | 8.2036 | 6.6751 | 5.4289 | 7.1281 | 15.9113 | 45.5521 |
| 49.3087 | 22.9529 | 9.4204 | 8.1541 | 11.7782 | 11.5881 | 4.8284 |  | 8.6460 | 8.0900 | 6.7480 | 5.6334 | 7.4679 | 15.8693 | 45.1697 |
| 49.2150 | 22.1011 | 9.4097 | 8.1333 | 12.2000 | 11.8638 | 4.9432 |  | 7.7482 | 7.7410 | 6.4329 | 5.8659 | 7.4974 | 14.9687 | 44.8025 |
| 44.0622 | 20.1643 | 9.3329 | 8.2275 | 12.3412 | 11.7879 | 5.3326 |  | 7.7995 | 7.5164 | 6.6933 | 5.9862 | 7.6818 | 15.7001 | 41.2147 |
| 58.3280 | 24.0914 | 8.7595 | 8.2419 | 12.6798 | 17.3485 |  |  | 5.9822 | 6.1885 | 5.9822 | 5.7893 | 8.6989 | 20.2628 | 60.2215 |
| 51.4288 | 22.6218 | 8.4782 | 8.5812 | 12.5857 | 17.6050 |  |  | 6.1810 | 6.3683 | 6.1810 | 6.0044 | 9.0321 | 19.5003 | 54.6033 |
| 44.8494 | 20.5571 | 8.5969 | 8.7300 | 12.6100 | 1.2575 |  |  | 6.4113 | 6.4113 | 6.2510 | 6.0985 | 8.5754 | 18.0314 | 49.5479 |
| 43.2866 | 19.4481 | 7.4022 | 8.9663 | 12.8091 |  |  |  | 6.7066 | 6.7066 | 6.2785 | 6.1477 | 8.7019 | 18.1380 | 51.5601 |
| 35.8863 | 17.5792 | 7.4472 | 9.3602 | 12.8702 |  |  |  | 6.9904 | 6.8506 | 6.2278 | 6.2278 | 8.1520 | 16.1991 | 44.1254 |
| 31.0574 | 17.1616 | 9.5441 | 11.7928 | 16.1168 |  |  |  | 9.5908 | 8.9514 | 7.6727 | 7.3574 | 9.2038 | 15.4547 | 42.6152 |
| 14.7188 | 9.7096 | 6.0356 | 7.7117 | 9.6397 |  |  |  | 7.1853 | 4.9799 | 4.3736 | 3.8690 | 5.0099 | 7.4093 | 22.8195 |

Daniel Painter
page 64
$5^{\text {th }}$ Year Thesis - Two Freedom Square

Table 7 - Wind plus Accidental Torsion per Shear Wall

| $s w 1$ | $s w 2$ | $s w 3$ | $s w 4$ | $s w 5$ | $s w 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8.2277 | 8.2277 | 10.8552 | 10.8552 | 64.8120 | 38.7777 |
| 7.3088 | 7.3088 | 4.6623 | 4.6623 | 30.0859 | 32.5873 |
| 5.2454 | 3.4634 | 3.4634 | 20.9603 | 20.4067 | 27.0019 |
| 3.5582 | 3.5582 | 2.4539 | 2.4539 | 15.7683 | 18.4810 |
| 3.2000 | 3.2000 | 2.1249 | 2.1249 | 13.9098 | 10.7720 |
| 2.3986 | 2.3986 | 1.6065 | 1.6065 | 10.7141 | 8.2156 |
| 1.8454 | 1.8454 | 1.2764 | 1.2764 | 8.5520 | 6.2316 |
| 1.5422 | 1.5422 | 1.0941 | 1.0941 | 6.8319 | 5.0657 |
| 1.2255 | 1.2255 | 0.8956 | 0.8956 | 5.6179 | 4.0734 |
| 1.0438 | 1.0438 | 0.8006 | 0.8006 | 4.9145 | 3.4930 |
| 0.8132 | 0.8132 | 0.6750 | 0.6750 | 5.3384 | 2.5897 |
| 0.6897 | 0.6897 | 0.5995 | 0.5995 | 4.5910 | 2.3550 |
| 0.6405 | 0.6405 | 0.5702 | 0.5702 | 3.9562 | 2.2189 |
| 0.5437 | 0.5437 | 0.5437 | 0.5437 | 3.7572 | 2.1088 |
| 0.5098 | 0.5098 | 0.5098 | 0.5098 | 3.1390 | 2.0001 |
| 0.6599 | 0.6599 | 0.6599 | 0.6599 | 3.3543 | 2.5952 |
| 0.4792 | 0.4792 | 0.4792 | 0.4792 | 2.1816 | 1.8453 |

Table 8 - Stiffness of Frames, Shear Walls and Distribution of Loads

| roof |  | Wind Loads (kips) |  | 40.7119 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | roof | plus torsion | plus actorsion |  |  |
| 1 | 0.048 | 20.8333 | 0.2368 | 9.6397 | 14.0407 | 14.7188 |  |  |
| 2 | 0.06 | 16.6667 | 0.1894 | 7.7117 | 9.4429 | 9.7096 |  |  |
| 3 | 0.077 | 12.9870 | 0.1476 | 6.0091 | 6.0321 | 6.0356 |  |  |
| 4 | 0.06 | 16.6667 | 0.1894 | 7.7117 | 7.7117 | 7.7117 |  |  |
| 5 | 0.048 | 20.8333 | 0.2368 | 9.6397 | 9.6397 | 9.6397 |  |  |
| sw1 |  | 1.0356 | 0.0118 | 0.4792 | 0.4792 | 0.4792 |  |  |
| sw2 |  | 1.0356 | 0.0118 | 0.4792 | 0.4792 | 0.4792 |  |  |
| sw3 |  | 1.0356 | 0.0118 | 0.4792 | 0.4792 | 0.4792 |  |  |
| sw4 |  | 1.0356 | 0.0118 | 0.4792 | 0.4792 | 0.4792 |  |  |
| Total |  | 87.9870 | 1.0000 | 40.7119 |  |  |  |  |


| 16th |  | Wind Loads (kips) |  |  | 66.6194 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 16 th | plus torsion | plus actorsion |
| 1 | 0.03 | 33.3333 | 0.2419 | 16.1168 | 29.1166 | 31.0574 |
| 2 | 0.041 | 24.3902 | 0.1770 | 11.7928 | 16.4642 | 17.1616 |
| 3 | 0.051 | 19.6078 | 0.1423 | 9.4805 | 9.5358 | 9.5441 |
| 4 | 0.041 | 24.3902 | 0.1770 | 11.7928 | 11.7928 | 11.7928 |
| 5 | 0.03 | 33.3333 | 0.2419 | 16.1168 | 16.1168 | 16.1168 |

Daniel Painter

| sw1 | 1.3648 | 0.0099 | 0.6599 | 0.6599 | 0.6599 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| sw2 |  | 1.3648 | 0.0099 | 0.6599 | 0.6599 | 0.6599 |
| sw3 |  | 1.3648 | 0.0099 | 0.6599 | 0.6599 | 0.6599 |
| sw4 |  | 1.3648 | 0.0099 | 0.6599 | 0.6599 | 0.6599 |
| Total |  | 137.7847 | 1.0000 | 66.6194 |  |  |


| 15th |  | Wind Loads (kips) |  | $\begin{array}{\|c\|} \hline 51.8151 \\ \hline 15 t h \\ \hline \end{array}$ | plus torsion | plus actorsion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | 1/ $\Delta$ | Stiffness |  |  |  |
| 1 | 0.024 | 41.6667 | 0.2484 | 12.8702 | 32.8890 | 35.8863 |
| 2 | 0.033 | 30.3030 | 0.1806 | 9.3602 | 16.5088 | 17.5792 |
| 3 | 0.042 | 23.8095 | 0.1419 | 7.3544 | 7.4351 | 7.4472 |
| 4 | 0.033 | 30.3030 | 0.1806 | 9.3602 | 9.3602 | 9.3602 |
| 5 | 0.024 | 41.6667 | 0.2484 | 12.8702 | 12.8702 | 12.8702 |
| sw1 |  | 1.6503 | 0.0098 | 0.5098 | 0.5098 | 0.5098 |
| sw2 |  | 1.6503 | 0.0098 | 0.5098 | 0.5098 | 0.5098 |
| sw3 |  | 1.6503 | 0.0098 | 0.5098 | 0.5098 | 0.5098 |
| sw4 |  | 1.6503 | 0.0098 | 0.5098 | 0.5098 | 0.5098 |
| Total |  | 167.7489 | 1.0000 | 51.8151 |  |  |


| 14th |  | Wind Loads (kips) |  | 50.8208 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\boldsymbol{\Delta}$ | $1 / \Delta$ | Stiffness | 14 th | plus torsion | plus actorsion |
| 1 | 0.021 | 47.6190 | 0.2520 | 12.8091 | 39.2851 | 43.2866 |
| 2 | 0.03 | 33.3333 | 0.1764 | 8.9663 | 18.0719 | 19.4481 |
| 3 | 0.037 | 27.0270 | 0.1431 | 7.2700 | 7.3849 | 7.4022 |
| 4 | 0.03 | 33.3333 | 0.1764 | 8.9663 | 8.9663 | 8.9663 |
| 5 | 0.021 | 47.6190 | 0.2520 | 12.8091 | 12.8091 | 12.8091 |
| sw1 |  | 2.0212 | 0.0107 | 0.5437 | 0.5437 | 0.5437 |
| sw2 |  | 2.0212 | 0.0107 | 0.5437 | 0.5437 | 0.5437 |
| sw3 |  | 2.0212 | 0.0107 | 0.5437 | 0.5437 | 0.5437 |
| sw4 |  | 2.0212 | 0.0107 | 0.5437 | 0.5437 | 0.5437 |
| Total |  | 188.9318 | 1.0000 | 50.8208 |  |  |


| 13 th |  | Wind Loads (kips) |  | 49.7730 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 13 th | plus torsion | plus actorsion |
| 1 | 0.018 | 55.5556 | 0.2533 | 12.6100 | 38.5374 | 44.8494 |
| 2 | 0.026 | 38.4615 | 0.1754 | 8.7300 | 18.2416 | 20.5571 |
| 3 | 0.032 | 31.2500 | 0.1425 | 7.0931 | 8.3025 | 8.5969 |
| 4 | 0.026 | 38.4615 | 0.1754 | 8.7300 | 8.7300 | 8.7300 |
| 5 | 0.018 | 55.5556 | 0.2533 | 12.6100 | 12.6100 | 12.6100 |

Daniel Painter

| sw1 |  | 2.5121 | 0.0115 | 0.5702 | 0.6268 | 0.6405 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sw2 |  | 2.5121 | 0.0115 | 0.5702 | 0.6268 | 0.6405 |
| sw3 |  | 2.5121 | 0.0115 | 0.5702 | 0.5702 | 0.5702 |
| sw4 |  | 2.5121 | 0.0115 | 0.5702 | 0.5702 | 0.5702 |
| Total |  | 219.2842 | 1.0000 | 49.7730 |  |  |


| 12th |  | Wind Loads (kips) |  | 49.0762 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\boldsymbol{\Delta}$ | $1 / \Delta$ | Stiffness | 12 th | plus torsion | plus actorsion |
| 1 | 0.015 | 66.6667 | 0.2565 | 12.5857 | 43.7705 | 51.4288 |
| 2 | 0.022 | 45.4545 | 0.1749 | 8.5812 | 19.8535 | 22.6218 |
| 3 | 0.028 | 35.7143 | 0.1374 | 6.7424 | 8.1360 | 8.4782 |
| 4 | 0.022 | 45.4545 | 0.1749 | 8.5812 | 8.5812 | 8.5812 |
| 5 | 0.015 | 66.6667 | 0.2565 | 12.5857 | 12.5857 | 12.5857 |
| sw1 |  | 3.1756 | 0.0122 | 0.5995 | 0.6719 | 0.6897 |
| sw2 |  | 3.1756 | 0.0122 | 0.5995 | 0.6719 | 0.6897 |
| sw3 |  | 3.1756 | 0.0122 | 0.5995 | 0.5995 | 0.5995 |
| sw4 |  | 3.1756 | 0.0122 | 0.5995 | 0.5995 | 0.5995 |
| Total |  | 259.9567 | 1.0000 | 49.0762 |  |  |


| 11th |  | Wind Loads (kips) |  | 48.4370 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 11 th | plus torsion | plus actorsion |  |  |
| 1 | 0.013 | 76.9231 | 0.2618 | 12.6798 | 49.4565 | 58.3280 |  |  |
| 2 | 0.02 | 50.0000 | 0.1702 | 8.2419 | 21.0111 | 24.0914 |  |  |
| 3 | 0.025 | 40.0000 | 0.1361 | 6.5935 | 8.3385 | 8.7595 |  |  |
| 4 | 0.02 | 50.0000 | 0.1702 | 8.2419 | 8.2419 | 8.2419 |  |  |
| 5 | 0.013 | 76.9231 | 0.2618 | 12.6798 | 12.6798 | 12.6798 |  |  |
| sw1 |  | 4.0949 | 0.0139 | 0.6750 | 0.7864 | 0.8132 |  |  |
| sw2 |  | 4.0949 | 0.0139 | 0.6750 | 0.7864 | 0.8132 |  |  |
| sw3 |  | 4.0949 | 0.0139 | 0.6750 | 0.6750 | 0.6750 |  |  |
| sw4 |  | 4.0949 | 0.0139 | 0.6750 | 0.6750 | 0.6750 |  |  |
| Total |  | 293.8462 | 1.0000 | 48.4370 |  |  |  |  |


| 10th |  | Wind Loads (kips) |  | 47.8688 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 10 th | plus torsion | plus actorsion |
| 1 | 0.012 | 83.3333 | 0.2578 | 12.3412 | 32.4777 | 44.0622 |
| 2 | 0.018 | 55.5556 | 0.1719 | 8.2275 | 15.8050 | 20.1643 |
| 3 | 0.022 | 45.4545 | 0.1406 | 6.7316 | 8.3829 | 9.3329 |
| 4 | 0.018 | 55.5556 | 0.1719 | 8.2275 | 8.2275 | 8.2275 |

Daniel Painter
page 67
$5^{\text {th }}$ Year Thesis - Two Freedom Square

| 5 | 0.012 | 83.3333 | 0.2578 | 12.3412 | 12.3412 | 12.3412 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $s w 1$ |  | 5.4058 | 0.0167 | 0.8006 | 0.9550 | 1.0438 |  |
| $s w 2$ |  | 5.4058 | 0.0167 | 0.8006 | 0.9550 | 1.0438 |  |
| sw3 |  | 5.4058 | 0.0167 | 0.8006 | 0.8006 | 0.8006 |  |
| sw4 |  | 5.4058 | 0.0167 | 0.8006 | 0.8006 | 0.8006 |  |
| Total |  | 323.2323 | 1.0000 | 47.8688 |  |  |  |


| 9th |  | Wind Loads (kips) |  | 47.0876 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 9 th | plus torsion | plus actorsion |  |  |
| 1 | 0.01 | 100.0000 | 0.2591 | 12.2000 | 36.2522 | 49.2150 |  |  |
| 2 | 0.015 | 66.6667 | 0.1727 | 8.1333 | 17.2095 | 22.1011 |  |  |
| 3 | 0.019 | 52.6316 | 0.1364 | 6.4210 | 8.3630 | 9.4097 |  |  |
| 4 | 0.015 | 66.6667 | 0.1727 | 8.1333 | 8.1333 | 8.1333 |  |  |
| 5 | 0.01 | 100.0000 | 0.2591 | 12.2000 | 12.2000 | 12.2000 |  |  |
| sw1 |  | 7.3411 | 0.0190 | 0.8956 | 1.1100 | 1.2255 |  |  |
| sw2 |  | 7.3411 | 0.0190 | 0.8956 | 1.1100 | 1.2255 |  |  |
| sw3 |  | 7.3411 | 0.0190 | 0.8956 | 0.8956 | 0.8956 |  |  |
| sw4 |  | 7.3411 | 0.0190 | 0.8956 | 0.8956 | 0.8956 |  |  |
| Total |  | 385.9649 | 1.0000 | 47.0876 |  |  |  |  |


| 8th |  | Wind Loads (kips) |  | 46.1000 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\boldsymbol{\Delta}$ | $1 / \Delta$ | Stiffness | 8th | plus torsion | plus actorsion |
| 1 | 0.009 | 111.1111 | 0.2555 | 11.7782 | 35.6289 | 49.3087 |
| 2 | 0.013 | 76.9231 | 0.1769 | 8.1541 | 17.5587 | 22.9529 |
| 3 | 0.017 | 58.8235 | 0.1353 | 6.2355 | 8.2595 | 9.4204 |
| 4 | 0.013 | 76.9231 | 0.1769 | 8.1541 | 8.1541 | 8.1541 |
| 5 | 0.009 | 111.1111 | 0.2555 | 11.7782 | 11.7782 | 11.7782 |
| sw1 |  | 10.3211 | 0.0237 | 1.0941 | 1.3789 | 1.5422 |
| sw2 |  | 10.3211 | 0.0237 | 1.0941 | 1.3789 | 1.5422 |
| sw3 |  | 10.3211 | 0.0237 | 1.0941 | 1.0941 | 1.0941 |
| sw4 |  | 10.3211 | 0.0237 | 1.0941 | 1.0941 | 1.0941 |
| Total |  | 434.8919 | 1.0000 | 46.1000 |  |  |


| 7th |  | Wind Loads (kips) |  | 45.3885 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 7 th | plus torsion | plus actorsion |
| 1 | 0.007 | 142.8571 | 0.2651 | 12.0307 | 37.5630 | 53.1734 |
| 2 | 0.011 | 90.9091 | 0.1687 | 7.6559 | 16.9247 | 22.5916 |
| 3 | 0.014 | 71.4286 | 0.1325 | 6.0153 | 8.0841 | 9.3489 |

