CNBC GLOBAL HEADQUARTERS

Englewood Cliffs, NJ

Christine Cajilig | Lighting/Electrical | Thesis 2005

Presentation Outline

Items Covered

- Building Background
- Lighting Depth: Cafeteria Dining
- Electrical Depth: Static vs. Rotary UPS
- Mechanical Breadth
- Summary
- Acknowledgements
- Questions

Items Not Covered

- Lighting Depth: Business News Open Office East Lobby East Plaza
- Electrical Depth: Generator Addition Analysis
- CM Breadth: UPS Life Cycle Cost Analysis

Building Background

- Location: Englewood Cliffs, NJ
- Size: 355,000 square feet
- Owner: General Electric
- Engineers: Arthur Metzler and Assoc.
- Architects:

Core and Shell – HLW International Interior Fit-out – The Philips Group

- Contractors:
 Core and Shell Kajima
 Interior Fit-out Bovis Lend Lease
- Function: All digital broadcasting facility

Christine Cajilig | Thesis 2005

Building Background

Lighting Depth: Cafeteria Dining Space

Electrical Depth: Static vs. Rotary UPS

Mechanical Breadth

Summary

Acknowledgements

Questions

Function

• Extended seating area for ground floor cafeteria

Architectural Features

- Anigure wood paneling on stair walls
- Blue terrazzo accent walls, terrazzo floor tiles
- Metal fabric ceiling on middle section of cafeteria

Design Goals

- Promote relaxing dining ambiance
- Create an open, spacious feel
- Evoke a sense of comfort
- Accentuate the contrasting finishes: wood, metal, stone
- Create a sense of continuity with the three sections of the space

Christine Cajilig | Thesis 2005

Proposed Design

Christine Cajilig | Thesis 2005

Luminaires Used

• C1 – Louvered downlight (CF32W/835)

• C2 – Adjustable downlight (CF32W/835)

C3 – Low profile cove lights (CF9W/835)

01301 020 0<mark>20</mark> 1. ALL CIRCUITS TO PANEL LP-KIT-1

Power Density Comparison

		Actual Power	ASHRAE	Meets	
	Watts	Density	Std. 90.1	Std. 90.1?	
Area Lighting	8734	1.40	1.4	YES	
Accent Lighting	1118	0.18	1.0	YES	
Total	9852	1.58	2.4	YES	\vee
Total Square Feet	6230				

Existing power density was 3.4 W/sf

***New design is a 53% reduction of power density and meets ASHRAE Standard 90.1 2001

Christine Cajilig | Thesis 2005

Design Results

North end: 14.4 fc horizontal, 4 fc vertical illuminance

Christine Cajilig | Thesis 2005

Design Results

Middle: 21.3 fc horizontal, 9 fc vertical illuminance

Christine Cajilig | Thesis 2005

Design Results

South end: 10 fc horizontal, 3 fc vertical illuminance

Christine Cajilig | Thesis 2005

Design Summary

- More dynamic, lively space: different materials accented
- Continuity is accomplished with recurring theme (metal fabric)
- Relaxing atmosphere with non-uniform illuminance on walls
- Use of indirect cove lighting and simple downlights give a cleaner and a more sophisticated modern space
- ASHRAE Standard 90.1 2001 met
- 53% reduction from existing power density

Building Background

Lighting Depth: Cafeteria Dining

Electrical Depth: Static vs. Rotary UPS

Mechanical Breadth

Summary

Acknowledgements

Questions

Existing System

- (2) 1,000 kVA static UPS operating in parallel and power tied
- (4) racks of flooded cell batteries
- 13 minutes of back up power
- Integrated with (2) 2,000 kW generator set

Proposed System

- (2) 1,200 kVA rotary UPS operating in parallel and power tied
- Flywheel back up technology
- 15 seconds of back up power
- Integrated with (2) 2,000 kW generator set

Christine Cajilig | Thesis 2005

Design Life for Module

- Rotary UPS
 - MTBF = 200,000 hrs (22.8 years)
- Static UPS
 - MTBF = 170,000 hrs (19.3 years)
 - Flooded cell battery MTBF = 80,000 hrs (9.1 years)

***Because the batteries are the source of back up power, reliability of static UPS is dependent on battery life.

Back-Up Time

13 minutes vs. 15 seconds

***Rotary UPS: Short ride through system with needed generator integration.

Christine Cajilig | Thesis 2005

Environmental Conditions Requirement

Rotary UPS		Existing Static UPS	
Min. Operating Temperature	0°F	0°F Min. Operating Temperature	
Max. Operating Temperature	104°F	Max. Operating Temperature	104°F
		Operating Temperature	77°F
Humidity (w/o condensation)	5% - 95%	Humidity (w/o condensation)	0% - 95%
Storage Temperature	-13°F - 158°F	Storage Temperature	-4°F - 158°F
		Battery Temperature Requirements	77°F average annual temp.

