The Residences of Sherman Plaza Evanston, IL

Courtney Perrin Structural Option Adviser: Walt Schneider 10/31/2005

Structural Technical Report 2 Pro-Con Structural Study of Alternate Floor Systems

Executive Summary

Several alternate floor framing systems can be used in place of Sherman Plaza's existing cast-in-place reinforced concrete system. This report evaluates and compares these floor systems in order to determine which could be considered for the final building redesign proposal. The systems analyzed in this report are:

- 1. Composite Steel System
- 2. Non-Composite Steel System
- 3. One-Way Pan Joist Concrete System
- 4. Hollow Core Plank System
- 5. Double Tee Beam System
- 6. Two-Way Concrete Slab System with Drop Panels
- 7. Concrete Waffle Slab System

Preliminary sizes for slabs and framing members were determined using different design aids, such as RAM Structural System, the CRSI Handbook and the PCI Handbook. These seven systems were then compared and contrasted by several different criteria. The comparison took into account the system's fire rating, susceptibility to vibration, weight, finish floor to ceiling section depth, constructability and cost. This criteria is not intended to be an exhaustive comparison but will be used to determine which systems should receive further investigation.

When each of the systems was used in the typical bay in Sherman Plaza, each was found to have a number of positive and negative aspects.

The steel systems were found to be the lightest and easiest systems to erect. The non-composite system is easier to erect than the composite system, because shear studs are

not needed. The disadvantages of the steel systems are that they have a large floor section depth and require additional fireproofing.

The double tee and hollow core plank systems are both precast systems, which make them very easy to construct. They are also the least expensive systems. A major downfall, however, is that they have the largest floor section depths. The hollow core plank system has a very high weight, and the double tee system needs additional fireproofing and vibration could be an issue.

The concrete waffle slab and one-way pan joist systems are both cast-in-place systems with relatively small ceiling to floor depths. These systems are harder to construct than the existing system however, since it is necessary to layout the pans to form the joists or waffle voids. Both these designs are more expensive. The waffle slab is even harder to design and therefore, the most expensive of the systems considered.

The two-way flat slab with drop panels has the same section depth as the existing system. It requires no additional fireproofing, and vibrations will be low. It is somewhat harder to construct than the existing system, however, and its weight is higher.

The purpose of the comparison of the floor framing systems is to determine which of the systems should be considered for further investigation. It was found that the steel systems, waffle slab, one-way pan joists, and two-way flat slab with drop panels should be continued as candidates for the building redesign. The double tee and hollow core plank systems, however, will not be considered due to their very large section depths, which can have a large impact on the costs and construction of the building.

Introduction

Sherman Plaza is a 25 story condominium building with a primary floor framing system of two-way cast-in-place reinforced concrete flat plates. This report provides a study and comparison of alternate floor systems. The report will consider two steel systems and several new concrete systems. A description of each system will be provided and preliminary sizes will be determined using design aids, such as RAM Structural System, the CRSI Handbook, and the PCI Handbook. After the evaluation, the systems will be compared and contrasted based on the adequacy of the system in relation to the building. The comparison will take into account factors, such as fire rating, durability, weight, cost, constructability, and other criteria. This report is intended to provide feasible alternatives to the existing floor framing system that could be used in the final redesign proposal of Sherman Plaza.

Existing Floor Framing System

Sherman Plaza's primary floor system is composed of reinforced concrete two-way flat plates. The slab thickness of every floor is 8" with the exception of the first retail floor, which has a slab thickness of 9". From the first to the seventh floor, the column grid and layout of the structural elements changes due to the areas where the building steps back. The eighth floor, however, is constructed as a typical floor plan which is repeated for floors eight to twenty-two. The remaining levels have different column layouts, because they are penthouse levels.

On the typical floor, the columns are lined up along a grid, in general, but the spacing of the columns varies. Most bays are either approximately 14'x14' or 21'x21' square bays. For this comparison study, a typical bay from the eighth floor will be used for the analysis. The seven new floor systems will be analyzed for this bay, and the design outcomes will be compared. The typical bay is an interior bay with the dimensions: 21'-0" x 22'10". This bay is one of the larger bays in the building and will therefore produce a conservative design that can be used throughout the entire floor. The column layout for the building is limited by the architectural layout of the building. Columns are positioned between apartment units so that they will not be visible. Therefore, the column layout will not be changed when considering alternate floor systems.

The different bay sizes in the building causes the reinforcement size to change throughout the floor. In general, the slab reinforcing remains fairly constant from floor to floor, however. The slab is required to have a minimum of #6@12" top reinforcement at column strip intersections, #5@12" bottom reinforcement at middle strip intersections, and #5@12" top and bottom reinforcement at intersections of the column strip and middle strip. The typical bay has 12 #6 top bars in the north-south direction and 10 #6 top bars in the east-west direction.

Typical Floor Plan: Levels 8-22 (Typical bay is outlined in red.)

Typical Bay Used in Analysis and Comparison

Floor Loads

The floor loading for Sherman Plaza follows the provisions of ASCE 7-98. *Superimposed Dead Load:*

• 15 psf, accounting for mechanical equipment, ceiling and floor finishes and other miscellaneous dead weight

Live Load:

- 40 psf for residential areas
- 20 psf extra for partitions
- 100 psf for corridors, kitchens, dining rooms, stairways and balconies
- **80 psf** approximated live load will be used as for the analysis of the typical floor

Total Superimposed Service Load = **95 psf** Total Superimposed Factored Load = **146 psf**

Comparison Criteria

Each of the alternate floor systems and the existing system will be compared and contrasted by general criteria that will help to decide which system is ideal for the typical floor. The criteria considered in this report are:

- 1. Fire Rating
- 2. Weight of the System
- 3. Depth of the Structural Elements
- 4. Constructability of System
- 5. System Cost

Fire Rating

The fire rating for Sherman Plaza has been determined by the BOCA National Fire Protection Code of 1996. The floor construction assembly should have a 2 hour fire rating. A 4.5" concrete slab achieves the 2 hour fire rating, which makes the existing 8" slab more than adequate. If an alternate system does not meet the fire rating, additional design is required to meet the rating, such as applying fireproofing or using a fire resistant material in the ceiling or floor assembly.

Weight of the System

The calculations of the weight of the system will take into account all beams, girders, slab and deck in the typical bay. The weight of the structural elements in the existing system is due to the 8" reinforced concrete slab. Therefore, the distributed load over the typical bay is 100 psf. This weight will be compared with the distributed loads of the alternate systems. The weight of the system is not the most important consideration due to the building's foundation conditions, but it will still be taken into consideration in this report.

Depth of the Structural Elements

Since Sherman Plaza is a twenty-five story building, any addition to the ceiling to floor finish depth will have a great impact on the building. An increase in the structural elements will either increase the overall building height or decrease the floor to ceiling height of the apartments. The increase in overall building height would produce much higher building costs for elements such as exterior cladding, stairwells, elevators and mechanical equipment. A significant decrease in floor to ceiling height would take away from the luxurious atmosphere created in the condominiums. The depth of the existing floor system is 8", which leaves a large amount of space for mechanical ducts and floor and ceiling finishes. The 8" section depth will be compared with the depths of the other systems.

Constructability and Cost

Sherman Plaza is located in downtown Evanston, IL in a high traffic retail and residential area. It is therefore necessary that construction be finished in a reasonable amount of time. The speed of construction can be impacted by the time required to construct a floor assembly, the type of materials used, and the weight or amount of those materials. The existing flat plate system is relatively easy to construct and does not require any complex setup of forms. A precast system, however, would be easier to construct. The cost of the floor framing systems will also be taken into account.

Design Aids

The alternate floor framing systems will be designed using the following methods:

- Composite Steel System: using the RAM Structural System to create a model of the typical floor
- Non-Composite Steel System: using output from the RAM Structural System
- One-Way Concrete Pan Joist System: using an estimate from the Concrete Reinforcing Steel Institute (CRSI) Design Handbook, 9th Edition
- Hollow Core Plank System: using the Precast/Prestressed Concrete Institute (PCI) Design Handbook, 5th Edition
- Double Tee Beam System: using an estimate from the PCI Design Handbook
- Two-Way Concrete Slab System with Drop Panels: using the CRSI Design Handbook
- Concrete Waffle Slab System: using the CRSI Design Handbook

Composite Steel System

RAM Structural System was used to design and analyze the composite steel floor system. The eighth floor of the building was modeled using the original column locations from the existing design. Girders and beams were added between the columns. For the typical bay, the infill beams are spaced at 7'-0" on center.

Eighth Floor Modeled in RAM Steel

For the composite design, a United Steel Deck, 22 gage, 2" Lok-Floor composite deck was chosen with 3" of concrete above the deck flutes, creating an overall concrete slab depth of 5". The studs are 4" long and 34" in diameter. This deck allows for a uniform superimposed service live load of 365 psf which is well over the actual service live load of 80 psf. The maximum span for a three span section of the deck is 8.19' which is greater than the actual span, 7'-0".

Typical Floor Design in Composite Steel

The beams for the typical bay, designed by RAM Steel, are W12x14 with 8 studs, and the girders are W14x22 with 30 studs. This design results in a load of 2962.67 lbs. from the beams, girders and studs, assuming the studs are approximately 10 lbs. each. This load, when distributed across the typical bay, is 6.179 psf. The deck and slab add another 38 psf, which sums to a total distributed load of 44.179 psf over the entire bay. This weight is significantly less than the weight of the existing system.

The depth of the composite steel floor system will be equal to the depth of the girder plus the 5" slab. Therefore, the overall depth is 18.7", which is much greater than the depth of the existing system. The composite steel system will add an extra 10.7" to each floor of the building. This system will also require additional fireproofing to achieve an adequate fire rating. The 3" of concrete slab above the deck flutes will produce a fire rating of an hour and a half. Additional fireproofing is needed on both the slab and the steel elements of the building. Cementitious fireproofing on the steel will produce a 3 hour fire rating, or the steel could be encased in a fire-resistant material ceiling assembly.

Non-Composite Steel System

The non-composite steel floor system was also designed using RAM Steel. The same floor design and spacing was used as in the composite design but the beams and girders are changed to non-composite.

The deck was designed again using the United Steel Deck manual. The USD 22 gage 1.5" Lok-Floor was chosen with 2.5" concrete slab above the deck flutes, making an overall slab depth of 4". Lightweight concrete was used again. This deck allows for a uniform superimposed service live load of 195 psf which is well over the actual service live load of 80 psf. The maximum span for a three span section of the deck is 7.06' which is greater than the actual span, 7'-0".

Floor Map

10/25/05 17:48:24

Eighth Floor Modeled in RAM Steel

Typical Floor Designed in Non-Composite Steel

The beams in this design are W14x22 and the girders are W18x35. These sizes are significantly larger than those found in the composite design. The design results in a distributed load of 7.256 psf over the bay due to the steel and 31 psf due to the slab and deck. Therefore, the weight of this system over the typical bay is 38.256 psf, which is less than both the existing system and the composite steel design.