Daniel Painter
page 68
$5^{\text {th }}$ Year Thesis - Two Freedom Square

| 4 | 0.011 | 90.9091 | 0.1687 | 7.6559 | 7.6559 | 7.6559 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 0.007 | 142.8571 | 0.2651 | 12.0307 | 12.0307 | 12.0307 |  |
| $s w 1$ |  | 15.1564 | 0.0281 | 1.2764 | 1.6295 | 1.8454 |  |
| $s w 2$ |  | 15.1564 | 0.0281 | 1.2764 | 1.6295 | 1.8454 |  |
| $s w 3$ |  | 15.1564 | 0.0281 | 1.2764 | 1.2764 | 1.2764 |  |
| sw4 |  | 15.1564 | 0.0281 | 1.2764 | 1.2764 | 1.2764 |  |
| Total |  | 538.9610 | 1.0000 | 45.3885 |  |  |  |


| 6th |  | Wind Loads (kips) |  | 44.1101 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 6th | plus torsion | plus actorsion |  |
| 1 | 0.006 | 166.6667 | 0.2578 | 11.3721 | 35.5354 | 51.6240 |  |
| 2 | 0.009 | 111.1111 | 0.1719 | 7.5814 | 16.8421 | 23.0081 |  |
| 3 | 0.011 | 90.9091 | 0.1406 | 6.2030 | 8.4524 | 9.9502 |  |
| 4 | 0.009 | 111.1111 | 0.1719 | 7.5814 | 7.5814 | 7.5814 |  |
| 5 | 0.006 | 166.6667 | 0.2578 | 11.3721 | 11.3721 | 11.3721 |  |
| sw1 |  | 23.5440 | 0.0364 | 1.6065 | 2.0820 | 2.3986 |  |
| sw2 |  | 23.5440 | 0.0364 | 1.6065 | 2.0820 | 2.3986 |  |
| sw3 |  | 23.5440 | 0.0364 | 1.6065 | 1.6065 | 1.6065 |  |
| sw4 |  | 23.5440 | 0.0364 | 1.6065 | 1.6065 | 1.6065 |  |
| Total |  | 646.4646 | 1.0000 | 44.1101 |  |  |  |


| 5th |  | Wind Loads (kips) |  | 42.9323 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 5 th | plus torsion | plus actorsion |  |
| 1 | 0.005 | 200.0000 | 0.2510 | 10.7758 | 32.1586 | 48.3407 |  |
| 2 | 0.007 | 142.8571 | 0.1793 | 7.6970 | 16.5215 | 23.1996 |  |
| 3 | 0.009 | 111.1111 | 0.1394 | 5.9866 | 8.0808 | 9.6657 |  |
| 4 | 0.007 | 142.8571 | 0.1793 | 7.6970 | 7.6970 | 7.6970 |  |
| 5 | 0.005 | 200.0000 | 0.2510 | 10.7758 | 10.7758 | 10.7758 |  |
| sw1 |  | 39.4377 | 0.0495 | 2.1249 | 2.7369 | 3.2000 |  |
| sw2 |  | 39.4377 | 0.0495 | 2.1249 | 2.7369 | 3.2000 |  |
| sw3 |  | 39.4377 | 0.0495 | 2.1249 | 2.1249 | 2.1249 |  |
| sw4 |  | 39.4377 | 0.0495 | 2.1249 | 2.1249 | 2.1249 |  |
| Total |  | 796.8254 | 1.0000 | 42.9323 |  |  |  |


| 4th |  | Wind Loads (kips) |  | 41.6003 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 4th | plus torsion | plus actorsion |
| 1 | 0.004 | 250.0000 | 0.1870 | 7.7802 | 16.9578 | 33.7934 |
| 2 | 0.005 | 200.0000 | 0.1496 | 6.2242 | 10.5431 | 18.4658 |

Daniel Painter
page 69
$5^{\text {th }}$ Year Thesis - Two Freedom Square

| 3 | 0.007 | 142.8571 | 0.1069 | 4.4458 | 5.4776 | 7.3702 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0.005 | 200.0000 | 0.1496 | 6.2242 | 6.2242 | 7.4175 |  |  |
| 5 | 0.004 | 250.0000 | 0.1870 | 7.7802 | 7.7802 | 12.4251 |  |  |
| $s w 1$ |  | 73.4694 | 0.0550 | 2.2864 | -1.8396 | 3.5582 |  |  |
| sw2 |  | 73.4694 | 0.0550 | 2.2864 | -0.3426 | 3.5582 |  |  |
| sw3 |  | 73.4694 | 0.0550 | 2.2864 | 2.2864 | 2.4539 |  |  |
| sw4 |  | 73.4694 | 0.0550 | 2.2864 | 2.2864 | 2.4539 |  |  |
| Total |  | 1336.7347 | 1.0000 | 41.6003 |  |  |  |  |


| 3rd |  | Wind Loads (kips) |  | 40.2335 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 3rd | plus torsion | plus actorsion |  |  |
| 1 | 0.003 | 333.3333 | 0.1659 | 6.6735 | 14.5713 | 30.6148 |  |  |
| 2 | 0.004 | 250.0000 | 0.1244 | 5.0051 | 8.5165 | 15.6496 |  |  |
| 3 | 0.005 | 200.0000 | 0.0995 | 4.0041 | 4.9786 | 6.9582 |  |  |
| 4 | 0.004 | 250.0000 | 0.1244 | 5.0051 | 5.0051 | 6.1141 |  |  |
| 5 | 0.003 | 333.3333 | 0.1659 | 6.6735 | 6.6735 | 11.4690 |  |  |
| sw1 |  | 160.7366 | 0.0800 | 3.2180 | 3.8868 | 5.2454 |  |  |
| sw2 |  | 160.7366 | 0.0800 | 3.2180 | 3.2180 | 3.4634 |  |  |
| sw3 |  | 160.7366 | 0.0800 | 3.2180 | 3.2180 | 3.4634 |  |  |
| sw4 |  | 160.7366 | 0.0800 | 3.2180 | 9.0709 | 20.9603 |  |  |
| Total |  | 2009.6131 | 1.0000 | 40.2335 |  |  |  |  |


| 2nd |  | Wind Loads (kips) |  | 38.3347 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\boldsymbol{\Delta}$ | 1/ $\boldsymbol{\Delta}$ | Stiffness | 2nd | plus torsion | plus actorsion |  |  |
| 1 | 0.002 | 500.0000 | 0.1197 | 4.5900 | 12.4290 | 25.7770 |  |  |
| 2 | 0.002 | 500.0000 | 0.1197 | 4.5900 | 9.1681 | 16.9634 |  |  |
| 3 | 0.003 | 333.3333 | 0.0798 | 3.0600 | 4.0450 | 5.7222 |  |  |
| 4 | 0.002 | 500.0000 | 0.1197 | 4.5900 | 4.5900 | 5.7306 |  |  |
| 5 | 0.002 | 500.0000 | 0.1197 | 4.5900 | 4.5900 | 8.0222 |  |  |
| sw1 |  | 460.6460 | 0.1103 | 4.2287 | 5.3683 | 7.3088 |  |  |
| sw2 |  | 460.6460 | 0.1103 | 4.2287 | 5.3683 | 7.3088 |  |  |
| sw3 |  | 460.6460 | 0.1103 | 4.2287 | 4.2287 | 4.6623 |  |  |
| sw4 |  | 460.6460 | 0.1103 | 4.2287 | 4.2287 | 4.6623 |  |  |
| Total |  | 4175.9175 | 1.0000 | 38.3347 |  |  |  |  |


| ground |  | Wind Loads (kips) |  |  | 40.2523 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | ground | plus torsion | plus actorsion |
| 1 | 0.001 | 1000.0000 | 0.0713 | 2.8705 | 2.8705 | 8.3152 |

Daniel Painter

| 2 | 0.001 | 1000.0000 | 0.0713 | 2.8705 | 2.8705 | 6.0098 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.001 | 1000.0000 | 0.0713 | 2.8705 | 2.8705 | 3.8177 |
| 4 | 0.001 | 1000.0000 | 0.0713 | 2.8705 | 4.3654 | 7.1053 |
| 5 | 0.001 | 1000.0000 | 0.0713 | 2.8705 | 7.1339 | 14.9475 |
| sw1 |  | 2255.6391 | 0.1609 | 6.4749 | 6.4749 | 8.2277 |
| sw2 |  | 2255.6391 | 0.1609 | 6.4749 | 6.4749 | 8.2277 |
| sw3 |  | 2255.6391 | 0.1609 | 6.4749 | 8.0212 | 10.8552 |
| sw4 |  | 2255.6391 | 0.1609 | 6.4749 | 8.0212 | 10.8552 |
| Total |  | 14022.5564 | 1.0000 | 40.2523 |  |  |


| 13th |  | Wind Loads (kips) |  | 1.2575 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 13 th | plus torsion | plus actorsion |
| 6 | 0.075 | 13.3333 | 1.0000 | 1.2575 | 1.2575 | 1.2575 |
| Total |  | 13.3333 | 1.0000 | 1.2575 |  |  |
|  |  |  |  |  |  |  |


| 12th |  | Wind Loads (kips) |  | 17.6050 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | 1/ $\triangle$ | Stiffness | 12th | plus torsion | plus actorsion |
| 6 | 0.063 | 15.8730 | 1.0000 | 17.6050 | 17.6050 | 17.6050 |
| Total |  | 15.8730 | 1.0000 | 17.6050 |  |  |


| 11 th |  | Wind Loads (kips) |  | 17.3485 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 11 th | plus torsion | plus actorsion |
| 6 | 0.05 | 20.0000 | 1.0000 | 17.3485 | 17.3485 | 17.3485 |
| Total |  | 20.0000 | 1.0000 | 17.3485 |  |  |
|  |  |  |  |  |  |  |


| 10th (kips) |  | 17.1205 | Wind Loads |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 10 th | plus torsion | plus actorsion |
| 6 | 0.038 | 26.3158 | 0.6885 | 11.7879 | 11.7879 | 11.7879 |
| 7 | 0.084 | 11.9048 | 0.3115 | 5.3326 | 5.3326 | 5.3326 |
| Total |  | 38.2206 | 1.0000 | 17.1205 |  |  |
|  |  |  |  |  |  |  |


| 9th |  | Wind Loads (kips) |  | 16.8070 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 9th | plus torsion | plus actorsion |
| 6 | 0.03 | 33.3333 | 0.7059 | 11.8638 | 11.8638 | 11.8638 |
| 7 | 0.072 | 13.8889 | 0.2941 | 4.9432 | 4.9432 | 4.9432 |
| Total |  | 47.2222 | 1.0000 | 16.8070 |  |  |
|  |  |  |  |  |  |  |

Daniel Painter

| 8th |  | Wind Loads (kips) |  | 16.4165 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 8th | plus torsion | plus actorsion |  |
| 6 | 0.025 | 40.0000 | 0.7059 | 11.5881 | 11.5881 | 11.5881 |  |
| 7 | 0.06 | 16.6667 | 0.2941 | 4.8284 | 4.8284 | 4.8284 |  |
| Total |  | 56.6667 | 1.0000 | 16.4165 |  |  |  |
|  |  |  |  |  |  |  |  |


| 7 th |  | Wind Loads (kips) |  |  | 16.1300 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 7th | plus torsion | plus actorsion |  |
| 6 | 0.02 | 50.0000 | 0.7015 | 11.3151 | 11.3151 | 11.3151 |  |
| 7 | 0.047 | 21.2766 | 0.2985 | 4.8149 | 4.8149 | 4.8149 |  |
| Total |  | 71.2766 | 1.0000 | 16.1300 |  |  |  |
|  |  |  |  |  |  |  |  |


| 6th |  | Wind Loads (kips) |  |  | 15.6125 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 6th | plus torsion | plus actorsion |  |
| 6 | 0.016 | 62.5000 | 0.6800 | 10.6165 | 10.6165 | 10.6165 |  |
| 7 | 0.034 | 29.4118 | 0.3200 | 4.9960 | 4.9960 | 4.9960 |  |
| Total |  | 91.9118 | 1.0000 | 15.6125 |  |  |  |
|  |  |  |  |  |  |  |  |


| 5th |  | Wind Loads (kips) |  | 15.1400 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 5 th | plus torsion | plus actorsion |  |
| 6 | 0.012 | 83.3333 | 0.6923 | 10.4815 | 10.4815 | 10.4815 |  |
| 7 | 0.027 | 37.0370 | 0.3077 | 4.6585 | 4.6585 | 4.6585 |  |
| Total |  | 120.3704 | 1.0000 | 15.1400 |  |  |  |
|  |  |  |  |  |  |  |  |


|  |  | Wind Loads (kips) |  | 14.6055 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 4th | plus torsion | plus actorsion |  |
| 6 | 0.009 | 111.1111 | 0.6897 | 10.0728 | 10.0728 | 13.5156 |  |
| 7 | 0.02 | 50.0000 | 0.3103 | 4.5327 | 4.5327 | 6.7265 |  |
| Total |  | 161.1111 | 1.0000 | 14.6055 |  |  |  |
|  |  |  |  |  |  |  |  |


| 3rd |  | Wind Loads (kips) |  | 14.0570 | plus torsion | plus actorsion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | 1/ $\Delta$ | Stiffness | 3rd |  |  |
| 6 | 0.006 | 166.6667 | 0.6842 | 9.6179 | 9.6179 | 13.6469 |
| 7 | 0.013 | 76.9231 | 0.3158 | 4.4391 | 4.4391 | 7.0808 |
| Total |  | 243.5897 | 1.0000 | 14.0570 |  |  |


| 2nd | Wind Loads (kips) | 13.2950 |
| :--- | :--- | :--- |

Daniel Painter

| Frame | $\Delta$ | 1/ $\Delta$ | Stiffness | 2nd | plus torsion | plus actorsion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 0.004 | 250.0000 | 0.6667 | 8.8633 | 8.8633 | 11.7065 |
| 7 | 0.008 | 125.0000 | 0.3333 | 4.4317 | 4.4317 | 6.4387 |
| Total |  | 375.0000 | 1.0000 | 13.2950 |  |  |


| ground |  | Wind Loads (kips) |  | 13.7665 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | 1/ $\Delta$ | Stiffness | ground | plus torsion | plus actorsion |
| 6 | 0.002 | 500.0000 | 0.6667 | 9.1777 | 12.6708 | 19.0730 |
| 7 | 0.004 | 250.0000 | 0.3333 | 4.5888 | 7.0427 | 11.5400 |
| Total |  | 750.0000 | 1.0000 | 13.7665 |  |  |


| 4th |  | Wind Loads (kips) |  | 2.9211 | plus torsion | plus actorsion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | 1/ $\Delta$ | Stiffness | 4th |  |  |
| 8 | 0.047 | 21.2766 | 0.1064 | 0.3108 | 0.3108 | 1.3726 |
| Total |  | 21.2766 | 0.1064 | 0.3108 |  |  |


|  |  | Wind Loads (kips) |  | 2.8114 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 3rd | plus torsion | plus actorsion |  |  |
| 8 | 0.036 | 27.7778 | 0.1111 | 0.3124 | 0.3124 | 1.3985 |  |  |
| Total |  | 27.7778 | 0.1111 | 0.3124 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |


| 2nd |  | Wind Loads (kips) |  | 2.6590 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\boldsymbol{\Delta}$ | $1 / \boldsymbol{\Delta}$ | Stiffness | 2nd | plus torsion | plus actorsion |  |  |
| 8 | 0.025 | 40.0000 | 0.0800 | 0.2127 | 0.2127 | 0.9426 |  |  |
| Total |  | 40.0000 | 0.0800 | 0.2127 |  |  |  |  |


| ground |  | Wind Loads (kips) |  | 2.7533 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | 1/ $\Delta$ | Stiffness | ground | plus torsion | plus actorsion |
| 8 | 0.013 | 76.9231 | 0.0769 | 0.2118 | 0.2118 | 2.6390 |
| Total |  | 76.9231 | 0.0769 | 0.2118 |  |  |


| roof |  | Wind Loads (kips) |  | 50.4341 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\boldsymbol{\Delta}$ | $1 / \Delta$ | Stiffness | roof | plus torsion | plus actorsion |
| $G$ | 0.07 | 14.2857 | 0.1425 | 7.1853 | 7.1853 | 7.1853 |
| F | 0.101 | 9.9010 | 0.0987 | 4.9799 | 4.9799 | 4.9799 |
| E | 0.115 | 8.6957 | 0.0867 | 4.3736 | 4.3736 | 4.3736 |

