Feasibility Study for the Integration of Trigeneration for The New Independence High School/Shared Use Facility

John Shaw
Mechanical Option
Introduction

- Background
- The Problem
- Proposed Solution
- Results and Conclusions
Project Background

- Location – Independence, Ohio
- 114,330 sqft Secondary Education & Community Use Facility
- Funded through public bonds
- Total Project Cost – $33 million
Project Background - Who

- Project Team Owners:
 - City of Independence (property)
 - Independence Schools District (facility)

- Project Design Professionals:
 - Sear-Brown (S,A,S,M,E)
 - Then Design Architects Ltd (Interiors)

- Project Constructors:
 - Turner Construction (CM)
 - 22 Multiple Prime Contractors
Project Background - Site
Project Background

Plan
Project Background

- Plan

A Different Viewpoint

- Building as an inefficient fossil fuel energy consumer
- Building as environment polluter
Typical building fuel energy sources

- **Electricity**
 - Coal Combustion
 - Nuclear
 - Hydrology/Wind Misc
- **Thermal Energy**
 - Natural Gas Combustion
 - Fuel Oil Combustion
The Problem

Building Energy Production Efficiency

- **Thermal energy**
 - 80%-95% equipment efficiency
 - 1%-2% system losses
 - 79%-94% thermal energy available for building

- **Electric Energy**
 - 34% generation efficiency
 - 2% Transmission and transformer losses
 - 32% electric energy available for building

Source: Energy Information Administration
National Energy Production
Pollution Emissions

- **979** Metric tons CO₂
- **4.7 Million** tons NOₓ
- **9.9 Million** tons SO₂

Source: Energy Information Administration

Figure 116. Carbon dioxide emissions from the electric power sector by fuel, 1990-2025 (million metric tons)

- Coal: 3,299
- Natural gas: 2,571
- Petroleum: 2,322
- 1,795

Figure 119. Sulfur dioxide emissions from electricity generation, 1990-2025 (million tons)

- History: 15.9, 12.1, 10.6, 10.2, 9.9, 9.0, 9.0
- Projections: 10.2, 9.9, 9.0, 9.0

Figure 120. Nitrogen oxide emissions from electricity generation, 1990-2025 (million tons)

- History: 6.7, 6.4, 4.7, 3.3, 3.5, 3.6, 3.8
- Projections: 6.7, 6.4, 4.7, 3.3, 3.5, 3.6, 3.8
Reasons to Consider Alternate Energy Production/Consumption Strategies

- No New Generation power plants for 10-15 years
- Utilities indicate the need for new transmission infrastructure
 - 2003 Blackout
 - Brownouts

Source: 2001 Bush Administration National Energy Policy
Reasons to Consider Alternate Energy
Production/Consumption Strategies

- Continued need to reduce environment air pollution
- Less dependence on national grid
 - Few generating plants make great terrorist targets
Reasons to Consider Alternate Energy Production/Consumption Strategies

- Former Vice President of ASHRAE, Mr. Peterson set the goal:
 - “…. Zero energy [buildings] by 2020.”
Proposed Redesign Goals

- Reduce building total fossil fuel energy consumption
- Reduce total environment emissions
- Increase building energy operating efficiency
 - Defined as
 - Total Energy Output (Elec & Thermal)
 - Total Energy Input (Fuel Source)
Proposed Solution - Trigeneration

- Evolution of cogeneration
 - Conversion of one chemical energy fuel source into 2 primary alternate energy forms
 - Electricity
 - Hot Water or Steam

- Trigeneration
 - Conversion of thermal primary energy into 1 secondary alternate energy form.
 - Chilled Water
Cogeneration Equipment

- Microturbines
 - Combustion Turbine Engines
 - Multiple fuel sources, typically Natural Gas
 - natural gas
 - Higher reliability, lower maintenance

- Reciprocating Engines
 - Multiple fuel sources, typically Natural Gas
 - natural gas
 - High reliability, higher maintenance, higher thermal output
Proposed Solution - Trigeneration

- Natural Gas
- Engine or Turbine
- Generator
- Heat Recovery Unit
- Process Loads
- Electric Chillers
- Absorption Chillers
- Steam or Hot Water
- Air Handler
- Cooling / Heating
- Building or Facility
- Electricity

Diagram showing the integration of natural gas through an engine or turbine, generating heat and electricity, which are then used to power a heat recovery unit, process loads, and absorbent chillers. The resulting steam or hot water powers an air handler, which provides cooling/heating to the building or facility.
Proposed Solution - Trigeneration

http://www.hessmicrogen.com/products/how_cogen.html#

Trigeneration Design Strategies

- Independent power/thermal production:
 - Electric Utility on Standby (automatic transfer switch)

- Excess electric & thermal production
 - Sell excess electric back to utility
 - Use excess thermal for district heating/cooling needs

- Load Shaving
 - Interconnection with electric Utility
Existing Building Operating Conditions