The depth of the non-composite steel floor system will equal the depth of the girder plus the 4" slab. The overall depth of the structural system is 21.7", which is greater than the composite and existing systems. This depth is only 3" greater than the composite system but is 13.7" greater than the existing system. Also, similar to the composite system, extra fireproofing will be needed for this system. An advantage over the composite system is that the non-composite system is easier to construct, because it is not necessary to weld on the studs to create the composite action on the beams.

One-Way Concrete Pan Joist System

The one-way concrete pan joist system was designed using the Concrete Reinforcing Steel Institute (CRSI) Handbook. The system spans the 22'-10" direction, and two pan joist systems were considered. First, a system with 20" forms and 6" ribs was

considered. The span was approximated to be 23', and the allowable factored load was 155 psf, which is greater than the maximum load of 146 psf. This system had a total depth of 13" and weighed 67 psf. The second system considered was a 30" form and 6" rib system. This system is also 13" in depth and weighs 61 psf. The capacity is 182 psf for a 23'-0" span. Since the second system is lighter and requires fewer pans, which therefore takes less time in construction, the second system is more

ideal than the first. The second system will be considered in the overall comparison of the floor systems.

The pan joist system uses top bars of #5 spaced at 12" on center and bottom bars #5 and #6. This system has 10" deep ribs and a top slab of 3". The 13" depth increases the floor to ceiling section by 5". This 3" slab produces a fire rating of one a half hours. Therefore, additional fireproofing is necessary for this system to achieve the two hour rating. Time and constructability should also be taken into account when choosing this system. The setup for the pans takes

much more time and makes construction harder than it would be for the flat plate existing system. Vibration could also be a concern with this system, because the slab is only 3" thick. The existing 8" slab will produce less vibration.

Hollow Core Plank System

Two hollow core plank systems were designed using the Precast/Prestressed Concrete Institute (PCI) Handbook. The first system considered is a 6" plank with a 2" concrete topping. This system weighs 74 psf. The second system is an 8" plank with a 2" topping, which weighs 81 psf. The first system will be considered in the design comparison, because it weighs less and has a smaller depth than the second system.

The hollow core planks will rest on girders that span the 21' direction. For this floor system, an inverted tee beam will used as the girder to minimize the floor section depth. The hollow core planks can rest on the seat made by the tee section. The girder was also designed using the PCI Design Handbook. It was found that a 28IT24 tee beam with 11 ½" diameter reinforcement bars was necessary. The girder must hold the superimposed service load of 95 psf plus the 74 psf dead load of the planks. The total distributed load over the girder is 3859 plf, and the allowable load is 4925 plf.

The planks will span 22'-10", which is approximated at 23' for the design. The plank chosen was a 4HC6+2 with a 96-S strand layout which has a capacity of 123 psf service load. The 8" depth provides the necessary fire rating, but more investigation is necessary to determine if extra fireproofing is needed for the hollows of the planks. The system, however, is relatively easy to construct

because the planks are precast and ready to place in the building.

The depth of the hollow core plank system will be the depth of the inverted tee girder, which is 24". This depth is three times the size of the existing system's depth. The overall weight of the system is also larger than the weight of the existing system. The

planks weigh 74 psf and the girders contribute an additional 43.8 psf. The total weight of the system is 117.8 psf.

Double Tee Beam System

The double tee beam system was also designed using the PCI Handbook. Again, the 22'-10" span was used, and it was determined that an 8LDT12+2 with a 68-S strand layout was necessary. This system is composed of lightweight concrete with a 2" normal weight topping. The double tees are 8' in length and 12" in depth with the 2" topping. The capacity is a 99 psf service load.

The double tee beams rest on a rectangular girder that was designed using the PCI Handbook. The girder is a 12RB24 with 10 ½" diameter reinforcement bars. The girder must support the 95 psf service load and the 54 psf double tee dead load. The girder will support an allowable load of 4558 plf, which is greater than the actual load of 3402 plf.

The overall depth of the system is equal to the depth of the girder, 24", plus the depth of the double tee beams,14". For this design, the overall depth is 38", which is much greater than the existing system depth. The weight of the system is calculated by adding the 54 psf of the double tees to the 26.3 psf of the girders. The total system weight of 80.3 psf is less than the existing weight. The 2" of normal weight concrete and 2" of lightweight concrete does not quite provide enough fire rating, so additional fireproofing is needed. This system, like the hollow core plank, will be easy to construct.

Two-Way Flat Slab with Drop Panels System

The two-way flat slab system with drop panels was designed with the CRSI Handbook. The bay was designed for the longer span of 22'-10". It was determined that a square drop panel of 6.5" depth and 7.67' width was necessary. For the column strip, 13 #5 bars on top and 11 #5 bars on bottom are needed. The middle strip receives 13 #4 bars on top and 11 #4 bars on bottom. The capacity of this system is 200 psf superimposed factored load. This design is overly conservative because the CRSI Handbook designs the flat slab in increments of 100 psf. Less reinforcement would probably be needed if the slab were designed for the 146 psf factored load.

The total slab depth between drop panels is 8" which is equal to the existing system. The drop panels add 6.5", but for this system, mechanical equipment can be run through the middle section of the slab where the drop panels won't interfere. Therefore, the depth of this system can be taken as 8". The additional drop panels do increase the weight of the system to greater than the existing system. The total steel in the system weighs 2.36 psf, and

the total weight is 112.33 psf. The drop panels also provide an extra difficulty in the construction of the system. The 8" slab provides more than enough fire protection. The flat slab with drop panels also provides a great resistance to vibrations.

Concrete Waffle Slab System

The CRSI Handbook was used to design the concrete waffle slab system. After

consideration of two systems with different void lengths, the 30"x30" void system was chosen. The ribs between voids are 6", and the rib depth is 8". There is a 3" slab on top, making a total depth of 11". Since the typical bay is not completely square, it was necessary to approximate the dimensions as 24'-0"x24'-0". This will produce a more conservative design. The factored superimposed allowable load is 150 psf.

The system was designed to have 2 #5 bars in the bottom of the rib in the

column strip and 18 #5 bars in the top. The middle strip needs #4 longs bars in the bottom and 7 #5 bars in the top. This reinforcement produces a steel weight of 2.05 psf which is added to the 71 psf of the waffle slab for a total weight of 73.05 psf. This system would be one of the most hard to construct and will take a long amount of time to layout the pans to create the waffle. In addition, extra fireproofing is needed for the 3" slab depth.

Floor Framing Systems Comparison

System	Depth	Weight		Cost per S.F.	,
			Mat.	Inst.	Total
Existing	8"	100 psf	5.85	7.35	13.20
Composite Steel	18.7"	44.2 psf	10	4.94	14.94
Non-Composite Steel	21.7"	38.3 psf	10.2	4.18	14.38
One Way Pan Joists	13"	61 psf	6.45	9.15	15.60
Hollow Core Plank	24"	117.8 psf	6.85	3.48	10.33
Double Tee Beams	38"	80.3 psf	7.35	2.87	10.22
Two-Way with Drop Panels	8"	112.3 psf	6.05	7.80	13.85
Waffle Slab	11"	73.1 psf	9.4	9.15	18.55

System	Pros	Cons	Further Consideration?
Existing	 Adequate fire rating Least floor to ceiling depth Relatively easy construction Low vibrations 	High weight	Yes
Composite Steel	Low weightRelatively easy construction	Needs additional fireproofingLarge floor section depth	Yes
Non-Composite Steel	Easy constructionLow weight	Needs additional fireproofingLarge floor section depth	Yes
One-Way Pan Joists	Low weightRelatively easy constructionRelatively small section depth	 Needs additional fireproofing Possible high vibrations Somewhat expensive 	Yes
Hollow Core Plank	Easy constructionInexpensive	Large floor section depthHigh weight	No
Double Tee Beams	Easy constructionMost inexpensive design	 Large floor section depth Needs additional fireproofing Possible high vibrations 	No
Two-Way with Drop Panels	 Adequate fire rating Low floor section depth Relatively easy construction Low vibrations 	Highest weight	Yes
Waffle Slab	Small floor section depth	 Difficult construction Needs additional fireproofing Most expensive design 	Yes

Several alternate floor framing systems were considered as an alternative to the existing two-way cast-in-place reinforced concrete flat plate system of Sherman Plaza. The seven systems that were analyzed in this report were:

- 1. Composite Steel System
- 2. Non-Composite Steel System
- 3. One-Way Pan Joist Concrete System
- 4. Hollow Core Plank System
- 5. Double Tee Beam System
- 6. Two-Way Concrete Slab System with Drop Panels
- 7. Concrete Waffle Slab System

Each of the systems were found to work for the typical bay, but the systems had positive and negative aspects that make them a good choice or not for this building.

The steel systems were found to be the lightest and easiest systems to erect. The non-composite system is easier to erect than the composite system, because shear studs are not needed. The disadvantages of the steel systems are that they have a large floor section depth and require additional fireproofing. Both of these systems could use further investigation to determine if they could be used in the building redesign.

The double tee and hollow core plank systems are both precast systems, which make them very easy to construct. They are also the least expensive systems. A major downfall, however, is that they have the largest floor section depths. The hollow core plank system has a very high weight, and the double tee system needs additional fireproofing and vibration could be an issue. Since the floor section of these systems is three times or more the depth of the existing system, they will not be considered for further investigation. The increased depth can have a major impact on the building.

The concrete waffle slab and one-way pan joist systems are both cast-in-place systems with relatively small ceiling to floor depths. These systems are harder to construct than the existing system however, since it is necessary to layout the pans to form the joists or waffle voids. Both these designs are more expensive. The waffle slab is even harder to design and therefore, the most expensive of the systems considered. Despite the high costs, however, both these systems will be continued as candidates in the building redesign.

The two-way flat slab with drop panels has the same section depth as the existing system. It requires no additional fireproofing, and vibrations will be low. It is somewhat harder to construct than the existing system, however, and its weight is higher. It will also be considered for further investigation.