Daniel Painter
page 73
$5^{\text {th }}$ Year Thesis - Two Freedom Square

| $D$ | 0.13 | 7.6923 | 0.0767 | 3.8690 | 3.8690 | 3.8690 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 0.107 | 9.3458 | 0.0932 | 4.7006 | 4.9279 | 5.0099 |  |  |
| B | 0.085 | 11.7647 | 0.1173 | 5.9173 | 7.0137 | 7.4093 |  |  |
| A | 0.032 | 31.2500 | 0.3116 | 15.7178 | 20.9362 | 22.8195 |  |  |
| sw5 |  | 3.6688 | 0.0366 | 1.8453 | 2.0924 | 2.1816 |  |  |
| sw6 |  | 3.6688 | 0.0366 | 1.8453 | 1.8453 | 1.8453 |  |  |
| Total |  | 100.2727 | 1.0000 | 50.4341 |  |  |  |  |


|  |  | Wind Loads (kips) |  | 82.5286 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 16 th | plus torsion | plus actorsion |  |  |
| G | 0.056 | 17.8571 | 0.1162 | 9.5908 | 9.5908 | 9.5908 |  |  |
| F | 0.06 | 16.6667 | 0.1085 | 8.9514 | 8.9514 | 8.9514 |  |  |
| E | 0.07 | 14.2857 | 0.0930 | 7.6727 | 7.6727 | 7.6727 |  |  |
| D | 0.073 | 13.6986 | 0.0891 | 7.3574 | 7.3574 | 7.3574 |  |  |
| C | 0.064 | 15.6250 | 0.1017 | 8.3920 | 8.9890 | 9.2038 |  |  |
| B | 0.049 | 20.4082 | 0.1328 | 10.9610 | 14.2656 | 15.4547 |  |  |
| A | 0.022 | 45.4545 | 0.2958 | 24.4130 | 37.7986 | 42.6152 |  |  |
| sw5 |  | 4.8319 | 0.0314 | 2.5952 | 3.1534 | 3.3543 |  |  |
| sw6 |  | 4.8319 | 0.0314 | 2.5952 | 2.5952 | 2.5952 |  |  |
| Total |  | 153.6597 | 1.0000 | 82.5286 |  |  |  |  |


| 15th |  | Wind Loads (kips) |  | $\frac{64.1889}{15 t h}$ | plus torsion | plus actorsion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | 1/D | Stiffness |  |  |  |
| G | 0.049 | 20.4082 | 0.1089 | 6.9904 | 6.9904 | 6.9904 |
| F | 0.05 | 20.0000 | 0.1067 | 6.8506 | 6.8506 | 6.8506 |
| E | 0.055 | 18.1818 | 0.0970 | 6.2278 | 6.2278 | 6.2278 |
| D | 0.055 | 18.1818 | 0.0970 | 6.2278 | 6.2278 | 6.2278 |
| C | 0.05 | 20.0000 | 0.1067 | 6.8506 | 7.8078 | 8.1520 |
| B | 0.038 | 26.3158 | 0.1404 | 9.0139 | 14.2984 | 16.1991 |
| A | 0.019 | 52.6316 | 0.2809 | 18.0278 | 37.2220 | 44.1254 |
| sw5 |  | 5.8391 | 0.0312 | 2.0001 | 2.8377 | 3.1390 |
| sw6 |  | 5.8391 | 0.0312 | 2.0001 | 2.0001 | 2.0001 |
| Total |  | 187.3974 | 1.0000 | 64.1889 |  |  |


|  |  | Wind Loads (kips) |  | 62.9572 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 14 th | plus torsion | plus actorsion |
| G | 0.044 | 22.7273 | 0.1065 | 6.7066 | 6.7066 | 6.7066 |
| F | 0.044 | 22.7273 | 0.1065 | 6.7066 | 6.7066 | 6.7066 |
| E | 0.047 | 21.2766 | 0.0997 | 6.2785 | 6.2785 | 6.2785 |

Daniel Painter

| D | 0.048 | 20.8333 | 0.0976 | 6.1477 | 6.1477 | 6.1477 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 0.043 | 23.2558 | 0.1090 | 6.8626 | 8.2148 | 8.7019 |  |  |
| B | 0.034 | 29.4118 | 0.1379 | 8.6791 | 15.6331 | 18.1380 |  |  |
| A | 0.017 | 58.8235 | 0.2757 | 17.3583 | 42.5027 | 51.5601 |  |  |
| sw5 |  | 7.1464 | 0.0335 | 2.1088 | 3.3207 | 3.7572 |  |  |
| sw6 |  | 7.1464 | 0.0335 | 2.1088 | 2.1088 | 2.1088 |  |  |
| Total |  | 213.3484 | 1.0000 | 62.9572 |  |  |  |  |


| 13th |  | Wind Loads (kips) |  | 61.6590 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 13 th | plus torsion | plus actorsion |
| G | 0.039 | 25.6410 | 0.1040 | 6.4113 | 6.4113 | 6.4113 |
| F | 0.039 | 25.6410 | 0.1040 | 6.4113 | 6.4113 | 6.4113 |
| E | 0.04 | 25.0000 | 0.1014 | 6.2510 | 6.2510 | 6.2510 |
| D | 0.041 | 24.3902 | 0.0989 | 6.0985 | 6.0985 | 6.0985 |
| C | 0.037 | 27.0270 | 0.1096 | 6.7578 | 8.0089 | 8.5754 |
| B | 0.029 | 34.4828 | 0.1398 | 8.6220 | 15.0987 | 18.0314 |
| A | 0.015 | 66.6667 | 0.2703 | 16.6693 | 39.3003 | 49.5479 |
| sw5 |  | 8.8743 | 0.0360 | 2.2189 | 3.4147 | 3.9562 |
| sw6 |  | 8.8743 | 0.0360 | 2.2189 | 2.2189 | 2.2189 |
| Total |  | 246.5973 | 1.0000 | 61.6590 |  |  |


| 12 th |  | Wind Loads (kips) |  | 60.7958 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 12 th | plus torsion | plus actorsion |  |
| G | 0.034 | 29.4118 | 0.1017 | 6.1810 | 6.1810 | 6.1810 |  |
| F | 0.033 | 30.3030 | 0.1047 | 6.3683 | 6.3683 | 6.3683 |  |
| E | 0.034 | 29.4118 | 0.1017 | 6.1810 | 6.1810 | 6.1810 |  |
| D | 0.035 | 28.5714 | 0.0988 | 6.0044 | 6.0044 | 6.0044 |  |
| C | 0.031 | 32.2581 | 0.1115 | 6.7792 | 8.3290 | 9.0321 |  |
| B | 0.025 | 40.0000 | 0.1383 | 8.4062 | 16.0379 | 19.5003 |  |
| A | 0.013 | 76.9231 | 0.2659 | 16.1657 | 42.6072 | 54.6033 |  |
| sw5 |  | 11.2061 | 0.0387 | 2.3550 | 3.8932 | 4.5910 |  |
| sw6 |  | 11.2061 | 0.0387 | 2.3550 | 2.3550 | 2.3550 |  |
| Total |  | 289.2914 | 1.0000 | 60.7958 |  |  |  |


| 11 th |  | Wind Loads (kips) |  |  | 60.0040 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 11 th | plus torsion | plus actorsion |
| $G$ | 0.03 | 33.3333 | 0.0997 | 5.9822 | 5.9822 | 5.9822 |

Daniel Painter
page 75
$5^{\text {th }}$ Year Thesis - Two Freedom Square

| F | 0.029 | 34.4828 | 0.1031 | 6.1885 | 6.1885 | 6.1885 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | 0.03 | 33.3333 | 0.0997 | 5.9822 | 5.9822 | 5.9822 |
| D | 0.031 | 32.2581 | 0.0965 | 5.7893 | 5.7893 | 5.7893 |
| C | 0.028 | 35.7143 | 0.1068 | 6.4095 | 7.9691 | 8.6989 |
| B | 0.022 | 45.4545 | 0.1360 | 8.1576 | 16.4037 | 20.2628 |
| A | 0.011 | 90.9091 | 0.2719 | 16.3152 | 46.2244 | 60.2215 |
| sw5 |  | 14.4299 | 0.0432 | 2.5897 | 4.4621 | 5.3384 |
| sw6 |  | 14.4299 | 0.0432 | 2.5897 | 2.5897 | 2.5897 |
| Total |  | 334.3452 | 1.0000 | 60.0040 |  |  |


| 10th |  | Wind Loads (kips) |  | 59.3002 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 10 th | plus torsion | plus actorsion |
| G | 0.026 | 38.4615 | 0.1000 | 5.9299 | 5.9299 | 7.7995 |
| F | 0.025 | 40.0000 | 0.1040 | 6.1671 | 6.1671 | 7.5164 |
| E | 0.026 | 38.4615 | 0.1000 | 5.9299 | 5.9299 | 6.6933 |
| D | 0.027 | 37.0370 | 0.0963 | 5.7103 | 5.7103 | 5.9862 |
| C | 0.025 | 40.0000 | 0.1040 | 6.1671 | 6.8255 | 7.6818 |
| B | 0.019 | 52.6316 | 0.1368 | 8.1146 | 11.4117 | 15.7001 |
| A | 0.01 | 100.0000 | 0.2600 | 15.4178 | 26.6307 | 41.2147 |
| sw5 |  | 19.0150 | 0.0494 | 2.9317 | 3.7936 | 4.9145 |
| sw6 |  | 19.0150 | 0.0494 | 2.9317 | 2.9317 | 3.4930 |
| Total |  | 384.6217 | 1.0000 | 59.3002 |  |  |


| 9th |  | Wind Loads (kips) |  | 58.3324 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 9th | plus torsion | plus actorsion |  |  |
| G | 0.023 | 43.4783 | 0.0943 | 5.5013 | 5.5013 | 7.7482 |  |  |
| F | 0.021 | 47.6190 | 0.1033 | 6.0252 | 6.0252 | 7.7410 |  |  |
| E | 0.023 | 43.4783 | 0.0943 | 5.5013 | 5.5013 | 6.4329 |  |  |
| D | 0.023 | 43.4783 | 0.0943 | 5.5013 | 5.5013 | 5.8659 |  |  |
| C | 0.021 | 47.6190 | 0.1033 | 6.0252 | 6.6505 | 7.4974 |  |  |
| B | 0.017 | 58.8235 | 0.1276 | 7.4429 | 10.6394 | 14.9687 |  |  |
| A | 0.008 | 125.0000 | 0.2711 | 15.8162 | 28.1277 | 44.8025 |  |  |
| sw5 |  | 25.7603 | 0.0559 | 3.2594 | 4.2612 | 5.6179 |  |  |
| sw6 |  | 25.7603 | 0.0559 | 3.2594 | 3.2594 | 4.0734 |  |  |
| Total |  | 461.0170 | 1.0000 | 58.3324 |  |  |  |  |


| 8th | Wind Loads (kips) | 57.1090 |
| :--- | :--- | :--- |

Daniel Painter
page 76
$5^{\text {th }}$ Year Thesis - Two Freedom Square

| Frame | $\boldsymbol{\Delta}$ | $\mathbf{1 / \Delta}$ | Stiffness | 8th | plus torsion | plus actorsion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G | 0.019 | 52.6316 | 0.0952 | 5.4368 | 5.4368 | 8.6460 |
| F | 0.018 | 55.5556 | 0.1005 | 5.7388 | 5.7388 | 8.0900 |
| E | 0.019 | 52.6316 | 0.0952 | 5.4368 | 5.4368 | 6.7480 |
| D | 0.02 | 50.0000 | 0.0904 | 5.1649 | 5.1649 | 5.6334 |
| C | 0.018 | 55.5556 | 0.1005 | 5.7388 | 6.4318 | 7.4679 |
| B | 0.014 | 71.4286 | 0.1292 | 7.3785 | 10.7816 | 15.8693 |
| A | 0.007 | 142.8571 | 0.2584 | 14.7569 | 26.9464 | 45.1697 |
| sw5 |  | 36.0971 | 0.0653 | 3.7288 | 4.9725 | 6.8319 |
| sw6 |  | 36.0971 | 0.0653 | 3.7288 | 3.7288 | 5.0657 |
| Total |  | 552.8542 | 1.0000 | 57.1090 |  |  |


| 7 th |  | Wind Loads (kips) |  | 56.2275 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 7 th | plus torsion | plus actorsion |  |  |
| G | 0.016 | 62.5000 | 0.0935 | 5.2568 | 5.2568 | 8.7792 |  |  |
| F | 0.015 | 66.6667 | 0.0997 | 5.6073 | 5.6073 | 8.2036 |  |  |
| E | 0.016 | 62.5000 | 0.0935 | 5.2568 | 5.2568 | 6.6751 |  |  |
| D | 0.017 | 58.8235 | 0.0880 | 4.9476 | 4.9476 | 5.4289 |  |  |
| C | 0.016 | 62.5000 | 0.0935 | 5.2568 | 5.9947 | 7.1281 |  |  |
| B | 0.012 | 83.3333 | 0.1247 | 7.0091 | 10.5193 | 15.9113 |  |  |
| A | 0.006 | 166.6667 | 0.2493 | 14.0183 | 26.4524 | 45.5521 |  |  |
| sw5 |  | 52.7565 | 0.0789 | 4.4373 | 6.0598 | 8.5520 |  |  |
| sw6 |  | 52.7565 | 0.0789 | 4.4373 | 4.4373 | 6.2316 |  |  |
| Total |  | 668.5033 | 1.0000 | 56.2275 |  |  |  |  |


| 6th |  | Wind Loads (kips) |  | 54.6439 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | 1/ $\Delta$ | Stiffness | 6th | plus torsion | plus actorsion |
| G | 0.013 | 76.9231 | 0.0907 | 4.9552 | 4.9552 | 9.6524 |
| F | 0.012 | 83.3333 | 0.0982 | 5.3682 | 5.3682 | 8.8648 |
| E | 0.013 | 76.9231 | 0.0907 | 4.9552 | 4.9552 | 6.8113 |
| D | 0.014 | 71.4286 | 0.0842 | 4.6013 | 4.6013 | 5.1877 |
| C | 0.013 | 76.9231 | 0.0907 | 4.9552 | 5.7165 | 7.0708 |
| B | 0.01 | 100.0000 | 0.1179 | 6.4418 | 9.7199 | 15.5521 |
| A | 0.005 | 200.0000 | 0.2358 | 12.8836 | 24.3438 | 44.7329 |
| sw5 |  | 81.3706 | 0.0959 | 5.2417 | 7.2108 | 10.7141 |
| sw6 |  | 81.3706 | 0.0959 | 5.2417 | 5.2417 | 8.2156 |
| Total |  | 848.2724 | 1.0000 | 54.6439 |  |  |

