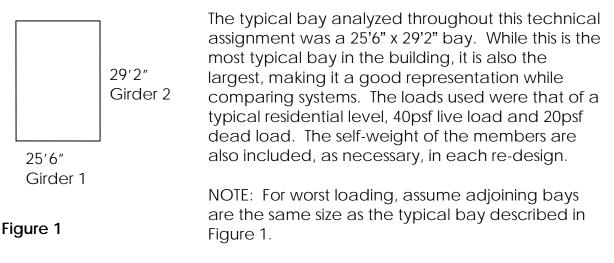
Amanda Gerstenberg Structural Option

Advisor: Dr. Linda Hanagan The 400: Bremerton, WA October 5, 2005 AE 481W

Structural Technical Report 2 Alternate Framing Analysis

Executive Summary:

The 400 is a condominium complex located in Bremerton, Washington, right across the bay from Seattle. The building consists of two levels of concrete parking below four stories of residential non-composite metal frame construction. Ground has recently been broken for construction of The 400, and updated plans are in the process of being developed.


This technical assignment consists of an analysis of the existing structural system. Then, four possible alternate systems are evaluated, with advantages and disadvantages for each.

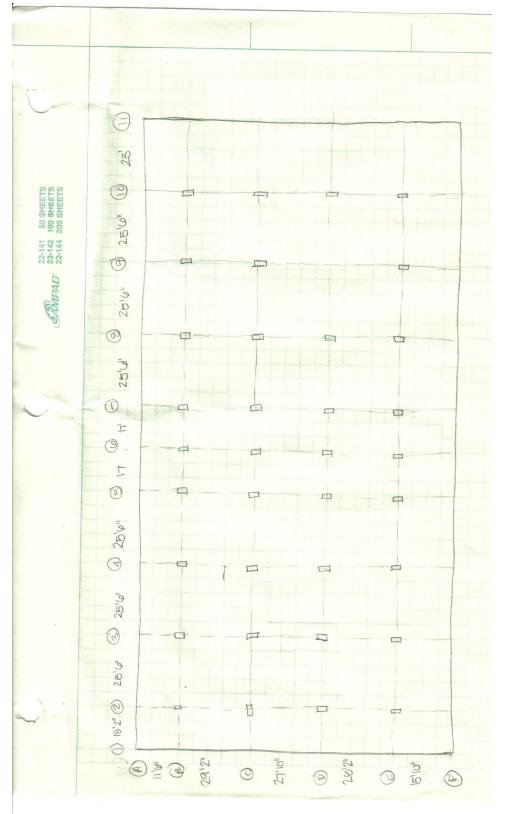
- Engineered Lumber
- Hollow Core Planks
- Two-way Flat Slab
- Waffle Slab

The most important considerations are site limitations for construction and soil properties which do not accommodate very well to large loads. In addition, height requirements are also a concern because The 400 is already designed to the maximum possible height.

All four alternate systems are then compared and contrasted to determine which systems should be considered for re-design (NOTE: All calculations and tables used for design are located in the Appendix). Many aspects, including vibration, foundation and column load implications and depth of system, were compared and contrasted. The Engineered Lumber system was chosen to be the best candidate for re-design, for many reasons including lighter and cheaper overall system.

Typical Bay Information:

The soil is very critical in the structural design because of the proximity of the building to the Port Washington Narrows. In addition, the soil located in the southwest corner of the building design is extremely critical and required additional support. The foundation is built in accordance with the load that is required, so any design which decreases the load which is transferred to the foundation or the foundation design in general would dramatically decrease the cost of the building. Additionally, maximum use of the site is already being used, so the least amount of space required for construction, the better.


Existing Structural System – Non-composite Structural Steel:

The 400 is built according to the 2003 International Building Code and locally to the Bremerton Municipal Code. ASCE 7-02, ACI 318-05, and LRFD design were used for analysis of the building, as necessary.

To accurately compare systems, the floorplan shown in Figure 2 was used for all designs and re-designs. This floorplan was simplified as a rectangle for analysis. The shear walls for the seismic considerations are not considered in design or re-design for simplicity. The most typical bay in the floorplan is the 25'6" x 19'2" bay shown in Figure 1. As mentioned above, this bay is also the largest bay in the floorplan, providing a very good representation.

NOTE: The members being compared are not identical to the members used in building design. To accurately compare designs, an LRFD RAM model was created and members were re-designed according to the new floor layout.

Bay layouts for typical floor:

The typical framing used:

- Girder 1: W16 x 31
- Girder 2: W8 x 10
- Joists: 16K2 24" o.c.

ADVANTAGES	DISADVANTAGES
 Fairly easy to run mechanical systems and utilities through existing systems Fairly typical system for the geographical location for condominium application when compared to concrete systems, so labor may be less expensive, while experience would be greater More durable system when compared to wood 	 Relatively expensive system Relatively heavy weight when compared to wood system, increasing load transferred to columns and foundations Steel not very good for exterior applications; not applicable for this application, but considered for possible future renovations to the project

Summary:

- Depth of system: 18 ½" (including 2 ½" metal deck)
- Dead Load of System: 20psf
- Total Dead Load: 40psf
- Spacing: 2'
- Spans: 29'2"
- Design: Girder 1 W16 x 26

Girder 2 – W8 x 10

Joists -16K2 @ 24" o.c.

NOTE: All calculations and tables used for design are located in the Appendix

Major advantages of the existing structural system include the ease of running utilities and mechanical systems through the floor system, a fairly durable system, and subcontractor expertise because of repetitive design on similar projects, while major disadvantages include and expensive and heavy system transferred to the columns and foundation.

Alternate System 1 – Engineered Lumber:

Possible Designs:

Girder 1 (from Figure 1):

- 3 ¹/₂" x 34" Parallam (PSL) Commercial Beam
- 5 ¼" x 30" Parallam (PSL) Commercial Beam
- 7" x 26" Parallam (PSL) Commercial Beam

Girder 2 (from Figure 1):

- 3 ¹/₂" x 36" Parallam (PSL) Commercial Beam
- 5 ¼" x 30" Parallam (PSL) Commercial Beam
- 7" x 26" Parallam (PSL) Commercial Beam

Joists (spanning the 29'2" length):

- 18" L65 Joists 16" o.c.
- 24" L65 Joists 19.2" o.c.
- 16" L90 Joists 16" o.c.
- 20" L90 Joists 19.2" o.c.

All design was in accordance with the most recent Trus Joist Literature, Specifier's Guide's 1062 and 1048. The loading was too high to use residential beams and joists, so commercial materials were required for this application.

Recommended Design:

Girder 1: 7" x 26" Parallam (PSL) Commercial Beam Girder 2: 7" x 26" Parallam (PSL) Commercial Beam Joists: 24" L65 Joists 19.2" o.c.

NOTE: Generally, deeper joists or beams are cheaper. Because the height of the building is a concern, the shallowest girders were chosen, but the deepest joist was still less shallow than the girders, so the deepest joist would be most cost effective. In addition, using the wider spacing of 19.2" o.c. reduces the joists necessary to span the required distance, reducing costs of the joists.

NOTE: Tables in Literature are based on L/360 deflection criteria and simple spans.

ADVANTAGES	DISADVANTAGES
Wood design popular in	All materials are commercial
geographical location;	and special order materials, so
expertise easy to locate and	they can be more expensive
labor most likely relatively	than other wood options
cheap	 Current story height is 10'6";
 Wood cost generally cheaper 	depth of girders at least 26", so
than other material cost	to maintain inside ceiling
(especially steel)	height, the entrance to the
Rigid floor diaphragm to	garage can be lowered
transfer loads	 Wood not as durable as steel
 Lighter system overall – this 	Wood floors can sometimes be
would allow a lighter load to be	"squeaky" when compared to

 transferred to the columns and foundation system Engineered lumber as compared to standard board lumber less defects/less squeaky floors Pieces can be cut to desired length on site Engineered lumber spans much farther than solid sawn lumber 	 steel floors; other possible vibration issues can develop as well Weathering can be a problem with wood; The engineered lumber cannot be exposed to outside elements, although sealants and treated material can be used in areas which are exposed to outside elements Area must be altered for mechanical systems and utilities (Trus Joist does provide services and literature for allowable hole
	(Trus Joist does provide services
	 The spacing of joists is changed from 24" o.c. for steel joists If the location of bearing walls change, the lateral system may require further evaluation

Summary:

- Depth of system: 26" (not including panels)
- Dead Load of System: 10psf
- Total Dead Load: 30psf
- Spacing: 19.2"
- Spans: 25'6"
- Design:
- Girder 1 7" x 26" Parallam (PSL) Commercial Beam Girder 2 – 7" x 26" Parallam (PSL) Commercial Beam Joists –26" TJI L65 Commercial Joists

NOTE: All calculations and tables used for design are located in the Appendix

Major advantages to an Engineered Lumber design include decreased building weight to be transferred to the columns and foundation, increased expertise of subcontractors due to relatively common design for condominiums, and relatively cheap cost. Major disadvantages include decreased joist spacing, increased vibration in and "squeaky" floors, low durability of wood material (especially in exterior applications), and increased structural system height required.

Alternate System 2 – Hollow Core Planks:

The hollow core planks are to span the 25'6" direction, parallel to girder 1 in Figure 1. The same load of 40psf live load and 20psf dead load are used. Using the PCI Handbook, a 4HC6-96-S (9 strands of 6/16ths thickness) topped was designed for this application.

Using the dead load of hollow core planks, an LRFD RAM model was created with a non-composite metal deck. This RAM model is shown in the Appendix.

ADVANTAGES	DISADVANTAGES
 Relatively fast construction Reduced labor Do not need to attach subflooring to joists as in other possible systems Vibration and "squeaking" reduced Pre-cast, so do not need much extra space on the site, which is a problem to begin with Ready-made holes for conduit Flexibility to penetration Weathering less of a problem when compared to wood or steel system 	 Heavier load, which increases load transferred to the columns and foundation, which is critical Cannot easily vary in length Relatively expensive Problems accommodating utilities (possible suspended ceiling) Walls can become poured concrete or masonry, which is harder to altar the structural system, if desired Lateral resistance system changes

NOTE: To decrease floor height, hollow core planks will be connected on the inside of the steel I-beams using angles. This will allow the height of the system to be solely the required I-beam sizes.

Summary:

- Depth of system: 24" (height of largest steel I-beam)
- Dead Load of System: 74psf
- Total Dead Load: 94psf
- Spacing: 4' wide planks
- Spans: 25'6"
- Design: Planks 4HC6+2-96-S Girder 1 – W24 x 55
 - Girder 2 W 8 x 10

NOTE: All calculations and tables used for design are located in the Appendix

Major advantages include increased construction time, decreased labor costs, and pre-cast materials, so not much on-site space is necessary. Major disadvantages to Hollow Concrete Plank Design are increased dead load, expensive system, and inability to vary in length.