psi		Int.	Span Deft.	(3)		619	3778	996	1.185	1.441	1.736	2.073	2.458	2.894	3.386	3.938	4.554	5 240	6.001		ŝ						_		T	15		
$f_{\rm c} = 4,000 \text{ psi}$ $f_{\rm y} = 60,000 \text{ psi}$		# 5	# #	1.46		374*	342*	314*		429		1.	215		188*	613	1991	177	159	0	nd span			Ī	1.31	1.61	94	31.7	2	.75	8 1	280
$f_c = f_y = 0$		4 4 8	2 2	1.18	SPAN	-		307* 3		_		-	-		-	-	197	_			ands.	000	3	Ī	1.03	1.25	.73	11.8 268	991	.62	01.1	230
(HS)	apth	# 4 # 8 5	4 W	-	INTERIOR SPAN	-	328* 3			235 2	207	-		182	_		0 8	_		0	d joist		0	(H)	82	1.03	09	11.8	707	15.	11.7	
2) DAD (F	Total De	4 10	-	.74	Z	301	_	224 3		0 89		-					22	0 47	. 0		tapere less 2	Backle		CF/S	.63	.76	44	11.8	3	0 6	11.8	0.00
CC.	= 13.0°	# 4 #	# #	.63		215 3		155		o =	0 4 0	-		53.0	43 0		0	(100)			specia (thickr	1	aging a	TE .41	09	.73	.43	11.8	2	.31	,0.	0 0
30" Forms + 6" Rib @ 36" cc. (2) FACTORED USABLE SUPERIMPOSED LOAD (PSF)	10" Deep Rib + 3.0" Top Slab = 13.0" Total Depth	End #	Span Defi.	_		1.006 2	1.264	1.569	1.926	2.342	2.820	3.369	3.995	4.703	5.502	6.398	7.400	51	9 752	301	ad is for onal line	O26/	out of a	PROPERTIES FOR DESIGN (CONCRETE .41 CF/SF) (4)					T			_
6° Rib SUPEF	b + 3.0°		T	T		328* 1.		271* 1.		328 228* 2		-	-	- 0		-	125 7	39	-	90	cond lo	Š	do	2	1.12	1.37	80	11.7	202	88	17	0.00
rms +	Deep Ri	5 # 5	+	-	PAN	317* 32	-	_		221* 22					100		95		-	2	8-1. ands; se red abo	d ends.		DESIC	93	_		11.7	+	.75	_	
30" Fo	10,	4 # 5	+		END SPAN	309* 31		_	-	22 28			_	_	==	_	0 9	-	_	, Y	e Table e joist e ot requii	tapere		FOR	76	1 26		11.8	1	.62	1.5	_
CTOR		* 0	* *			Н	10 m	184 241	0 0	35 18		=	-	0 02				-			rties, se d squar ion is no	sts and	4	BTIES	09	.73		11.8	1	15.	-12	
		4 # 4	* *	9.		80 251	N	0 127	0 901	0 88		100	48 8	_		_	_			- 1	n prope standan deflecti	or spans iging joi	capac	PROP	09	.73		17.8		.40	60.	_
HD NSTS (*-	* *		_	-	=	=	=			-	-		_	-	-	_			s section d is for ation of	r interio	y siled	1	ENT ENT	FIND	a		ENT	Î		
STANDARD ONE-WAY JOISTS (1) MULTIPLE SPANS		TOP Size	BARS #	Steel (psf)	CLEAR SPAN	17:0"	18:0	19.0	20.0"	21.0	22'-0"	23.0*	24'-0"	25'-0"	26'-0"	27:-0*	28.0"	29'.0"	30,0	0.00	(1) For gross section properties, see Table 8-1. For gross section properties, see Table 8-1. First Road for standard square jost ends, second load is for special tapered joist ends. (3) Computation of deflection is not required above horizonal line (thickness $\geq t_{\rm for}^2/18.5$ for end spans, (3) Computation of deflection is not required above horizonal line (thickness $\geq t_{\rm for}^2/18.5$ for end spans,	(4) Exclusive of bridging joists and tapered ends.	Contioned by sited capacity.		NEGATIVE MOMENT STEEL AREA (SO IN)	STEEL % (UNIFORM)	(TAPERED)	EFF. DEPTH, IN.	POSITIVE MOMENT	STEEL AREA (SQ IN)	STEEL %	EFF. DEPIH, I
= 4,000 psi = 60,000 psi		# 5 Int.	100	1.25 Coeff		322* 602		463	_	360		196* 2.016	252 183* 2.390	225 170* 2.814	201 159* 3.292	179 3.828	139* 4.428			0	d spans.				1 09	1.55	.85	11.7	007	.62	.15	7.1.7
$f_{c} = f_{c} = 0$		4	4 10	9	SPAN	315* 3		367 46	_	282 3	-	+	171	0 2	0 2	0 811	0 70	_	-		ands for en	900	200	t	88	1.25	.68	11.8	000	15	1.12	-
(SF)	htth	* *	-	1	NTERIOR SPAN	305* 3		237 29		0 2 2 2 2		+	- 20	105	_	0 1	_		304	90	d joist e		101-10	(F)	64	16	49	11 8	5	.40	01.5	0.1
2) DAD (F	= 13.0' Total Depth	4 - 01	-	-	Ξ	227 3	_	166		0 121			73		200	0 #	0				tapere tess 2		ellection	CF/SF) (4)	88	.83	54.	11.8	2	.31	90.	0
Forms + 5" Rib @ 35" cc. (2) JSABLE SUPERIMPOSED LOAD (PSF)	= 13.0	# t	-	99		139 2		0000	0 8/			-	_			-	-				specia (thickr		Copacity at elastic deflection = (n/ 300	TE 39	80	83	4	8.11	2	.22	9	0
@ 35 SIMPO	3.0 Tup Slab	End		(3)	-	978		1.525	1.873	2276	2.742	3 276	3.684	4,572	5.349	6.221	7.195	0.070	0 0	0.40	ad is for		ally at a	R DESIGN (CONCRETE					T			
5" Rit	-	-	_			282	-		322	-	_	_	193	_	131, 5		0 101				cond to	(Cope) N	70	1.35	17.	11.7	907	12	20 1	0
ABLE	0 Deep Rib	15 d	in in	+	SPAN	274. 28	-			-			0 8	120		0 98	_		300		8-1. ands; se	ed citals.		DESIC	78		_	8 11 8	+	13	0 1	_
30° Fo	10	4	+	1 01	4 9			_	168 237	+	0 10			0 19							e Joist e	to) ere		SFOR	-	- 6		2 1	+	5	_	:
30°1 FACTORED U		F 1	1	-		\vdash		0 15	_	-	0.03	_		_							a squar	s). Jobs and	11,	PROPERTIES FO	*F	83		_	5	.7		0
	-	7.		1.3		-	_	_		-	o ri		_					-			standar standar dellect	or span dymy po	a cap.a	PROP	2	3			5	75	3	72
STATIONED ONE VEX. JOISTS *** ALLI IFTE SPANS		-	7 3th 18		+	-		-					2	-	,	2	-		2 :		For post so than proportion see Table 8-1. For the first standard square post and second load is for special tapered joist ends. For the first for standard square plate ends second load is for special tapered joist end spans. For the first standard square in second second line (thickness ≥ for 748 5 for end spans.	(4) Estimated Indigning pools and toper	facility affect		THE CALL THE SHIP	STREET, ST.	_		PASSIFIE DATE SERVE	TEL SEL SEL		_
SIA DNE VS. MULTER		20	1101108	Beel (p.f)	CLE-45 SPAH	12	2		37	-		3	0 + 2	2	2	,]	0 1	0.00	225 225	J:∐ ÷:	The same		TATOLI.	Sucks deliched		E	PASSINE	31 P. 1231-2	2112	21.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4

18

CONCRETE REINFORCING STEEL INSTITUTE

8-21

Colored Colo	$f_c = 4,000 \text{ psi}$ (D (PSF) $f_y = 60,000 \text{ psi}$	tal Depth	# 9 # 9 # 9 #	9.5 11	# 2 # 5 # 6	1.33 1.66 2.00 (3)	INTERIOR SPAN	3 470' 476* 487* .562	504 631 691*	442 557 640*	7 389 407* 416* .856	344 378*	305 352*	3 270 329* 336* 1.497	0 349 437	240 309*	214 280	190 251	169 226	150 203	134 183	118 164 21	62 105 148 196 4.942	0 0 0 0	apered joist ends. sss $\geq \ell_{\rm B}/18.5$ for end spans,	Rection = $\ell_n/360$.	CF/SF) (4)			.66 .82	11.7 11.6	212 256 294 338		13 17 20 25	11.7 11.7 1	010
SI ONE-V MULCI 100 1	9 26" cc. ⁽²⁾ APOSED LOA	p Slob = 130" To	# 4	10	# #	18		272	234	0	201 28	174 25	149 22	128	0	011	93 14	79 13	99	55.0	o 4 c	0			is for special nal line (thickne	ty at elastic de	NCRETE .47	e i	52.	.40				5		_
SI ONE-V MULCI 100 1		10" Deep Rib + 3.0" To	#4 #4 #5 #6	8.5 7 8.5 10.5	#4 #5 #5 #6 #5 #5 #6 #6	.97 1.19 1.46 1.73	END SPAN	316 403 420* 427*	0 0 503 601*	0 0 441 532	237 308 355* 359*	206 270 328* 332*	0 0 343 418 179 237 304 308*	155 209 270 286*	0 0 332	134 184 240 266*	116 162 213 249*	100 142 190 233*	86 125 169 214	73 109 150 192	95 133 172	82 118 155	71 104 138	0 0 0 0	n properties, see Table 8-1. standard square joist ends; second loa deflection is not required above horizo	s and tapered ends.	PROPERTIES FOR DESIGN (CO		75 91 1 16	47 58 74	11.8 11.7	203 235 278		.51 .62 .75	62. 02. 711	216 267 301
CTORED USABLE SUPERIMPOSED LOAD (PSF)	STANDARD ONE-WAY JOISTS (1) MULTIPLE SPANS		Size #	@	* * WC		CLEAR SPAN	t				Т							-							(4) Exclusive of bric "Controlled by shea		INEGATIVE MOMENT	STEEL AREA (SQ. IN.)	CTADERED	CEE DEDTH IN	- ICB/IGB	POSITIVE MOMENT	STEEL AREA (SQ. IN.)	STEEL %	11. 11. 11. 11.
CTORED USABLE SUPERIMPOSED LOAD (PSF) 1	psi psi	Γ		ij,	Defi.	(3)		540	040	.671	.823	1.00	1.205	1440	1.440	1.707	2.010	2.351	2.734	3.163	3.639	4.168	4 752	4.1.0	spans,			-		_		_	-	-		_
CTORED USABLE SUPERIMPOSE CTORED USABLE SUPERIMPOSE 1	$f_c = 4.000$ $f_y = 60.000$		5	, 0	20	78	SPAN		339.	394*	364	338	463	413	370	274*	332	299	269	243	219	0 621	0 9	0	ends. 5 for end	/360.			1.10	200	CS.	328	070	.62	.21	=
CTORED USABLE 8 10 Deep fill 10 Deep fill 11 Deep fill 12 F 5 F 6 F 7 13 F 5 F 6 F 7 14 F 5 F 7 15 F 7 16 F 7 17 F 7 18 F 7 18 F 8 F 8 F 8 F 7 18 F 8 F 8 F 8 F 7 18 F 8 F 8 F 8 F 8 F 7 18 F 8 F 8 F 8 F 8 F 8 F 8 F 8 18 F 8 F 8 F 8 F 8 F 8 F 8 18 F 8 F 8 F 8 F 8 F 8 F 8 18 F 8 F 8 F 8 F 8 F 8 F 8 18 F 8 F 8 F 8 F 8 F 8 F 8 18 F 8 F 8 F 8 F 8 F 8 F 8 18 F 8 F 8 F 8 F 8 F 8 F 8 18 F 8 F 8 F 8 F 8 F 8 18 F 8 F 8 F 8 F 8 F 8 18 F 8 F 8 F 8 F 8 F 8 18 F 8 F 8 18 F 8 F 8 18 F 8 F 8	f. f.	13 0* Total Depth	-	12 9	# 4 # 4 # 5	1.08 1.39		100	401 419*	350 386"	307 358*	270 332	0 366	0 325	209 289	184 258	162 230	0 0	0 0	0 0 0 110 164	97 147	0 0	0 0 0	0 0 0	pecial tapered joist ends. thickness ≥ f ₀ /18.5 for end	stic deflection = $(-/360)$	F 44 CF/SF) (4)		98. 39.	92 1.23	4/	227 280	005: 135:	.40	14	1 8 11
4 + 2 + 2	f. f.	1 3	44 44 64	End 10 12 9	Span #3 #4 #4 Defi #4 #4 #5	(3) 82 1.08 1.39		100	876 291 401 419° 0 0 532	1.030 251 350 386"	1.338 217 307 358*	0 0 413	0 0 366	0 0 322	2.340 141 209 289	2.774 122 184 258	3 266 105 162 230	3 821 90 143 206	0 0 0 0	5 139 65 110 164	5.914 54 97 147	6 779 44 84 131 17	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52 0 0 0 0	econd load is for special tapered joist ends. sva horizonal line (thickness ≥ t ₀ /18.5 for end	-Covacity at plastic deflection = (1/360)	CONCRETE 44 CE/SF) (4)		50 .65 .86	52 1.23	47. 00. 54.	11.8 11.7	227. 80	.31 .40 .51	71. 14. 17.	11.8 11.8

CONCRETE REINFORCING STEEL INSTITUTE

8-15

Strand Pattern Designation

HOLLOW-CORE

Section Properties

Topped

1,640 in4

Untopped

763

4'-0" x 6" Normal Weight Concrete

yo yo So by wt 3.00 in. 4.14 in. 3.00 in. 3.86 in. 254 in³ 396 in³ 254 in³ 425 in³ 16.00 in. 16.00 in. 195 plf 295 plf 49 psf 74 psf V/S = 1.73

Capacity of sections of other configura-tions are similar. For precise values, see local hollow-core manufacturer.