Appendix 1: Loads

| 5th |  | Wind Loads (kips) |  | 53.1847 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 5 th | plus torsion | plus actorsion |  |  |
| G | 0.01 | 100.0000 | 0.0872 | 4.6387 | 4.6387 | 10.3094 |  |  |
| F | 0.009 | 111.1111 | 0.0969 | 5.1541 | 5.1541 | 9.4497 |  |  |
| E | 0.01 | 100.0000 | 0.0872 | 4.6387 | 4.6387 | 6.8203 |  |  |
| D | 0.011 | 90.9091 | 0.0793 | 4.2170 | 4.2170 | 4.8331 |  |  |
| C | 0.01 | 100.0000 | 0.0872 | 4.6387 | 5.4751 | 7.1377 |  |  |
| B | 0.008 | 125.0000 | 0.1090 | 5.7984 | 8.9753 | 15.2905 |  |  |
| A | 0.004 | 250.0000 | 0.2180 | 11.5968 | 22.5179 | 44.2274 |  |  |
| sw5 |  | 134.7608 | 0.1175 | 6.2512 | 8.8145 | 13.9098 |  |  |
| sw6 |  | 134.7608 | 0.1175 | 6.2512 | 6.2512 | 10.7720 |  |  |
| Total |  | 1146.5418 | 1.0000 | 53.1847 |  |  |  |  |


| 4th |  | Wind Loads (kips) |  | 51.5347 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 4th | plus torsion | plus actorsion |  |
| G | 0.007 | 142.8571 | 0.0864 | 4.4537 | 4.4537 | 15.1538 |  |
| F | 0.007 | 142.8571 | 0.0864 | 4.4537 | 4.4537 | 11.7033 |  |
| E | 0.008 | 125.0000 | 0.0756 | 3.8970 | 3.8970 | 7.4224 |  |
| D | 0.008 | 125.0000 | 0.0756 | 3.8970 | 3.8970 | 4.9064 |  |
| C | 0.008 | 125.0000 | 0.0756 | 3.8970 | 4.0912 | 5.7921 |  |
| B | 0.006 | 166.6667 | 0.1008 | 5.1960 | 5.9393 | 12.4487 |  |
| A | 0.003 | 333.3333 | 0.2017 | 10.3920 | 12.9164 | 35.0243 |  |
| sw5 |  | 246.1538 | 0.1489 | 7.6741 | 8.5036 | 15.7683 |  |
| sw6 |  | 246.1538 | 0.1489 | 7.6741 | 7.6741 | 18.4810 |  |
| Total |  | 1653.0220 | 1.0000 | 51.5347 |  |  |  |


| 3rd |  | Wind Loads (kips) |  | 49.8415 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 3rd | plus torsion | plus actorsion |
| G | 0.005 | 200.0000 | 0.0718 | 3.5773 | 3.5773 | 15.2968 |
| F | 0.005 | 200.0000 | 0.0718 | 3.5773 | 3.5773 | 11.4965 |
| E | 0.005 | 200.0000 | 0.0718 | 3.5773 | 3.5773 | 7.9495 |
| D | 0.005 | 200.0000 | 0.0718 | 3.5773 | 3.5773 | 4.7826 |
| C | 0.005 | 200.0000 | 0.0718 | 3.5773 | 3.6052 | 5.5947 |
| B | 0.004 | 250.0000 | 0.0897 | 4.4716 | 4.5696 | 11.5534 |
| A | 0.002 | 500.0000 | 0.1794 | 8.9432 | 9.2744 | 32.8780 |
| sw5 |  | 518.2839 | 0.1860 | 9.2702 | 9.4243 | 20.4067 |
| sw6 |  | 518.2839 | 0.1860 | 9.2702 | 9.2702 | 27.0019 |
| Total |  | 2786.5678 | 1.0000 | 49.8415 |  |  |

Daniel Painter

| 2nd |  | Wind Loads (kips) |  | 47.4893 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\Delta$ | $1 / \Delta$ | Stiffness | 2nd | plus torsion | plus actorsion |  |  |
| G | 0.003 | 333.3333 | 0.0566 | 2.6895 | 2.6895 | 11.7042 |  |  |
| F | 0.003 | 333.3333 | 0.0566 | 2.6895 | 2.6895 | 8.8100 |  |  |
| E | 0.003 | 333.3333 | 0.0566 | 2.6895 | 2.6895 | 6.1086 |  |  |
| D | 0.003 | 333.3333 | 0.0566 | 2.6895 | 2.6895 | 3.6967 |  |  |
| C | 0.003 | 333.3333 | 0.0566 | 2.6895 | 3.0515 | 4.8182 |  |  |
| B | 0.002 | 500.0000 | 0.0850 | 4.0343 | 5.6214 | 13.3676 |  |  |
| A | 0.001 | 1000.0000 | 0.1699 | 8.0686 | 13.4804 | 39.8930 |  |  |
| sw5 |  | 1359.5166 | 0.2310 | 10.9694 | 14.2202 | 30.0859 |  |  |
| sw6 |  | 1359.5166 | 0.2310 | 10.9694 | 10.9694 | 32.5873 |  |  |
| Total |  | 5885.6999 | 1.0000 | 47.4893 |  |  |  |  |


| ground |  | Wind Loads (kips) |  | 49.8647 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frame | $\boldsymbol{\Delta}$ | $1 / \boldsymbol{\Delta}$ | Stiffness | ground | plus torsion | plus actorsion |
| G | 0.001 | 1000.0000 | 0.0579 | 2.8896 | 2.8896 | 11.6584 |
| F | 0.001 | 1000.0000 | 0.0579 | 2.8896 | 2.8896 | 8.4661 |
| E | 0.001 | 1000.0000 | 0.0579 | 2.8896 | 2.8896 | 5.4866 |
| D | 0.001 | 1000.0000 | 0.0579 | 2.8896 | 2.9252 | 3.0241 |
| C | 0.001 | 1000.0000 | 0.0579 | 2.8896 | 4.4228 | 8.6795 |
| B | 0.001 | 1000.0000 | 0.0579 | 2.8896 | 6.1001 | 15.0136 |
| A | 0.001 | 1000.0000 | 0.0579 | 2.8896 | 7.8972 | 21.8001 |
| sw5 |  | 5128.2051 | 0.2972 | 14.8186 | 28.0572 | 64.8120 |
| sw6 |  | 5128.2051 | 0.2972 | 14.8186 | 14.8186 | 38.7777 |
| Total |  | 17256.4103 | 1.0000 | 49.8647 |  |  |

## Appendix 2: Structural Details, Schedules and Tables

## ADOSS Runs - Concrete Redesign N-S Direction

## NEGATIVE REINFORCEMENT



## POSITIVE REINFORCEMENT



## DESIGN RESULTS

## NEGATIVE REINFORCEMENT

| * | COLUMN STRIP |  |  |  |  |  |  |  |  | MIDDLE STRIP |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | LONG BARS |  |  |  |  | SHORT BARS |  |  |  | LONG BARS |  |  |
| COLUMN | * | -BAR-LENGTH- |  |  |  | -BAR-LENGTH- |  |  |  | -BAR-LENGTH- |  |  |
| NUMBER | *NO | SIZE | $\begin{gathered} \text { E LEFT } \\ (\mathrm{ft}) \end{gathered}$ | RIGHT <br> (ft) | $\begin{aligned} & \text { *NO } \\ & \text { * } \end{aligned}$ | SIZE | $\begin{gathered} \text { LEFT } \\ (\mathrm{ft}) \end{gathered}$ | $\begin{gathered} \text { RIGHT, } \\ (\mathrm{ft}) \end{gathered}$ |  | SIZE | $\begin{gathered} \text { LEFT } \\ (\mathrm{ft}) \end{gathered}$ | $\begin{aligned} & \text { RIGHT } \\ & \text { (ft) } \end{aligned}$ |
| 1 | 10 | \#5 | 2.00 | 10.41 | 10 | \#5 | 2.00 | 6.70 | 16 | \# 4 | 2.00 | 9.41 |
| 2 | 10 | \# 61 | 12.46 | 14.83 | 10 | \# 6 | 7.12 | 8.31 | 23 | \# 5 | 12.46 | 14.83 |
| 3 | 10 | \#5 1 | 11.86 | 11.86 | 10 | \# 5 | 6.78 | 6.78 | 24 | \# 4 | 11.84 | 11.84 |
| 4 | 10 | \# 61 | 14.83 | 12.46 | 10 | \# 6 | 8.31 | 7.12 | 23 | \# 5 | 14.83 | 12.46 |
| 5 | 10 | \#5 10 | 10.41 | 2.00 | 10 | \# 5 | 6.70 | 2.00 | 16 | \# 4 | 9.41 | 2.00 |

## POSITIVE REINFORCEMENT



| \# | $\begin{aligned} & \text { * NO } \\ & \text { * } \end{aligned}$ | SIZE | $\begin{gathered} \text { LENGTI } \\ (\mathrm{ft}) \end{gathered}$ | NO | SIZE | $\begin{gathered} \text { LENGTI } \\ (\mathrm{ft}) \end{gathered}$ | ${ }^{*} \mathrm{NO}$ | SIZE | $\begin{gathered} \text { LENGTI } \\ (\mathrm{ft}) \end{gathered}$ |  | SIZE | $\begin{gathered} \text { LENGTH } \\ (\mathrm{ft}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 12 | \# 4 | 26.19 | 12 | \# 4 | 26.19 | 8 | \# 4 | 30.25 | 8 | \# 4 | 25.42 |
| 3 | 8 | \# 4 | 21.75 | 8 | \# 4 | 21.75 | 8 | \# 4 | 29.50 | 8 | \# 4 | 20.30 |
| 4 | 8 | \# 4 | 21.75 | 8 | \# 4 | 21.75 | 8 | \# 4 | 29.50 | 8 | \# 4 | 20.30 |
| 5 | 12 | \# 4 | 26.19 | 12 | \# 4 | 26.19 | 8 | \# 4 | 30.25 | 8 | \# 4 | 25.42 |

## ADDITIONAL INFORMATION ATSUPPORTS

| \# |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.37 | 9.40 | 607.1 | 60 | 364.3 |  | 4 |  | 7.5 | 4.01 | 3 | \#5 |
| 2 | 15.42 | 15.93 | -343.8 | . 60 | -206.3 |  | 7 |  | 7.5 | 2.26 | 0 | \# 6 |
| 3 | 10.90 | 11.00 | -255.9 | . 60 | -153.6 |  | 5 |  | 7.5 | 1.68 | 0 | \#5 |
| 4 | 15.42 | 15.93 | 343.8 | . 60 | 206.3 |  | 8 |  | 7.5 | 2.26 | 0 | \# 6 |
| 5 | 9.37 | 9.40 | -607.1 | . 60 | -364.3 |  | 4 |  | 7.5 | 4.01 | 3 | \# 5 |

## ADDITIONAL INFORMATION FOR IN-SPAN CONDITIONS

| SPAN NUMBER | REINF. SUMMARY * |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | TOTAL FACTORED SPAN |  |  |  |  |
|  | * | AT MIDSPAN |  |  | STATIC DESIGN MOMENT |
|  | * | REQ'D | - PROV'D |  | (W/O PARTIAL LOADS) |
|  | * | (sq.in) | (sq.in) |  | (ft-k) |
| 2 |  | 7.78 | 8.00 |  | 1001.1 |
| 3 |  | 6.26 | 6.40 |  | 898.5 |
| 4 |  | 6.26 | 6.40 |  | 898.5 |
| 5 |  | 7.78 | 8.00 |  | 1001.1 |

## DEFLECTION ANALYSIS



Daniel Painter
page 82
$5^{\text {th }}$ Year Thesis - Two Freedom Square

| 5 | 109225. | .099 | .059 | .158 | .062 | .038 | .099 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | 189449. | -.016 | -.010 | -.026 | -.016 | -.010 | -.026 |

## ADOSS Runs - Concrete Redesign E-W Direction

## NEGATIVE REINFORCEMENT

| COLUMN*PATT*LOCATION |  |  |  |  |  | $\begin{aligned} & \text { * COLUMN STRIP } \\ & \text { * AREA WIDTH } \\ & \text { * (sq.in) (ft) } \\ & \hline \end{aligned}$ |  |  | $\begin{array}{cc} * & \text { MIDDLE } \\ * & \text { AREA } \\ \text { * } & \text { (sq.in) } \\ \hline \end{array}$ |  | STRIP WIDTH (ft) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NUMBER* |  | * | COL |  | $\begin{array}{rr} C E * & \text { DESIGN } \\ * & (\mathrm{ft}-\mathrm{k}) \end{array}$ |  |  |  |  |  |  |
| 1 | 4 |  | , | R | 476.4 |  | 6.30 | 14.8 |  | 3.24 | 15.0 |
| 2 | 4 | L | \\| 1 |  | -1016.2 |  | 8.43 | 14.0 |  | 6.85 | 15.8 |
| 3 | 1 |  | \| 1 |  | -640.2 |  | 5.81 | 12.5 |  | 4.26 | 17.3 |
| 4 | 1 |  |  | R | 570.5 |  | 5.81 | 12.5 |  | 3.79 | 17.3 |
| 5 | 1 |  | \| \| | R | 640.2 |  | 5.81 | 12.5 |  | 4.26 | 17.3 |
| 6 | 4 |  | \| \| | R | 1016.2 |  | 8.43 | 14.0 |  | 6.85 | 15.8 |
| 7 | 4 | L | \| | |  | -476.4 |  | 6.30 | 14.8 |  | 3.24 | 15.0 |

## POSITIVE REINFORCEMENT



## DESIGN RESULTS

## NEGATIVE REINFORCEMENT

| * | COLUMN STRIP |  |  |  |  |  |  |  |  | MIDDLE STRIP |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * | LONG BARS |  |  |  |  | SHORT BARS |  |  |  | LONG BARS |  |  |
| COLUMN | * | -BAR-LENGTH- |  |  |  | -BAR-LENGTH- |  |  |  | -BAR-LENGTH- |  |  |
| NUMBER | *NO | SIZE | $\begin{gathered} \text { EEFT } \\ (\mathrm{ft}) \end{gathered}$ | RIGHT <br> (ft) | $\begin{aligned} & \text { [*NO } \\ & \text { * } \end{aligned}$ | SIZE | $\begin{aligned} & \text { LEFT } \\ & (\mathrm{ft}) \end{aligned}$ | $\begin{aligned} & \text { RIGHT } \\ & (\mathrm{ft}) \end{aligned}$ |  | SIZE | $\begin{gathered} \text { LEFT } \\ (\mathrm{ft}) \end{gathered}$ | $\begin{aligned} & \text { RIGHT } \\ & (\mathrm{ft}) \end{aligned}$ |
| 1 | 11 | \#5 | 2.00 | 10.24 | 10 | \#5 | 2.00 | 6.60 | 16 | \# 4 | 2.00 | 9.25 |
| 2 | 10 | \#6 1 | 12.25 | 14.35 | 9 | \# 6 | 7.00 | 8.05 | 22 | \# 5 | 12.25 | 14.35 |
| 3 | 10 | \#5 1 | 11.51 | 12.96 | 9 | \# 5 | 6.61 | 7.33 | 22 | \# 4 | 11.43 | 12.88 |
| 4 | 10 | \#5 1 | 11.71 | 11.71 | 9 | \# 5 | 6.71 | 6.71 | 19 | \# 4 | 11.44 | 11.44 |
| 5 | 10 | \#5 1 | 12.96 | 11.51 | 9 | \#5 | 7.33 | 6.61 | 22 | \# 4 | 12.88 | 11.43 |

Daniel Painter

```
6 10 #6 14.35 12.25 9 #6 8.05 7.00 22 #5 14.35 12.25
```

711 \#5 10.24 $2.00 \quad 10$ \#5 $6.60 \quad 2.00 \quad 16 \quad \# 4 \quad 9.25 \quad 2.00$


## ADDITIONAL INFORMATION ATSUPPORTS

| \# |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.54 | 9.71 | 591.0 | . 60 | 354.6 | 4 |  | 7.5 | 3.90 | 3 | \#5 |
| 2 | 15.18 | 15.18 | -300.1 | . 60 | -180.1 | 3 |  | 7.5 | 1.97 | 0 | \#6 |
| 3 | 10.07 | 10.29 | -185.1 | . 60 | -111.0 | 2 |  | 7.5 | 1.21 | 0 | \#5 |
| 4 | 9.60 | 9.69 | 182.9 | . 60 | 109.7 | 6 |  | 7.5 | 1.20 | 0 | \# 5 |
| 5 | 10.07 | 10.29 | 185.1 | . 60 | 111.0 | 3 |  | 7.5 | 1.21 | 0 | \#5 |
| 6 | 15.18 | 15.18 | 300.1 | . 60 | 180.1 | 2 |  | 7.5 | 1.97 | 0 | \# 6 |
| 7 | 9.54 | 9.71 | -591.0 | . 60 | -354.6 | 4 |  | 7.5 | 3.90 | 3 | \#5 |