Alternate System 3 – Two-way Flat Slab System:

The loads used were 40psf live load and 20psf dead load, but the 1992 CRSI Manual was used, so the 1.4DL + 1.7LL factors were used instead of 1.2DL + 1.6LL. The load to be used in the tables, then, was 96psf total load.

A 10 $\frac{1}{2}$ " slab with 10' x 10' drop panels 7 $\frac{1}{2}$ " deep was sized for this application.

Edge Panel Design:

Reinforcing Bars: Column Strip

- Top exterior (14) #5
- Bottom (15) #7
- Top interior (23) #5

Middle Strip

- Bottom (10) #7
- Top interior (10) #6

Total steel: 3.35psf (NOTE: this does not need to be included in dead load values because 150pcf was used for reinforced steel)

Interior Panel:

Reinforcing Bars: Column Strip

- Top (20) #5
- Bottom (16) #5

Middle Strip

- Top (12) #5
- Bottom (11) #5

Total steel: 2.64psf (NOTE: this does not need to be included in dead load values because 150pcf was used for reinforced steel)

ADVANTAGES	DISADVANTAGES
Two-way system generally more	 Concrete system in general
economical than one-way	more expensive than wood

 system Depth of 18", so more shallow than wood system 	 Dead Load of structural system of 144psf negatively affects columns and foundation, which
 "Squeaky" floors and vibrations 	is critical
less of an issue with concrete	 Fairly thick concrete system to
system	be altered if holes are necessary
 Spans relatively far 	for utilities

Summary:

- Depth of system: 18" (including 7.5" drop panel)
- Dead Load of System: 144psf
- Total Dead Load: 164psf
- Spacing: N/A
- Spans: 30'
- Design: 10 1/2" slab with 10' x 10' drop panels 7 1/2" deep

NOTE: All calculations and tables used for design are located in the Appendix

Major advantages of Two-way Flat Slab Design include long spans, more shallow system height than for Engineered Lumber system, and decreased vibration issues. Disadvantages include increased weight transferred to columns and foundation, thick concrete system to make alterations for MEP equipment, and relatively expensive system when compared to wood.

Alternate System 4 – Waffle Slab:

The loads used were 40psf live load and 20psf dead load, but the 1992 CRSI Manual was used, so the 1.4DL + 1.7LL factors were used instead of 1.2DL + 1.6LL. The load to be used in the tables, then, was 96psf total load.

Edge Panels:

Reinforcing bars (each direction): Column Strip

- Top Edge (29) #4
- Bottom
 - o Long Bars #6
 - o Short Bars #6
- Top Interior (25) #5

Middle Strip

- Bottom
 - o Long Bars #5

o Short Bars - #5

• Top Interior – (15) #4

Total steel: 2.44psf (NOTE: this does not need to be included in dead load values because 150pcf was used for reinforced steel)

Interior Panel:

Reinforcing Bars (each direction): Column Strip

- Bottom
 - o Long Bars #5
 - o Short Bars #6
- Top Interior (24) #5

Middle Strip

- Bottom
 - o Long Bars #4
 - o Short Bars #5

• Top Interior- (15) #4

Total steel: 2.33psf (NOTE: this does not need to be included in dead load values because 150pcf was used for reinforced steel)

ADVANTAGES	DISADVANTAGES
 Increased surface area when compared to wood systems because relatively easy to span long directions Sound barrier between floors Light fixtures can be recessed in the slab Concrete over wood or steel can be used for passive solar heating (thermal storage) and save on HVAC costs Vibration benefits with concrete as compared to other systems Relatively cheap system for concrete and as compared to steel Decreased story height 	 Additional thermal mass will alter structural and seismic loads Additional dead weight of 68psf will negatively affect the supporting columns and foundation, which is critical Aesthetically, waffle slabs are usually not as appealing as other systems, so additional features may need to be added to ceiling Relatively expensive system when compared to wood

Summary:

- Depth of system: 11" (including 7.5" drop panel)
- Dead Load of System: 68psf
- Total Dead Load: 88psf
- Spacing: N/A
- Spans: 30'
- Design: 30" x 30" voids; 6" ribs @ 36" o.c.

NOTE: All calculations and tables used for design are located in the Appendix

Major advantages for a Waffle Slab include an increased sound barrier, spaces for recessed lighting, and possibilities for passive solar heating. Major disadvantages include additional dead load to be transferred to columns and foundation, aesthetically displeasing design, and relatively expensive system when compared to wood.

Special Considerations:

Typical condominiums in specifically the Bremerton, WA area and more generally in the whole state of Washington and most of the west coast in general are:

- Entirely wood (less than 5 stories)
- Concrete parking with wood above
- Concrete parking with steel above

Generally, concrete condominiums are not that popular, due to price and increased weight. Also, as previously discussed, concrete buildings (especially masonry walls) do not generally allow for building expansion. This is very important in areas which are experimenting with condominiums, such as Bremerton and condominiums in general. If, at some point in time, the owner would like to expand on the existing building or purchase the adjoining condominiums, the structural systems can more easily and less expensively be combined in a wood or metal frame as compared to a masonry façade.

Because these are the typical building styles, more experienced subcontractors would be available for construction of buildings which conform to one of these three most popular designs. While this should not prevent other systems from being used, cost of labor and expertise should and would contribute heavily to design.

Other system considerations:

While only the residential structural floors were evaluated, other systems were evaluated. The current structural system consists of concrete parking with steel above. To simplify construction (costs and labor, because only one trained crew could be hired for the entire building), an entire steel system or an entire concrete system was considered.

Entirely Steel System:

The main change to the existing system for this system is changing the parking to steel framed. The extreme drawback of steel parking garages is deflection and deterioration due to outside elements. While the majority of the parking is not exactly exteriorly exposed, the entrance would most likely be influenced by the outside elements and would require extra maintenance that other designs would not.

As far as deflection is concerned, even though structurally it might not be failing, the more deflection in a building, the more generally uneasy the users of the structure feel. Considering the prices of some of the condominiums, the tenants should feel safe in their building, so a steel parking garage with excessive deflection might not be the best solution.

Entirely Concrete System:

As displayed in the Hollow Core System in Alternate System 2, concrete systems increase the dead loading (when compared to wood systems), and an increased dead loading makes the foundation design requirements more critical. When foundation requirements are already critical, increasing dead weight throughout each floor of the building is probably not a good idea.

Two-way Flat Plate System:

Because the typical bays were rectangular, a two-way flat plate system was analyzed, but the system could not span the required 30'. The bays could be decreased, but that would cut back on the size of the condominiums, which would decrease the value they could be rented for.

Summary of Alternate Systems:

SYSTEM	SYSTEM RECOMMENDED FOR REDESIGN?	REASONS
Engineered Lumber	Yes	 Lighter weight Increased expertise Cheaper system
Hollow Core Planks	No	 Increased weight Relatively expensive Lengths cannot easily be altered
Two Way Flat Slab	No	 Increased weight Relatively expensive Difficult to accommodate mechanical systems and utilities
Waffle Slab	No	 Increased weight Relatively expensive Not aesthetically pleasing

Overall, the only system to be considered while weighing all of the factors is the engineered lumber system. This corresponds with what the industry views as typical for the four story condominium.

APPENDIX

Existing Design:

10/30/05 17:22:16

2	4
50	
>	
-	1
Z	
-	¢.
T	

Floor Type: Typical Floor

1	01×8W	W10x12		M10×12	- H	M10×12	H	01×8W
		CNAL		1 UKS		LAS!		
+	- NULN	1 EKS	0	1 KY	0	CN91	0	D IUKI
		CNAL	Q	CNA1 CNA1	- Q -	16K2	8	A JUKI
	NUL	CNAL	W16x26	CNAL	W16x26	CX91	10	
		CN31 CN31 CN31	3	16KS	3	CNAL	5	E JUKI
	-1UK1-	CNAL		CNAL		16K2		<_10K1<
	-1101-	CNAL		CNAI		CX91		-110K1-
1		CNAL		CNAL		CT ST		
11	ANOL 1	CHART		UNPLA	i		i	ANOL 1
1	-10K1-	CNAL		CNAL		CNAL		-INKI
	-10K1 -10K1 -10K1 -10K1 -10K1 -10K1	CNAL		CNAL		CNAL		-1UK1
	- BIUKI-	CAAL	W16x31	CNAL	WI6X31	CNA1 CNA1 CNA1	88	
3	-1 MOLQ	CX31	<u>ð</u>	CNAL	<u> </u>	CNAL	<u>Ô</u>	
2	-LAUKI-	CNA1 16K2	Z	CNAL	2	CNAL	Š	E JUKI
1	L MILL	CNAL	-	CNAL		CNAL		-IUKI
		CNA1 16K2	-	CNAL		CNA1 CNA1 CNA1 CNA1	-	
It		CNAL		CNAL		CNAL	-	
+	(LAULA	CASIA		(LAPIA		VIEK 2)		CINULA
1		(CNAIV		0.0.0		C. S.M		CI NUL
	-17K1-	LAKS		CNAL		CNAL	-	-IUKI
0		CNA1 16K2	-	CNAL	-	CARL	(0)	N-10K1
		CNAL	WI6X31	CNAL	M6x31	LEKS	WIBCO	
N	-1 MOLO	CNAL	0	CNAL	0	CNAL	0	-INKI-4
3		CNAL	3		3	CARL	3	E JUK!
	LMILL	CNAL		IEKS		CNAL		-10K1
	-10K1-	CNAL			-	С С С С С С С С С С С С С С		
1		CNAL		CARL		CN91		
1	(IJUKI)	(CHAIV)		16K2		(CAANV		-(LAULA-
		CNAL		CNAL		CVAL		-IUK1
		CNAL		(MUI		Слан Слан Слан Слан Слан Слан Слан Слан	-	
0	RINKI	CNAL	2	IEKS	20	CNAI	8	LMUL N
		CNAL	MOK31	CX91 CX91 CX91 CX91 CX91 CX91	M6X31	CNAL	WIGCE	
5	L NULS	CNAL	5	CARL	5	CAAL	5	LAUL S
>		CAAL	>	CNAI	>	CAAL	>	
	-1101-	CNAL		16K2		CNAL		
	-10K1- -10K1-	CNAL		CNAL		CNAL		L NUL
L	-INCL	MI UVI 2		CARL		MI UV12		
1	10K1	W10412		C LAU LIVI		W110412		0128M
V	-LNUL4	CXA1 AK2	o	18K2 18K2	o	CNAL	0	S JOKI
MICK	-INULX	CNAL	M2X1	CARL	W12x1	CNAL	W12x16	
5	- ZIUKI-	CNAL		0/91	5	1 CNAI	5	-IUKI
5	-1 XU15	CNAL	5	CNAL		CNAL	-5	-INKI-S
		CNAL		CNAL		CTAD CTAD		
		(CARIN		(LAPLA		VIEKS		CINULA 4
	M2X14		-		0	U/1U /	(0	
ZIXNIA		CNAL	6	CNAL	U,	CNA1	W12X16	
2	- MULO	16K2	W12x1	CNAL	W12x1	LEKS	0	S JUK!
3	-1X013	CNAL	3	CNAL	3	CNAL	3	- HUK-
	-10K1 -10K1 -10K1 -10K1	CNAL		CNAI		VIEKS WIUAIS		
H	IJUK -	C M Y L		MI UNI S		CAAL		
1	-10K1-	MI UVIZ		CLAULIN		CLAULIN		-01-8/M
V		16K2	8	CNAI	Ø	CNAL	0	T 10K1
×	-INULX	CXAI	\$	- 16K2	X	16K2 16K2 16K2	- 2	-IUKI
	- SULS	CNAL	M	16K2	W12X19	CNAL	W12x19	-1UK1-
>		CXA1	5	CNA1 CNA1	>	CNAL	5	S JUKI
		CNAL		CNAL		CNAL		
H		(CAAIV		16K2		CNAI		L'NUL
1	LAUL	CNAL		CNAL	1	CNAL		-101-
Y		CNAL	8	2862 1962 1962	0	242 242 242 242 242 242 242 242 242 242	0	-10K1-
	- NULX	CXA1	M4X22	CNAF	X	CNAL	V12×19	NOL X
3	-LAULS	CNA1	5	16K2	5	CNSL	5	S JUKI
>		CNAT	>	CNAI	>	CNAL	>	-INUL-
1	-10K1-	CNAI		16K2		CNAL		-LANT-
	LAUL	VIEKS)		16K2		VIEKS		LNUL (
-	-101-	CART		16K2		CNAL		
-		CNA1 CNA1		CXAI		CNAL		-10K1-
0	-INUL	CN91	20	16K2	5	CNAL	8	B JUKI
		- IEKS	6 X31	19K2	6 31	16K2	W1026	K JUKI
	- NOTE	CXYI	5	16K2	Me	16K2	N	
		CNA1 CNA1	×	16K2	5	CNA1	5	
-	INUL	CNAL		16KO		- 16KS		-INKI
1.11.11	-INUL	CNAL		16K2		IEKS		
1		CNAL	1.1	CNAL		CN91	11	
	ULANN	VIAV10		ULARY WRVID		ULANN		LINUL I
	-LAUL	CNAT	0	CXAI	-	1 CN91	0	_1UK1_
3	-191061-	-16K2	\$	CXA1	6	16K2	6	I VIII V
	LAULA -	CXA1 IRK2	4	16K2	X	CNAL	X	A JUKI
S		CNAL	Š	CAAI	5	16K2	M	5-1UK1
1		CAAL		CAAL		16K2		
t	INKI I	CAAL		CHAI SAAL	- HE	CNAL	TH	
110	ULASINO	MI UAIS		MI10412	(0)	MIJAIS	(N	11-8/M

Alternate System 1: Engineered Lumber:

3 ½" PSL (Parallam) Beam:

ow to use this table

Determine the Total Load (neglect beam weight) and Live Load on the beam in pounds per linear foot (plf).

Select the appropriate SPAN (center-to-center of bearing).

Scan horizontally to find the proper depth that exceeds actual total and live loads.

If your application requires a deflection other than L/360, use the following conversion factors:

For L/240 multiply *Live Load L/360* x 1.5 For L/480 multiply *Live Load L/360* x 0.75

If the selected beam is too deep or the Minimum End Bearing length is too long, refer to a wider beam table that may require less depth and less bearing.

so refer to Assumptions on page 4.

Typically, sizing of deeper beam members results in a more economical system.

							31/2"	Width					
Span		20 " 22 " 24 " 26 " 28 " 30 " 32 " 34 " 36 " 38 " 40 "											
	Total Load	2,938	3,520	4,034	4,561	5,137	5,767						
12'	Live Load L/360	3,395	4,311	5,331								C- 4	
	Min. End Bearing	6.8	8.1	9.3	10.5	11.8	13.3					_	
	Total Load	2,153	2,580	3,043	3,541	4,029	4,478	4,962					
14'	Live Load L/360	2,276	2,920	3,646	4,451	5,331							
	Min. End Bearing	5.8	6.9	8.2	9.5	10.8	12.0	13.6					
	Total Load	1,643	1,969	2,323	2,705	3,113	3,549	4,011	4,416				
16'	Live Load L/360	1,591	2,057	2,587	3,183	3,840	4,557	5,331	CITES NOO		26		<u> </u>
	Min. End Bearing	5.1	6.1	7.2	8.3	9.6	10.9	12.3	13.6				
	Total Load	1,294	1,551	1,830	2,131	2,453	2,797	3,162	3,547	3,954			
18'	Live Load L/360	1,152	1,497	1,894	2,343	2,844	3,395	3,995	4,640	5,331			
	Min. End Bearing	4.5	5.4	6.4	7.4	8.5	9.7	11.0	12.3	13.7			
	Total Load	1.044	1,252	1,477	1,721	1,981	2,259	2,554	2,866	3,195	3,541		
20'	Live Load L/360	859	1,121	1,424	1,770	2,157	2,587	3,059	3,570	4,120	4,708	111	
	Min. End Bearing	4.1	4.9	5.7	6.7	7.7	8.7	9.9	11.1	12.3	13.6		
	Total Load	859	1,030	1,217	1,417	1,632	1,861	2,105	2,362	2.634	2,919	3,218	
22'	Live Load L/360	656	859	1,095	1,366	1.671	2,011	2,387	2,796	3,240	3,716	4,224	
	Min. End Bearing	3.7	4.4	5.2	6.1	7.0	7.9	9.0	10.1	11.2	12.4	13.7	
	Total Load	718	862	1,018	1,186	1,367	1,559	1,763	1,979	2,207	2,446	2,697	2,960
24'	Live Load L/360	512	672	859	1,074	1,318	1,591	1,894	2,226	2,587	2.977	3,395	3,840
	Min. End Bearing	3.4	4.1	4.8	5.6	6.4	7.3	8.2	9.2	10.3	11.4	12.5	13.7
	Total Load	609	731	864	1.007	1,160	1,323	1,497	1,681	1,875	2,078	2,292	2,515
26'	Live Load L/360	407	535	685	859	1,057	1,279	1,526	1,798	2,095	2,417	2,764	3,135
	Min. End Bearing	3.1	3.7	4.4	5.1	5.9	6.7	7.6	8.5	9.5	10.5	11.6	12.7
	Total Load	522	627	741	864	996	1,137	1.286	1.444	1.611	1.786	1,970	2,162
28'	Live Load L/360	329	433	555	697	859	1,042	1,245	1,471	1,718	1,986	2,276	2,587
	Min. End Bearing	2.9	3.5	4.1	4.8	5.5	6.2	7.0	7.9	8.8	9.7	10.7	11.8
	Total Load	452	543	642	749	864	986	1,116	1,253	1,398	1,551	1,710	1,878
30'	Live Load L/360	269	355	456	573	707	859	1,029	1,217	1,424	1,650	1,894	2,157
	Min. End Bearing	2.7	3.2	3.8	4.4	5.1	5.8	6.6	7.4	8.2	9.1	10.0	11.0
	Total Load	394	474	561	655	755	863	976	1,097	1,224	1,358	1,498	1,645
32'	Live Load L/360	223	294	378	476	589	716	859	1.018	1,193	1,384	1,591	1,816
	Min, End Bearing	2.5	3.0	3.6	4.2	4.8	5.5	6.2	6.9	7.7	8.5	9.4	10.3
	Total Load	347	417	494	577	666	760	861	967	1.080	1,198	1,322	1,452
34'	Live Load L/360	187	247	317	400	495	603	724	859	1,008	1,171	1,349	1,541
	Min. End Bearing	2.4	2.9	3.4	3.9	4.5	5.1	5.8	6.5	7.2	8.0	8.8	9.7
	Total Load	307	370	438	511	590	675	764	859	959	1.064	1.174	1,290
36'	Live Load L/360	158	209	269	339	420	512	616	731	859	999	1,152	1,318
	Min. End Bearing	2.3	2.7	3.2	3.7	4.3	4.9	5.5	6.1	6.8	7.6	8.4	9.2
	Total Load	273	329	390	456	527	602	682	767	857	951	1,050	1,153
38'	Live Load L/360	135	178	230	290	359	439	528	627	738	859	992	1,136
	Min. End Bearing	2.1	2.6	3.0	3.5	4.0	4.6	5.2	5.8	6.5	7.2	7.9	8.7
	Total Load	245	2.0	350	409	472	540	612	689	769	854	943	1,036
40'	Live Load L/360	116	153	198	250	310	378	456	542	638	743	859	985
	Min End Bearing	2.0	24	20	230	30	11	450	55	62	69	75	905

7" PSL (Parallam) Beam:

ow to use this table

Determine the Total Load (neglect beam weight) and Live Load on the beam in pounds per linear foot (plf).

Select the appropriate SPAN (center-to-center of bearing).

Scan horizontally to find the proper depth that exceeds actual total and live loads.

If your application requires a deflection other than L/360, use the following conversion factors:

For L/240 multiply *Live Load L/360* x 1.5 For L/480 multiply *Live Load L/360* x 0.75

If the selected beam is too deep or the Minimum End Bearing length is too long, refer to a wider beam table that may require less depth and less bearing. so refer to Assumptions on page 4.

Typically, sizing of deeper beam members results in a more economical system.