 $f'_{c} = 5,000 \text{ psi}$ $f'_{ci} = 3,500 \text{ psi}$

Key 306—Safe superimposed service load, psf 0.2—Estimated camber at erection, in. 0.2—Estimated long-time camber, in.

4HC6

Table of safe superimposed service load (psf) and cambers (in.)

No Topping

Strand	T									5000		Spa	n, ft								
Designation Code	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		
10.072	306	257	217	184	157	135	116	100	87	75	65	56	48	42	36	30					
66-S	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.1	-0.2	-0.4					
	0.2	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.1	0.1	0.0	-0.2	-0.3	-0.5	-0.7	-1.0					
	358	301	254	217	186	160	139	121	105	92	80	70	61	53	47	40	35				
76-S	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.0	-0.1	-0.3				
	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.1	0.0	-0.1	-0.3	-0.5	-0.7	-1.0			1002	
		384	326	279	240	208	182	159	140	123	109	97	86	76	67	60	53	46	41	2.000	72.5
96-S	1	0.3	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.3	0.3	0.1	0.0	-0.1		
		0.4	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.4	0.2	0.1	-0.1	-0.4	-0.6	-0.9		
			383	331	286	249	218	192	169	150	133	119	106	95	84	76	68	60	54		
87-S	1		0.5	0.5	0.6	0.6	0.7	0.7	0.7	0.7	0.8	0.8	0.7	0.7	0.7	0.6	0.5	0,4	0.3		
	1		0.6	0.7	0.7	0.8	8.0	0.9	0.9	0.9	0.8	0.8	0.7	0.7	0.5	0.4	0.2	0.0	-0.3		
				364	317	277	243	214	189	168	150	134	120	107	96	87	78	70	62		
97-S	1			0.6	0.7	0.7	8.0	0.8	0.9	0.9	0.9	0.9	1.0	1.0	0.9	0.9	0.8	8.0	0.7		
				0.8	0.9	0.9	1.0	1.0	1.1	1.1	1.1	1.1	1.0	1.0	0.9	0.8	0.6	0.4	0.2		

4HC6+2

Table of safe superimposed service load (psf) and cambers (in.)

2" Normal Weight Topping

Strand Designation	T											Spa	n, ft					
Code	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
	305	258	220	188	162	139	119	97	78	62	47	35	3					
66-S	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.1						
	0.2	0.2	0.2	0.1	0.1	0.0	-0.1	-0.2	-0.3	-0.5	-0.7	-0.9				0.00	INVOCATION CONTRACTOR	
	358	304	260	224	194	168	146	122	101	82	66	52	39					
76-S	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.0					
	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.2	-0.3	-0.5	-0.7	-0.9					
	1	390	336	291	253	221	194	170	146	123	104	87	72	58	46	35		
96-S		0.4	0.4	0,5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.3	0.3	0.1	0.0		
	1	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.1	-0.1	-0.3	-0.5	-0.7	-1.0	-14		
70000000			398	346	302	265	234	206	182	158	136	117	100	85	71	59	47	
87-S			0.6	0.6	0.7	0.7	0.7	0.7	8.0	0.8	0.7	0.7	0.7	0.6	0.5	0.4	0.3	
			0.5	0.6	0.6	0.6	0.5	0.5	0.4	0.4	22	0.1	-0.1	-0.3	-0.5	-0.8	-1.2	
5 95 50 5 5 5 5 7 5 5	T			382	335	294	260	231	205	181	157	137	119	102	85	75	63	
97-S				0.7	3.6	0.8	0.9	1).9	0.9	1.0	1.0	0.9	0.9	0.9	0.8	0.8	0.7	
Maria Company				0.7	0.7	9.7	0.7	0.7	0.6	0.6	7.5	0.4	0.2	0.0	-0.2	-0.5	8.0-	

Strength based on strain compatibility; bottom tension limited to $6\sqrt{i}_{2i}$ see pages 2-2-2-6 for explanation.

2-25

Strand Pattern Designation

HOLLOW-CORE 4'-0" x 8"

Normal Weight Concrete

Section Properties Untopped

1.666 in-

4.00 in.

4.00 in.

416 in³

416 in³

224 plf

1.92 in.

56 psf

12.00 in.

y: Sb

S.

bw

wt

V/S =

Topped

5.29 in.

4.71 in.

580 in

652 in³

12.00 in.

324 plf

81 psf

3,071 in

76-S

-S = straight _Diameter of strand in 16ths - No. of strand (7)

Safe loads shown include dead load of 10 psf for untopped members and 15 psf for topped members. Remainder is live load. 1½' Long-time cambers include superimposed dead load but do not include live load.

Capacity of sections of other configura-tions are similar. For precise values, see local hollow-core manufacturer.

 $f'_{c} = 5,000 \text{ psi}$ $f'_{ci} = 3,500 \text{ psi}$

- Key
 335—Safe superimposed service load,
 0.2—Estimated camber at erection, in.
 0.3—Estimated long-time camber, in. - Safe superimposed service load, psf

4HC8

Table of safe superimposed service load (psf) and cambers (in.)

No Topping

Strand Designation												Spa	n, ft						_				_
Code	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	335	286	246	213	185	162	141	124	109	96	85	75	66	58	50	44	38	33					
66-S	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.1	0.0	0.0							
	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.1	10000	55.00	-0.2								
	375	337	291	252	220	193	170	150	133	118	105	93	83	73	65	58	51	45	39	34			
76-S	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.1			-0.2			
	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.1				-0.4					
	372	342	317	296	275	255	225	200	179	160	143	128	115	104	93	84	76	68	61	55	49	44	39
58-S	0.3	0.3	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.4	0.3	0.2	0.1		-0.1
	0.4	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.5	0.4	0.3	0.2			-0.4		-0.9
		351	326	302	284	266	250	236	218	196	176	159	143	130	117	107	97	88	80	72	65	59	54
68-S	1	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.6	0.5	0.4
		0.6	0.6	0.7	8.0	0.8	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.8	0.7	0.6	0.7	0.2		-0.2
		360	335	311	290	272	256	242	229	215	205	188	170	154	141	128	117	106	97	89	81	74	67
78-S		0.5	0.6	0.6	0.7	0.7	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.1	1.1	1.1	11	1.1	1 1	1 1	1.0	0.9	100
		0.7	8.0	0.8	0.9	1.0	1.0	1.1	1.2	1.2	1.3	1.3	1.3	1.3	1.3	1.3	1.2	1.2	1.1	1.0	0.9	0.9	0.9

4HC8+2

Table of safe superimposed service load (psf) and cambers (in.)

2" Normal Weight Topping

Strand	T						_	_		_		Cne	ın, ft			-						_	
Designation Code	16	17	18	19	20	21	22	23	24	25	26				30	31	32	33	34	35	36	37	38
	309	267	231	201	175	153	133	117	102	89	77	67	55	44	33								
66-S	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.2		0.2	0.2	0.1	0.0										
27 1 199 	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0						-0.7									
		316	275	241	211	185	163	144				87	74	62	50	40	31						
76-S	1	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.1		-0.1						
		0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.1	0.0	-0.1	-0.2		-0.5									
	Т		352	317	279	248	220	196	174					98	84	71	60		40	32			
58-S	1		0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.4	0.3	0.2		0.0			
			0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.3	0.3	0.2	0.1	-0.1									
				337	316	297	268	239	215	193	173	156		127			87	75	64	54	45	36	
68-S	1			0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.6	0.5	0.4	0.2	
				0.6	0.6	0.7	0.7	0.7	0.6	0.6	0.6	0.5	0.4	0.3	0.2		-0.2						
				346	325	306	286	271	252	227	205	186	168	152		124		98	86	76	66	56	47
78-S	1			0.7	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.0	0.9	0.9	0.7	0.6
				8.0	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.7	0.6	0.5	0.3	0.1	-0.1				-

Strength based on strain compatibility; bottom tension limited to $6\sqrt{t_c}$; see pages 2-2-2-6 for explanation.

2-26

PCi Design Handbook/Fifth Edition

Strand Pattern Designation

No. of strand (6) S = straight D = depressed 68-D1 - No. of depression points - Diameter of strand in 16ths

Safe load: shown include dead load of 10 pst for untopped members and 15 pst for topped members. Remainder is live load. Long-time cambers include superimposed dead load but do not include live load.

Key
186 — Safe superimposed service load, psf
0.2 — Estimated camber at erection, in.
0.3 — Estimated long-time camber, in.

DOUBLE TEE

8'-0" x 12" Lightweight Concrete

 $f_c' = 5,000 \text{ psi}$ $f_{pu} = 270,000 \text{ psi}$

Section Properties

		Office	phen	TOL	ped
A	=	287	in:	-	
	#3	2.37_	ir-	4.819	in.
y.	=	9.13	in.	10.82	ir.
У.	=	2.87	m.	3.18	ın.
S,	$_{\rm m}$	315	ina	445	ins
S	=	1.001	ina	1.515	in ²
wt	=	229	plf	429	pff
		29	pst	54	psf
V/S	=	1.22	in.		

8LDT12

Table of safe superimposed service load (psf) and cambers (in.)

No Topping

Strand	e, in.	1											Spa	n, ft			
Pattern	e _{c, In.}	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42
28-S	7.13 7.13	186 0.2 0.3	144 0.3 0.4	116 0.4 0.5	89 0.5 0.6	68 0.5 0.6	53 0.6 0.7	41 0.6 0.7	31 0.6 0.6		_						
48-S	5.13 5.13			195 0.6 0.8	153 0.7 0.9	120 0.8 1.1	95 1.0 1.2	77 1.1 1.3	62 1.2 1.3	50 1.3 1.4	41 1.3 1.3	33 1.3 1.2					
68-S	3.13 3.13					133 0.8 1.0	106 0.9 1.1	86 1.0 1.1	70 1.0 1.1	57 1.1 1.1	47 1.1 1.0	39 1.1 0.8	32 1.0 0.5	5 %			
68-D1	3.13 6.63											72 2.6 2.9	61 2.8 2.9	52 3.0 2.9	45 3.1 2.7	38 3.2 2.4	33 3.2 2.1

8LDT12+2

Table of safe superimposed service load (psf) and cambers (in.)