## ADDITIONAL INFORMATION FOR IN-SPANCONDITIONS




## Shear Walls - Reinforcement Details

- Walls 1 to 4 are in N-S direction
- Walls 5 and 6 are in E-W direction

| Wall 1 | Reinforcement Req'd | Vu | Mu | $\Phi V \mathrm{n}$ | $\Phi \mathbf{M n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ground | 10-\#9 each side | 63.89 | 4505.15 | 611.25 | 4819.41 |
| 2nd | 9-\#8 each side | 50.73 | 3355.12 | 523.05 | 3471.93 |
| 3rd | 9-\#7 each side | 39.03 | 2644.96 | 443.25 | 2657.28 |
| 4th | 8-\#7 each side | 30.64 | 2098.51 | 443.25 | 2368.38 |
| 5th | 8-\#6 each side | 24.95 | 1669.55 | 376.05 | 1746.75 |
| 6th | 7-\#6 each side | 19.83 | 1320.30 | 376.05 | 1531.39 |
| 7 th | 5-\#6 each side | 15.99 | 1042.73 | 376.05 | 1098.12 |
| 8th | 4-\#6 each side | 13.04 | 818.89 | 376.05 | 880.21 |
| 9th | 3-\#6 each side | 10.57 | 636.39 | 376.05 | 661.44 |
| 10th | 3-\#6 each side | 8.61 | 488.43 | 376.05 | 661.44 |
| 11th | 2-\#6 each side | 6.94 | 367.92 | 376.05 | 441.81 |
| 12th | 2-\#6 each side | 5.64 | 270.80 | 376.05 | 441.81 |
| 13th | 1-\#6 each side | 4.53 | 191.89 | 376.05 | 221.33 |
| 14th | 1-\#6 each side | 3.51 | 128.43 | 376.05 | 221.33 |
| 15th | 1-\#6 each side | 2.64 | 79.31 | 376.05 | 221.33 |
| 16th | 1-\#6 each side | 1.82 | 42.38 | 376.05 | 221.33 |
| roof | 1-\#6 each side | 0.77 | 16.87 | 376.05 | 221.33 |

Daniel Painter
page 85
$5^{\text {th }}$ Year Thesis - Two Freedom Square

Appendix 2: Structural Details, Schedules and Tables

| Wall 2 | Reinforcement Req' $\mathbf{d}$ | $\mathbf{V u}$ | $\mathbf{M u}$ | $\Phi V n$ | $\Phi M n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ground | 10-\#9 each side | 61.04 | 4374.00 | 611.25 | 4819.41 |
| 2nd | 9-\#8 each side | 47.88 | 3275.29 | 523.05 | 3471.93 |
| 3rd | 9-\#7 each side | 36.18 | 2605.04 | 443.25 | 2657.28 |
| 4th | 8-\#7 each side | 30.64 | 2098.51 | 443.25 | 2368.38 |
| 5th | 8-\#6 each side | 24.95 | 1669.55 | 376.05 | 1746.75 |
| 6th | 7-\#6 each side | 19.83 | 1320.30 | 376.05 | 1531.39 |
| 7th | 5-\#6 each side | 15.99 | 1042.73 | 376.05 | 1098.12 |
| 8th | 4-\#6 each side | 13.04 | 818.89 | 376.05 | 880.21 |
| 9th | 3-\#6 each side | 10.57 | 636.39 | 376.05 | 661.44 |
| 10th | 3-\#6 each side | 8.61 | 488.43 | 376.05 | 661.44 |
| 11th | 2-\#6 each side | 6.94 | 367.92 | 376.05 | 441.81 |
| 12th | 2-\#6 each side | 5.64 | 270.80 | 376.05 | 441.81 |
| 13th | 1-\#6 each side | 4.53 | 191.89 | 376.05 | 221.33 |
| 14th | 1-\#6 each side | 3.51 | 128.43 | 376.05 | 221.33 |
| 15th | 1-\#6 each side | 2.64 | 79.31 | 376.05 | 221.33 |
| 16th | 1-\#6 each side | 1.82 | 42.38 | 376.05 | 221.33 |
| roof | 1-\#6 each side | 0.77 | 16.87 | 376.05 | 221.33 |


| Wall 3 | Reinforcement Req' $\mathbf{~}$ | Vu | $\mathbf{M u}$ | $\Phi V \mathrm{n}$ | $\Phi \mathbf{M n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ground | 10-\#8 each side | 53.23 | 3587.93 | 523.05 | 3843.93 |
| 2nd | 9-\#8 each side | 35.86 | 2629.75 | 523.05 | 3471.93 |
| 3rd | 9-\#7 each side | 28.40 | 2127.66 | 443.25 | 2657.28 |
| 4th | 8-\#7 each side | 22.86 | 1730.01 | 443.25 | 2368.38 |
| 5th | 8-\#6 each side | 18.94 | 1409.93 | 376.05 | 1746.75 |
| 6th | 7-\#6 each side | 15.54 | 1144.82 | 376.05 | 1531.39 |
| 7th | 5-\#6 each side | 12.97 | 927.31 | 376.05 | 1098.12 |
| 8th | 4-\#6 each side | 10.92 | 745.79 | 376.05 | 880.21 |
| 9th | 3-\#6 each side | 9.17 | 592.85 | 376.05 | 661.44 |
| 10th | 3-\#6 each side | 7.74 | 464.42 | 376.05 | 661.44 |
| 11th | 2-\#6 each side | 6.46 | 356.06 | 376.05 | 441.81 |
| 12th | 2-\#6 each side | 5.38 | 265.62 | 376.05 | 441.81 |
| 13th | 1-\#6 each side | 4.42 | 190.31 | 376.05 | 221.33 |
| 14th | 1-\#6 each side | 3.51 | 128.43 | 376.05 | 221.33 |
| 15th | 1-\#6 each side | 2.64 | 79.31 | 376.05 | 221.33 |
| 16th | 1-\#6 each side | 1.82 | 42.38 | 376.05 | 221.33 |
| roof | 1-\#6 each side | 0.77 | 16.87 | 376.05 | 221.33 |


| Wall 4 | Reinforcement Req'd | Vu | Mu | $\Phi V \mathrm{n}$ | $\Phi \mathbf{M n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ground | 8-\#10 each side | 81.23 | 4875.70 | 724.65 | 4892.94 |
| 2nd | 9-\#8 each side | 63.86 | 3413.61 | 523.05 | 3471.93 |
| 3rd | 9-\#7 each side | 56.40 | 2519.59 | 443.25 | 2657.28 |
| 4th | 8-\#6 each side | 22.86 | 1730.01 | 376.05 | 1746.75 |
| 5th | 7-\#6 each side | 18.94 | 1409.93 | 376.05 | 1531.39 |
| 6th | 6-\#6 each side | 15.54 | 1144.82 | 376.05 | 1315.19 |
| 7 th | 5-\#6 each side | 12.97 | 927.31 | 376.05 | 1098.12 |
| 8th | 4-\#6 each side | 10.92 | 745.79 | 376.05 | 880.21 |
| 9th | 3-\#6 each side | 9.17 | 592.85 | 376.05 | 661.44 |
| 10th | 3-\#6 each side | 7.74 | 464.42 | 376.05 | 661.44 |
| 11th | 2-\#6 each side | 6.46 | 356.06 | 376.05 | 441.81 |
| 12th | 2-\#6 each side | 5.38 | 265.62 | 376.05 | 441.81 |
| 13th | 1-\#6 each side | 4.42 | 190.31 | 376.05 | 221.33 |
| 14th | 1-\#6 each side | 3.51 | 128.43 | 376.05 | 221.33 |
| 15th | 1-\#6 each side | 2.64 | 79.31 | 376.05 | 221.33 |
| 16th | 1-\#6 each side | 1.82 | 42.38 | 376.05 | 221.33 |
| roof | 1-\#6 each side | 0.77 | 16.87 | 376.05 | 221.33 |


| Wall 5 | Reinforcement Req'd | $\mathbf{V u}$ | $\mathbf{M u}$ | $\Phi V n$ | $\Phi M n$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ground | 16-\#11 each side | 332.69 | 22706.41 | 1533.3 | 22966.14 |
| 2nd | 12-\#11 each side | 228.99 | 16718.00 | 1533.3 | 17804.37 |
| 3rd | 11-\#10 each side | 180.85 | 13512.13 | 1281 | 13616.05 |
| 4th | 9-\#10 each side | 148.20 | 10980.19 | 1281 | 11284.5 |
| 5th | 9-\#9 each side | 122.97 | 8905.36 | 1046.1 | 8993.98 |
| 6th | 8-\#9 each side | 100.72 | 7183.74 | 1046.1 | 8034.35 |
| 7th | 8-\#8 each side | 83.57 | 5773.71 | 863.38 | 6399.84 |
| 8th | 6-\#8 each side | 69.89 | 4603.66 | 863.38 | 4837.05 |
| 9th | 6-\#7 each side | 58.96 | 3625.19 | 698.08 | 3694.08 |
| 10th | 5-\#7 each side | 49.97 | 2799.74 | 698.08 | 3087.33 |
| 11th | 5-\#6 each side | 42.11 | 2100.14 | 558.88 | 2272.78 |
| 12th | 5-\#5 each side | 33.57 | 1510.63 | 445.78 | 1606.28 |
| 13th | 4-\#5 each side | 26.22 | 1040.69 | 445.78 | 1286.93 |
| 14th | 3-\#5 each side | 19.89 | 673.59 | 445.78 | 966.63 |
| 15th | 2-\#4 each side | 13.88 | 395.11 | 350.08 | 416.81 |
| 16th | 1-\#4 each side | 8.86 | 200.80 | 350.08 | 208.6 |
| roof | 1-\#4 each side | 3.49 | 76.79 | 350.08 | 208.6 |

Appendix 2: Structural Details, Schedules and Tables

| Wall 6 | Reinforcement Req' C | Vu | Mu | $\boldsymbol{\Phi V n}$ | $\boldsymbol{\Phi} \mathbf{M n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ground | 12-\#11 each side | 272.66 | 17595.78 | 1533.3 | 17804.37 |
| 2nd | 11-\#10 each side | 210.62 | 12687.91 | 1281 | 13616.05 |
| 3rd | 10-\#9 each side | 158.48 | 9739.30 | 1046.1 | 9943.68 |
| 4th | 8-\#9 each side | 115.27 | 7520.65 | 1046.1 | 8034.35 |
| 5th | 8-\#8 each side | 85.70 | 5906.83 | 863.38 | 6399.84 |
| 6th | 8-\#7 each side | 68.47 | 4707.00 | 698.08 | 4896.85 |
| 7th | 7-\#7 each side | 55.32 | 3748.45 | 698.08 | 4297.25 |
| 8th | 7-\#6 each side | 45.35 | 2973.93 | 558.88 | 3168.44 |
| 9th | 6-\#6 each side | 37.25 | 2339.00 | 558.88 | 2721.57 |
| 10th | 4-\#6 each side | 30.73 | 1817.55 | 558.88 | 1822.07 |
| 11th | 5-\#5 each side | 25.14 | 1387.33 | 558.88 | 1606.28 |
| 12th | 5-\#4 each side | 21.00 | 1035.36 | 350.08 | 1039.04 |
| 13th | 4-\#4 each side | 17.23 | 741.40 | 350.08 | 832.02 |
| 14th | 3-\#4 each side | 13.68 | 500.19 | 350.08 | 624.61 |
| 15th | 2-\#4 each side | 10.30 | 308.69 | 350.08 | 416.81 |
| 16th | 1-\#4 each side | 7.10 | 164.42 | 350.08 | 208.6 |
| roof | 1-\#4 each side | 2.95 | 64.95 | 350.08 | 208.6 |

Relative Stiffness Calculations for Shear Walls

| 20' Shear Wall |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | E | L h | t | R |
| ground | 360020 | 2018 | 8 | 5128.2051 |
| 2nd | 360020 | 2032 | 8 | 1359.5166 |
| 3rd | 360020 | 2046 | 8 | 518.2839 |
| 4th | 360020 | 2060 | 8 | 246.1538 |
| 5th | 360020 | 2074 | 8 | 134.7608 |
| 6th | 360020 | 2088 | 8 | 81.3706 |
| 7th | 360020 | 20102 | 8 | 52.7565 |
| 8th | 360020 | 20116 | 8 | 36.0971 |
| 9th | 360020 | 20130 | 8 | 25.7603 |
| 10th | 360020 | 20144 | 8 | 19.0150 |
| 11th | 360020 | 20158 | 8 | 14.4299 |
| 12th | 360020 | 20172 | 8 | 11.2061 |
| 13th | 360020 | 20186 | 8 | 8.8743 |
| 14th | 360020 | 20200 | 8 | 7.1464 |
| 15th | 360020 | 20214 | 8 | 5.8391 |
| 16th | 360020 | 20228 | 8 | 4.8319 |
| roof | 36002 | 20250 | 8 | 3.6688 |


| 10' Shear Wall |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | E | L | h | t | R |
| ground | 3600 | 10 | 18 | 18 | 2255.6391 |
| 2nd | 3600 | 10 | 32 | 18 | 460.6460 |
| 3rd | 3600 | 10 | 46 | 18 | 160.7366 |
| 4th | 3600 | 10 | 60 | 18 | 73.4694 |
| 5th | 3600 | 10 | 74 | 18 | 39.4377 |
| 6th | 3600 | 10 | 88 | 18 | 23.5440 |
| 7th | 3600 | 10 | 102 | 18 | 15.1564 |
| 8th | 3600 | 10 | 116 | 18 | 10.3211 |
| 9th | 3600 | 10 | 130 | 18 | 7.3411 |
| 10th | 3600 | 10 | 144 | 18 | 5.4058 |
| 11th | 3600 | 10 | 158 | 18 | 4.0949 |
| 12th | 3600 | 10 | 172 | 18 | 3.1756 |
| 13th | 3600 | 10 | 186 | 18 | 2.5121 |
| 14th | 3600 | 10 | 200 | 18 | 2.0212 |
| 15th | 3600 | 10 | 214 | 18 | 1.6503 |
| 16th | 3600 | 10 | 228 | 18 | 1.3648 |
| roof | 3600 | 10 | 250 | 18 | 1.0356 |

