The School District of Philadelphia Administration Headquarters

Mechanical Systems Analysis

Jayme Antolik The Pennsylvania State University Department of Architectural Engineering Senior Thesis 2006 Mechanical Option Advisor: Jae-Weon Jeong

Table	of	Contents
	•••	0011101110

Abstra	ct	0
List of	Tables, Figures, and Charts	1
Executive Summary		3
1.0	Building Overview	4
1.1	Site, Architecture, and Construction	4
1.2	Engineering Overview	7
1.2.1	Electrical Engineering	7
1.2.2	Lighting	8
1.2.3	Plumbing	8
1.2.4	Fire Protection	8
1.2.5	Structural Engineering	9
1.2.6	Transportation	10
1.2.7	Security	10
1.2.8	Lightning Protection	10
1.3	Existing Mechanical System	11
1.3.1	Air Handling Unit Layout	11
1.3.2	Cooling Process	13
1.3.3	Heating Process	14
1.3.3	Ventilation Analysis: ASHRAE Standard 62.1 Addendum N	15
1.3.4	LEED Assessment	16
1.3.5	Building Envelope Compliance: ASHRAE Standard 90	16
1.3.6	Lost Rentable Space	17
1.3.7	System First Cost	18
1.3.8	Energy Utilization	19
1.3.9	Operating Cost	20
1.3.10	Emissions	21

i

Senior Thesis

2.0	Depth Work - Alternative Mechanical Designs	
2.1	Objectives	22
2.2	Overview of Systems	22
2.2.1	Airside	23
2.2.2	Water Side	29
2.3	Equipment	31
2.3.1	Self Contained Packaged VAV Air Handling Unit	31
2.3.2	DOAS Air Handling Unit	32
2.3.3	Enthalpy Wheel	33
2.3.4	High Induction Diffuser	34
2.3.5	Radiant Panels and Baseboard Heating	34
2.3.6	Chillers and Boilers	35
2.3.7	Pumps	35
2.4	Procedure and Calculations for Alternative Designs	36
2.4.1	New Space Designations	36
2.4.2	Space Loads	38
2.4.3	Air Properties for Designs	39
2.4.4	CAV System	39
2.4.5	VAV with DX coils and electric heating coils — System 1	40
2.4.6	VAV with chilled water and hot water coils — System 2	42
2.4.7	DOAS/VAV — System 3 and System 4	43
2.4.8	DOAS/Radiant with chilled water and hot water coils — System 5	48
2.5	Results and Recommendations	50
2.5.1	Floor 4 Results	50
2.5.2	Energy Usage and Cost	52
2.5.3	Final Cost	54
2.5.4	Emissions	55
2.5.5	Lost Rentable Space	56
2.5.6	Integration	56
2.5.7	Recommendation	57

3.0	B.0 Breadth Work – Integration of Structural System and Constructability				
3.1	Overview	58			
3.2	Structural Analysis	59			
3.2.1	SAP Results	61			
3.2.2	RAM Results	61			
3.3	Constructability	64			
3.3.1	Sequence Schedule	64			
3.3.2	Site Analysis	65			
Refere	nces	66			
	vledgements	67			
Appen	dices	68			

The School District of Philadelphia **Administration Headquarters**

Shell and Core Renovations

440 North Broad Street, Philadelphia, PA

Electrical System

- 13.200 Volt service
- Existing 1500 KVA substation Existing emergency service is a
- 150 kW diesel generator
- Two new 3000 KVA 480/277 volt substations

Structural System

- Original structure is reinforced concrete with brick masonry exterior
- North and South additions: steel frame with concrete slab on metal deck
- Modifications accommodated the new atrium, shafts, stairs and elevators

Mechanical System

- Existing: two 15-ton and one 10-ton packaged rooftop unit, electrical cabinet heaters, unit heaters, and strip heaters provide local heat
- New AC Units (with electric heating coil):
- Seven 80-ton units, five 90-ton units, five 100-ton units
- New exhaust for toilet rooms, elevator machine rooms, and electrical closets
- Four exhaust fans for the atrium provide 20,000cfm each for smoke purge

Jayme Antolik Mechanical Option http://www.arche.psu.edu/thesis/eportfolio/current/portfolios/jla250/

General Building Data

- Size: Gross Measured Area 848,000SF Building Footprint Area – 161,000SF
- 8 Total Levels, 6 Stories Above Grade
- Dates of Construction: December 2003 July 2005
- Cost of Construction: \$25M