2" Normal Weight Topping

Strand	e _{e, in.}												Spar	ı, ft		
Pattern	e _{e, in.}	12	14	16	18	20	22	24	26	28	30	32	34	36	38	
28-S	7.13 7.13	207 0.2 0.2	157 0.3 0.3	0.4	91 0.5 0.4	66 0.5 0.4	47 0.6 0.3	33 0.6 0.2								
48-S	5.13 5.13		Control C	ONIE SIL	175 0.7 0.7	134 0.8 0.8	103 1.0 0.8	80 1.1 0.7	62 1.2 0.6	48 1.3 0.5	36 1.3 0.2					
68-S	3.13 3.13					162 0.8 0.7	126 0.9 0.7	99 1.0 0.6	79 1.0 0.5	62 1.1 0.3	47 1.1 0.1					
68-D1	3.13 6.63											72 2.6 1.3	59 2.8 1.0	46 3.0 0.6	33 3.1 0.0	

Strength based on strain compatibility; bottom tension limited to 12 /1; see pages 2-2-2-6 for explanation. Shaded values require release strengths higher than 3500 psi.

2-8

PCI Design Handbook/Fifth Edition

	_		-				_	_		_	_		_					_	_		_	_		
			cu. ft	sq. ft	NELS	0 600	0.713	0.713	0.753	900	0.713	0.727	0.713	0.727	0.727	0.775	0.713	0.741	0.773					
			Total	(pst)	ROP PA	1.85	2.14	2.56	3.93	00	2.21	3.37	9	2.36	2.98	2.10	2.03	3.36	3.89					
(2)		RS (E.	Strip	Bottom	EEN DE	10.44	10-#	#	8-#6	40.44	1 4	13-#4	10 #4	11-#4	17#4	2#-71	13.#4	16#	13-#5					
Panels	ams	JG BA	Middle Strip	Top	H BETW	11 #4	1	8-#2	10-#5 12-#5	1	12-#4	10-#5 12-#5	12 #4	13-#4	11-#2	14-07	13-#4	19#4	23-#4					
With Drop Panels ⁽²⁾	No Beams	REINFORCING BARS (E. W.)	Strip	Bottom	in. = TOTAL SLAB DEPTH BETWEEN DROP PANELS	10.44	13-#4	16-#4	13-#5	1	15#	19#4	13 #4	12	14-#5	# 5	14-#4	2#6	50-#2					
With		REIN	Column Strip	Top	AL SLA	14.44	11-#5	14-#5	18-#5	777 07	19#4	12-#6	15 H.A	13-#5	16#5	2#0	12-#5	12-#6	20-#2					
) }		(3)	Square	Size (in.)	. = TOT	-			21 21	5	7 1	19	\$	17	28	77	12	20	22					
				(bsd)	h = 8 in	100	200	300	500	5	200	400	5	200	300	9	100	300	400					
180				(#)		77.8	44.4	310.4	374.5	0	282.7	359.9	1 300	324.3	410.6	0.88.0	269.6	470.1	9.899					
		MOMENTS	-	(#-X)		_	_	000100	354.6			321.2		****	305.0	_		349.2	_					
nels		MON	-	(fl-k)		-	90.8	_	139.1	_		133.7			152.5	_		174.6						
With Drop Panels		-	Total	-		-			4.55			3.17	-	_	3.45	_	2.25							
DGE PANEL With D		W.)		it o	VELS	-	1	-	8-#e 13-#5			19 11 11 11 11 11 11 11 11 11 11 11 11 1				_	13#4	-	-					
)	ams	RS (E.	Middle Strip	Bottom	30P PAI	-	13-#1		9-#7	_		19#1 16		-	-	7#0	3#6	-	50-#2					
NEL	No Beams	NG BA	-	Top Int. Bot	EEN DF	-	12-#5 13		-		17-#2	11-#6 19	-	11#2		_	13-#5		-					
SQUARE EDGE PANEL	_	REINFORCING BARS (E. W.)			SLAB DEPTH BETWEEN DROP PANELS		9.#6		20-#5 16			19-#5 11		-	-	1#-01	21-#4 13	-						
E ED		REIN	Column Strip (1)	+ Bottom	B DEPT			8	7		+ m	2 5		·	70	2	6 -	. co	3					
QUAF				Ext.	AL SLA	-	===		12#1		# # # #	12#1			11.11	¥	13.#							
S		(5)	Square Column	χ.	. = TOTAL	A 702	0.00	0.727	0.740	-	0.714	0.630	2,700	0.631	0.721	0000	0.769	0.636	0.688					
			Square	Siza (in.)	h = 8 in.		2 7	10	2 2		7.7	2 2	2	2 5	72.5	2	2 4	22	20					
4,000 psi		- Open	Puro Dich	Depth Width (ii) (iii)		7.05	33	7.00	379		7.33	5 33 8 83		7.07			8.00	8.00						
0 Bar				Depth (ii)		0.50	200	5 00	9.00		3.5	6.50	503	9 9 9	650	900	5 00	8 00 8	8 00					
Gude 60 Bars		Factored	Fosed	(bsd)		200	300	300	38		30.00	(3) (2) (3) (2)	95	38	300	307	33	300	100					
5.00			•	13		100	10	ē1	គគ		H	ខាន		10	:35	3	7.5	7.53	24					

CONCRETE REINFORCING STEEL INSTITUTE

10-15

	U.	e Strip	Top	Short No		#4 7 #5 #4 7 #5 #4 7 #5 #4 8 #5	# # # # # # # # # # # # # # # # # # #	#4 #4 8 8 8 8 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	#4 9 #5 #4 10-#5	
S	Directic	Middle 9	Bottom	Long Sars	Total Slab Depth = 3	11211	1111	1111	111	
ÄE	Each [-	No. Ribs	otal Sig		~~~	8888	000	
R PA	g Bars-		Top	No	-	8.45 18.45 19.45 18.45 18.45	19-#5 20-#5 18-#6	21-85 22-85 22-86	22.22 28.45 23.45	
SQUARE INTERIOR PANELS	Reinforcing Bars—Each Direction	Column Strip	Bottom	Bars per Rib	Rib Depth = 8 in.	2-#4 2-#4 1-#4 and 1-#5 2-#5 2-#6	2-#4 2-#4 2-#5 1-#5 and 1-#6	2-#4 1-#4 and 1-#5 1-#5 and 1-#6 1-#5 and 1-#6	1-#4 and 1-#5 2-#5 1-#5 and 1-#6	
ARE				No. Ribs	2	NONNA	9999	9999	999	
són'	Courses	Interior Column	131	Stirmps	1 in.	333 355 544 244	38 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	38841 38841	3542	
	0	Interio		$c_1 = c_2 \\ (in.)$	Total Depth = 11	55555	2552	3335	55.5	
			ε	Steel (pst)	Total D	223 223 223 321 321	223 252 255 294	223 235 281 3.13	2.33 3.06 3.06	
			¥	(#-k)		237 237 347 446	233 373 439	282 7.18 5.33	56.53	
		Moments	. ≱	Bot. (ft-k)		135 182 251 315 417	227 315 393	215 280 378 414	343	
		×	¥	Edge (ft-k)		67 88 109 129 166	8585	1707	132	
			Top	No size		34.7 34.7 34.0	8 8 8 8 8 35 55 8 35 55	8 8 9 0 8 8 8 8 8	9-#5	
	100	Middle Strip		Short		22122	\$ 12.55	1125	# # # # # # #	
	Bars—Each Direction	Midd	Bottom	Long		11112	1115	1111	222	
1	-Each			No. Ribs		~~~~	~~~	തതതത	තගත	
	ig Bars-		Top	No size		18-75 18-75 21-75 19-76	19-15 22-15 26-15 26-15	22822 2385 355 55 55 55	22-#5 28-#5 24-#6	
PANELS	Reinforcing	Column Strip	Bottom	Bars per Rib		2-65 2-65 1-65 and 1-96 1-96 and 1-97 1-97 and 1-98	1.#4 and 1.#5 2.#5 2.#6 1.#6 and 1.#7	2-#5 1-#5 and 1-#6 1-#6 and 1-#7	1-#5 and 1-#6 2-#6 2-#7	
EDGE	1	100		Sign Se		വരവവവ	တဖဖဖ	0000	000	
ARE ED			op Edge	No size +	Slab Depth = 3 in.	18 35 0 18 35 0 18 35 0 18 35 0 18 35 0	19-45- 0 19-45- 2 19-45- 4	21-55-1 21-55-1 21-55-2 21-55-2	22-45-2 22-45-6 22-45-1	
SOUARE		Column	(2)	Stirrups	Total Slab D	3.5.1.1				
		Square Edge Column		1,		0.856	0.956 0.951 0.953	0 931 0 624 0 613	0.693	
	-112	rbs		(je) (je)	- 8 in.	Distriction	2021	23:23	228	
			Ē	Sec.	Rib Depth = 8 in	28286	3888	3824	300	
-		Pudured	Super-	(Jed)	Rib	RESEE	8888	3888	389	
			Similar.		Total Daysh = 11 m.		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 mm m 14 mm m 15 mm m 15 mm m	A STORY OF THE STORY OF T	

