Building Trigeneration Integration Feasibility Study

John Shaw
Mechanical Option
Introduction

- Project Background
- Mechanical Component
- Electrical Component
- Construction Component
Project Background - Where

- Location – Independence, Ohio
Project Background - Who

- Project Team Owners:
 - City of Independence (property)
 - Independence Schools District (facility)
Project Background - Who

- Project Team Design Professionals:
 - Sear-Brown
 - Site
 - Architecture
 - Structural
 - Mechanical
 - Electrical
 - Then Design Architects Ltd
 - Interiors
 - RCU Architects Inc
Project Background - Who

- Project Team Contractors:
 - Turner Construction
 - Project Construction Management
 - 22 Multiple Prime Contractors
Project Background - What

- Site
Project Background - What

- Elevations
Project Background - What

- Plan

[Diagram of Independence High School layout]

KEY:
- Academic
- Cafeteria
- Circulation
- Sports Facilities
- Media Center
- Entry Plaza

Project Background - What

Plan

Project Background - Why

- Need for new, modern facility
 - Increase modern education opportunities for students
- Local population growth
- Others
Project Background - How

- Funded Through
- Total Project Costs
 - a
- Others
Proposed Redesign Goals

- Reduce building total energy consumption
- Reduce total environment emissions
- Increase building energy operating efficiency
 - Defined as
 - Total Energy Output (Elec & Thermal)
 - Total Energy Input (Fuel Source)
Mechanical/Electrical Component

- Typical building energy sources
 - Electric utility grid connection
 - Combusted fuel source
 - Steam
 - Hot water
 - Utility Power
Mechanical/Electrical Component

- National educational building energy consumption

![Energy Consumption Pie Chart]

Source: Energy Information Administration, 1995 Commercial Buildings Energy Consumption Survey
Mechanical/Electrical Component

- National educational building energy consumption

SITE ENERGY USE IN EDUCATION BUILDINGS 614 trillion Btu

- Space Heating 254 trillion Btu (41%)
- Lighting 122 trillion Btu (20%)
- Water Heating 134 trillion Btu (22%)
- Cooling 37 trillion Btu (6%)
- Other 65 trillion Btu (11%)

Electricity 221 trillion Btu (36%)
- Natural Gas 245 trillion Btu (40%)
- Fuel Oil 57 trillion Btu (15%)
- District Heat 91 trillion Btu (9%)

* Other includes miscellaneous uses (22 trillion Btu), ventilation (13 trillion Btu), cooking (11 trillion Btu), office equipment (11 trillion Btu) and refrigeration (8 trillion Btu).

Note: Due to rounding, individual figures may not sum to totals.
Mechanical/Electrical Component

- National educational building energy consumption

Natural Gas Consumption per Square Foot (cubic feet)

- Food Service
- Health Care
- Other
- Lodging
- Public Assembly
- Retail and Service
- Public Order and Safety
- Food Sales
- Education
- Vacant
- Office
- Religious Worship
- Warehouse

Average for all commercial buildings: 99.7 cubic feet per square foot

NATURAL GAS USE IN EDUCATION BUILDINGS

- Space Heating 144 billion cu. ft.
- Water Heating 71 billion cu. ft.
- Cooking 9 billion cu. ft.
- Other 15 billion cu. ft.

*Other includes cooling.

National educational building energy consumption

- Average for all commercial buildings: 13.4 kWh per square foot

Source: Energy Information Administration, 1995 Commercial Buildings Energy Consumption Survey

SITE ELECTRICITY USE IN EDUCATION BUILDINGS
- 65 billion kWh

- Lighting: 36 billion kWh (56%)
- Cooling: 10 billion kWh (16%)
- Space Heating: 4 billion kWh (6%)
- Office Equipment: 3 billion kWh (6%)
- Other: 7 billion kWh (11%)

* Other includes miscellaneous uses (2 billion kWh), water heating (2 billion kWh), refrigeration (2 billion kWh), and cooking (1 billion kWh).

Source: Energy Information Administration, 1995 Commercial Buildings Energy Consumption Survey
Mechanical/Electrical Component

- National educational building energy pollution emissions
 – Insert info
Mechanical Component

- Existing HVAC
 - Governed by the Ohio School Facilities Commission
 - 4 general systems – VAV w/HW Reheat
Mechanical Component

- Existing Mechanical Energy Plant
 - (2) 350ton (nominal), Air-Cooled, Rotary Screw Chillers
 - VFD Primary/Secondary Pumping
 - (2) Batteries of 11 & 3, Multi-stage, Natural Gas Fired, Hot Water Boilers
 - VFD Primary/Secondary Pumping

- Need Diagram
Electrical Component

- Existing Electrical Schematic
 - 1000KV primary feed to Building transformer
 - ?kw/?kva transformer.
 - 480V/3phase secondary feed to Building main switchgear
Electrical Component

- Existing Electrical Schematic
- ? Need Diagram
Mechanical/Electrical Component

- Existing Thermal Demand-Design
- INSERT GRAPHIC
Mechanical/Electrical Component

- Existing Electric Demand - Design
- INSERT GRAPHIC
Mechanical/Electrical Component

- Existing Thermal Demand - Weekday
- INSERT GRAPHIC
Mechanical/Electrical Component

- Existing Electric Demand - Weekday
- INSERT GRAPHIC
Mechanical/Electrical Component

- Existing Thermal Demand - Saturday
- INSERT GRAPHIC
Mechanical/Electrical Component