Project Team

Owner:	Archon Group
General Contractor/CM:	Turner Construction Co.
Architect:	Hooper Shiles Architects
MEP Engineers:	CannonDesign
Site/Civil Engineers:	Gladnick Wright Salameda
Structural Engineers:	Thorton Tomasetti Group

Architecture

- Originally built in 1948 as a printing facility
- 2 major additions on the north (1960s) and on the south (1980s)
- A three story atrium with skylights is a new architectural highlight
- Interior construction: new toilet rooms, elevator shafts, and lobbies
- Exterior wall refurbishment: insulated glass windows, curtain wall systems, and re-glazing - Roof: Insulated 3-ply modified bitumen system,
- modified for new roof penetrations

List of Tables, Figures, and Charts

1.0 Building Overview

1.1 Site, Architecture, and Construction

- Figure 1.1A Map of 440 North Broad Street, Philadelphia, PA.
- Figure 1.1B. PSDAH New Atrium Space.
- Figure 1.1C PSDAH Footprint.
- Figure 1.1D. Broad Street Entrance.

1.2 Engineering Overview

Table 1.2AExisting and New Elevators.

1.3 Existing Mechanical System

Figure 1.3A.	Floor 1	Existing	AHU	Lavout
rigare riera	11001 1	Extisting	/	Layour

- Figure 1.3B Floor 2 and Floor 3 Existing AHU Layout.
- Figure 1.3C. Floor 4 and Floor 5 Existing AHU Layout.
- Figure 1.3D. AHU Air Filter.
- Table 1.3A. Ventilation Air Comparison.
- Table 1.3B. Existing System First Cost.
- Table 1.3C.Energy Consumption by Existing System.
- Table 1.3D.Existing Mechanical System Operating Cost.
- Table 1.3E.Emissions due to the Existing Mechanical System.

2.0 Depth Work — Alternative Mechanical Designs

2.2 Overview of Systems

- Figure 2.2A. Plan of Airside VAV System.
- Figure 2.2B. DOAS/VAV Airside Riser Diagram.
- Table 2.2A. DOAS Analysis Comparison for Space FL-1 NE.

2.3 Equipment

- Figure 2.3A. McQuay Packaged SWP Air Handling Unit in FL-3 S Mechanical Room.
- Figure 2.3B. SEMCO Packaged Energy Recovery System, EPC-24/EP-43
- Figure 2.3C. SEMCO Model TE3-24-3Å/TE3-43-3Å.
- Figure 2.3D. Trane's High Induction Diffuser Performance.
- Figure 2.3E. Smooth Face Linear Extrusion Panel by Sterling.
- Table 2.3B. DOAS AHU Schedule.

2.4 Procedure and Calculations for Alternative Designs

- Figure 2.4A. New Service Designation for AHUs.
- Figure 2.4B. DOAS Air Handling Unit State Points.

Senior Thesis

- Figure 2.4C. Enthalpy Wheel Effectiveness Summer.
- Figure 2.4D. Enthalpy Wheel Effectiveness Winter.
- Table 2.4A. Space Heating & Cooling Loads with VAV as an Airside System [Btu/h].
- Table 2.4B.
 Space Heating & Cooling Loads w Radiant Panels as Parallel System.
- Table 2.4C. Air Properties for Design VAV Conditions.
- Table 2.4D. Peak Cooling Design Floor 4 CAV.
- Table 2.4E. Summer DOAS Outdoor, Supply, and Room Air Conditions.
- Table 2.4F.
 Winter DOAS Outdoor, Supply, and Room Air Conditions.
- Table 2.4G.Supply Air Reduction for Parallel VAV System.

2.5 Results and Recommendations

- Chart 2.5A. Total Energy Savings Using an Electric Centrifugal Chiller—Floor 4.
- Chart 2.5B. Total Source Energy Consumption by System.
- Chart 2.5C. Mechanical System First Cost/Yearly Operating Cost.
- Table 2.5A.
 Yearly Operating Cost Based on Energy Consumption.
- Table 2.5B.
 First Cost of Base and Alternative Mechanical Systems.
- Table 2.5C. Generation Fuel Mix.
- Table 2.5D. System Emissions due to Electricity Consumption.
- Table 2.5E. Cost Summary.