11-39

			Top	No size	in.	444444 8888 888 888 888 888 888 888 888	344444 344434	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7-85 7-85 7-85 8-85	8 8 8 9 2 2 2 2	0 25.0 10.25
	U.	Middle Strip	1	Short	Total Slab Depth = 3	222222	IIIII	22122	11168	芸芸芸芸	\$ £ £
s)irection	Midd	Bottom	Long Bars	ab Deg	213321	21222	211152	44448	2228	### ###
PANEL	Each (Ribs.	otal St	222222	тепене	ттттт	44444	2000	0.00
3 PAI	Bars -		Top	No size	-	######################################	13.55 13.55	55 55 55 55 55 55 55 55 55 55 55 55 55	18-#5 18-#5 18-#5 17-#6	20-85 22-85 19-86	22-45 24-45 22-46
INTERIOR	Reinforcing Bars—Each Direction	Column Strip	Bottom	Bars per Rib	Rib Depth = 8 in.	2-#1 2-#1 2-#4 2-#4 2-#4 1-#4 and 1-#5	2-#4 2-#4 2-#4 1-#4 and 1-#5 2-#5 2-#6	2-#4 2-#4 2-#4 1-#4 and 1-#5 1-#5 and 1-#6 1-#6 and 1-#7	2-#4 2-#5 2-#5 2-#7	1-#4 and 1-#5 2-#5 2-#6 2-#6	1-44 and 1-45 1-45 and 1-46 1-46 and 1-77
Æ			-	No. Ribs	S.	пппппп	миничи	विचचचचच	वचचचच	चिचच	ຄອດ
SQUARE	Source	Interior Column	8	S	1 in	3841	3 S S S S S S S S S S S S S S S S S S S	388	3541 3541	35541 3541 1111	3541
	5	Interior		C; = C; (in.)	Total Depth = 11	222222	222222	222222	25552	2555	5.5.5
				(lss)	Total D	203 203 203 203 203 203 203 203 203 203	2.06	3.25.02.02.03.03.03.03.03.03.03.03.03.03.03.03.03.	328 228 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	2.42 3.10	302
			₹.			승요용동호왕	8835888	151 188 225 288 364 364	282 282 336 435	242 321 398 472	336
		Moments	¥	(f-k)		852258	5: 100 127 179 229	292 292 362 362	127 180 247 310 412	180 246 339 426	249 379 437
		Z	¥	Edge (ft-k)		282288	8882588	\$358E8	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	855 857 871	125 164 201
		100	Top	No size		24444	**************************************	# # # # # # # # # # # # # # # # # # #	44448	చి చిన్న చే చే చే చే చే	3 5 5 T
	uc	Middle Sinp		Short		331128	111158	1112221	12222	1222	U 00 00
	Direction	Middl	Bottom	Bars		111118	当まままある	1125587	21533	差 其花品	444
	Each [Column Strip Middle	80 -	Ribs		nnnnnn	ттттт	200000	7777	2000	വവ
	Bars_		Top Interior No size	1	222222 2223222	555555 55555 5555 5655 5655 5655 5655	15-45 15-45 15-45 17-45 15-46	20 20 20 20 20 20 20 20 20 20 20 20 20 2	8228 8235 8435	22-#5 26-45 23-#6	
מואררים	Reinforcing		Bottom	ar Rib	2-14 2-14 2-14 2-14 1-1-13 and 1-15 1-25 and 1-16	2-61 2-61 1-64 and 1-65 2-65 2-65 2-66	2.44 2.45 2.45 2.45 2.47 2.48	1-31 and 1-65 1-85 and 1-96 1-86 and 1-37 2-37 1-36 and 1-99	1-#5 and 1-#6 1-#6 and 1-#7 1-#8 and 1-#9 1-#8 and 1-#9	1-55 and 1-26 1-56 and 1-27 1-57 and 1-38	
4	i	Cole	ī	S g		000000	оперен		77777	7777	ra ra ra
N. E.			Top	No size +	oth = 3 in.	22222	2000000	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	88888 555000 10000 10000 10000	88-55-0 8-55-1 8-5-1	22.55-5- 5-8-5-8
SQUARE EDGE PANELS		ohum:	Ŋ	Stirrups	ictal Stao Depth = 3		5841				
		Square Edge Coluffi		22	ñ	0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00	0.55 0.55 0.50 0.85 0.95 0.912	0.000	0.015 0.015 0.015 0.023	0000 0000 0000 0000	205 205
		Squa	9, 11, 111	3.	Bin.	nnanna	Section	120003	-iniciais	35.8.8	3/95]
1			=	(psd)	Rab Depth =	88888E	188888	SERRE	3::488	3885	193
-		Factorial	Super-		Rabi	- PEBRAR	193988	389988	34588	2566	933
		Medi	T. January		lota Kapita a dia	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	All the state of t	15 95 cm	All Control of the Co	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

CONCRETE REINFORCING STEEL INSTITUTE

11-19

B10 Superstructure

B1010 Floor Construction

Description: Table below lists costs (\$/S.F.) for a floor system using composite steel beams with welded shear studs, composite steel deck, and light weight concrete slab reinforced with W.W.F. Price includes sprayed fiber fireproofing on steel beams.

Design and Pricing Assumptions: Structural steel is A36, high strength boilted.

Composite steel deck varies from 22 gauge to 16 gauge, galvanized.

Shear Studs are 3/4".
W.W.F., 6 x 6 - W1.4 x W1.4 (10 x 10)
Concrete f'c = 3 KSI, lightweight.
Steel trowel finish and cure.
Fireproofing is sprayed fiber (non-asbestos).

Spandrels are assumed the same as interior beams and girders to allow for exterior wall loads and bracing or moment connections.

			COST PER S.F.			
System Components	QUANTITY	UNIT	MAT.	INST.	TOTAL	
SYSTEM B1010 256 2400 20X25 BAY, 40 PSF S. LOAD, 5-1/2" SLAB, 17-1/2" TOTAL THICKNESS Structural steel Welded shear connectors 3/4" diameter 4-7/8" long Metal decking, non-cellular composite, galv. 3" deep, 22 gauge Sheet metal edge closure form, 12", w/2 bends, 18 ga, galv Welded wire fabric rolls, 5 x 6 - W1.4 x W1.4 (10 x 10), 21 lb/csf Concrete ready mix, light weight, 3,000 PSI Place and vibrate concrete, elevated slab less than 6", pumped Finishing floor, monolithic steel trowel finish for finish floor Curing with sprayed membrane curing compound Shores, erect and strip vertical to 10' high Sprayed mineral fiber/cement for fireproof, 1" thick on beams	4,320 .163 1,050 .045 1,000 .333 .333 1,000 .010 .020 .483	Lb. Ea. S.F. L.F. S.F. C.F. S.F. C.S.F. Ea. S.F.	4.23 .09 1.76 .15 .22 2	1.47 .25 .75 .08 .29 .41 .70 .07 .33	5.70 .34 2.51 .23 .51 2 .41 .70 .13 .33	
TOTAL			8.73	4.73	13.46	

B101	0 256		Composi	te Beams, D	Deck & Slab)		
	BAY SIZE	SUPERIMPOSED	SLAB THICKNESS	TOTAL DEPTH	TOTAL LOAD	CC	OST PER S.F.	
	(FT.)	LOAD (P.S.F.)	(IN.)	(FTIN.)	(P.S.F.)	MAT.	INST.	TOTAL
2400	20x25	40	5-1/2	1 - 5-1/2	80	8.75	4.73	13.4
2500		75	5-1/2	1 - 9-1/2	115	9.10	4.73	13.8
2750	RB1010	125	5-1/2	1 - 9-1/2	167	11.05	5.55	16.6
2900		200	6-1/4	1 - 11-1/2	251	12.40	6	18.4
3000	25x25	40	5-1/2	1 - 9-1/2	82	8.65	4.49	13.1
3100	LUXEU	75	5-1/2	1 - 11-1/2	118	9.60	4.56	14.1
3200		125	5-1/2	2 - 2-1/2	169	10	4.94	14.9
3300		200	6-1/4	2 - 6-1/4	252	13.45	5.80	19.2
3400	25x30	40	5-1/2	1 - 11-1/2	. 83	8.85	4.47	13.3
3600	LONGO	75	5-1/2	1 - 11-1/2	. 119	9.50	4.52	14.0
3900		125	5-1/2	1 - 11-1/2	170	10.95	5.10	16.0
4000		200	6-1/4	2 - 6-1/4	252	13.50	5.80	19.3
4200	30x30	40	5-1/2	1 - 11-1/2	81	8.80	4.61	13.4
4400	30,00	75	5-1/2	2 - 2-1/2	116	9.50	4.83	14.3
4500		125	5-1/2	2 - 5-1/2	168	11.45	5.40	16.8
4700		200	6-1/4	2 - 9-1/4	252	13.65	6.25	19.9
4900	30x35	40	5-1/2	2 - 2-1/2	82	9.20	4.78	13.9
5100	30,00	75	5-1/2	2 - 5-1/2	117	10	4.88	14.8
5300		125	5-1/2	2 - 5-1/2	169	11.75	5.55	17.3
5500		200	6-1/4	2 - 9-1/4	254	13.75	6.30	20.0
5750	35x35	40	5-1/2	2 - 5-1/2	84	9.85	4.79	14.6
6000	55,105	75	5-1/2	2 - 5-1/2	121	11.20	5.15	16.3

	B10	Superstru	etu
	B10	10 Floor C	on
	B10	10 241	
3		BAY SIZE (FT.) BEAM X GIRD	1
	3100		
Ê	3300	20x25	T
2	3350		
Ĭ.	3400	1 =	
	3450	II	
	3500		
	3550	20x25	
	3600	,	
	3650	1	
	3700		
	3750 3800	05.00	_
16	3850	25x20	
	3900	4	
	4000	1	
ij	4100		
N.	4200	25x20	-
	4300	23,20	
	4400	4 -	
- 1	4500	,	l

81	0 5	upers	truct	ure
F 6 1 1				

nstruction

W	Shape	Beams	&	Girders
---	-------	-------	---	---------

	BAY SIZE (FT.)	SUPERIMPOSED	STEEL FRAMING	FIREPROOFING	TOTAL LOAD		OST PER S.F.	
	BEAM X GIRD	LOAD (P.S.F.)	DEPTH (IN.)	(S.F. PER S.F.)	(P.S.F.)	MAT.	INST.	TOTAL
3100		200	27	.855	275	11.35	3.63	14.9
3300	20x25	40	14	.608	50	4.20	1.84	6.1
3350		40	21	.751	90	5.85	2.50	8.
3400	1	75	24	.793	125	7.20	3	10.
3450		125	24	.846	175	8.60	3.60	12.
3500		200	24	.947	256	10.80	3.55	14.
3550	20x25	40	14	.72	50	4.84	2.13	6.
600	11	40	21	.802	90	5.85	2.53	8.
650	1 =	75	24	.924	125	7.50	3.17	10.
700	'	125	24	.964	175	9.05	3.83	12.
750		200	27	1.09	250	11.45	3.81	15.
800	25x20	40	12	.512	50	4.16	1.76	5.
850		40	16	.653	90	5.60	2.34	7.
900	1 —	75	18	.726	125	7.20	2.95	10.
000	,	125	21	.827	175	9	3.73	12.
100		200	24	.928	250	11	3.58	
200	25x20	40	12	.65	50	4.22	1.87	14.
300	23/20	40	18	.702	90	6.20	2.59	6.
100	4	75	21	.829	125	7.25	200000000000000000000000000000000000000	8.
500	1 -	125	24	5000	175	0.000	3.03	10.
500	· ·	200	24	.914	250	8.85	3.72	12.5
700	25x20	40	14	1.015	50	10.85	3.60	14.4
800	23,20	40	C100	.769	2006	4.47	2.03	6.5
00	, =	1770	16	.938	90	6.70	2.91	9.6
00	1 ==	75	18	.969	125	8.10	3.41	11.5
00		125	24	1.136	175	11.30	4.74	16.0
000	25,,25	200	24	1.239	250	14.60	4.77	19.3
00	25x25	40	18	.486	50	4.53	1.87	6.4
785		40	. 18	.592	96 .	6.75	2.71	9.4
00	1	75	. 21	.668	131	8.15	3.24	11.3
50	I——I	125	24	.738	191	10.75	4.29	15,0
00		200	30	.861	272	12.50	3.95	16.4
50	25x25	40	18	.597	50	4.39 '	1.90	6.2
00	. 🗀	40	18	.704	90	7	2.86	9.8
50	1	75	21	.777	125	8	3.25	11.2
00	II	125	24	.865	175	10.20	4.18	14.3
50		200	27	.96	250	12.35	3.97	16.3
00	25x25	- 40	18	.71	50	4.84	2.13	6.9
50	. =	40	21	.767	90	7	2.91	9.9
00	1 - 1	75	24	.887	125	8.45	3.48	11.9
0		125	24	.972	175	10.65	4.40	15.0
00		200	30	1.10	250	13	4.24	17.2
50	25x30	40	24	.547	50	5.75	2.33	8.00
00	1	40	24	.629	103	8.15	3.21	11.36
0	1 — 1	75	30	.726	138	9.75	3.84	13.59
10	'	125	30	.751	206	11.50	4.58	16.08
0		200	33	.868	281	13.85	4.32	18.17
10	25x30	40	21	.568	50	5.15	2.15	7.30
0	11	40	21	.694	90	7	2.86	9.86
0	1 - 1	75	24	776	125	9	3.59	12.59
0	,	125	30	.904	175	10.80	000000	
ŏ		200	33	* 1 10 10 10 10 10 10 10 10 10 10 10 10 1	263	500000	4.41	15.21
_	and the second second	200	33	1.008	203	12.95	4.17	17.12

82

Important: See the Reference Section for critical supporting data - Reference Numbers and City Cost Indexes

General: Combination of thin concrete slab and monolithic ribs at uniform slab and monointine has a uniform spacing to reduce dead weight and increase rigidity. The ribs (or joists) are arranged parallel in one direction between supports.