YEARLY WEEKDAY KW DEMAND

Elliot Unit
Base Load

Hess Microgen Unit

Existing Building Operating Conditions

YEARLY WEEKDAY THERMAL DEMAND

- Elliot Unit
- Base Load
- Hess Microgen Unit

- JAN TOTAL THERMAL MBH WKDY
- FEB TOTAL THERMAL MBH WKDY
- MAR TOTAL THERMAL MBH WKDY
- APR TOTAL THERMAL MBH WKDY
- MAY TOTAL THERMAL MBH WKDY
- JUN TOTAL THERMAL MBH WKDY
- JUL TOTAL THERMAL MBH WKDY
- AUG TOTAL THERMAL MBH WKDY
- SEP TOTAL THERMAL MBH WKDY
- OCT TOTAL THERMAL MBH WKDY
- NOV TOTAL THERMAL MBH WKDY
- DEC TOTAL THERMAL MBH WKDY
Proposed Trigeneration

- Replace 1 chiller with HW absorption chiller using HW from Cogeneration Equipment
- Replace All Hot Water Boilers except two for backup extra hw production for chiller
- VFD Primary/Secondary Pumping Remains
- Interconnect power production with building electric distribution
Proposed Equipment

- ** Proposed Equipment Base load
 - Elliot Model 100
 - 100Kw output w/ 0.8 lead/lag PF correction
 - 587Mbh Thermal output
 - 75% Equipment efficiency

- ** Proposed Equipment Occupied load
 - HessModel 375
 - 375Kw output w/ 0.8 lead/lag PF correction
 - 1900Mbh Thermal output
 - 83% Equipment efficiency
Proposed Equipment

- Proposed Cooling Equipment
 - Cention HW absorption Chiller Model 350
Electric Interconnection

- Governed by IEEE standard 1547
- Electric utility companies
Electrical Interconnection

Relaying required

- 50/51 overcurrent
- 81 over/under freq
- 67 reverse power relay
- 37 under power relay
- 27/59 under/over volt
- 25 Synchronism check relay

Breaker/Relays

Can use a switch and fuse instead of a breaker

Transformer

kWh in

Utility

Owner

Loads

No neutral resistor can be installed in the generator

Cogen Units

Breaker/Relays
Constructability Issues

- 16-18 week equipment Lead Times
- 8ftx5ft equipment Footprint
 - Can reuse boiler battery location, combustion air and exhaust ducts
- Sound output level no louder than a typical central station airhandler (75db)
- Weigh on the order of 10,000lbs for the footprint
Maintenance Issues

- Relatively intense regularly scheduled maintenance
 - Typically by contract with MFR OR trained contractor/maintenance staff
 - Down times minimal
 - Refer to report for detailed maintenance schedules/tasks
Energy, Emissions, & Cost Summary

<table>
<thead>
<tr>
<th>ITEM</th>
<th>EXISTING</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Therm/hr Demand Weekday</td>
<td>1,691,194</td>
<td>1,691,194</td>
</tr>
<tr>
<td>Max Kwh demand Weekday typ</td>
<td>1,691,194</td>
<td>1,691,194</td>
</tr>
<tr>
<td>Max Kw demand Weekday typ</td>
<td>525 for 3 months at 4 hours</td>
<td>475 variable with load</td>
</tr>
<tr>
<td>EMISSIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particulates</td>
<td>1,315.7 lbs</td>
<td>0</td>
</tr>
<tr>
<td>SO2</td>
<td>1,5288.4 lbs</td>
<td>0</td>
</tr>
<tr>
<td>NOx</td>
<td>8,861.9 lbs</td>
<td>5,718.2 lbs</td>
</tr>
<tr>
<td>CO2</td>
<td>2,570,619 lbs</td>
<td>2,514,120 lbs</td>
</tr>
<tr>
<td>COSTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Costs</td>
<td>$ 455,000</td>
<td>$ 1,145,200</td>
</tr>
<tr>
<td>Annual Maint. Costs</td>
<td>$ 2,000</td>
<td>$ 74,754</td>
</tr>
<tr>
<td>Annual Electric Costs</td>
<td>$ 148,243</td>
<td>$ small amount for Design Day</td>
</tr>
<tr>
<td>Annual Nat Gas Costs</td>
<td>$ 28,312</td>
<td>$ 114,760</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$ 633,555</td>
<td>$ 1,334,714</td>
</tr>
</tbody>
</table>
Conclusions/Comments

- Reduced dependence on the National Electric Grid
- Converted the combusted fossil fuel energy into alternate energy forms more efficiently
- Reduced environment air pollution
Conclusions/Comments

- More expensive for equipment and maintenance, HOWEVER
- Federal State grants are available
- Natural Gas companies sometimes offer reduced prices
- Is a growing market
- Manufacturers are increasing
- Displaces the national electric grid demand and thus future increased electric prices
Conclusions/Comments

- Using this strategy in conjunction with:
 - DOAS/Radiant Heating/Cooling
 - Daylighting
 - Variable Frequency Drive
- We might reach the Zero Energy buildings goal since we produce the energy at the building
QUESTIONS