3.0 Breadth Work — Integration of Structural System and Constructability

3.2 Structural Analysis

- Figure 3.2A. Column Section with New Floor.
- Figure 3.2B. New Mechanical Floor Above Roof.
- Figure 3.2C. Loads on Beams.
- Figure 3.2D. Top Slab without Deflection.
- Figure 3.2E. Top Slab with Deflection.
- Figure 3.2F. First Floor Columns.
- Figure 3.2G. New Floor Columns.
- Figure 3.2H. New Floor Beams.
- Figure 3.21. Frame Plan.

3.3 Constructability

- Figure 3.3A. Sequence Numbering.
- Figure 3.3B. Sequences Started and Finished.
- Figure 3.3C. VAV Critical Activity.
- Figure 3.3D. Critical Activity.
- Figure 3.3E. Site Analysis.

Jayme Antolik

Executive Summary

The School District of Philadelphia Administration Headquarters (SDPAH) is an 848,000 square foot (SF) existing building located in downtown Philadelphia. The existing mechanical system is a variable air volume system with parallel fan powered boxes. It utilizes 17 self contained packaged direct expansion (DX) air handling units (each with a waterside economizer) located within the core of the building served by condenser water from a 1500 ton cooling tower located on the fifth floor roof. Each floor has a cooling load of about 300 tons and a heating load of 300 MBH. Due to the nature of the internal loads, the SDPAH requires cooling year round. The proposed idea is to recommend an alternative mechanical system that requires less energy consumption and less first cost compared to the existing system. The primary space analyzed was the office space (425,000SF).

Trace, a building system simulation program provided by Trane, was used to investigate the energy usage of the alternative designs. Three airside systems all with waterside economizers were analyzed within the office space: 1. The current VAV system, 2. A dedicated outdoor air system (DOAS) with VAV as a parallel system, and 3. A DOAS with radiant panels and baseboard heating as the parallel systems. The waterside part of the mechanical system compared the existing DX units to a central water plant with an electric chiller and a gas-fired boiler. The results are summarized in the following table.

	VAV		DOAS/VAV		DOAS/Radiant
	DX-Electric	CHW-HW	DX-Electric	CHW-HW	CHW-HW
Mechanical System Cost	\$3,530,000	\$4,362,000	\$3,565,000	\$4,370,000	\$4,220,000
Yearly Energy Consumption	\$1,849,812	\$1,641,585	\$1,963,834	\$1,676,231	\$1,329,330

These results show that in general a central water plant is more costly than packaged units using refrigerant as the primary coolant. Due to the nature of the DOAS/Radiant system, the required equipment size is smaller than that of the other options allowing for smaller first cost (with respect to other central water plant designs) and a lesser cost due to energy use. Because of this energy savings, it is recommended that when an owner wants a central water plant he or she uses DOAS/Radiant as the airside system.

Jayme /	Antolik
---------	---------

1.0 Building Overview

1.1 Site, Architecture, and Construction

The School District of Philadelphia (SDP) originally had employees in four different office locations. The administration had hopes in finding an existing building large enough to join together the employees scattered throughout the city. One of the main objectives was to move everyone into one building where it was easily accessed by both the employees and the public. This was accomplished by choosing a site which is very close to City Hall in downtown Philadelphia. The School District of Philadelphia Administration Headquarters (SDPAH) is now located at 440 North Broad Street.

Figure 1.1A Map of 440 North Broad Street, Philadelphia, PA.

The building at 440 North Broad was originally built as a printing facility in 1948. Since then various newspapers and magazines have occupied the building and various additions have been completed. Because the original building was a printing facility, the floor to floor height is larger and helps with some other objectives: visual connectivity, natural light, and employee productivity. Since most would agree that natural light has a big impact on

Figure 1.1B. SDPAH New Atrium Space.

someone's mood and ability to produce, the architects focused on a central atrium space that provided connectivity between both the 15th Street and Broad Street entrances, making the space inviting to workers and guests. As can be seen in Figure 1.1B, the District has occupied the space and made it their own with flags of children and other pieces of artwork. The capped columns were left from construction as an architectural feature possibly to keep in mind the original purpose of the building.

Some of the architectural renovations which affected the engineering disciplines included new core toilet rooms, new elevator shafts, a new 3 story atrium, and new lobbies for the 15th Street and Broad Street entrances. Exterior renovations included new windows, curtain walls, entrances, and re-glazing.