٠

Narrow operating temperature range for the static UPS because of temperature sensitivity

 Battery life over average annual ambient temperature shows decline in life as temperature increases

***Stringent cooling requirements for static UPS

Christine Cajilig | Thesis 2005

Other Rotary UPS Benefits

More compact – occupied 30% less space

- Less frequent, less complicated maintenance
- Life cycle cost for 20 years is \$126,000 less than static UPS system

Christine Cajilig | Thesis 2005

Building Background Lighting Depth: Cafeteria Dining Electrical Depth: Static vs. Rotary UPS

Mechanical Breadth

Summary

Acknowledgements

Questions

Mechanical Breadth

Mechanical Changes due to New Rotary UPS

- Room temperature no longer needs to be maintained at 77 °F
- 60 tons of cooling and associated piping saved
- New UPS room only needs 10,000 cfm of cooling
- Ventilation drops from 1,600 cfm to 52 cfm (due to removal of (4) racks of flooded cell batteries)

Mechanical Breadth

Existing vs. New Mechanical System Serving UPS Room

Mechanical Breadth

First Cost Savings from Unneeded Mechanical Equipment

Equipment	Quantity	Price*		Total Cost
Electric Duct Heater	1	1292.5	each	\$1,292.50
30" Wide x 12" high, 30kW				
Chilled Water AHU	3	20,825	each	\$62,475.00
20 ton self contained unit				
Exhaust Fan for fumes	2	1075	each	\$2,150.00
Belt Drive				
Galvanized steel pipes	26	31.75	lf	\$825.50
3"	feet			
Galvanized steel pipes	46	26.4	lf	\$1,214.40
2 1/2"	feet			
Galvanized steel pipes	70	13.47	lf	\$942.90
1 1/4"	feet			
Metal Ductwork	153	12.45	lf	\$1,904.85
14" x 12"	feet			
Metal Ductwork	19.5	8.62	lf	\$168.09
14" x 8"	feet			
Metal Ductwork	42	6.69	lf	\$280.98
12" x 6"	feet			
Metal Ductwork	57	20.8	lf	\$1,185.60
20" x 12"	feet			
*Material and labor included in price		Total Savi	ngs:	\$72,439.82

Building Background Lighting Depth: Cafeteria Dining Electrical Depth: Static vs. Rotary UPS Mechanical Breadth

Summary

Acknowledgements

Questions

Summary

Lighting Depth

- Recurring theme (metal fabric) gives continuity to the space
- New lighting design creates a cleaner, more sophisticated space
- 53% reduction from existing power density and ASHRAE Std. 90.1 2001 met

Electrical Depth

- Problems inherent with batteries eliminated; result is a more reliable system
- Rotary UPS is a short ride through system that needs generator integration
- Space reclaimed

Mechanical Breadth

- 60 tons of cooling and 1,600 cfm of ventilation deemed unnecessary
- Removal of extensive mechanical equipment gave a substantial first cost savings of about \$72,500

Acknowledgements

Arthur Metzler and Associates

Tishman Speyer Properties

Cleveland Brothers Co. and Caterpillar, Inc.

AE Faculty, especially my advisor, Dr. Mistrick

Family, Roommates, Friends

Christine Cajilig | Thesis 2005

Questions??

Electrical Depth : Clarification

Back up Duration

- Rotary UPS
 - 15 sec is enough time to allow the UPS to handle a majority of power disruptions that last only up to 5 sec
 - It is also enough time to cover longer outages until a backup generator can come online to full power (< 10 seconds).
- Static UPS
 - Good for smaller applications without generator set integration
 - 15 minutes not enough time for back-up should gen-set fail (MTTR >4 hrs)

Electrical Depth : Clarification

Life Cycle Cost Analysis

Comparison of Life Cycle Present Value Cost					
Life Cycle taken as 20 years			Savings from		
	Static UPS	Rotary UPS	Rotary UPS		
Initial Investment Cost:	\$667,000	\$1,036,800	-\$369,800		
Maintenance Cost:	\$557,774	\$101,702	\$456,072		
Replacement Cost:	\$241,862	\$39,690	\$202,172		
Energy Consumption Cost:	\$16,705	\$178,183	-\$161,478		
Total Present Value Life Cycle Cost:	\$1,482,341	\$1,356,375	\$125,966		