Appendix 2: Structural Details, Schedules and Tables

Column Schedules
Concrete Design Column Table

| Column Line /Level | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| roof | $18 \times 18$ |
|  | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 | 4-\#10 | 4-\#9 | 8-\#9 | 4-\#9 | 8-\#9 |
| 16 | $8 \times 18$ | $18 \times 18$ | 18×18 | 18×18 | $18 \times 18$ | 18×18 | $18 \times 18$ | $18 \times 18$ |
|  | \#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 | 4-\#10 | 4-\#9 | 8-\#9 | 4-\#9 | 8-\#9 |
| 15 | 18×18 | $18 \times 18$ | 18×18 | $18 \times 18$ | 18×18 | $18 \times 18$ | $18 \times 18$ | $18 \times 18$ |
|  | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 | 4-\#10 | 4-\#9 | 8-\#9 | 4-\#9 | 8-\#9 |
| 14 | 18×18 | $18 \times 18$ | 18×18 | $18 \times 18$ | 18×18 | 18×18 | $18 \times 18$ |
|  | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 | 4-\#10 | 4-\#9 | 8-\#9 | 4-\#9 | 8-\#9 |
| 13 | 18×18 | $18 \times 18$ |
|  | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 | 4-\#10 | 4-\#9 | 8-\#9 | 4-\#9 | 8-\#9 |
| 12 | 18×18 | $18 \times 18$ | 18×18 | 18×18 | 18×18 |
|  | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 | 4-\#10 | 8-\#10 | 8-\#10 | 8-\#9 | 8-\#10 |
| 11 | 18×18 | $18 \times 18$ | 18×18 | $18 \times 18$ | $18 \times 18$$8-\# 10$ | $\begin{aligned} & 18 \times 18 \\ & 8-\# 10 \end{aligned}$ | $\begin{gathered} 18 \times 18 \\ 8-\# 9 \end{gathered}$ | $\begin{aligned} & 18 \times 18 \\ & 8-\# 10 \end{aligned}$ |
|  |  | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 | 4-\#10 |  |  |  |  |
| 10 | 18×18 | $18 \times 18$ | $18 \times 18$ | 18×18 | $18 \times 18$$4-\# 9$ | 18×18 | $\begin{gathered} 18 \times 18 \\ 8-\# 9 \end{gathered}$ | $\begin{aligned} & 18 \times 18 \\ & 4-\# 10 \end{aligned}$ | $\begin{aligned} & 18 \times 18 \\ & 8-\# 10 \end{aligned}$ | $\begin{aligned} & 18 \times 18 \\ & 8-\# 10 \end{aligned}$ | $\begin{gathered} 18 \times 18 \\ 8-\# 9 \end{gathered}$ | $\begin{aligned} & 18 \times 18 \\ & 8-\# 10 \end{aligned}$ |
|  |  | 4-\#9 | 4-\#9 | 4-\#9 |  |  |  |  |  |  |  |  |
| 9 | $\begin{array}{r} 24 \times 24 \\ 4-\# 11 \end{array}$ | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ | $\begin{aligned} & 24 \times 24 \\ & 4-\# 11 \end{aligned}$ | $24 \times 24$ | $24 \times 24$$4-\# 11$ | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ | 24x24 | 24×24 | $24 \times 24$ | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ | $24 \times 24$ |
|  |  |  |  | 4-\#11 |  |  |  | 4-\#11 | 4-\#11 | 24×24 |  | 4-\#11 |
|  | $24 \times 24$ | $24 \times 24$ | $24 \times 24$ | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ | $\begin{aligned} & 24 \times 24 \\ & 4-\# 11 \end{aligned}$ | $24 \times 24$ | $24 \times 24$ | $\begin{array}{ll} 4 & 24 \times 24 \\ 1 & 4-\# 11 \end{array}$ |  |  | $24 \times 24$ | $24 \times 24$ |
| 8 | 4-\#11 | 4-\#11 | 4-\#11 |  |  | $\begin{array}{r} 4-\# 11 \\ +24 \times 24 \end{array}$ | 4-\#11 |  | $4-\# 11$ | $4-\# 11$ | 4-\#11 | 4-\#11 |
|  | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ | $\begin{aligned} & 24 \times 24 \\ & 4-\# 11 \end{aligned}$ | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ | $24 \times 24$ | $24 \times 24$ |  | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ | $\begin{aligned} & 24 \times 24 \\ & 4-\# 11 \end{aligned}$ | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ | $\begin{aligned} & 24 \times 24 \\ & 4-\# 11 \end{aligned}$ | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ |
| 7 |  |  |  | 4-\#11 | 4-\#11 | $\begin{gathered} 24 \times 24 \\ 4-\# 11 \end{gathered}$ |  |  |  |  |  |  |
|  | $\left\lvert\, \begin{array}{l\|} 4-\# 11 \\ 24 \times 24 \end{array}\right.$ | $24 \times 24$ | 24×24 | $24 \times 24$ | $24 \times 24$ | $24 \times 24$ | $24 \times 24$ | 24×24 | 24×24 | $24 \times 24$ | $24 \times 24$ | $24 \times 24$ |
| 6 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 8-\#11 | 8-\#11 | 4-\#11 | 8-\#11 |
|  | $24 \times 24$ |
| 5 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 8-\#11 | 8-\#11 | 4-\#11 | 8-\#11 |
|  | 24×24 | $24 \times 24$ | 24×24 | $24 \times 24$ | $24 \times 24$ | $24 \times 24$ | $24 \times 24$ | 24×24 | $24 \times 24$ | $24 \times 24$ | $24 \times 24$ | $24 \times 24$ |
| 4 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 8-\#11 | 8-\#11 | 4-\#11 | 8-\#11 |
|  | $24 \times 24$ |
| 3 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 8-\#11 | 8-\#11 | 8-\#11 | 8-\#11 |
|  | $24 \times 24$ |
| 2 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 8-\#11 | 8-\#11 | 8-\#11 | 8-\#11 |
|  | $24 \times 24$ |
| ground | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 8-\#1 | 8-\#1 | 8-\#11 | 8-\#1 |
|  | 30x30 | $30 \times 30$ | $30 \times 30$ | $30 \times 30$ | 30x30 | $30 \times 30$ | 30x30 | 30x30 | $30 \times 30$ | $30 \times 30$ | $30 \times 30$ | $30 \times 30$ |
| cellar 1 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 8-\#11 | 8-\#11 | 8-\#11 | 8-\#11 |
|  | 30x30 | $30 \times 30$ |
| cellar 2 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 8-\#11 | 8-\#11 | 8-\#11 | 8-\#11 |


| 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Daniel Painter

| 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18×18 | $18 \times 18$ | 18×18 | $18 \times 18$ | $18 \times 18$ |  |  |  |  |  |
| 4-\#9 | 4-\#10 | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 |  |  |  |  |  |
| $18 \times 18$ |  |  |  |  |  |
| 4-\#9 | 4-\#10 | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 |  |  |  |  |  |
| $18 \times 18$ |  |  |  |  |  |
| 4-\#9 | 4-\#10 | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 |  |  |  |  |  |
| $18 \times 18$ |  |  |  |  |  |
| 4-\#9 | 4-\#10 | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 |  |  |  |  |  |
| $18 \times 18$ |  |  | $18 \times 18$ | $18 \times 18$ | $18 \times 18$ |
| 4-\#9 | 4-\#10 | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 |  |  | 4-\#9 | 4-\#9 | 4-\#9 |
| $18 \times 18$ |  |  | $18 \times 18$ | $18 \times 18$ | $18 \times 18$ |
| 8-\#10 | 4-\#10 | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 |  |  | 4-\#9 | 4-\#9 | 4-\#9 |
| $18 \times 18$ |  |  | $18 \times 18$ | $18 \times 18$ | $18 \times 18$ |
| 8-\#10 | 4-\#10 | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 |  |  | 4-\#9 | 4-\#9 | 4-\#9 |
| 18×18 | $18 \times 18$ | 18×18 | 18×18 | $18 \times 18$ | $18 \times 18$ | $18 \times 18$ |
| 8-\#10 | 4-\#10 | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 8-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 | 4-\#9 |
| $24 \times 24$ |
| 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |
| $24 \times 24$ |
| 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |
| $24 \times 24$ |
| 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |
| $24 \times 24$ |
| 8-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |
| $24 \times 24$ |
| 8-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |
| $24 \times 24$ |
| 8-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |
| $24 \times 24$ |
| 8-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |
| $24 \times 24$ | 24×24 | $24 \times 24$ |
| 8-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |
| $24 \times 24$ |
| 8-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |
| 30x30 | $30 \times 30$ |
| 8-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |
| $30 \times 30$ |
| 8-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 | 4-\#11 |

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 51 \\ \hline & & & & & & & & & & \\ l l l l l l l l l l\end{array}\right)$

Composite and Non-Composite Steel Design Column Table

| Column Line | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| /Lev |  |  |  |  |  |  |  |  |
| roof | W18X86 | W12X40 | W16X36 | W12X26 | W16X36 | W12X40 | W18X86 | W18X86 |
| 16 | W18X86 | W12X40 | W16X36 | W12X26 | W16X36 | W12X40 | W18X86 | W18X86 |
| 15 | W21×111 | W18X76 | W16X67 | W21X62 | W16X67 | W18X76 | W21×111 | W21×111 |
| 14 | W21×111 | W18X76 | W16X67 | W21X62 | W16X67 | W18X76 | W21×111 | W21×111 |
| 13 | W21×111 | W18X76 | W16X67 | W21×62 | W16×67 | W18X76 | W21×111 | W21×111 |
| 12 | W27X146 | W30X99 | W30X99 | W30X99 | W30X99 | W30X99 | W27X146 | W27X146 |
| 11 | W27X146 W30X99 W30X99 W30X99 W30X99 W30X99 W27X146 W27X146 |  |  |  |  |  |  |  |
| 10 | W27X146 W30X99 W30X99 W30X99 W30X99 W30X99 W27X146 W27X146 |  |  |  |  |  |  |  |
| 9 | W30X173 W30X148 W30X148 W30X132 W30X148 W30X148 W30X173 W30X173 |  |  |  |  |  |  |  |
| 8 | W30X173 W30X148 W30X148 W30X132 W30X148 W30X148 W30X173 W30X173 |  |  |  |  |  |  |  |
| 7 | W30X173 W30X148 W30X148 W30X132 W30X148 W30X148 W30X173 W30X173 |  |  |  |  |  |  |  |
| 6 | W40X174 W40X167 W36X160 W40X149 W36X160 W40X167 W40X174 W40X192 |  |  |  |  |  |  |  |
| 5 | W40X174 W40X167 W36X160 W40X149 W36X160 W40X167 W40X174 W40X192 |  |  |  |  |  |  |  |
| 4 | W40X174 W40X167 W36X160 W40X149 W36X160 W40X167 W40X174 W40X192 |  |  |  |  |  |  |  |
| 3 | W44X290 W44X262 W44X230 W44X230 W44X230 W44X262 W44X290 W44X290 |  |  |  |  |  |  |  |
| 2 | W44X290 W44X262 W44X230 W44X230 W44X230 W44X262 W44X290 W44X290 |  |  |  |  |  |  |  |
| ground | W44X290 W44X262 W44X230 W44X230 W44X230 W44X262 W44X290 W44X290 |  |  |  |  |  |  |  |
| cellar 1 | W44X290 W44X262 W44X230 W44X230 W44X230 W44X262 W44X290 W44X290 |  |  |  |  |  |  |  |
| cellar 2 | W44X290 W44X262 W44X230 W44X230 W44X230 W44X262 W44X290 W44X290 |  |  |  |  |  |  |  |


| 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W16X36 | W12X30 | W12X30 | W12X30 | W16X36 | W18X86 | W18X86 | W12X30 | W12X30 |
| W16X36 | W12X30 | W12X30 | W12X30 | W16X36 | W18X86 | W18X86 | W12X30 | W12X30 |
| W18X86 | W16X67 | W16X67 | W16X67 | W18X86 | W21×111 | W21×111 | W18X86 | W16X67 |
| W18X86 | W16X67 | W16X67 | W16X67 | W18X86 | W21X111 | W21X111 | W18X86 | W16X67 |
| W18X86 | W16X67 | W16X67 | W16×67 | W18X86 | W21X111 | W21×111 | W18X86 | W16X67 |
| W24X131 | W27X102 | W30X99 | W27X102 | 24X131 | 27X1 | 7X1 | 27X117 | W24X10 |

W24X131 W27X102 W30X99 W27X102 W24X131 W27X146 W27X146 W27X117 W24X104

W24X131 W27X102 W30X99 W27X102 W24X131 W27X146 W27X146 W27X117 W24X104 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X148 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X148 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X148 W40X174 W40X174 W40X174 W40X174 W40X174 W40X192 W40X192 W40X174 W40X174 W40X174 W40X174 W40X174 W40X174 W40X174 W40X192 W40X192 W40X174 W40X174

W40X174 W40X174 W40X174 W40X174 W40X174 W40X192 W40X192 W40X174 W40X174 W44X290 W44X230 W44X230 W44X230 W44X290 W44X290 W44X290 W44X262 W44X230 W44X290 W44X230 W44X230 W44X230 W44X290 W44X290 W44X290 W44X262 W44X230 W44X290 W44X230 W44X230 W44X230 W44X290 W44X290 W44X290 W44X262 W44X230 W44X290 W44X230 W44X230 W44X230 W44X290 W44X290 W44X290 W44X262 W44X230 W44X290 W44X230 W44X230 W44X230 W44X290 W44X290 W44X290 W44X262 W44X230

| 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W12X30 | W12×30 | W12×30 | W18X86 | W18X86 | W16X36 | W12×30 | W12X30 | W12X30 |
| W12X30 | W12X30 | W12X30 | W18X86 | W18X86 | W16X36 | W12X30 | W12X30 | W12X30 |
| W16X67 | W16X67 | W18X86 | W21×111 | W21×111 | W18X86 | W16X67 | W16X67 | W16X67 |
| W16X67 | W16X67 | W18X86 | W21X111 | W21×111 | W18X86 | W16X67 | W16X67 | W16X67 |
| W24×104 | W16X67 | W18X86 | W21×111 | W21×111 | W18X86 | W16X67 | W16X67 | W16X67 |
| W24X104 | W24X104 | W27X117 | W27X146 | W27X146 | W24X131 | W27X102 | W30X99 | W27X102 |
| W24X104 W24X104 W27X117 W27X146 W27X146 W24X131 W27X102 W30X99 W27X102 |  |  |  |  |  |  |  |  |
| W30X90 W24X104 W27X117 W27X146 W27X146 W24X131 W27X102 W30X99 W27X102 |  |  |  |  |  |  |  |  |
| W30X148 W30X148 W30X173 W30X173 W30X173 W30×173 W30×173 W30X173 W30X173 |  |  |  |  |  |  |  |  |
| W30X148 W30X148 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 |  |  |  |  |  |  |  |  |
| W30X148 W30X148 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 W30X173 |  |  |  |  |  |  |  |  |
| W40X174 W40X174 W40X174 W40X192 W40X192 W40X174 W40X174 W40X174 W40X174 |  |  |  |  |  |  |  |  |
| W40X174 W40X174 W40X174 W40X192 W40X192 W40X174 W40X174 W40X174 W40X174 |  |  |  |  |  |  |  |  |
| W40X174 W40X174 W40X174 W40X192 W40X192 W40X174 W40X174 W40X174 W40X174 |  |  |  |  |  |  |  |  |
| W44X230 W44X230 W44X262 W44X290 W44X290 W44X290 W44X230 W44X230 W44X230 |  |  |  |  |  |  |  |  |
| W44X230 W44X230 W44X262 W44X290 W44X290 W44X290 W44X230 W44X230 W44X230 |  |  |  |  |  |  |  |  |
| W44X230 W44X230 W44X262 W44X290 W44X290 W44X290 W44X230 W44X230 W44X230 |  |  |  |  |  |  |  |  |
| W44X230 W44X230 W44X262 W44X290 W44X290 W44X290 W44X230 W44X230 W44X230 |  |  |  |  |  |  |  |  |
| W44X230 W44X230 W44X262 W44X290 W44X290 W44X290 W44X230 W44X230 W44X230 |  |  |  |  |  |  |  |  |


| 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W16X36 | W18X86 | W18X86 | W12X40 | W16X36 | W12X26 | W16X36 | W12X40 | W18X86 |
| W16X36 | W18X86 | W18X86 | W12X40 | W16X36 | W12X26 | W16X36 | W12X40 | W18X86 |
| W18X86 | W21×111 | W21×111 | W18X76 | W16X67 | W21X62 | W16X67 | W18X76 | W21×111 |
| W18X86 | W21×111 | W21X111 | W18X76 | W16X67 | W21X62 | W16X67 | W18X76 | W21X111 |
| W18X86 | W21×111 | W21×111 | W18X76 | W16X67 | W21×62 | W16X67 | W18X76 | W21×111 |
| W24X131 | W27X146 | W27X146 | W30X99 | W30X99 | W30X99 | W30X99 | W30X99 | W27X146 |
| W24X131 | W27X146 | W27X146 | W30X99 | W30X99 | W30X99 | W30X99 | W30X99 | W27X146 | W30X173 W30X173 W30X173 W30X148 W30X148 W30X132 W30X148 W30X148 W30X173 W30X173 W30X173 W30X173 W30X148 W30X148 W30X132 W30X148 W30X148 W30X173 W30X173 W30X173 W30X173 W30X148 W30X148 W30X132 W30X148 W30X148 W30X173 W40X174 W40X192 W40X174 W40X167 W36X160 W40X149 W36X160 W40X167 W40X174 W40X174 W40X192 W40X174 W40X167 W36X160 W40X149 W36X160 W40X167 W40X174 W40X174 W40X192 W40X174 W40X167 W36X160 W40X149 W36X160 W40X167 W40X174 W44X290 W44X290 W44X290 W44X262 W44X230 W44X230 W44X230 W44X262 W44X290 W44X290 W44X290 W44X290 W44X262 W44X230 W44X230 W44X230 W44X262 W44X290 W44X290 W44X290 W44X290 W44X262 W44X230 W44X230 W44X230 W44X262 W44X290 W44X290 W44X290 W44X290 W44X262 W44X230 W44X230 W44X230 W44X262 W44X290 W44X290 W44X290 W44X290 W44X262 W44X230 W44X230 W44X230 W44X262 W44X290


| 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| 45 | 46 | 47 | 48 | 49 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: |

## Appendix 3: Floor Plans

Column Layout:


Cellar 2:


Cellar 1:


Ground Floor:

$2^{\text {nd }}$ Floor:

$3^{3^{\text {rd }} \text { Floor: }}$


## $4^{\text {th }}$ Floor:


$\underline{5^{\text {th }} \text { Floor: }}$

$6^{\text {th }}, 7^{\text {th }}, 8^{\text {th }}$ Floors:

$\underline{\text { 9 }^{\text {th }} \text { Floor: }}$

$10^{\text {th }}$ Floor:

$11^{\text {th }}$ Floor:

$12^{\text {th }}$ Floor:

$13^{\text {th }}$ Floor:

$14^{\text {th }}$ Floor:

$15^{\text {th }}$ Floor:

$16^{\text {th }}$ Floor:


## Penthouse:



Ground Floor Framing Plan: Non-Composite


## Ground Floor Framing Plan: Composite


$2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}$ Floor Framing Plan: Non-Composite

$2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, 5^{\text {th }}$ Floor Framing Plan: Composite

$6^{\text {th }}, 7^{\text {th }}, 8^{\text {th }}, 9^{\text {th }}, 10^{\text {th }}$ Floor Framing Plan: Non-Composite