The building footprint is approximately 161,000 square feet (SF) with a total measured gross area of 848,000 SF. It has six floors above grade including the Ground Level and

5

Floors 1 through 5. About 440,000 SF of the gross area is office space (mostly open plan office space) and approximately 50,000 SF is a data center. The remainder of the space is storage area in the Basement Level. The focus of this report will be on the open office space within the building which is on Floors 1, 2, 3, and 5 and the data center on Floor 4.

Construction began on the existing structure in December 2003 with the shell and core mechanical renovation plans by **Cannon Design** from New York City. The shell and core renovation project team included Cannon as the mechanical engineers, **Thorton Tomasetti Group** as the structural engineers, **Gladnick Wright Salameda** as the site/civil engineers, **Turner Construction Company** as the general contractor, and **Hooper Shiles Architects** as the architect. The focus of this report is on the shell and core renovations with the exception of considering Floor 4 as a data center as mentioned above. As of November 2005, the fifth floor fit-out was still being completed. The building fit-out was completed by a different set of designers.

Figure 1.1D. Broad Street Entrance.

1.2 Engineering Overview

In the following paragraphs there are descriptions of the engineering systems currently in the building and the renovations that were implemented. The existing mechanical system description will include a more in depth explanation in the following section.

1.2.1 Electrical Engineering

Electrical Service

The electrical service is a high tension 13,200 volt service. The electrical service enters the building through a 12-way underground ductbank and terminates in a PECO cable vault at the mezzanine level. There are six cables connected to the existing distribution equipment and six designed for future use. The existing cables connected to Main Service 1B didn't have the capacity to accommodate the new loads for renovations. To increase the capacity of the existing service, a parallel set of 15 KV cables (same size, type, length) were installed to the double-end switchgear. Main Service 1B increased to 10MVA with primary select configuration.

Building Power

Existing Substation

An original 1500 KVA secondary unit substation is connected to the Main Service 1B, which steps down the voltage from 13,200 volts to 480/277 volt. This substation serves base building core loads: lighting, general receptacles, and emergency distribution panel. The existing emergency service is connected to a 150 KW diesel generator. The emergency loads are fire alarm, life safety, and passenger elevators PE-1 and PE-2.

New Substation

Power for the 1st through 5th floors office space is distributed from new substations, one substation providing power to the east electric closets and the other to the west electric closets. The two new 3000 KVA 480/277 volt secondary unit substations are connected to a 4000 amp bus duct riser. A 480/277 volt distribution panel and feeder is provided to each mechanical room. The mechanical panel provides power for HVAC equipment on the floor. Improvements on the 1st through 3rd floors include 500 amp, 208/120 volt main receptacle panel and on the 4th and 5th floors 400 amp, 208/120 volt two-section receptacle.

7

Jayme Antolik

1.2.2 Lighting

Lighting panels are fed from the base building substations at 480/277 volt. Lighting panels for tenant improvements are located such that the maximum branch circuit length will be less than 150 feet. The shell and core design included general lighting provided for base building areas including MEP rooms, toilet rooms, vaults, loading docks, lobbies, entrances, and stair towers.

1.2.3 Plumbing

Domestic Water System

Renovations include a new 4-inch cold water riser to serve the new east end toilets, each riser provided with a 1-1/2-inch valved outlet at each floor for SDP use.

Hot Water System

Hot water for the Base Building core toilet rooms is generated by electric water heaters located above the ceiling of each core toilet room.

Storm Water System

Roof areas are provided with drains connected to leaders and horizontal storm piping to building storm sewers at 15th Street. All horizontal storm piping is insulated to prevent condensation.

Natural Gas

The original 3-inch gas service from Buttonwood Street is capped at the building control valve. This service would be kept open in a case where an alternative design with a gas fired boiler would be chosen.

1.2.4 Fire Protection

Designed for ordinary hazard (Group II) occupancy and complies with the latest Philadelphia Building Code, Fire Department, and NFPA 13.

Control System

Valves controlling the fire protection system are provided with tamper switches and water flow indicators connected to the fire alarm system.

Sprinkler System

The Base Building includes a wet sprinkler system for the Basement and Ground Floor Levels and there is also an existing pre-action sprinkler system located in the basement level. The sprinkler system in the load dock areas remained. Sprinkler protection is in all Base Building areas including mechanical rooms, storage areas, core toilet rooms, utility shafts, and elevator shafts.

Smoke Purge

A smoke purge system is required in the 3 story atrium. The three 20,000 cfm roof mounted exhaust fans with motorized dampers are capable of six air changes per hour.

