Amanda Gerstenberg Structural Option Senior Thesis Spring 2006

THE 400 Bremerton, WA

Scope of Presentation

- Introduction
 - Building Description
 - Problem Statement
- Blast Resistant Design (Navy nearby)
 - Causes and Types of Attacks
 - The Explosion Itself
 - Cost Implications
 - Designing Against a Blast
 - Glass as a Lethal Weapon

Scope of Presentation

- Blast Resistant Design of The 400
 - Floor plan Considered
 - Design Loading and Combinations
 - Removing a Column
 - Recommendations for The 400
- Conclusions
 - Summary and Conclusions
 - Recommended References

INTRODUCTION

Building Description

- Waterfront Condominium (124,000 sq. ft.)
- 4 Stories Residential (about 21,000 sq. ft.)
 - Non-composite Steel Deck
 - 1/2" Metal Form Deck; 2 1/2" Concrete Topping
- 2 Stories Parking (about 15,000 sq. ft.)
 - Slab-on-grade
 - Post-tensioned Slab
- Lateral System
 - 12" Concrete Shear Walls

Initial <vs> Final Research

Initial	Final
Determine Possible Blasts for	Determine Possible Blasts for
Bremerton, WA	allareas
Determine Loads and	Determine Loads and
locations for Potential Attack	locations for Potential Attack
Determine Critical Load	Cannot Determine Critical
Cases	Load Cases
Redesign Structure for Blast	Redesign Structure for Blast
Loading	Loading
Determine Cost Comparison	Determine Cost Comparison
for Old and New Designs	for Old and New Designs

BLAST RESISTANT DESIGN

Causes and Types of Attacks

- Causes
 - Exert political pressure
 - Make symbolic statement
- Types of Attacks
 - Vehicle-transported bomb
 - Most common and critical
 - Lower level causes most damage
 - Mail bomb
 - Briefcase/small package bomb
 - Aerial attack (virtually no defense)
 - Nuclear attack (virtually no defense)

The Explosion Itself

Cost Implications

- National Research Council
 - 250,000 square feet
 - Rentable space; 5-year leases
 NON-BLAST RESISTANT: \$83.50 per square foot
 BLAST RESISTANT: \$86.63 per square foot
 5% increased cost
 3.5% increased lease premium

Designing Against a Blast

General Recommendations

- Continuous Reinforcement
- Redundant Structure
- Spirally Reinforced Columns
- Increased Design Load
- Staggered Lap Splices
- Ductile Steel Connections
- Minimal Column Spacing
- Fully-grouted CMU (if masonry used)
- Tied Horizontal and Roof Diaphragms

Glass as a Lethal Weapon

Glass Missiles

Surrounding Buildings

BLAST RESISTANT DESIGN OF THE 400

Design Loads & Combinations

- Live Loads
 - Parking: 40 psf
 - Residential: 40 psf
 - Roof: 25 psf
- Dead Loads
 - Parking: 100 psf
 - Residential: 52 psf
 - Roof: 52 psf
 - Perimeter Wall: 15 psf

- DL + LL
 - W14x22
- 2 (DL + 0.25 LL)
 - W16x26
 - W24x55
- 2 (DL + LL)
 - W18x35
 - W24x62
 - W24x76

Removing a Column

- Remove a Column
 - Interior most critical
 - Underground parking/basement
- W or HSS Shapes

- Nonlinear Static Pushover Approach
 - Only girders
 - Displacement: 65 inches
 - Girders and Joists
 - Displacement: 40 inches
 - Rotation: 7.45 degrees

Recommendations for The 400

- Initial Design
 - 5 bays x 10 bays
 - One design team
 - Standoff distance 0 feet
- Recommendations
 - Increase member sizes to resist 2 (DL + 0.25 LL)
 - Upgrade glazing
 - Eliminate parking; increases standoff distance to 15 feet

CONCLUSIONS

Summary and Conclusions

- Relatively New Phenomenon
 - No concrete design method
 - Engineering judgment
- Blast Loading
 - Varies with technology
- Rules of Thumb
 - 2 (DL + 0.25 LL) equivalent to removing a column
- CONNECTIONS!!!
- Bottom line = What are you willing to risk?

Recommended References

- American Institute of Steel Construction. <u>AISC Blast Guide Draft of Chapter 8</u>. 2006.
- The Federal Emergency Management Agency. "Explosive Blast." 3 Apr. 2006 http://www.fema.gov/pdf/fima/428/fema428_ch4.pdf>.
- Hamburger, Ronald, and Andrew Whittaker. "Design of Steel Structures for Blast-Related Progressive Collapse Resistance." <u>Modern Steel Construction</u> (2004).
- Longinow, Anatol, and Fand Altawakhin. "Blast Resistant Design with Structural Steel: Common Questions Answered." <u>Modern Steel</u> <u>Construction</u> (2003).
- Shipe, James A., and Charles J. Carter. "Defensive Design." <u>Modern Steel Construction</u> (2003).

Acknowledgements

- Professionals
 - Charlie Carter of AISC

Faculty

- Dr. Hanagan
- Professor Parfitt

Friends and Family

- Parents, siblings and Grandparents
- Boyfriend Dave
- Dave's Family