- Existing Electrical Demand - Saturday
- INSERT GRAPHIC
Mechanical/Electrical Component

- Existing Thermal Demand - Sunday
- INSERT GRAPHIC
Mechanical/Electrical Component

- Existing Electric Demand - Sunday
- INSERT GRAPHIC
Mechanical/Electrical Component

Existing Energy Consumption

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>980,062</td>
<td>Kwh</td>
<td>On-Pk</td>
</tr>
<tr>
<td></td>
<td>69,511</td>
<td>Kwh</td>
<td>Off-Pk</td>
</tr>
<tr>
<td></td>
<td>926</td>
<td>Kw</td>
<td>On-Pk Dmd</td>
</tr>
<tr>
<td>Nat Gas</td>
<td>28,116</td>
<td>Therms</td>
<td>On-Pk</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>Thrm/Hr</td>
<td>On-Pk Dmd</td>
</tr>
</tbody>
</table>
Mechanical/Electrical Component

- **Existing Energy Consumption Costs**

<table>
<thead>
<tr>
<th>Component</th>
<th>Type</th>
<th>Unit</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>INSERT</td>
<td>Kwh</td>
<td>On-Pk</td>
</tr>
<tr>
<td>Insert</td>
<td>INSERT</td>
<td>Kwh</td>
<td>Off-Pk</td>
</tr>
<tr>
<td>Insert</td>
<td>INSERT</td>
<td>Kw</td>
<td>On-Pk Dmd</td>
</tr>
<tr>
<td>Nat Gas</td>
<td>INSERT</td>
<td>Therms</td>
<td>On-Pk</td>
</tr>
<tr>
<td>Insert</td>
<td>INSERT</td>
<td>Thrm/Hr</td>
<td>On-Pk Dmd</td>
</tr>
</tbody>
</table>
Mechanical/Electrical Component

- **Existing Energy Pollution Emissions**

<table>
<thead>
<tr>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>INSERT</td>
<td>INSERT</td>
<td>INSERT</td>
</tr>
</tbody>
</table>
What is Trigeneration

- Combustion of fuel source
 - Microturbine (combustion turbine engine)
 - Recipricating Engine
- Conversion of combustion energy
 - Electric
 - Thermal energy (HW or Steam)
- Use of Thermal energy
 - Heating
 - Humidification
 - Cooling
Mechanical/Electrical Component

- Typical building energy sources
 - Electric utility grid connection
 - Combusted fuel source
 - Steam
 - Hot water
 - Trigeneration
Proposed Trigeneration

- Replace 1 chiller with HW absorption chiller using HW from Cogeneration Equipment
- VFD Primary/Secondary Pumping Remains
- Replace All Hot Water Boilers except one for backup
- VFD Primary/Secondary Pumping Remains
- Interconnect power production with building/utility grid
Mechanical/Electrical Component

- Proposed Cooling/Heating Plant Schematic
- GRAPHIC
Mechanical/Electrical Component

- Electric Inter-Connection
- Governed by
- INSERT
Mechanical/Electrical Component

- Proposed Equipment Base load
 - Elliot Model?
 - 100Kw output w/ 0.8 lead/lag PF
 - 587Mbh Thermal output
 - Equipment efficiency
Mechanical/Electrical Component

- GRAPHIC
- PHOTO
Mechanical/Electrical Component

- Proposed Equipment Standard load
 - HessModel
 - 375Kw output w/ 0.8 lead/lag PF
 - 1900Mbh Thermal output
 - Equipment efficiency
Mechanical/Electrical Component

- GRAPHIC
- PHOTO
Proposed Equipment Design

- HessModel?
- 375Kw output w/ 0.8 lead/lag PF
- 1900Mbh Thermal output
- Equipment efficiency
Mechanical/Electrical Component

- GRAPHIC
- PHOTO
Mechanical/Electrical Component

- Proposed Cooling Equipment
 - Cention HW Chiller Model?
 - Performance
Mechanical/Electrical Component

- GRAPHIC
- PHOTO
Mechanical/Electrical Component

- Probable Fuel Energy Displacement

<table>
<thead>
<tr>
<th></th>
<th>INSERT</th>
<th></th>
<th>INSERT</th>
<th></th>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mechanical/Electrical Component

- Probable Fuel Energy Emissions

<table>
<thead>
<tr>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>INSERT</td>
<td>INSERT</td>
<td>INSERT</td>
</tr>
</tbody>
</table>
Probable Fuel Energy Summary

<table>
<thead>
<tr>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>INSERT</td>
<td>INSERT</td>
<td>INSERT</td>
<td>INSERT</td>
</tr>
</tbody>
</table>
Construction Component

- **Htg/Clg/Elec Plant Costs**

<table>
<thead>
<tr>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
<th>INSERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSERT</td>
<td>INSERT</td>
<td>INSERT</td>
<td>INSERT</td>
<td>INSERT</td>
</tr>
</tbody>
</table>
Construction Component

- Payback by Trigeneration
Construction Component

- Operating/Maintenance Costs of Existing Plant
 - Cost
- Operating/Maintenance Cost w/ Cogen
 - Cost
Construction Component

● Maintenance Issues
 – List
Construction Component

Construction Issues
- Equipment Lead Times
- Equipment Footprint
- Sound output level
Conclusions/Comments

- Why Use
 - List
Conclusions/Comments

- Issues to be aware of
 - List