Fire Alarm System

The fire alarm system is a modular addressable system which is expendable and consists of a central fire command center. The fire alarm systems consists of manual pull stations, elevator recall, sprinkler water flow detection, tenant terminal cabinets, HVAC equipment smoke detection and horn and/or strobe notification.

1.2.5 Structural Engineering

The original structure is in the center of the facility and is a reinforced concrete structure of primarily flat plate floor construction with some beam and slab areas.

The first addition to the north end of the main building occurred in the 1960s and is a structural steel frame with concrete slabs on metal deck. The second addition to the south end of the main building occurred in the 1980s and is a structural steel frame with concrete slabs on metal deck. Other modifications in 2001 include additions to the 2nd and 3rd floors using steel and concrete construction. Over time floor areas were infilled and reinforced to accommodate printing equipment.

Areas designated for office use have a minimum live load capacity of 125 psf, except a part of the 4th Floor where it is designated to accommodate 100 psf live load.

Column extensions and steel roof dunnage were provided to support the new cooling tower. All loads were transferred through the existing column extension.

If an alternative design is proposed where more rooftop mechanical systems will be needed, more structural considerations will be necessary.

1.2.6 Transportation

This table outlines the existing and new elevators in SDPAH. The transportation modes within the building are important to construction crews. Mechanical, electrical, lighting, and other equipment must be moved to the upper floors. *The freight elevators are a vital artery in moving materials throughout the building during construction.*

Quantity	1	1	2
Weight Limit	20000 lbs	10000 lbs	3500 lbs
Туре	Traction-type freight elevator	Traction-type passenger/freight	Traction-type passenger elevator
Location	North loading dock	Southwest core adjacent to the central loading dock	East Core
Serves	Basement to the 3rd Floor	Basement to the 4th Floor	Basement to the 5th Floor/Broad Street Entrance Lobby
Cab Size	11'4"W x 14'0"L x 9'0"H	7'8"W x 9'2"L x 9'0"H	6'3"W x 8'8"L
Our one			
ous one			
Quantity	1	2	2
	1 10000 lbs	2 3500 lbs	2 3500 lbs
Quantity	1	2	2 3500 lbs
Quantity Weight Limit	1 10000 lbs	2 3500 lbs	2
Quantity Weight Limit Type	1 10000 lbs Freight lift Southwest core, positioned adjacent to the existing 10,000 pound passenger/freight elevator	2 3500 lbs Traction-type passenger elevator	2 3500 lbs Traction-type passenger elevato West Core/15th Street Entrance

Table 1.2A Existing and New Elevators.

1.2.7 Security

The entire building is secured and protected by a closed circuit television (CCT) and key card access. Access to the building is by card keys and all entrances are monitored by a CCT system reporting to a manned central security station at the Broad Street lobby. All stair towers and elevators are also controlled with card key access.

1.2.8 Lightning Protection

Lighting protection is provided at the medium voltage double-end switchgear as required by PECO. A lightning protection grid is provided on the roof.

1.3 Existing Mechanical System

The existing mechanical system utilizes direct expansion evaporative refrigerant coils in self contained packaged air handling units located in mechanical rooms in the core of the building. Parallel fan-powered variable air volume boxes satisfy perimeter heating needs and are located in the plenum above the spaces they serve. The air conditioning process occurs locally within the air handling units positioned throughout the building. *The following sections give the system details to establish a basis of comparison for alternative systems.*

1.3.1 Air Handling Unit Layout

The existing mechanical system in the SDP's new administration building consists of 17 new self-contained packaged air handling units by McQuay which provide 1500 tons of cooling.

Each unit is located within mechanical rooms in the core space of the building. It is important to have a feel for how large the building is and for how much air conditioning each air handler must account for. For reference, a description of the existing air handling units and their nomenclature designations is provided in the following paragraphs. An example of the air handling unit (AHU) designations used in the

existing design is 1.3, where 1 is the floor location and 3 is the unit, dedicated to a particular region of the floor.

Figure 1.3A. Floor 1 Existing AHU Layout.

Floors 1 through 3 are broken up into north and south sections each with its own mechanical room. The **first floor** has three units in the south mechanical room and two in the north.

Floor 2 has two units in each the south mechanical room and the north mechanical room and the **third floor** has a total of 5 units, three in the south mechanical room and two in the north mechanical room.