$6^{\text {th }}, 7^{\text {th }}, 8^{\text {th }}, 9^{\text {th }}, 10^{\text {th }}$ Floor Framing Plan: Composite

$11^{\text {th }}, 12^{\text {th }}, 13^{\text {th }}$ Floor Framing Plan: Non-Composite


## $11^{\text {th }}, 12^{\text {th }}, 13^{\text {th }}$ Floor Framing Plan: Composite


$14^{\text {th }}, 15^{\text {th }}, 16^{\text {th }}$ Floor Framing Plan: Non-Composite

$14^{\text {th }}, 15^{\text {th }}, 16^{\text {th }}$ Floor Framing Plan: Composite


## Roof Framing Plan: Non-Composite



## Roof Framing Plan: Composite



## Appendix 4: Miscellaneous

Frames A through $G$ are in E-W direction and 1-8 are in N-S direction
Frames $A$ and $B$ :


Daniel Painter
page 131
$5^{\text {th }}$ Year Thesis - Two Freedom Square

Frames C:


Daniel Painter
page 132

Frame D and E :


Daniel Painter
page 133

Frame F and G:


Daniel Painter
page 134

Frame 1 to 5:


Daniel Painter
page 135

Frame 6:


Daniel Painter
page 136

Frame 7:


Daniel Painter
page 137
$5^{\text {th }}$ Year Thesis - Two Freedom Square

Frame 8:


Site Plan: Crane Location


Daniel Painter

Crane Specifications: taken from the Liebherr website

$$
\text { पПЕ:TEPR } 290 \text { MC }
$$

TOWER CRANE


Configuration III
wih 290 HC Tower
max. $188 \mathrm{ff}[57.3 \mathrm{~mm}] \mathrm{HJH}$ on conacte foundation max. $190 \mathrm{ft}[57.9 \mathrm{mj} \mathrm{HUH}$ on undercartiage

FREESTANDING firavelling and stationary)

## Configurations

## ME: 거INㄹ 290 HC



|  | $\begin{array}{\|c\|} \hline \text { Tower } \\ \text { Corfigrafon } \end{array}$ |  |  | Hodk Hight Nath honarigu |  | $\begin{array}{\|c\|} \hline \text { Ho. of } \\ \text { Towet } \\ \text { Itimerts } \end{array}$ | $\begin{array}{\|c\|} \hline \text { Tona } \\ \text { Confynution } \\ \text { II } \end{array}$ |  |  | Hook Hight解 Hitaraty |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tenalt |  |  |  |  |  |  |  |  | \% |
| 1 | 630EHH5 | 52.3 | 159 |  |  | 79.3 | 24.2 | 1 | 550 HCSIS | 31.0 | 2.4 | 575 | 175 |
| 2 | 550HSSS | 71.3 | 217 | \%. 3 | 30.0 | ? | HCSI | 500 | 152 | 76.6 | 233 |
| 3 | 550HESIS | 90.4 | 275 | 117.3 | 35.8 | 3 | 550 HCSIS | 69.0 | 210 | 956. | 29.1 |
| 4 | 550HESTS | 109.4 | 333 | 136.4 | 41.6 | 4 | HeSIS | 881 | 26 | 1146 | 349 |
| 5 | 550HSSIS | 128.4 | 39, | 155.4 | 47. | 5 | 550HCSIS | 107.1 | 326 | 1337 | 41 |
| 6 | 550HESTS | 147.4 | 449 | 174.4 | 53.2 | 6 | 550 HCSIS | 126.1 | 384 | 1527 | 465 |
| 7 | 550HESTS | 166.5 | 507 | 193.4 | 59.0 |  | HeST | 145. | 442 | 1717 | 523 |
| 8 | 550H.STS | 185.5 | 565 | 212.5 | 64.8 | 8 | 550 HCSS | 164 | 500 | 1903 | 581 |
| 9 | 550HESIS | 204.5 | 623 | 21.5 | 70.6 | 9 | 550HCSIS | 183.2 | 55 | 2098 | 639 |
| 10 | Fasision | 23.6 | 681 | S0.5 | 76.4 | 10 | Inraitim | 202.2 | 616 | 2287 | 627 |
| 11 | 290HESTS | 27.1 | 722 | 26.1 | 80. | 11 | 290HCSIS | 215.8 | 658 | 242.4 | 739 |
| 12 | 290HESTS | 50.7 | 764 | 27.7 | 84.6 | 12 | 290 HCSIS | 229.4 | 62. | 2560 | 780 |
| 13 | 290HSSS | 24.3 | 806 | 271.3 | 88.8 | 13 | 290 HCSS | 2430 | 74 | 269.6 | 822 |
| 14 | 290H:STS | 77.9 | 847 | 304.9 | 92.9 | 14 | 290HCSIS | 256.6 | 782 | 283.1 | 863 |
| 15 | 290HESTS | 21.5 | 888 | 318.4 | 97.1 | 15 | 290HCSIS | 27.1 | 823 | 2967 | 904 |
| 16 | 290HESTS | 305.1 | 930 | 332.0 | 101 | 16 | 290HCSIS | 2837 | 865 | 310.3 | 946 |
| 17 | 290H. SIS | 318.6 | 97. | अ5.6 | 105.3 | 17 | 290H. Sis | 297.3 | 906 | 323.9 | 987 |


| $\begin{aligned} & \text { Na of } \\ & \text { Town } \end{aligned}$ | $\begin{array}{c\|} \hline \text { Town } \\ \text { Corfigration } \end{array}$ |  |  | Hodk Higt in Mincraitopf $\pi$ <br> 1  |  | NOTE! Altanafe fower com binations possible. Contac Morrow for additional infor mution. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sexiors | II |  |  |  |  |  |
| 0 | 290HCBIS | 52.2 | 159 | 67.6 | 20.6 |  |
| 1 | 290 HCSS | 65.8 | 201 | 81.2 | 24.8 |  |
| 2 | 290 HSSS | 79.4 | 242 | 9.8 | 28.9 |  |
| 3 | 290 HCST | 93.0 | 283 | 108.4 | 33.0 |  |
| 4 | 290 HCSS | 106.6 | 325 | 121.9 | 37.2 |  |
| 5 | 290 HSSS | 120.2 | 366 | 135.5 | 41.3 |  |
| 6 | 290 HCSS | 133.7 | 408 | 149.1 | 45.5 |  |
| 7 | 290 HSS | 147.3 | 449 | 162.7 | 49.6 |  |
| 8 | 290 HCST | 160.9 | 49, | 176.3 | 537 |  |
| 9 | 290 HCSI | 174.5 | 532 | 189.9. | 57.97 |  |
| 10 | 290HEST5 | $188.1^{1}$ | 57.3 |  |  |  |
| ' Remove top climbing unit from acre prior to opercting crane at maximum hook heigtt. |  |  |  |  |  |  |
| 2Lower top clinding unit to base of crane prior bo operating crane at maximem hook heigt [ 190 Ht 157.9 mm ]. |  |  |  |  |  |  |
| ${ }^{2}$ Lower top climbing unit to base of crane prior to operating crane at maximum hook heigt [ 188 ht [ 57.3 mm ]. |  |  |  |  |  |  |

## Morrow Equipment Co., L.L.C.

## Configurations

## CEBHERR 290 HC


with $\mathbf{2 9 0} \mathbf{H C}$ Base Tower
(on concrele slab)

TOP CLIMBING
$\mathbf{2 9 0}$ HC Tower Sections
(thed to structure)

Morrow Equipment Co., L.L.C.

## Radius and Capaciłies

LIEMEDE Tower Crane Model 290 HC
2-Part Line

| Hook Rodius | 2-Port Line MaxCopity - Rodius | $\begin{aligned} & \mathrm{H} \\ & \mathrm{w} \end{aligned}$ | 60 <br> 18.3 | $\begin{gathered} 70 \\ 21.3 \end{gathered}$ | $\begin{gathered} 80 \\ 24.4 \end{gathered}$ | $\begin{gathered} 90 \\ 714 \end{gathered}$ | $\begin{aligned} & \hline 104 \\ & 317 \end{aligned}$ | $\begin{aligned} & 110 \\ & 33.5 \end{aligned}$ | $\begin{aligned} & 120 \\ & 367 \end{aligned}$ | $\begin{aligned} & 130 \\ & 39.6 \end{aligned}$ | $\begin{aligned} & 142 \\ & 433 \end{aligned}$ | $\begin{aligned} & 150 \\ & 457 \end{aligned}$ | $\begin{aligned} & 158 \\ & 48.3 \end{aligned}$ | $\begin{array}{\|l\|} \hline 170 \\ 57.8 \end{array}$ | $\begin{aligned} & \hline 180 \\ & 55.0 \end{aligned}$ | $\begin{aligned} & \hline 190 \\ & 58.0 \end{aligned}$ | $\begin{array}{\|l\|} \hline 197 \\ 60.0 \end{array}$ | $\begin{aligned} & \hline 213 \\ & 65.0 \end{aligned}$ | $\begin{aligned} & \hline 230 \\ & 70.0 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 230 ft | 2,045 lbs -86 ft | lbs | 22,045 | 22,045 | 22,045 | 20,955 | 17,747 | 16,643 | 14,988 | 13,672 | 12280 | 11,495 | 10,737 | 9,833 | 9,105 | 8,534 | 8,135 | 7,319 | 6,615 |
| 70.0n | $10000 \mathrm{~kg}-26.2 \mathrm{~m}$ | kg | 10000 | 10000 | 10000 | 9505 | 8050 | 7549 | 6765 | 6201 | 5570 | 5214 | 4870 | 4460 | 4130 | 3871 | 3690 | 3320 | 3000 |
| 213 f | 2,045 lbs -89 ft | lbs | 22,045 | 22,045 | 22,045 | 21,922 | 18,563 | 17,424 | 15,675 | 14,319 | 12,875 | 12,067 | 11,266 | 10,340 | 9,590 | 8,975 | 8,576 | 7,715 |  |
| 650m | $10000 \mathrm{~kg}-27.3 \mathrm{~m}$ | kg | 10000 | 10000 | 10000 | 9943 | 8420 | 7903 | 7170 | 6495 | 5840 | 5474 | 5110 | 4690 | 4350 | 4077 | 3890 | 3500 |  |
| 197 ft | 26,455 lts - 79 ft | lts | 26,455 | 26,455 | 26,132 | 22,897 | 19,445 | 18,253 | 16,424 | 15,003 | 13,514 | 12,688 | 11,861 | 10,882 | 10,097 | 9,469 | 9,040 |  |  |
| 60.0 m | $12.000 \mathrm{~kg}-24.1 \mathrm{~m}$ | kg | 12000 | 12000 | 11853 | 10386 | 8820 | 8280 | 7450 | 6819 | 6130 | 5755 | 5300 | 4936 | 4560 | 4295 | 4100 |  |  |
| 180 ft | $26,455 \mathrm{lts}-82 \mathrm{ft}$ | los | 26,455 | 26,455 | 26,455 | 23,944 | 20,305 | 19,061 | 17,174 | 15,712 | 14,154 | 13,274 | 12,412 | 11,402 | 10,580 |  |  |  |  |
| 55.0 m | $12.000 \mathrm{~kg}-25.0 \mathrm{~m}$ | kg | 12000 | 12000 | 12000 | 10867 | 9210 | 8646 | 7790 | 7127 | 6420 | 6021 | 5630 | 5172 | 4800 |  |  |  |  |
| 158 ft | 26,455 lts -85 ft | lts | 26,455 | 26,455 | 26,455 | 24,987 | 21,219 | 19,932 | 17,97 | 16,435 | 14,815 | 13,904 | 13,010 |  |  |  |  |  |  |
| 48.3 m | 12000 kg -26.0m | kg | 12000 | 12000 | 12000 | 11334 | 9625 | 9047 | 8145 | 7455 | 6720 | 6307 | 5900 |  |  |  |  |  |  |
| 142 ft | $26,455 \mathrm{lbs}-88 \mathrm{ft}$ | lis | 26,455 | 26,455 | 26,455 | 25,979 | 22,068 | 20,737 | 18,695 | 17,124 | 15,430 |  |  |  |  |  |  |  |  |
| 43.3m | $12000 \mathrm{~kg}-26.9 \mathrm{mg}$ | kg | 12000 | 12000 | 12000 | 11784 | 10010 | 9406 | 8480 | 7767 | 7000 |  |  |  |  |  |  |  |  |
| 120 \#t | $26,455 \mathrm{lts}-91 \mathrm{ft}$ | lbs | 26,455 | 26,455 | 26,455 | 26,455 | 22,906 | 21,522 | 19,400 |  |  |  |  |  |  |  |  |  |  |
| 36.7 m | $12000 \mathrm{~kg}-27.8 \mathrm{~m}$ | kg | 12000 | 12000 | 12000 | 12000 | 10390 | 9762 | 881 |  |  |  |  |  |  |  |  |  |  |
| 104 ft | $26,455 \mathrm{lts}-96 \mathrm{ft}$ | lts | 26,455 | 26,455 | 26,455 | 26,455 | 24,250 |  |  |  |  |  |  |  |  |  |  |  |  |
| 31.7 m | $12000 \mathrm{~kg}-29.3 \mathrm{~m}$ | k | 12000 | 12000 | 12000 | 12000 | 11000 |  |  |  |  |  |  |  |  |  |  |  |  |



Morrow Equipment Co., L.L.C.

## SPECIFICATIONS

## H:

## Hoist Speed and Capacity

| Hoist Unit | WiW291R×040 | 2-Part Line |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $108 \mathrm{hp}(80 \mathrm{~kW}) \mathrm{AC}$ hoist unit 4 speed gearbax Electromagretic gear shifing Eddy current brake | 31275 | Gear | Capacity |  | e Speed | Capacity | Line Speed |
|  |  | 1 | up to $26,455 \mathrm{bs}$ | (1) | 105 fpm | 40 to 12000 | (8) $32 \mathrm{~m} / \mathrm{mk}$ |
|  |  | 2 | up to $15,650 \mathrm{lb}$ | (2) | 200 fpm | up to 7100 | * $61 \mathrm{~m} / \mathrm{min}$ |
|  |  | 3 | up to 9,260 bs | Q | 312 fpm | 19 to 4200 , | \% $95 \mathrm{~m} / \mathrm{mm}$ |
|  |  | 4 | up to $4,520 \mathrm{bs}$ | (1) | 555 fpm | up to 2050 | * $169 \mathrm{~m} / \mathrm{min}$ |




Motor Information

| Drive Unit | Horsepower | Kilowatts | Speed |  |
| :--- | :---: | :---: | :---: | :---: |
| Trolley | 7.4 hp | 5.5 kW | $26.52 \cdot 164-312 \mathrm{fpm}$ | $8-16-50.95 \mathrm{~m} / \mathrm{min}$ |
| Swing ffind coupling) | $2 \times 6.7 \mathrm{hp}$ | $2 \times 5.0 \mathrm{~kW}$ | 0.7 rpm |  |
| Traveling (flind coupling) | $2 \times 10 \mathrm{hp}$ | $2 \times 7.5 \mathrm{~kW}$ | 98 fpm |  |

## Power Requirements

```
480V - 3-phase - 60 Hz - 225 Amperes
```

Morrow Equipment Co., L.L.C.