Square end joists simplify forming.
Tapered ends can increase span or provide for heavy load.

Costs for multiple span joists are provided in this section. Single span joist costs are not provided here.

В

56

66

Design and Pricing Assumptions: Concrete f'c = 4 KSI, normal weight placed by concrete pump. Reinforcement, fy = 60 KSI. Forms, four use. 4-1/2" slab. 30" pans, sq. ends (except for shear req.).
6" rib thickness.
Distribution ribs as required.
Finish, steel trowel.

Curing, spray on membrane. Based on 4 bay x 4 bay structure.

			C	COST PER S.F.	
System Components	QUANTITY	UNIT	MAT.	INST.	TOTAL
SYSTEM B1010 226 2000					
15'X15' BAY, 40 PSF, S. LOAD 12" MIN. COLUMN					
Forms in place, floor slab with 30" metal pans, 4 use	.905	S.F.	2.70	4.51	7.21
Forms in place, exterior spandrel, 12" wide, 4 uses	.170	SFCA	.21	1.37	1.58
Forms in place, interior beam. 12" wide, 4 uses	.095	SFCA	.13	.63	.76
Edge forms, 7"-12" high on elevated slab, 4 uses	.010	L.F.	.01	.05	.06
Reinforcing in place, elevated slabs #4 to #7	.628	Lb.	.29	.22	.51
Concrete ready mix, regular weight, 4000 psi	.555	· C.F.	1.90		1.90
Place and vibrate concrete, elevated slab, 6" to 10" pump	.555	C.F.		.57	.57
Finish floor, monolithic steel trowel finish for finish floor	1.000	S.F.	1 1	.70	70
Cure with sprayed membrane curing compound	.010	S.F.	.06	.07	, .13
Oute with sprayed membrane curing compound					
TOTA	L		5.30	8.12	13.42

B10	10 226		Cast in Pla	ace Multisp	an Joist Sla	ıb		
-	BAY SIZE	SUPERIMPOSED	MINIMUM	RIB	TOTAL	C	OST PER S.F.	
	(FT.)	LOAD (P.S.F.)	COL. SIZE (IN.)	DEPTH (IN.)	LOAD (P.S.F.)	MAT.	IŃST.	TOTAL
2000	15 x 15	40	12	8	. 115	5.30	8.15	13.4
2100		75	12	8	150	5.30	8.15	13.4
2200	RB1010 -010	125	12	8	200	5.45	8.25	13.7
2300		200	14	8	275	5.60	8.55	14.1
2600	15 x 20	40	12	8	115	5.40	8.15	13.5
2800		75	12	8	150	5.50	8.30	13.8
3000	RB1010 -100	125	14	8	200	5.70	8.75	14.4
3300		200	16	8	275	5.95	8.85	14.8
3600	20 x 20	40	12	10	120	5.50	8	13.5
3900		75	14	10	155	5.70	8.45	14.1
4000		125	16	10	205	5.80	8.60	14.4
4100		200	18	10	280	6.05	8.95	15
4300	20 x 25	40	12	10	120	5.50	8.05	13.5
4400		75	14	10	155	5.75	8.50	14.2
4500		125	16	10	205	6.05	8.95	15
4600		200	18	12	280	6.35	9.40	15.7
4700	25 x 25	40	12	12	125	5.55	7.85	13.4
4800	000000000000000000000000000000000000000	75	16	12	160	5.85	8.30	14.1
4900		125	18	12	210	6.45	9.15	15.6
5000		200	20	14	291	6.85	9.40	16.2

Important: See the Reference Section for critical supporting data - Reference Numbers and City Cost Indexes

73

B10	Superstru	cture						
B10	10 Floor	Construction						
B10	10 229	3	Precast	Plank with	No Topping	J		
	SPAN	SUPERIMPOSED	TOTAL	DEAD	TOTAL	C	OST PER S.F	
	(FT.)	LOAD (P.S.F.)	DEPTH (IN.)	LOAD (P.S.F.)	LOAD (P.S.F.)	MAT.	INST.	TOTAL
1700	45	40	12	70	110	6.75	1.56	8.3
B10	10 230	P	recast Plan	k with 2" C	oncrete Top	ping		
1000	SPAN	SUPERIMPOSED	TOTAL	DEAD	TOTAL	C	OST PER S.F.	
	(FT.)	LOAD (P.S.F.)	DEPTH (IN.)	LOAD (P.S.F.)	LOAD (P.S.F.)	MAT.	INST.	TOTAL
2000	10	40	6	75	115	5.30	4.13	9.4
2100		75	8	75	150	6.30	3.76	10.0
2200		100	8	75	175	6.30	3.76	10.0
2500	15	. 40	8	75	115	6.30	3.76	10.0
2600		. 5 75	8	75	150	6.30	3.76	10.0
2700		100	8	75	175	6.30	3.76	10.0
2800	20	40	8	75	115	6.30	3.76	10.00
2900		75	8	75	150	6.30	3.76	10.06
3000		100	8	75	175	6.30	3.76	10.06
3100	25	40	8	75	115	6.30	3.76	10.06
3200		75	8	75	150	. 6.30	3.76	10.06
3300		100	10	80	180	6.85	3.48	10.33
3400	30	40	10	80	120	6.85	3.48	10.33
3500		75	10	80	155	6.85	3.48	10.33
3600		100	10	80	180	6.85	3.48	10.33
3700	35	40	12	95	135	6.75	3.26	10.01
3800		75	12	95	170	6.75	3.26	10.01
3900		100	14	95	195	7.60	3.09	10.69
4000	40	40	12	95	135	6.75	3.26	10.01
4500		75	- 14	95	170	7.60	3.09	10.69
5000	45	40	14	95	135	7.60	3.09	10.69

B1010	Floor	Construction	E					
B1010	234	Pre	cast Doubl	e "T" Beam	s with No T	opping		
	SPAN	SUPERIMPOSED	DBL. "T" SIZE	CONCRETE "T"	TOTAL LOAD	C	OST PER S.F.	
	(FT.)	LOAD (P.S.F.)	D (IN.) W (FT.)	TYPE	(P.S.F.)	MAT.	INST.	TOTAL
4300	50	30	20x8	Lt. Wt.	66	6.15	1.21	7.3
4400		40	20x8	Lt. Wt.	76	6.65	1.10	7.7
4500		50	20x8	Lt. Wt.	86	6.70	1.32	8.0
4600		75	20x8	Lt. Wt.	111	6.75	1.52	8.2
4700		100	20x8	Lt. Wt.	136	6.85	1.84	8.6
4800	60	30	24x8	Lt. Wt.	70	6.65	1.19	7.
4900		40	32x10	Lt. Wt.	88	7.25	.82	8.
5000		50	32x10	Lt. Wt.	98	7.30	1.01	8.3
5200		75	32x10	Lt. Wt.	123	7.35	1.16	8.5
5400		100	32x10	Lt. Wt.	148	7.40	1.42	8.8
5600	70	30	32x10	Lt. Wt.	78 .	7.25	.82	8.0
5750		40	32x10	Lt. Wt.	88	7.30	1.01	8.3
5900		50	32x10	Lt. Wt.	98	7.35	1.16	8.5
6000		75	32x10	. Lt. Wt.	123	7.40	1.42	8.8
6100	2	100	32x10	Lt. Wt.	148	7.55	1.93	9.4
6200	80	30	32x10	Lt. Wt.	78	7.35	1.16	8.5
6300		40	. 32x10	Lt. Wt.	88	7.40	1.42	8.8
5400		50	32x10	Lt. Wt.	98	7.50	1.68	9.1
31010	235	Pre	cast Double	e "T" Beam	s With 2" To	pping		
	SPAN	SUPERIMPOSED	DBL. "T" SIZE	CONCRETE "T"	TOTAL LOAD	COST PER S.		
	(FT.)	LOAD (P.S.F.)	D (IN.) W (FT.)	TYPE	(P.S.F.)	MAT.	INST.	TOTAL
5700	30	30	18x8	Reg. Wt.	117	7.25	2.54	9.7
750		40	18x8	Reg. Wt.	127	7.25	2.54	9.7
800		50	18x8	Reg. Wt.	137	7.30	2.77	10.0
900		75	18x8	Reg. Wt.	162	7.30	2.77	10.0
7000		100	18x8	Reg. Wt.	187	7.35	2.87	10.2
100	40	30	18x8	Reg. Wt.	120	5.75	2.45	8.2
200		40	20x8	Reg. Wt.	130	5.80	2.33	8.1
300		50	20x8	Reg. Wt.	140	5.90	2.56	8.4
400		75	20x8	Reg. Wt.	165	5.90	2.66	8.5
500		100	20x8	Reg. Wt.	190	6	2.99	8.9
550	50	30	24x8	Reg. Wt.	120	6.20	2.45	8.6
600		40	24x8	Reg. Wt.	130	6.25	2.53	8.7
750		50	24x8	Reg. Wt.	140	6.25	2.54	8.7
800		75	24x8	Reg. Wt.	165	6.35	2.87	9.2
900		100	32x10	Reg. Wt.	189	7.10	2.34	9.4
000	60	30	32x10	Reg. Wt.	118	7	1.98	8.9
100	00	40	32x10	Reg. Wt.	129	7.05	2.15	9.2
200		50	32x10	Reg. Wt.	139	7.10	2.34	9.4
300		75	32x10	Reg. Wt.	164	7.15	2.49	9.6
350		100	32x10	Reg. Wt.	189	7.20	2.75	9.9
100	70	30	32x10	Reg. Wt.	119	7.05	2.24	9.2
150	70	40	32x10		129	7.05	2.49	9.6
100		50	32x10 32x10	Reg. Wt.	139	7.15	2.49	9.9
50		1		Reg. Wt.	164	7.40	3.26	
00	00	75	32x10	Reg. Wt.				10.6
	80	30	32x10	Reg. Wt.	119	7.40	3.25	10.6
00	50	30	20x8	Lt. Wt.	105	7.10	2.54	9.64
50		40	24x8	Lt. Wt.	121	7.15	2.67	9.82
00		50	24x8	Lt. Wt.	131	7.20	2.87	10.07
50		75	24x8	Lt. Wt.	156	7.20	2.87	10.07
00		100	24x8	Lt. Wt.	181	7.30	3.19	10.4

B1010 Floor Construction

General: Flat Slab: Solid uniform depth concrete two-way slabs with drop panels at columns and no column capitals.

at columns and no column capitals.