		7" Width 26" 28" 30" 32" 34" 36" 38" 40" 42" 44" 46" 48" 50" 52" 54"														
Span		26" 28" 30" 32" 34" 36" 38" 40" 42" 44" 46" 48"													50" 52"	
	Total Load	4,262	4,907	5,594	6,323	7,095	7,908									
18'	Live Load L/360	4,687												:		
	Min. End Bearing	7.4	8.5	9.7	11.0	12.3	13.7				-			=	_	
	Total Load	3,442	3,963	4,519	5,109	5,733	6,390	7,082								
20'	Live Load L/360	3,539	4,315	5,175												
	Min. End Bearing	6.7	7.7	8.7	9.9	11.1	12.3	13.6								
	Total Load	2,834	3,264	3,723	4,210	4,725	5,268	5,838	6,436							
22'	Live Load L/360	2,731	3,342	4,023	4,774					-120	2 TP 1					
	Min. End Bearing	6.1	7.0	7.9	9.0	10.1	11.2	12.4	13.7							
	Total Load	2,373	2,733	3,118	3,526	3,958	4,414	4.892	5,394	5,919						
24'	Live Load L/360	2,148	2,636	3,183	3,788	4,452	5,175	1								
	Min. End Bearing	5.6	6.4	7.3	8.2	9.2	10.3	11.4	12.5	13.7						
	Total Load	2,013	2,320	2,647	2,994	3,362	3,749	4,156	4,583	5,030	5,496					
26'	Live Load L/360	1,718	2,113	2,557	3,052	3,596	4,190	4,834						1 - T		
	Min. End Bearing	5.1	5.9	6.7	7.6	8.5	9.5	10.5	11.6	12.7	13.9					
	Total Load	1,728	1,992	2,273	2,572	2.888	3,222	3,572	3,940	4,324	4,726	5,144				
28'	Live Load L/360	1,394	1,718	2,083	2,491	2,941	3,435	3,972	4,552	5,175						
	Min. End Bearing	4.8	5.5	6.2	7.0	7.9	8.8	9.7	10.7	11.8	12.9	14.0				
	Total Load	1,498	1,727	1,972	2,232	2,506	2,796	3,101	3,421	3,755	4,104	4,468	4,846			
30'	Live Load L/360	1,146	1,414	1,718	2,058	2,434	2,848	3,299	3,788	4,315	4,879	5,480		- T =		
	Min. End Bearing	4.4	5.1	5.8	6.6	7.4	8.2	9.1	10.0	11.0	12.0	13.1	14.1	_	(I I I	
	Total Load	1,310	1,511	1,725	1,953	2,194	2,448	2,716	2,996	3,289	3,595	3,914	4,246			
32'	Live Load L/360	953	1,178	1,432	1,718	2,035	2,385	2.767	3,183	3,631	4,113	4,628	5,175			
34	Min. End Bearing	4.2	4.8	5.5	6.2	6.9	7.7	8.5	9.4	10.3	11.3	12.2	13.3			
	Total Load	1,154	1,331	1,521	1,722	1,935	2,160	2,396	2,644	2,903	3,174	3,456	3,749	4,054		
34'	Live Load L/360	800	990	1,206	1,448	1,718	2,016	2,342	2,698	3,082	3,496	3,939	4,412	4,913		
74	Min. End Bearing	3.9	4.5	5.1	5.8	6.5	7.2	8.0	8.8	9.7	10.6	11.5	12.5	13.5		-
	Total Load	1,023	1,181	1,349	1,528	1,718	1,918	2,128	2,349	2,580	2,821	3,072	3,333	3,604	3,885	
36'	Live Load L/360	678	840	1,024	1,232	1,462	1,718	1,999	2,305	2,636	2,994	3,378	3,788	4,225	4,687	
20	Min. End Bearing	3.7	4.3	4.9	5.5	6.1	6.8	7.6	8.4	9.2	10.0	10.9	11.8	12.7	13.7	
	Total Load	912	1,053	1,204	1,365	1,534	1,713	1,902	2,099	2,306	2,522	2,747	2,981	3,224	3,476	3,73
38'	Live Load L/360	580	719	877	1,056	1,255	1,475	1,718	1,983	2,271	2,582	2,917	3,275	3,656	4,061	4,48
20	Min. End Bearing	3.5	4.0	4.6	5.2	5.8	6.5	7.2	7.9	8.7	9.5	10.3	11.2	12.1	13.0	13.
	Total Load	818	945	1,080	1,225	1.377	1,539	1,708	1,886	2,072	2,266	2,469	2,680	2,899	3,126	3,36
40'	Live Load L/360	500	620	757	911	1,084	1,276	1,487	1,718	1,969	2,241	2,534	2,848	3,183	3,539	3,91
40	Min. End Bearing	3.3	3.8	4.4	4.9	5.5	6.2	6.8	7.5	8.2	9.0	9.8	10.6	11.5	12.3	13
	Total Load	736	851	974	1,104	1,242	1,388	1,542	1,702	1,871	2.047	2,230	2,421	2,619	2,824	3.03
42'	Live Load L/360	433	538	657	792	943	1,110	1,295	1,497	1,718	1,957	2,214	2,491	2,786	3,101	3,43
42	Min. End Bearing	3.2	3.6	4.2	4.7	5.3	5.9	6.5	7.2	7.9	8.6	9.3	10.1	10.9	11.8	12
	Total Load	666	770	882	1.000	1,125	1,258	1,397	1,543	1.696	1,856	2,023	2,196	2,377	2,563	2,75
44'	Live Load L/360	378	470	574	692	825	972	1,134	1,343	1,507	1,718	1,946	2,190	2,452	2,303	3,02
44	Construction of the owner o						5.6	6.2	6.8	7.5	8.2	8.9	9.6	10.4	11.2	12
	Min. End Bearing	3.0	3.5	4.0	4.5	5.0	1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1	and the second statements	- ALTERNATION OF THE OWNER OWNER OF THE OWNER	1111111111111111110	1,690	1,842	2,001	2,165	2,336	2,51
10	Total Load	604	699	801	909	1,023	1,144	1,271	1,405	1,544	1,516	1,042	1,935	2,165	2,550	2,68
46'	Live Load L/360	332	412	504	609	725	855	999	1,157	1,329						1
	Min. End Bearing	2.9	3.3	3.8	4.3	4.8	5.4	5.9	6.5	7.2	7.8	8.5	9.2	10.0	10.7	11

TJI L65 Load Tables:

Load Tables

		Allow						8"	2	0"	2	2"	24			6"	- 28		30	
)epth	the state of the state of the state	and the second second second	-1/		2010				100% TL	115% TL	100% TL 100% LL	115% I								
Span	100% TL	115% TL	100% IL	115% IL	100% 11	125% 1	100% 11	125% TL	100% LL	125% TL	100% LL	125% TL	100% LL	125% TL	100% LL	125% TL	100% LL	PERSONAL PROPERTY.	and the second second	125% T
	and an institution				388	446	412	474	416	479	416	479	416	479	416	479	740			
12'	320	368	354	407	388	440	*	515	*	520	*	520	*	520	*	520	*	520	*	520
	252	401	350	442		382	353	406	357	410	357	410	357	410	357	410	357	410	357	410
14'	275	316	303	349	332	416	*	441	*	446	*	446	*	446	*	446	*	446	*	446
	169	343	238	379	311	330	309	355	312	359	312	359	312	359	312	359	312	359	312	359
16'	210	242	250	288	287	359	281	386	*	390	*	390	*	390	*	390	*	390	*	390
	118	263	168	313	221	261	256	294	277	319	277	319	277	319	277	319	277	319	277	319
18'	153	191	198	228	227	Contraction of the second s	184	320	229	347	*	347	*	347	*	347	*	347	*	347
	76	204	109	247	144	284	207	238	230	265	250	287	250	287	250	287	250	287	250	287
20'	114	152	160	184	184	211		259	157	288	191	312	228	312	*	312	*	312	*	312
-	51	152	73	200	98	230	125	197	190	219	209	241	227	261	227	261	227	261	227	261
22'	86	115	126	152	152	175	97	214	121	238	148	262	178	284	210	284	*	284	*	284
	39	115	56	165	75	190		165	160	184	176	202	192	220	207	238	208	239	208	239
24'	67	90	98	128	127	147	144	180	96	200	117	220	141	240	167	259	195	260	*	260
	30	90	44	131	59	159	76	141	136	157	150	172	163	188	177	203	190	218	192	221
26'		71	78	104	106	125	122	141	77	170	94	187	114	204	135	221	158	237	183	240
20		71	35	104	47	136	61	and the second second	117	135	129	148	141	162	152	175	164	188	175	201
28'		57		84	86	108	105	121	62	147	77	161	93	176	110	190	130	205	150	219
20		57		84	38	114	49	132	102	1117	112	129	122	141	132	152	142	164	152	475
30'		47		69	70	94	92	106		128	63	141	77	153	91	166	107	178	125	191
50		47		69	31	94	40	115	51		99	114	108	124	116	134	125	144	134	154
32'		39		57		78	76	93	90		53	123	64	135	76	146	90	157	104	168
26		39		57		78	34	101			87	100	95	110	103	119	111	128	119	130
34'		32		48		65		82			44	100	54	119	64	129	76	139	88	14
54		32		48		- 65	1	85			78		85	98	92	106	99	114	106	12
36'				40		55	-	72		-	38		46	106	55	115	65	124	75	13
20				40		55		72		73	70			88	82	95	89	102	95	10
201				34		47		62		73				95	47	103	55	111	65	11
38'				34		47		62			1	72		79	74		80			9
40'						40		53		66		79		86					56	10

*Indicates total load value controls.

Load Table Instructions

To size floor joists:

• Check both live load (100% LL) and total load (100% TL). Total load values limit deflection to L/240. Live load values are based on a nailed floor system and the commercial deflection criteria shown on page 21. Live load (100% LL) values may be increased with a glue-nailed floor system; use TJ-Beam® software or contact your Trus Joist representative for assistance.

To size roof joists:

- Check the appropriate snow load area (115% TL) value or nonsnow load area (125% TL) value to determine the maximum allowable total load. Both total load values limit joist deflection to L/180.
- Consult local codes to verify deflection limits required for specific applications.

100% TL (Total Load) Use this and the 100% LL to select floor member. This is the maximum

allowable total load in pounds per linear foot of joist. Values are limited by

deflection equal to L/240 at total load.

100% LL (Live Load) Use this and the 100% TL to select floor member. This number is the maximum allowable live load capacity in pounds per linear foot of joist. Value is based on the Commercial Floor Deflection Limit shown on page 21.

General Notes

14"

- Values shown are maximum allowable load capacities of the joists in pounds per linear foot (plf) and assume:
 - simple span, horizontal clear distance between supports.
 - uniformly loaded conditions with 21/2" bearing length and web stiffeners. Other capacities may be possible with different criteria; use TJ-Beam® software or contact your Trus Joist representative.
 - positive drainage in roof applications (1/4" per foot slope minimum).
- Camber (2,250' radius) is available for simple-span applications only. Contact your Trus Joist representative for availability.
- For loading conditions not covered by these tables (e.g., concentrated loads), use TJ-Beam® software or contact your Trus Joist representative for assistance.

115% TL (Total Load)

Use this to select roof member in snow load areas. This is the maximum allowable total load in pounds per linear foot of joist. Values are limited by deflection equal to L/180 at total load.