Component List
La：MEDR 290 HC

| Description | Dimensions | Weight | Description |  | Dimensions | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tower top | $\begin{aligned} & 29^{\prime \prime}-3^{\prime \prime} \times 5^{\prime}-5^{\prime \prime} \times 6^{\prime} 1^{\prime \prime} \\ & 8.9 \mathrm{~m} x / 65 \mathrm{mn} \times 1.8 .5 \mathrm{mn} \end{aligned}$ | $\begin{aligned} & 6,000 \mathrm{lbs} \\ & 2720 \mathrm{~kg} \end{aligned}$ | $\begin{aligned} & \text { Ib Section (1) } \\ & \# 611 \end{aligned}$ |  | $39^{\prime}-0^{\circ} \times 6^{\prime}-1^{\prime \prime} \times 6^{\prime}-4^{\prime \prime}$ <br> $11.89 \mathrm{~m} \times 1.85 \mathrm{mx} \times 1.92 \mathrm{~m}$ | $\begin{aligned} & 0,950 \mathrm{lbs} \\ & 31.50 \mathrm{~kg} \end{aligned}$ |
| Slewing Assembly （Completz） | $\begin{gathered} 20^{\prime-77^{\prime \prime}} \times 9^{\prime-}-0^{\circ} \times 8^{\prime} 9^{\prime \prime} \\ 6.27 m \times 2.74 \mathrm{~m} \times 2.47 \mathrm{~m} \end{gathered}$ | $\begin{gathered} 20,300 \mathrm{lbs} \\ 9210 \mathrm{gg} \end{gathered}$ | $\begin{aligned} & \text { Sb Section (2) } \\ & \# 621 \\ & \hline \end{aligned}$ |  | $\begin{gathered} 39^{\prime} \cdot 5^{\prime} \times 5^{\prime}-4^{\prime} \times 6^{\prime}-2^{\prime \prime} \\ 12.02 m \times 1.6 .3 m \times 1.87 m \end{gathered}$ | $\begin{aligned} & 4,870 \mathrm{lbs} \\ & 2210 \mathrm{~kg} \end{aligned}$ |
| Slewing Assembly Upper Part ${ }^{2}$ | $14^{\prime}-8^{\prime \prime} \times 9^{\prime}-9^{\prime} \times 8^{\prime}-9^{\prime \prime}$ $4.47 \mathrm{~m} \times 2.74 \mathrm{~m} \times 2.67 \mathrm{~m}$ | $\begin{aligned} & 11,925 \mathrm{lbs} \\ & 5410 \mathrm{~kg} \end{aligned}$ | $\begin{aligned} & \text { 5b Section (3) } \\ & \# 633 \end{aligned}$ | $\underset{\sim}{\text { MN }}$ | $17^{\prime}-7^{\prime} \times 5^{\prime}-4^{\prime} \times 6^{\prime}-2^{\prime \prime}$ <br> 5.36 mx 186 mx 1.87 m | $2,040 \mathrm{lbs}$ <br> 925 kg |
| Slewing Assembly Lower Part ${ }^{1}$ | $\begin{gathered} 6^{\prime \prime}-6^{\prime \prime} \times 9^{\prime}-0^{\prime} \times 7^{7-9^{\prime}} \\ 1.98 \mathrm{~m} \times 2.74 \mathrm{~m} \times 2.36 \mathrm{~mm} \end{gathered}$ | $8,375 \mathrm{lbs}$ <br> 3800 kg | $\begin{aligned} & \text { Ib Section (4) } \\ & \# 634 \end{aligned}$ |  | $\begin{gathered} 34^{\prime}-0^{\prime} \times 5^{\prime}-4^{\prime} \times 6^{\prime} 1^{\prime \prime} \\ 10.3 \operatorname{mn} \times 1 / 3 \mathrm{mnx} / \mathrm{Bkm} \end{gathered}$ | $4,110 \mathrm{lbs}$ 1865 kg |
| Hoit Urit wìh Frame ${ }^{1}$ $106 \mathrm{hp} / 80 \mathrm{kVh}$ | $\begin{aligned} & 8^{\prime}-6^{\prime \prime} \times 15^{\prime}-10^{\prime} \times 7^{\prime}-0^{\prime \prime} \\ & 2.99 \mathrm{~m} \times 4.83 \mathrm{~m} \times 2.13 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 17,420 \mathrm{lbs} \\ & 7900 \mathrm{~kg} \end{aligned}$ | $\begin{aligned} & \text { Sb Section (5) } \\ & \# 622 \end{aligned}$ |  |  | $\begin{aligned} & 4,565 \mathrm{lbs} \\ & 2070 \mathrm{~kg} \end{aligned}$ |
| Courterib Section \＃1 （Irver） | $27^{\prime}-9^{\prime} \times 5^{\prime}-10^{\prime} \times 5^{\prime}-7^{\prime \prime}$ $8.46 m x\|77 m x\| 7 m$ | $4,760 \mathrm{bs}$ 2160 kg | $\begin{aligned} & \text { 5b Section (6) } \\ & \# 632 \end{aligned}$ | $\triangle \operatorname{lin}^{\prime \prime}$ | $23^{\prime}-1^{\prime} \times 5^{\prime}-4^{\prime} \times 6^{\prime}-1^{\prime \prime}$ $7.03 \mathrm{mx} 1 \mathrm{h2mx} 1.8 \mathrm{Cm}$ | $2,240 \mathrm{lbs}$ <br> 1015 kg |
| Courterib Section \＃2 （Irlamedicte） | $\begin{aligned} & 17^{\prime}-2^{\prime \prime} \times 5^{\prime}-10^{\prime} \times 5^{\prime}-7^{\prime \prime} \\ & 5.23 m x / 77 m \times 1 / 7 m \end{aligned}$ | 4，000 bs <br> 1815k | $\begin{aligned} & \text { Ib Section (7) } \\ & \$ 631 \end{aligned}$ | $\frac{8 \mathrm{MND}}{1} \text { 而 }$ |  | $\begin{aligned} & 2,850 \mathrm{lbs} \\ & 1290 \mathrm{~kg} \end{aligned}$ |
| Courterib Section \＃3 （Culer） | $\begin{aligned} & 27^{-77^{\prime \prime} \times 8^{\prime} \cdot \sigma^{\prime} \times 5^{\prime} \cdot 7^{\prime \prime}} \\ & 8.4 l_{m \times 2} 44 m \times 1 / 7 \end{aligned}$ | 6,200 bs <br> 2800 k | $\begin{aligned} & \text { Ib Section (8) } \\ & \# 641 \end{aligned}$ |  | $\begin{gathered} 7^{\prime} \cdot 4^{\prime \prime} \times 6^{\prime}-1 " \times 6^{\prime \prime}-10^{\prime \prime} \\ 2.24 \mathrm{mx} 1.85 \mathrm{~m} \times 2.08 \mathrm{~m} \end{gathered}$ | $730 \mathrm{bs}$ $330 \mathrm{~kg}$ |
| Courterib As | $54^{\prime}-8^{\prime \prime} \times 8^{\prime}-0^{\prime} \times 5^{\prime}-7^{\prime \prime}$ $16.67 \mathrm{~m} \times 2.44 \mathrm{~m} \times 17 \mathrm{~m}$ | $\begin{aligned} & 12,500 \mathrm{lbs} \\ & 5670 \mathrm{lgg} \end{aligned}$ | Ib Acsembly ${ }^{7}$ $230-\mathrm{ft} 70.0 \mathrm{~m}$ | （1）（2）（3）（4）／5）6／7）${ }^{(8)}$ | $\begin{aligned} & 231^{\prime}-0^{\circ} \times 6^{\prime}-1^{\prime \prime} \times 6^{\prime}-10^{\prime \prime} \\ & 70.4 \mathrm{~m} \times 1.85 \mathrm{~m} \times 2.0 \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & 32,405 \mathrm{lbs} \\ & 14 \pi 00 \mathrm{~kg} \end{aligned}$ |
| CourteribB ${ }^{\circ}$ | $71^{\prime}-1 " \times 8^{\prime}-\sigma^{\prime} \times 5^{\prime}-7^{\prime \prime}$ $21.67 \mathrm{~m} \times 244 \mathrm{~m} \times 17 \mathrm{~m}$ | $\begin{aligned} & 16,500 \mathrm{lbs} \\ & 7485 \mathrm{~kg} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Ib Acsembly }{ }^{7} \\ & 213-\mathrm{ft} 85.0 \mathrm{mi} \end{aligned}$ | （1）（2）（4）（5）6）789 | $\begin{aligned} & 214^{\prime}-7^{\prime} \times 6^{\prime}-1^{\prime} \times 6^{\prime}-10^{\prime \prime} \\ & 65 \mathrm{mmx} 1.85 \mathrm{~m} \times 2.0 \mathrm{~km} \end{aligned}$ | $\begin{aligned} & 29,980 \mathrm{lbs} \\ & 13600 \mathrm{~g} \end{aligned}$ |
| Courterweight Elock A | $\begin{gathered} 4^{\prime}-4^{\prime \prime} \times 11^{\prime \prime} \times 8^{\prime}-1^{\prime \prime} \\ 1.32 \mathrm{~m} \times 0.28 \times 2.46 m \end{gathered}$ | 4,960 bs 2250 kg | Sb Aosembly ${ }^{7}$ 197 －ft 80.0 m | （1）（2）（3）（5）6978 | $\begin{aligned} & 198^{\prime}-2^{\prime \prime} \times 6^{\prime}-1^{\prime} \times 6^{\prime}-10^{\prime \prime} \\ & 60 . \mathrm{Amx} 1.85 \mathrm{~m} \times 2.08 \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & 27,560 \mathrm{lbs} \\ & 12.500 \mathrm{~kg} \end{aligned}$ |
| Courterweight Block B | $\begin{gathered} 4^{\prime}-4^{\prime \prime} \times 11^{\prime \prime} \times 5^{\prime}-4^{\prime \prime} \\ 1.32 \mathrm{mx} \times 0.28 \times 163 \mathrm{~m} \end{gathered}$ | $3,195 \mathrm{bs}$ $1450 \mathrm{~kg}$ | Ib Acsembly ${ }^{7}$ $180 \cdot \mathrm{ft}$ E5． 0 mm | （1）（2）（6）（7）${ }^{\text {P }}$ | $181^{\prime}-9^{\prime} \times 6^{\prime}-1^{\prime} \times 6^{\prime}-10^{\prime \prime}$ $55.4 \mathrm{mx} \times 1.85 \mathrm{~m} \times 2.08 \mathrm{~mm}$ | $\begin{aligned} & 24,690 \mathrm{lbs} \\ & 11200 \mathrm{lg} \end{aligned}$ |
| $\begin{aligned} & \text { Bave Tower Section WWWWWM W } \\ & 290 \mathrm{HC} \end{aligned}$ | $\begin{aligned} & 40^{\prime} \cdot 9^{\prime} \times 7^{\prime-7} \times 7^{\prime} \cdot 7^{\prime \prime} \\ & 12.42 \mathrm{~m} \times 2.3 \mathrm{~m} \times 2.3 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 17,505 \mathrm{lbs} \\ & 79,40 \mathrm{~kg} \end{aligned}$ | Ib Assembly ${ }^{7}$ 158 ．f 4.48 .3 m | （1） $2 \times 5 \times 7)$ | $159^{\prime}-11^{\prime} \times 6^{\prime}-1^{\prime} \times 6^{\prime}-10^{\prime}$ <br> $48.7 \mathrm{mx} 1.85 \mathrm{~m} \times 2.08 \mathrm{~m}$ | $\begin{aligned} & 22,485 \mathrm{lbs} \\ & 10200 \mathrm{~kg} \end{aligned}$ |
| Long fown Sedion 290 HC | $\begin{aligned} & 40^{\prime-9^{\prime}} \times 7^{\prime}-7^{\prime \prime} \times 7^{\prime}-7^{\prime \prime} \\ & 12.42 \mathrm{~m} \times 2.3 \mathrm{~m} \times 2.3 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 12,170 \mathrm{lbs} \\ & 5520 \mathrm{~kg} \end{aligned}$ | Sb Acsembly ${ }^{7}$ 142 ft 4.4 .3 mm | （1） $2 \times 5 / 6)$ | $\begin{aligned} & 143^{\prime}-6^{\prime \prime} \times 6^{\prime}-1^{\prime} \times 66^{\prime}-10^{\prime \prime} \\ & 43.8 \mathrm{~m} x 1.85 \mathrm{~m} \times 2.0 \mathrm{gm} \end{aligned}$ | $\begin{gathered} 21,605 \mathrm{lbs} \\ 9800 \mathrm{~kg} \end{gathered}$ |
| Standard Trwer Section 290 HC | $\begin{aligned} & 13^{\prime}-7^{\prime \prime} \times 7^{\prime}-7^{\prime} \times 7^{\prime} \cdot 7^{\prime \prime} \\ & 4.14 \mathrm{~m} \times 2.3 \mathrm{~m} \times 2.3 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 5,025 \mathrm{bs} \\ & 2280 \mathrm{gg} \\ & \hline \end{aligned}$ | Sb Acsembly ${ }^{7}$ $120 \cdot \mathrm{ft} 367 \mathrm{md}$ | （1） 2 ／5／ 5 | $\begin{aligned} & 121^{\prime}-8^{\prime} \times 8^{\prime}-1^{\prime} \times 6^{\prime}-10^{\prime} \\ & 37.1 \mathrm{~m} \times 1.85 \mathrm{~m} \times 2.08 \mathrm{~mm} \end{aligned}$ | $\begin{aligned} & 19,400 \mathrm{lbs} \\ & 8800 \mathrm{~kg} \end{aligned}$ |
| $\begin{aligned} & \text { Transition Section } \\ & 29 \mathrm{CHC} / 55 \mathrm{CHC} \end{aligned}$ | $\begin{gathered} 20^{\prime}-7^{\prime \prime} \times 8^{\prime}-5^{\prime \prime} \times 8^{\prime} 5^{\prime \prime} \\ 6.28 \mathrm{~m} \times 2.57 \mathrm{~m} \times 2.57 \mathrm{~m} \end{gathered}$ | $\begin{gathered} 13,050 \mathrm{bs} \\ 5920 \mathrm{~kg} \end{gathered}$ | Ib Acsembly ${ }^{7}$ $104 \mathrm{ft} 13 / 7 \mathrm{~m}$ | 1） 5 ／6）$(5)$ | $\begin{aligned} & 105^{\prime} \cdot 3^{\prime} \times 6^{\prime}-1^{\prime} \times 6^{\prime}-10^{\prime} \\ & 32.1_{\mathrm{mx}} 1.85 \mathrm{~m} \times 2.08 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 16,315 \mathrm{lbs} \\ & 7400 \mathrm{~kg} \end{aligned}$ |
| $\begin{aligned} & \text { Standard Tower Section } \\ & 550 \mathrm{HC} \end{aligned}$ | $\begin{array}{r} 20^{\prime}-7^{\prime \prime} \times 8^{\prime}-0^{\prime} \times 8^{\prime}-0^{\prime \prime} \\ 6.28 \mathrm{~m} \times 2.44 \mathrm{~m} \times 2.44 \mathrm{~m} \end{array}$ | $\begin{aligned} & 13,340 \mathrm{lbs} \\ & 6050 \mathrm{~kg} \end{aligned}$ | Top Climbing Unt w／hydrodics | NA | $\begin{gathered} 27^{\prime}-6^{\prime \prime} \times 9^{\prime}-2^{\prime} \times 8^{\prime}-10^{\prime} \\ 8.38 \mathrm{~mm} \times 2.79 \mathrm{~m} \times 2.69 \mathrm{~m} \end{gathered}$ | $\begin{aligned} & 16,535 \mathrm{lbs} \\ & 7500 \mathrm{~kg} \end{aligned}$ |
| Bottom Climbing Urit w／hydraulics | $\begin{aligned} & 16^{\prime}-5^{\prime \prime} \times 7^{\prime}-6^{\prime \prime} \times 7^{\prime-10^{\prime \prime}} \\ & 5.0 \mathrm{~m} \times 2.2 \mathrm{~m} \times 2.4 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 13,200 \mathrm{lbs} \\ & 5090 \mathrm{l}_{5} \end{aligned}$ | Hook Elock | 嵒椠 | $\begin{gathered} 2^{\prime} 0^{\prime} \times 1^{\prime}-7^{\prime} \times 3^{\prime}-9^{\prime \prime} \\ 0.62 m \times 0.48 m x 1.14 m \end{gathered}$ | 1，345 Its 610 kg |
| Tie in Colar 290 HC | $\begin{aligned} & 10-10^{\prime} \times 1^{\prime}-3^{\prime} \times 10^{\prime}-1^{\prime \prime} \\ & 3.29 \mathrm{~m} \times 0.39 \mathrm{~m} \times 3.28 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 4850 \mathrm{bs} \\ & 2200 \mathrm{~kg} \\ & \hline \end{aligned}$ | Troley | 兩 | $\begin{aligned} & 6^{\prime} 2^{\prime \prime} \times 6^{\prime}-0^{\prime} \times 3^{\prime}-11^{\prime \prime} \\ & 1.89 \mathrm{~m} \times 1.83 \mathrm{mx} 1.2 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 835 \mathrm{bs} \\ & 380 \mathrm{~kg} \end{aligned}$ |

NOIEA Weights and dimensions are approximcte．Soale componerts before liffing．
 dalachate dimbing shices．


Inchodes coenkrib secions＊1，＊3，pandant bars and handraik．Counderibb A is required for jbs 158 it 488 ． 2 no and shorikr．


3218 Pringle Road SE－PO Box 3306 －Solem，Oregon 97302－0306 USA The American hovne of
Tel． 503.585 .5721
1••！－•！
Atlanta，GA－Chariotte，NC－Chkago，IL－Denver，CO ．Honolulu，HI－Houston，TX－Los Angeles，CA－Las Vegas，NV Millwood，NY－St．Louls，MO－San Franclsco，CA－Seattle，WA－Miaml，FL－Tampa，FL－Washington，DC Sydney，Australla－Wellington，New Zealand－Vancouver，BC，Canada－Toronto，ON，Canada－Mexico DF，México PowarortivUSA．