Design and Pricing Assumptions:
Concrete f'c = 3 KSI, placed by
concrete pump.
Reinforcement, fy = 60 KSI.
Forms, four use.
Finish, steel trowel.
Curing, spray on membrane.
Based on 4 bay x 4 bay structure.

Sustan Commonants			COST PER S.F.			
System Components	QUANTITY	UNIT	MAT.	INST.	TOTAL	
OVETTH 01010 000 1700	11					
SYSTEM B1010 222 1700			1 1			
15'X15' BAY 40 PSF S. LOAD, 12" MIN. COL. 6" SLAB, 1-1/2" DROP, 117 PSF						
Forms in place, flat slab with drop panels, to 15' high, 4 uses	993	S.F.	1.58	4.55	6.13	
Forms in place, exterior spandrel, 12" wide, 4 uses	.034	SFCA	.04	.27	.31	
Reinforcing in place, elevated slabs #4 to #7	1.588	Lb.	.73	.56	1.29	
Concrete ready mix, regular weight, 3000 psi	.513	C.F.	1.69		1.69	
Place and vibrate concreté, elevated slab, 6" to 10" pump	.513	C.F.		.53	.53	
Finish floor, monolithic steel trowel finish for finish floor	1.000	S.F.	1 1	.70	.70	
Cure with sprayed membrane curing compound	.010	C.S.F.	.06	.07	.13	
TOTA	-		4.10	6.68	10.78	

B1010 222 Cast in Place Flat Slab with Drop Panels								
	BAY SIZE	SUPERIMPOSED	MINIMUM	SLAB & DROP	TOTAL	C	OST PER S.F.	
	(FT.)	LOAD (P.S.F.)	COL. SIZE (IN.)	(IN.)	LOAD (P.S.F.)	MAT.	INST.	TOTAL
1700	15 x 15	40	12	6 - 1-1/2	117	4.10	6.65	10.7
1720	RB1010	75	12	6 - 2-1/2	153	4.19	6.75	10.9
1760	-010	125	14	6 - 3-1/2	205	4.38	6.90	11.2
1780		200	16	6 - 4-1/2	281	4.61	7.05	11.6
1840	15 x 20	40	12	6-1/2 - 2	124	4.37	6.80	11.1
1860	RB1010	75	14	6-1/2 - 4	162	4.56	6.95	11.5
1880	-100	125	16	6-1/2 - 5	213	4.84	7.10	11.9
1900		200	18	6-1/2 - 6	293	4.97	7.20	12.1
1960	20 x 20	40	12	7-3	132	4.59	6.90	11.4
1980		75	16	7 - 4	168	4.86	7.05	11.9
2000		125	18	7-6	221	5.40	7.30	12.7
2100		200	20	8 - 6-1/2	309	5.50	7.40	12.90
2300	20 x 25	40	12	8-5	147	5.10	7.15	12.25
2400		75	18	8 - 6-1/2	184	5.50	7.45	12.9
2600		125	20	8-8	236	6	7.75	13.7
2800		200	22	8-1/2 - 8-1/2	323	6.20	7.90	14.1
3200	25 x 25	40	12	8-1/2 - 5-1/2	154	5.35	7.25	12.6
3400		75	18	8-1/2 - 7	191	5.65	7.50	13.1
4000		125	20	8-1/2 - 8-1/2	243	6.05	7.80	13.8
4400		200	24	9 - 8-1/2	329	6.35	7.95	14.30
5000	25 x 30	40	14	9-1/2 - 7	168	5.80	7.50	13.30
5200		75	18	9-1/2 - 7	203	6.20	7.80	14
5600		125	22	9-1/2 - 8	256	6.50	8	14.50
5800		200	24	10 - 10	342	6.90	8.25	15.15
6400	30 x 30	40	14	10-1/2 - 7-1/2	182	6.30	7.75	14.05

B10 Superstructure

B1010 Floor Construction

70

General: Waffle slabs are basically flat slabs with hollowed out domes on bottom side to reduce weight. Solid concrete heads at columns function as drops without increasing depth. The concrete ribs function as two-way right angle joist. Joists are formed with standard sized domes. Thin slabs cover domes and are usually reinforced with welded wire fabric. Ribs have bottom steel and may have stirrups for shear.

Design and Pricing Assumptions:
Concrete fc = 4 KSI, normal weight
placed by concrete pump.
Reinforcement, fy = 60 KSI.
Forms, four use.
4-1/2" slab.
30" x 30" voids. 6" wide ribs. (ribs @ 36" O.C.). Rib depth filler beams as required. Solid concrete heads at columns. Finish, steel trowel.
Curing, spray on membrane.
Based on 4 bay x 4 bay structure.

			COST PER S.F.		
System Components	QUANTITY	UNIT	MAT.	INST.	TOTAL
SYSTEM B1010 227 3900 20X20' BAY, 40 PSF S. LOAD, 12" MIN. COLUMN Formwork, floor slab with 30" fiberglass domes, 4 uses Edge forms, 7"-12" high on elevated slab, 4 uses Forms in place, bulkhead for slab with keyway, 1 use, 3 piece Reinforcing in place, elevated slabs #4 to #7 Welded wire fabric rolls, 6 x 6 - W4 x W4 (4 x 4) 58 lb./c.s.f Concrete ready mix, regular weight, 4000 psi Place and vibrate concrete, elevated slab, over 10", pump Finish floor, monothitic steel trowel finish for finish floor Cure with sprayed membrane curing compound	1.000 .052 .010 1.580 1.000 .690 .690 1.000	S.F. SFCA L.F. Lb. S.F. C.F. S.F. C.F. S.F.	4.94 .07 .02 .73 .48 2.36	5.95 .26 .05 .55 .37 .73 .70 .07	10.8 .3 .4 1.2 2.3

R10	10 227	\	Cast i	n Place Wa	iffle Slab			
D 1 4		AUDEDIMOCED	MINIMUM	RIB	TOTAL	COST PER S.F.		
	BAY SIZE (FT.)	SUPERIMPOSED LOAD (P.S.F.)	COL. SIZE (IN.)	DEPTH (IN.)	LOAD (P.S.F.)	MAT.	INST.	TOTAL
	, ,	40	12 ·	8	144	8.65	8.70	17.3
3900	20 x 20	75	12	8	179	8.75	8.80	17.5
4000	RB1010	15.53	16	8	229	8.90	8.90	17.8
4100	-010	125	18	8	304	9.30	9.20	18.5
4200		200	12	8	146	8.80	8.75	17.5
4400	20 x 25	40		8	181	8.95	8.90	17.8
4500	RB1010	75	14	8	231	9.10	9	18.1
4600	-100	125	16	8	306	9.45	9.25	18.7
4700		200	18	10	150	8.95	8.85	17.8
4900	25 x 25	40	12	10	185	9.20	9	18.2
5000		75	16	10	235	9.40	9.15	18.5
5300		125	18	10	310	9.60	9.30	18.9
5500		200	20	10	154	9.10	8.90	18
5700	25 x 30	40	14	10	189	9.30	9.05	18.3
5800		75	16	10	239	9.50	9.20	18.7
5900		125	18	500	329	10.25	9.55	19.8
6000		200	20	12	169	9.55	9.05	18.6
6400	30 x 30	40	14	12	204	9.75	9.20	18.9
6500		75	18	12	254	9.85	9.30	19.1
6600		125	20	12	329	10.60	9.85	20.4
6700		200	24	12	329	10.00	5.00	201

Important: See the Reference Section for critical supporting data - Reference Numbers and City Cost Indexes

B10 Superstructure

B1010 Floor Construction

General: Flat Plates: Solid uniform depth concrete two-way slab without drops or interior beams. Primary design limit is shear at columns.

shear at columns.

Design and Pricing Assumptions:
Concrete fc to 4 KSI, placed by
concrete pump.
Reinforcement, fy = 60 KSI.
Forms, four use.
Finish, steel trowel.
Curing, spray on membrane.
Based on 4 bay x 4 bay structure.

				COST PER S.F.		
System Components		QUANTITY	UNIT	MAT.	INST.	TOTAL
SYSTEM B1010 223 2000	.	*				
15'X15' BAY 40 PSF S. LOAD, 12" MIN. COL.	1					
Forms in place, flat plate to 15' high, 4 uses	- 1	.992	S.F.	1.42	4.41	5.8
Edge forms to 6" high on elevated slab, 4 uses	- 1	.065	L.F.	.01	.21	.23
Reinforcing in place, elevated slabs #4 to #7	- 1	1.706	Lb.	.78	.60	1.3
Concrete ready mix, regular weight, 3000 psi	1	.459	C.F.	1.51	225	1.5
Place and vibrate concrete, elevated slab less than 6", pump	- 1	.459	C.F.	10000	.57	.57
Finish floor, monolithic steel trowel finish for finish floor	- 1	1.000	S.F.		.70	.70
Cure with sprayed membrane curing compound	- 1	.010	C.S.F.	.06	.07	.13
	TOTAL			3.78	6.56	10.34

B1010	223		Casi	in Place Flo	ıt Plate							
	BAY SIZE	SUPERIMPOSED	MINIMUM	SLAB	TOTAL	C	OST PER S.F.					
	(FT.)	LOAD (P.S.F.)	COL. SIZE (IN.)	THICKNESS (IN.)	LOAD (P.S.F.)	MAT.	INST.	TOTAL				
2000	15 x 15	40	12	5-1/2	109	3.78	6.60	10.3				
2200	RB1010	75	14	5-1/2	144	3.81	6.60	10.4				
2400	-010	125	20	5-1/2	194	3.95	6.65	10.6				
2600		175	22	5-1/2	244	4.04	6.70	10.7				
3000	15 x 20	40	14	7	127	4.35	6.65	11				
3400	RB1010	75	16	7-1/2	169	4.62	6.80	11.4				
3600	-100	125	22	8-1/2	231	5.05	6.95	12				
3800		175	24	8-1/2	281	5.10	6.95	12.0				
4200	20 x 20	40	16	7	127	4.36	6.65	11.0				
4400	354901783	75	20	7-1/2	175	4.67	6.80	11.4				
4600		125	24	8-1/2	231	5.10	6.95	12.0				
5000		175	24	8-1/2	281	5.10	7	12.1				
5600	20 x 25	40	18	8-1/2	146	5.05	6.95	12				
6000		75	20	9	188	5.20	7.05	12.2				
6400		125	26	9-1/2	244	5.60	7.25	12.8				
6600		175	30	10	300	5.85	7.35	13.2				
7000	25 x 25	40	20	9	152	5.20	7.05	12.2				
7400	2007/07/07/07	75	24	9-1/2	194	5.50	7.20	12.7				
7600 8000		125	30	10	250	5.85	7.35	13.2				