125% TL (Total Load) Use this to select roof member in non-snow load areas. This is the maximum allowable total load in pounds per linear foot of joist. Values are limited by deflection equal to L/180 at total load.

Figure 6

Depth

Span

12'

117/8"

100% TL 115% TL 100% TL 115% J

100% LL 125% TL 100% LL 125%

Design Properties Commercial Joists:

Trus Joist 🖀 TJI® Joist Commercial Design Guide 1062 🖄 November 2004 5

Design Properties

			-	Basic Prop	and the second				R	eaction I	roperti	es ⁽⁴⁾⁽⁵⁾		
Joist	Joist	Resistive	Vertical		EI ⁽³⁾ x 10 ⁶	EI ⁽³⁾ x 10 ⁶		End Rea	ction (l	bs)			React	ion (lbs)
Depth		Moment ⁽¹⁾	Shear ⁽²⁾	EI x 10 ⁶	TJI® Joist with	TJI® Joist with		Bearin	g Lengt	h		Bearin	g Leng	th
	(lbs/ft)	(ft-lbs)	(lbs)	(in. ² -lbs)	Nailed Floor Sheathing	Glue-Nailed		13/4"		31/2"		31/2"		51/4"
			····/		(in. ² -lbs)	Floor Sheathing	Contraction of the	tiffeners ⁽⁶⁾	Web S	tiffeners ⁽⁶		tiffeners ⁽⁶⁾		Stiffeners ⁽⁶
Children and						(in.²-lbs)	No	Yes	No	Yes	No	Yes	No	Yes
117/8"	3.3	6,750	1,925	150		JI® L65 Joist								Ies
14"	3.6	8,030	2,125	450	512	561	1,375	1,745	1,885	1,925	2,745	3,120	3,36	5 3,735
16"	3.9	9,210	2,125	666	752	821	1,375	1,750	1,885		2,745	3,365	3,36	
18"	4.2	10,380	2,535	913	1,025	1,116	1,375	1,750	1,885	2,330	2,745	3,490	3,36	
20"	4.4	11,540	and the second	1,205	1,348	1,462	1,375		1,885	2,535	2,745	3,615	3,36	
22"	4.7	12,690	2,740	1,545	1,722	1,864	NA	1,750	NA	2,740	NA NA	3,740		
24"	5.0		2,935	1,934	2,149	2,322	NA	1,750	NA	2,935	NA	3,860	NA	4,355
26"	5.3	13,830	3,060	2,374	2,632	2,838	NA	1,750	NA	3,060	NA		NA	4,480
28"	5.5	14,960	2,900	2,868	3,172	3,416	NA	1,750	NA	2,900	NA	3,875	NA	4,605
30"		16,085	2,900	3,417	3,772	4,056	NA	1,750	NA	2,900	-	4,725(7)	NA	5,345(8
50	5.8	17,205	2,900	4,025	4,434	4,762	NA	1,750	NA	2,900	NA	4,850(7)	NA	5,470(8
117/8"	10				Ţ	JI® L90 Joist		1,750	NA.	2,900	NA	4,975(7)	NA	5,590(8)
14"	4.2	9,605	1,925	621	687	741	1,400	1,715	1,885	1.005	2.000		1000	
16"	4.5	11,430	2,125	913	1,005	1,079	1,400	1,875	1,885	1,925	3,350	3,665	3,965	
18"	4.7	13,115	2,330	1,246	1,366	1,462	1,400	2,030	1,885	2,125	3,350	3,825	3,965	
and the second second	5.0	14,785	2,535	1,635	1,786	1,908	1,400	2,030		2,330	3,350	3,980	3,965	4,600
20"	5.3	16,435	2,740	2,085	2,272	2,422	NA	2,030	1,885	2,515	3,350	3,980	3,965	4,600
22"	5.6	18,075	2,935	2,597	2,824	3,006	NA		NA	2,675	NA	4,140	NA	4,755
24"	5.8	19,700	3,060	3,172	3,442	3,659	NA	2,345	NA	2,830	NA	5,090	NA	5,705
26"	6.1	21,315	2,900	3,814	4,132	4,387	NA	2,345	NA	2,830	NA	5,405	NA	6,020
28"	6.4	22,915	2,900	4,525	4,895	5,191		2,450	NA	2,900	NA	5,800(7)	NA	5,800(8)
30"	6.6	24,510	2,900	5,306	5,732	6,073	NA	2,450	NA	2,900	NA	5,800(7)	NA	5,800(8)
and the second					Contraction of the International Contractional Contractionan Contractionan C	I® H90 Joist	NA	2,450	NA	2,900	NA	5,800(7)	NA	5,800(8)
17/8"	4.6	10,960	1,925	687	755	and the second	1 100	Sec. di se	1					
14"	4.9	13,090	2,125	1,015	1,109		1,400	1,715	1,885	1,925	3,495	3,810	4,100	4,420
16"	5.2	15,065	2,330	1,389	1,512		1,400	1,875	1,885	2,125	3,495	3,970	4,100	4,575
18"	5.4	17,010	2,535	1,827	1,982	the second s	1,400	2,030	1,885	2,330	3,495	4,130	4,100	4,735
20"	5.7	18,945	2,740	2,331	2,522		1,400	2,030	1,885	2,515	3,495	4,130	4,100	4,735
22"		20,855	2,935	2,904		2,676	NA	2,190	NA	2,675	NA	4,285	NA	4,890
24"			3,060	3,549	3,136	3,321	NA	2,345	NA	2,830	NA	5,235	NA	5,840
26"			2,900	4,266	3,825	4,046	NA	2,345	NA	2,830	NA	5,425	NA	6,155
28"	- martine	and the second second second	2,900	5,059	4,590	4,850	NA	2,450	NA	2,900		5,800(7)	NA	5,800(8)
80"		the second s		5,059	5,436	5,737	NA	2,450	NA	2,900	and the second	5,800(7)	NA	5,800(8)
and the second second		ign properties			6,363	6,710	NA	2,450	NA	2,900		5,800(7)	NA	5,000

to the allowable design values shall be in accordance with the applicable code.

(1) Caution: Joist resistive moment properties reflect the latest ASTM standards and should not be increased by a repetitive member use factor.

(2) For possible increases in shear capacity see below.

(3) For deflection calculation only. Assumes 12" joist spacing with a 24" span-rated panel.

(4) Interpolation between bearing lengths is permitted for allowable design reactions.

(5) Allowable bearing lengths have been determined based on Trus Joist products. Allowable bearing on supporting members shall be checked.

(6) Refer to page 10 for web stiffener details.

(7) A 51/4" bearing length is required at intermediate reactions.

(8) A 7" bearing length is required at intermediate reactions.

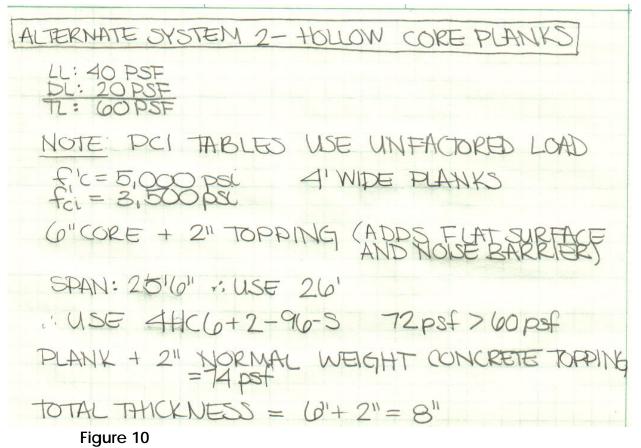
TJI® Joist Shear Design

When joists are used as simple-span members, the design shear is equal to the shear at the face of the support.

When joists up to 24" in depth are used as multiple-span members, the design shear is the calculated shear at the interior support reduced by the following:

$$\mathsf{R} = \frac{\mathsf{W}}{19.25} \le 18\%$$

Where: R is the percent reduction W is uniform load in plf


> Building Codes and Product Acceptance: ICC-ESR-1153, HUD SEB No. 689 Rev.9, L.A. City RR #25538, DSA PA-048

Engineered Lumber Calculations:

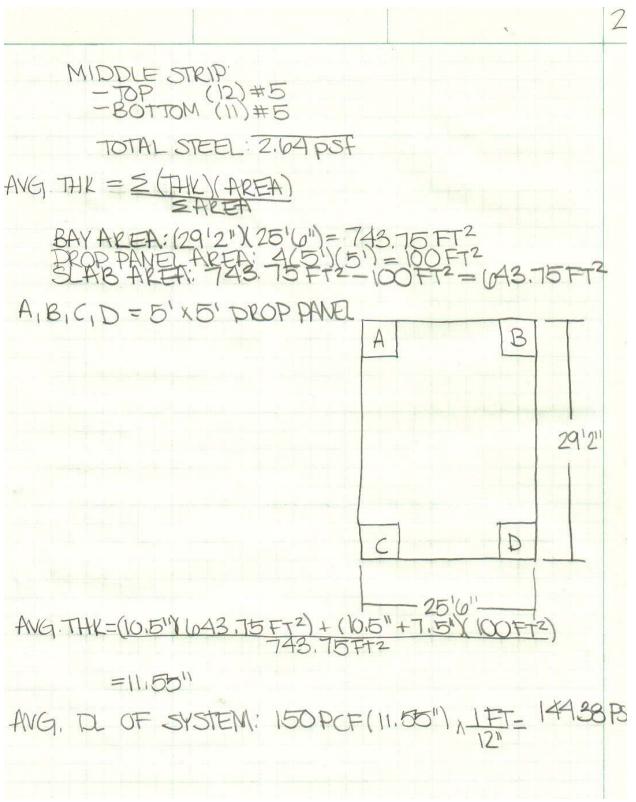
Section Production													and the second				N STEEL					۷.	
S = str Diamet No. of loads shown for untopped I red members. g-time camber d load but do I acity of section s are similar. F a hollow-core	aight er of strand memb Rema s incl not incl for pre	strar d (7) de de ers a ainder lude clude other ecise	nd in ad lo and 13 r is li super live li confi value	ad of 5 psf ive lo rimpo oad. gura-	10 for bad. sed	1½″ ¥			4 nal V). ()	'-0" Veig	V-C x 6 ght (4 ^{4'-0"}). 5,0 : 3,5		crete	.0		2″ ¥ 6″		/b /t S _b St		Jntopp		Topp 1,640 4.14 3.86 425 16.00 295 74	in⁴ in. in. in³ in³ plf psf
6 — Safe supe 2 — Estimated 2 — Estimated	long-	time	camb	er, in	n.														[4H	C6	oing
le of safe s	supe	rimp	oose	d se	ervio	e lo	ad (psf)	and	d ca	mbe	ers	(in.)				-						
Strand Designation		NUMPER OF						-		21	5 22	Span,	ft	25	26	27	28	29	30				
Code	12	13	14 217	15 184	16 157	17 135		1000	87	75	65	56	48	42	36	30	- 010 A.						
66-S	306 0.2 0.2	0.2 0.3	0.2 0.3	0.2 0.3	0.2 0.3	0.2 0.3	0.2 0.2	0.2 0.2	0.2		0.1		0.0 - -0.3 - 61	0.1 - 0.5 - 53			35						
76-S	358 0.2 0.3	0.2	0.3 0.3	217 0.3 0.4 279	0.3 0.4	0.3 0.4	0.3 0.4	0.3 0.3	0.3 0.3	0.3 0.2	0.3 0.1 109	0.2 0.0 - 97			-0.5 - 67	60	-1.0 53	46	41		-		
96-S		0.3	0.4	0.4 0.5	0.4 0.6	0.5 0.6	0.5 0.6	0.6	0.6	0.5	0.5	0.5 0.5 119	0.5 0.4 106	0.4 0.2 95	0.3 0.1 - 84	0.3 -0.1 · 76	0.1 -0.4 68		-0.1 -0.9 54				
87-S			383 0.5 0.6	331 0.5 0.7	0.6 0.7	0.6 0.8	0.7 0.8	0.7 0.9	0.7 0.9	0.7 0.9	0.8 0.8	0.8 0.8	0.7 0.7	0.7 0.7 107	0.7 0.5 96	0.6 0.4 87	0.5 0.2 78	0.4	0.3 -0.3 62				
97-S				364 0.6 0.8	317 0.7 0.9	277 0.7 0.9	243 0.8 1.0	0.8 1.0	0.9	0.9	0.9	0.9 1.1	1.0 1.0	1.0 1.0	0.9 0.9	0.9 0.8	0.8 0.6	0.8 0.4	0.7 0.2				
able of safe	sup	erim	npos	ed s	servi	ce l	oad	(psi	f) ar	nd c	amb	Spa	- N.246)				2″	Norr			26 +2	
Designation Code	14	4 15	5 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30						
66-S	30	5 258 2 0.2 2 0.2	8 220 2 0.2	188	162	139	119	97 0.2	78 0.1	62 0.1	47 0.0	35 -0.1											
76-S	35 0.		4 260 3 0.3) 224 3 0.3	194 0.3	168 0.3	146 0.3	122 0.3	101	82 0.2	66	52 0.1 -0.7	39 0.0 -0.9										
96-5		390	0 336 4 0.4	5 291 4 0.5	1 253 5 0.5	221 0.5	194 0.5	170 0.5		123	104	87 0.4	72 0.3	-0.7	0.1	0.0 -1.4							
and a subscription of the subscription of the			391 0.1	8 346	5 302 6 0.7	265 0.7	234 0.7	206 0.7	182 0.8	158 0.8 0.4	136 0.7 0.2	117 0.7 0.1	100 0.7 -0.1	- 85 0.6 -0.3	71 0.5 -0.5	59 0.4 -0.8	47 0.3 -1.2						3
87-5		PP Startin	U.,	0.0.					205		157			102	88	75	63						

Figure 9

Hollow Core Planks Calculations:

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bars		2	VB SYS	STE		SQUARE	EDGE	PANEL BARS (E.	With Drop		4	No Beams MOMENTS	v	Factored	SQUARE IN	IN. JR Column	PAN	EL With L Panels ⁽²⁾ REINFORCING BARS (E	Panels NG BARS	3	NoL	a. 10
Top Steel (-) (+) (+) (-) (+) (-) α_{ee} NHL (α_{eff}) (μ, h) α_{eff} α_{ee} NHL (α_{eff}) (μ, h) α_{eff} α_{eff} NHL (α_{eff}) α_{eff} α_{eff} α_{eff} α_{eff} α_{eff} (μ, h^{2} α_{eff} α_{eff} α_{eff} α_{eff} α_{eff} α_{eff} (μ, h^{2} α_{eff} α_{eff} α_{eff} α_{eff} α_{eff} α_{eff} α_{eff} (μ, h^{2} α_{eff} α_{eff} α_{eff}	Superim-			Square $l_e = 1$	2'-0" (3)	Col	umn Strip		Middle	s Strip	Total		Bot.	1.		$l_c = 1$	2'-0" (3)	ů l	Strip	.biM	- 14 - Feb	Total	Concrete
NEIS (CONTINUED) $h = 10^{1/2}$ in. = TOTAL NEIS (CONTINUED) $h = 10^{1/2}$ in. = TOTAL 10. $\#5$ 3.57 13.8.3 302.1 372.7 486.6 0.001 18 0.033 9. $\#7$ 4.55 300.1 1372.7 486.6 200 18 0.033 9. $\#7$ 4.55 356.2 571.9 808.7 500.0 23 0.053 10. $\#5$ 3.55 135.2 571.9 808.7 500 23 0.623 10. $\#7$ 4.57 553.5 563.5 789.2 400.12 0.091 12. $\#5$ 3.35 132.9 422.0 550.1 200 12 0.031 10. $\#7$ 4.33 323.4 422.1 560.3 23 0.623 0.631 10. $\#7$ 4.41 383.7 477.2 500.2 21 0.481 10. $\#6$ 5.35 583.6 554.3 500.2 21 0.481 10. $\#6$ 4.77 582.4 <	Load (psf)	Depth (in.)	Width (ft)	Size (in.)	αce	Top Ext.	Bot.	Top Int.	Bot.	Top Int.	Steel (psf)	(-) (f1-k)	(+) (f+-k)	(<i>i</i> -)	Load (psf)	Size (in.)	αια	Top	Bot.	Top	Bot.	Steel (psf)	sq. ft
10-45 2.07 11.8 302.1 378.3 100 12 0.059 14.4/5 10-4/5 <t< td=""><td></td><td>-</td><td>= 101/2</td><td>1</td><td>LAL</td><td>AB DEPT</td><td>H BETW</td><td>EEN DR</td><td>OP PAN</td><td>ELS (COI</td><td>NTINUE</td><td>(d</td><td></td><td></td><td></td><td>1</td><td></td><td>AB DEP</td><td>TH BETW</td><td>VEEN DR</td><td>OP PAN</td><td>IELS (CO</td><td>Z</td></t<>		-	= 101/2	1	LAL	AB DEPT	H BETW	EEN DR	OP PAN	ELS (COI	NTINUE	(d				1		AB DEP	TH BETW	VEEN DR	OP PAN	IELS (CO	Z
10-16 500 100 500 100 </td <td>C</td> <td>4 50</td> <td>8 33</td> <td>13</td> <td>0 183</td> <td>5#-01</td> <td>54.21</td> <td>14.45</td> <td>10.45</td> <td>10.45</td> <td>757</td> <td>0 13</td> <td>1 000</td> <td>270.2</td> <td>001</td> <td>. :</td> <td>1000</td> <td>14 45</td> <td>10 46</td> <td>10 25</td> <td>10 25</td> <td>0000</td> <td>0</td>	C	4 50	8 33	13	0 183	5#-01	54.21	14.45	10.45	10.45	757	0 13	1 000	270.2	001	. :	1000	14 45	10 46	10 25	10 25	0000	0
9+6 3.53 1903 4.402 5904 500 27 6047 17-75 11-45	, 0	4.50	8.33	15	0.375	12-#5	19-#5	15-#6	9#-6	10-#5		119.3	379.7	486.6	000	8	0.338	18-#5	51-01	10-#5	10-#5	12 0	0.016
1 1 2 2 3 1 3	0	6.00	8.33	17	0.542	12-#5	12-#7	12-#7	15-#5	6-#6		190.5	443.2	596.1	300	21	0.520	20-#5	15-#5	11-#5	10-#5	3.05	0.930
9.#7 4.57 35.2 57.19 808.7 500 25 0.770 12.#7 11.#7 </td <td>0</td> <td>7.50</td> <td>8.33</td> <td>19</td> <td>0.744</td> <td>13-#5</td> <td>11-#8</td> <td>24-#5</td> <td>6-#7</td> <td>15-#5</td> <td></td> <td>275.2</td> <td>506.4</td> <td>701.6</td> <td>400</td> <td>23</td> <td>0.657</td> <td>12-#7</td> <td>17-1/5</td> <td>13-#5</td> <td>12-#5</td> <td>3.58</td> <td>0.944</td>	0	7.50	8.33	19	0.744	13-#5	11-#8	24-#5	6-#7	15-#5		275.2	506.4	701.6	400	23	0.657	12-#7	17-1/5	13-#5	12-#5	3.58	0.944
1 10 2.27 31.3 472.1 100 12 0.000 16 10 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 15 10 10 15 10 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 10 11 10 10 10	0	0.00	10.00	21	0.908	15-#5	12-#8	18-#6	19-#5	2#-6		356.2	571.9	808,7	500	25	0.770	12-#7	2#-11	11-#6	13-#5	4.05	0.995
1 12.45 3.35 132.9 422.0 550.1 200 18 0.330 15.46 13.45 10.47 54.6 9-F7 4.39 329.5 563.5 789.2 400 23 0.626 12.47 14.46 15.46 15.45 15.45 15.45 9-66 3.47 383.7 479.9 100 12 0.089 18.47 15.46 15.45 15.45 15.45 9-66 3.47 383.7 479.9 100 12 0.089 18.47 15.45 10.45 15.45 10.45 15.45 10-77 4.43 556.1 534.7 300 21 0.049 18.47 11.45 11.45 10-77 4.41 2.44.8 861.2 300 21 0.47 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45 11.45	0	4.50	8.66	12	0.180	12-#5	17-#5	18-#5	12-#5	10-#5	2.67	57.8	341.3	427.1	100	12	0.090	16-#5	10-#5	10-#5	10-#5	2.37	0.916
1 10 ϕ_{0} 3.83 232.4 492.8 6.70.1 300 21 0.493 15- ϕ_{0} 9- μ_{7}	00	4.50	8.66	15	0.367	12-#5	8#-6	12-#7	10-#6	12-#5	3.35	132.9	422.0	550.1	200	18	0.330	15-#6	13-#5	10-#5	10-#5	2.84	0.916
10- y^5 2.85 6.4.1 383.7 479.9 100 12 0.089 18- y^5 12- y^5 10- y^5 10- y^5 3.4.1 383.7 479.9 100 12 0.089 18- y^5 12- y^5 10- y^5 10- y^7 4.64 457.6 582.4 861.2 400 23 0.409 18- y^5 9- y^5 9- y^5 10- y^7 4.44 284.5 526.3 847.7 300 21 0.404 13- y^7 13- y^5 11- y^5 13- y^5 11- y^5 15- y^5 11- y^5 15- y^5 11- y^5 15- y^5 11- y^5 15- y^5 <td< td=""><td>8 8</td><td>7.50 9.00</td><td>8.66</td><td>18</td><td>0.612 0.827</td><td>12-#5</td><td>18-#6</td><td>12-#7</td><td>∠#-6</td><td>10-#6</td><td></td><td>232.4 329.5</td><td>492.8 563.5</td><td>670.1</td><td>300</td><td>21</td><td>0.493</td><td>15-#6</td><td>9-#7</td><td>9-#6</td><td>11-#5</td><td>3.81</td><td>0.944</td></td<>	8 8	7.50 9.00	8.66	18	0.612 0.827	12-#5	18-#6	12-#7	∠#-6	10-#6		232.4 329.5	492.8 563.5	670.1	300	21	0.493	15-#6	9-#7	9-#6	11-#5	3.81	0.944
1 10-#5 2.86 6.4.1 383.7 479.9 100 12 0.009 18-#5 12.#5 10-#5 1 $6+5$ 3.4.7 14.38 477.2 520.5 520.5 500.6 13-#7 13-#7 13-#5 15-#5 10-#5 1 $6+5$ 4.1.1 258.0 556.1 754.7 300 21 0.409 18-#5 9-#5 10-#5 1 $1-#75$ 300 583. 431.7 500.3 847.7 300 21 0.409 18-#5 19-#5 11-#5 1 $1-#75$ 315.7 481.5 60.3 100 12 0.008 14-#5 11-#5 11-#5 1 $1-#75$ 31.5 75.4 481.5 300 21 0.457 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5 11-#5						-									2			-					5
0 9 3.47 14.58 4772 6.0.5 5.0.54	8	4.50	00.6	12	0.178	12-#5	14-#6	20-#5	6-16	10-//2			383.7	479.9	100	12	0.089	18-#5	12-#5	10-#5	10-#5	2.48	0.916
10- $\frac{7}{7}$ 4.64 467.6 582.4 861.2 400 23 0.609 18-45 9-48 9-47 11- $\frac{4}{75}$ 3.05 68.5 431.9 538.8 100 12 0.004 18-45 13-47 13-47 13-47 13-47 13-47 13-47 11-45	8 8	0.00	00.6	5	0.354	12-#5	84-01	13-117	10 117	9-#0		-	477.2	620.5	200	18	0.311	15-16	15-#5	12-#5	10-#5	2.92	0.930
11-#5 3.05 68.5 431.9 538.8 100 12 0.084 18-#5 13-#5 11-#5 10-#7 4.44 284.5 626.3 847.7 300 21 0.457 13-#7 21-#5 13-#5 15-#5 16-#5 10-#7 4.44 284.5 626.3 847.7 300 21 0.457 13-#7 21-#5 13-#5 15-#5 16-#5 11-#6 4.79 313.5 600.3 340.5 300 21 0.447 14-#7 17-#6 10-#5 15-#5 16-#5 15-#5 16-#5 15-#5 16-#5 15-#5 16-#5 15-#5 16-#5 15-#5 16-#5 15-#5 16-#5 15-#5 16-#5 15-#5 16-#5 <td>88</td> <td>00.6</td> <td>00.6</td> <td>24</td> <td>1.370</td> <td>14-#6</td> <td>16-#7</td> <td>27-#5</td> <td>14-#6</td> <td>10-#2</td> <td></td> <td>467.6</td> <td>582.4</td> <td>861.2</td> <td>400</td> <td>23</td> <td>0.609</td> <td>13-#1</td> <td>9-#8</td> <td>2#-6</td> <td>15-#5</td> <td>4.24</td> <td>0.958</td>	88	00.6	00.6	24	1.370	14-#6	16-#7	27-#5	14-#6	10-#2		467.6	582.4	861.2	400	23	0.609	13-#1	9-#8	2#-6	15-#5	4.24	0.958
11-45 3.05 64.5 431.9 538.8 100 12 0.004 18-45 13-47 12-45 13-47 12-45 13-45 11-45 11-45 10-47 4.44 284.5 656.3 847.7 300 21 0.457 13-47 12-45 14-45 11-45 11-45 16-47 4.44 284.5 600.3 100 12 0.002 14-46 14-45 11-45 11-45 16-46 4.79 313.5 700.5 946.5 300 21 0.447 14-47 17-45 10-45 16-46 4.79 313.5 700.5 946.5 300 21 0.447 14-47 17-45 10-45 10-46 4.79 313.5 700.5 864.0 300 21 0.45 10-45 14-47 14-47 14-46 14-4				6																	-		
10- $\frac{7}{7}$ 4.44 284.5 6.56.3 84.77 300 21 0.457 13- $\frac{7}{7}$ 21- $\frac{5}{75}$ 16- $\frac{5}{75}$		6.00	9.33	12	0.168	13-#5	12-#7	15-#6	15-#5	11-#5			431.9	538.8	100	12	0.084	18-#5	13-#5	11-#5	11-#5	2.55	0.930
10 V_{14} V_{44} Z_{45} Z_{41} Z_{40} Z_{40} Z_{40} Z_{41} $Z_{$	3 8	0000	0 22	2 2	0 503	5# 61	11 KO	11 47	11-01	C#-C1	-		2.000	1.070	007	0 0	4000	14-01	01-71	C#-C1	c#-11	12.0	
13.45 3.15 75.4 481.5 600.3 100 12 0.082 14.46 14.45 114.45<	3	00.4	CC.4	2	0.363	c#-c1	24-4	14-#1	0#-01	14-01			0.020	84/./	300	7	0.45/	3-#1	c#-17	C∄-01	0-#0	3./4	864.0
16-#5 3,31 17,47 000.4 777.5 200 18 0.287 13-#7 17,45 15-#5 10-#6 3.35 80.3 537.5 646.7 300 21 0.447 14-#7 17.46 10-#5 10-#7 4.78 313.5 700.5 946.5 300 21 0.078 20-#5 16-#5 16-#5 16-#5 16-#5 16-#5 14-#6 11-#5 14-#5 9-#5	8	6.00	9.66	12	0.165	13-#5	10-//8	16-#6	16-#5	13-#5	3.15			600.3	100	12	0.082	14-#6	14-#5	11-#5	11-#5	2.60	0.930
14#0 4.17 313.2 700.3 940.3 500 21 0.447 14.47 17.40 10.41 10.47 4.28 191.6 657.9 864.0 200 21 0.281 14.47 21.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 15.45 14.46 14.47 21.45 14.46	3 8	00.7	00.4	2 9	0.334	c#-c1	0#-77	14-#1	C#-07	c#-01		_		C.111	200	8	0.28/	13-#/	c#-61	C#-C1	C#-E	3.38	0.944
	3	00.4	00°.4	20	1/0.0	c#-r1	14-07	1#-01	10-#8	14-#0		-	c.00/	C.046	300	7	0.44/	4-#1	0#-/1	18-01	c#-c1	4.00	9.928
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	7.50	10.00	12	0.157	14-#5	15-#7	23-#5	10-#7	9#-01			-	668.7	100	12	0.078	20-#5	16-#5	12-#5	11-#5	2.64	0.944
DROP PANELS $h = 11$ ln. = TOTAL SLAB DEPTH BETWEEN 9 $+ \frac{5}{8}$ 2.44 40.3 240.4 300.7 100 12 0.0699 12- $+\frac{5}{8}$ 9 $+\frac{5}{8}$ 10 $+\frac{5}{8}$ 10 $+\frac{5}{8}$ 10 $+\frac{5}{8}$	8 8	7.50 9.00	10.00	15 29	0.328 2.025	14-#5 26-#5	14-#8 14-#8	16-#7	12-#7	11-#7				864.0 974.1	300	18 21	0.281	14-#7	21-#5	16-#5 14-#6	10-#6	3.53	0.944
9-#5 2.44 40.3 240.4 300.7 100 12 0.089 12.#5 9.#5 10.5 11.#5 11.#5 11.#5 11.#5 11.#5 11.#5 <td></td> <td>_</td> <td></td> <td>1</td> <td>i</td> <td></td> <td>LAB DE</td> <td>PTH BET</td> <td>WEEN DI</td> <td>ROP PAI</td> <td>NELS</td> <td>-</td> <td></td> <td>=</td> <td></td> <td>11 in.</td> <td>= TOTAL</td> <td>SLAB</td> <td>EPTH BE</td> <td></td> <td>DROP P</td> <td>ANELS</td> <td></td>		_		1	i		LAB DE	PTH BET	WEEN DI	ROP PAI	NELS	-		=		11 in.	= TOTAL	SLAB	EPTH BE		DROP P	ANELS	
7 $7 + 7_0$ $2 + 4 + 40.3$ $2 + 4 + 40.3$ $2 + 4 + 40.3$ $2 + 4 + 40.3$ $2 + 4 + 40.3$ $2 + 4 + 40.3$ $2 + 4 + 40.3$ $2 + 4 + 40.3$ $2 + 4 + 4 + 40.3$ $2 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + $		•		:								-							1				
9 $\frac{5}{7}$ $\frac{5}{7}$ $\frac{5}{7}$ $\frac{5}{7}$ $\frac{1}{7}$ $\frac{5}{7}$ $\frac{1}{7}$ $\frac{5}{7}$ <	3 8	n m	7.66	7 5	0.373	-#-11	0-#-9	18-#5	5#-4	c#-4	2.44		240.4	300.7	000	21	0.281	C#-71	c#-6	5#-6	C#-6	2.32	0.944
7 7.66 19 0.729 $11+85$ $9-46$ $8-46$ 3.39 212.0 395.8 $54.7.3$ 400 23 0.656 $12-46$ $9-46$ $8-47$ $9-46$ $8-47$ $9-46$ $8-47$ $9-46$ $8-47$ $9-46$ $8-47$ $9-46$ $8-47$ $9-46$ $8-47$ $9-46$ $8-40$ 291.2 461.6 527.1 500 23 0.656 $14-46$ $11-46$ $12-47$ $8-47$ $9-40$ 10.4 $8-46$ $8-47$ 360.1 554.6 711.3 500.7 23 0.656 $14-46$ $12-47$ $8-47$ $8-47$ 360.1 555.2 800.3 700 23 $12-47$ $12-47$ $8-47$ <	000	s,	7.66	18	0.645	11-#5	16-#5	18-#5	8-#6	9-#5			338.0	461.9	300	21	0.520	12-#6	11-#5	9-#5	9-#5	2.77	0.962
9.#6 4.04 291.2 401.6 627.1 500 23 0.636 14.#6 11.#6 81.#6 8.#6 8.#6 8.#6 8.#6 8.#6 8.#6 13.#5 10.#6 4.72 360.1 554.6 711.3 600.3 23 0.591 20.45 13.46 13.#5 13.#5 16.#5 5.62 405.1 655.2 800.3 700 23 0.591 12.#7 8.#7 8.#7 8.#7 8.#7 15.#5 5.62 405.1 655.2 800.3 700 23 0.591 12.#7 8.#7 8.#7 8.#7 8.#7 8.#7 8.#7 8.#7 8.#7 8.#7 8.#7 8.47 13.#5 15.mpop panels same size as for edge panels. (3) Same column size and height above and below slab. (3) Same column size and height above and below slab. 14b.	00	N	7.66	19	0.729	5#-11	10-#7	14-#6	9#-6	8-#6			395.8	547.3	400	23	0.656	12-#6	6#-6	10-#5	9-#5	2.98	0.981
10-#6 4.72 360.1 544.6 711.3 600 23 0.591 20-#5 14-#6 1.3-#5 13-#7 18-#7 16-#5 5.62 405.1 655.2 800.3 700 23 0.591 12-#7 8-#7 8-#7 8-#7 (2) Drop panels same size as for edge panels. (3) Same column size and height above and below slab.	000	~	7.66	21	1.000	13-#5	8#-6	12-#7	8-#7	9#-6			461.6	627.1	200		0.656	14-#6	11-#6	8-#6	8-#6	3.59	0.981
(2) Drop panels same size as for edge panels. (3)	0 0	<u>م</u> م	9.20	23	1.182	15-#5	15-#7	12-#7	8-#8	16-#5			564.6 655.2	711.3 800.3	200		0.591	20-#5	14-#6 8-#9	13-#5 8-#7	13-#5 8-#7	5.01	1.036
(2) Drop panels same size as for edge panels. (3)					-	-								=						_			(Continued)
	0 per	cent of th	ese bars n	ad ybe	placed in	the midd	le third o	of column		(2) Drop	panels	same siz	te as for	edge pu		Same o	column siz	e and he	ight abo	ve and b	elow slab	ċ	

Alternate 3 - Two Way Flat Slab System:


Figure 11

Two Way Flat Slab Calculations:

ALTERNATE SYSTEM 3-TWO-WAY FLAT JAB PAN 30', AND SMALLER BAYS NOTE REALISTIC OP LL: 40 PSF DL: 20PSF W=1.4DL+1.7L NOTE: THIS W = 1.4(20 psf) + 1.7(40 psf) = 96 psfLOADS. 96 RSF FOR FACTORED SUPERIMPOSED $l_{1} \approx l_{2} = 30'$ USE 30' FOR TABLES IN CRSI TRY 101/2" SLAB WITH 7.5" DROP F EDGE PANEL: BARS : (A)#5 (15)# (23) #= MIDDLE (10) #7 (10) #6BOTTON TOP INTERIOR TOTAL STEEL 3.35 PSF INTERIOR PANEL: RCING BARS REINFO

Figure 12

Two Way Flat Slab Calculations (continued):

Alternate 4 - Waffle Slab:

11-22

60 Bars			a	Top		÷	7-#4 7-#4 7-#4 7-#4	7-將4 9-將4 9-將4 9-將4	9-#4 10-#4 10-#4 10-#4 10-#4	12-#4 12-#4 12-#4 12-#4	13-#4 13-#4 13-#4 13-#4	15-#4 15-#4 15-#4													
e 60		tion	Ile Strip	-	Short Bars	= 3 in	<i>非非非非非</i> 非 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	# ###### 0 000441	# ###################################	###### 0.4450.0	· #####	# ## 8 8 8													
Graae		h Direc	Middle	Bottom	Long	Depth	##### 8 8 8 8 8 4	* * * * * * * * * * * * * * * * * * *	# ###################################	# # # # # # # # # # # # # # # # # # #	非非非非	# # * * * *													
	SI	Eac			No. Ribs	lab		N 00000		44444	ראי ראי ראי	רא הי הי													
	PANE	ing Bars		Top	Interior No size	Top 5	11-#4 11-#4 11-#4 11-#4	11-#4 13-#4 13-#4 13-#4	12-#5 115-#4 115-#4 113-#6 113-#6	17-#4 18-#4 23-#4 17-#5	20-#4 26-#4 21-#5 18-#6	28-#4 24-#5 21-#6													
	INTERIOR PANELS	Reinforcing Bars-Each Direction	Column Strip	-	Short Bars	= 8 in.	業業業業業	* * * * * * * * * * * * * * * * * * *	# # # # # # # # # # # # # # # # # # #	### # \$ \$ \$ \$ \$	#### \$ \$ \$ \$	# # \$ \$													
	INTE		Colu	Bottom	Long	Depth	#### # # # # #	# ######	# # # # # # # # # # # # # # # # # # #	###### 8 4 5 5 6	株 株 株 株 株 株 株 株 株 株 株 株 株	# # * * *													
	RE				No. Ribs	Rib		,	0 44444	44444	***	טי טי טי													
	SQUARE		umu		Stir- rups (2)	i.		ი აა	ດ ເດ	ააა	ູດເດເ	s													
	S		Sq. Interior Column	12'-0"	Qec	oth = 11	0.168 0.168 0.168 0.168 0.168	0.161 0.161 0.161 0.161 0.161 0.161 0.161	0.143 0.143 0.143 0.143 0.143 0.143 0.328	0.138 0.138 0.174 0.290 0.442	0.161 0.192 0.283 0.388	0.217 0.284 0.410													
s @ 36"			Sq. Int	le =	c1 = c2 (in.)	Total Depth = 11	22222	222222	12 12 12 12 12 12 12 12 12 12 12 12 12 1	12 13 16 20 *	13 14 21	15 17 21 *													
6" Ribs					Steel (1) (psf)		1.25 1.25 1.25 1.39 1.39	1.26 1.41 1.47 1.47 1.47	1.23 1.37 1.54 1.82 2.38 2.38	1.31 1.57 1.92 2.25 2.66	1.53 1.78 2.20 2.62	1.80 2.33 2.72													
oids; d					Int. (ft-k)		41 55 68 81 81 81	73 120 143	121 159 197 235 292 358	180 238 333 419	253 321 382 448	338 430 524													
30" Voids;				woments	Bot. (ft-k)		32 61 77 109	56 78 191 191	93 131 180 226 254 309	139 195 261 264 280	193 226 253 293	236 286 345													
×					Edge (ft-k)		25 25 25	28 34 34 35 34 34 35	25 23 33 33 50 120 164	38 51 63 136 237	67 144 225 275	156 247 313													
5				Top			7-#4 7-#4 7-#4 7-#4		10-#4 10-#4 10-#4 10-#4	12-#4 12-#4 12-#4 12-#4	13-#4 13-#4 13-#4 13-#4	15-#4 15-#4 16-#4													
SYSTEM		c	dle Strip	ε	Short Bars	= 3 in.	######################################	## ## # # 5 # 5 # 5		## # # # 5 # # 5 # # 4	## ## ## ## ## ## # # # # # # # # # #	#55 #455													
SLAB S		irectio	Middle	Bottom	Long Bars	8 in. Top Slab Depth	Slab Depth	Slab Depth	Slab Depth	Slab Depth	Slab Depth	Slab Depth	Slab Depth	Depth	Depth	Depth	Depth	Depth	Depth =	#####################################	· ************************************	#####################################	<i>*******</i> *****************************	# # 4 4 5	## #2
SL		ach D			No. Ribs									~~~~~		****	44444	ריי ריי ריי ריי	רא הי הי						
FLAT	PANELS	ars—E		Top	No		→ # + + + + - - - - - - - - - - - - -	13-#4 13-#4 13-#4 13-#4	15-#4 15-#4 17-#4 17-#5 15-#6	17 <i>-</i> #4 21- #4 17- #5 19- #5 17- #5	22-#4 18-#5 22-#5 26-#5	20-#5 25-#5 22-#6													
WAFFLE FLAT	E PA	Reinforcing Bars-Each Direction	otrip		Short Bars		####### 004400	学業学学学		#44 #777 #777	####	## \$ 2													
M	EDGE	Reinfo	Column Strip	Bottom	to. Long ibs Bars Depth = 8	#####################################	######	書書書書書	兼 # # # # # # # # # # # # # # # # # # #	##\$ ##	## # \$														
	SQUARE		ů		No. Ribs	Rib De	~~~~	~~~~~	44444	के ज ज ज ज	***	רא הי הי													
	SQU			Top	No	ii.	11-#4 11-#4 11-#4 11-#4 11-#4 11-#4	13-#4 13-#4 13-#4 13-#4 13-#4	15-#4 15-#4 15-#4 15-#4 15-#4 20-#4	17-#4 17-#4 17-#4 17-#4 18-#5	19-#4 19-#4 27-#4 22-#5	22-#4 29-#4 24-#5													
			olumn	City	(2)	=																			
			Square Edge C	12'-0"	άεε	Total Depth	0.358 0.358 0.358 0.358 0.358 0.358	0.362 0.362 0.362 0.362 0.362 0.362	0.311 0.311 0.311 0.311 0.807 0.807	0.316 0.316 0.316 0.316 0.316 0.316 0.801 1.511	0.414 0.936 1.647 1.847	0.992 1.566 1.721													
		R	Square	lo =	c1 = c2 (in.)	Total	222222	222222	12 12 17 *	12 16 20 *	13 22 * 22 *	19 23 * 24 *													
					(1) (fad)		1.23 1.23 1.32 1.48 1.74 2.02	1.27 1.39 1.54 1.75 2.20 2.67	1.33 1.55 1.85 2.14 2.65 3.14	1.47 1.80 2.23 2.42 2.88	1.69 1.98 2.37 2.82	1.95 2.44 2.91													
	-	Factor	ed Super-	-mi	Load (psf)		50 150 300 400	50 150 300 400	50 150 300 400	50 150 300 300	50 150 200	50 150													
	-			Span	$l_1 = l_2$ (ff)		$15' \cdot 0''$ D = 6.5 Rib on C. L. cf/sf 0.557	18'-0'' D = 6.5 Rib on C. L. cf/sf 0.536	$21' \cdot 0''$ D = 9.5 Rib not on C. L. cf/sf 0.567	24'-0'' D = 9.5 Rib not on C. L. cf/sf 0.549	27'-0'' D = 9.5 Rib not on C. L. cf/sf 0.536	30'-0" D = 12.5 Rib on C. L. cf/sf 0.557													

Figure 14