Figure 1.3B Floor 2 and Floor 3 Existing AHU Layout.

Floor 4 was designed to have one air handling unit serving the entire space which was originally thought to be open office. Because this space is currently being used for a data center, the load is higher and will require more conditioning. Two units serve the **fifth floor**, one serving the east wing and another serving the west wing.

Figure1.3C. Floor 4 and Floor 5 Existing AHU Layout.

1.3.2 Cooling Process

The cooling process occurs locally within each air handling unit (AHU). Hot outdoor air is provided through a shaft by outdoor air fans located on the roof. The outdoor air is mixed

in the mechanical room with return air at 75F which enters the mechanical room through a transfer duct from the plenum above the ceiling in the office space. Air first passes through a filter for cleaning. Each unit contains a direct expansion (DX) evaporative refrigerant coil which is used to remove heat from the mixed outdoor air and return air. The process starts as cool refrigerant enters the tubes of the DX coil. As the warm air flows over the coil, the cool refrigerant evaporates as it removes heat from

Figure 1.3D. AHU Air Filter.

the air. The air is cooled to 55F within the unit and supplied to the building spaces via parallel fan-powered variable air volume (VAV) boxes within the spaces. Spaces are supplied different quantities of air depending on the required cooling loads. After the refrigerant passes through the evaporator coil it is compressed and moved to the condenser where it is cooled by the condenser water. Condenser water is provided at 85F from a 1500 ton two-celled cooling tower located on the roof. Condenser water at 95F is returned to the cooling tower to start the process again. To see the internal layout of the air handler, see Appendix B.

Waterside Economizer

The units are provided with a waterside economizer coil. When cooling is necessary in during the heating season and the entering condenser water temperature is sensed to be less set point temperature 55F a waterside economizer control valve is opened for condenser water to enter the economizer coil. The cold water cools the air thus giving "free cooling." A Freezestat sensor is used to prevent freezing. If it senses potential for freezing the supply air fan turns off and an alarm sounds. The economizer valve is set to fully open and the system remains this way until it is reset.

1.3.3 Heating Process

Heating is usually required in perimeter spaces of open offices where the internal load of the building is not enough to satisfy the heating load requirement. The internal load of the building is due to people, lights, and equipment. For simplicity, it is assumed that the amount of people served by all air handlers in the Administration building is 100. People are a source of heat and contribute to reducing the required heating load. The air handlers used for cooling in the Administration building are located in mechanical rooms within the core of the building and thus contribute to the internal equipment load. The internal load due to lights and equipment is 6 watts per square foot (W/SF). Since the air handlers are located within the core of the building, they are a part of this 6 W/SF and act as a source of heat in the winter. If the internal load is combined and compared to the perimeter envelope load due to exterior window and wall heat loss, it can be found that the internal load is more than enough to take care of the heat losses of the building due to the exterior envelope. In fact, the internal load is so large that cooling is needed even during the heating season. See Appendix A for the sample space and coil load output from Trace, the modeling program used to simulate this system.

During heating season, return air is brought back at 70F and is mixed with cold outdoor air in the mechanical rooms. The return air quantity is much larger than the outdoor air so the mixed air is still warm and must be cooled to the supply temperature of 55F. Possible cold spots along the perimeter must still be accounted for. If the room temperature falls below the room heating thermostat, heating will be required in the parallel fan-powered VAV boxes. In this case, the return air passes through the VAV box and does not go back to the air handler. Warm air from the plenum is passed directly through the VAV boxes for heating by electric heating coils to bring the space temperature above the room heating thermostat again.

1.3.4 Ventilation Analysis: ASHRAE Standard 62.1 Addendum N

Standard 62.1 establishes minimum requirements for outdoor air ventilation within buildings. The original design ventilation airflow quantity was calculated using a rate of 20 cubic feet per minute (CFM) per person in the Trace model. This was based on ASHRAE Standard 62.1 prior to Addendum N. The ventilation actually supplied was 10 percent of the required supply air. New ventilation requirements were calculated based on the new

New Designation	Addendum N Std. 62.1/Latent Load Req.	Actual Occupancy	Existing Designation	Design Occupancy	10% SA	Overdesign Percentage	
	FLOOR 1						
FL-1 NE	2500	100	1.4	100	2800	12.0%	
FL-1 NW	2500	100	1.3	100	2800	12.0%	
FL-1 SE	2500	100	1.2	100	2800	12.0%	
FL-1 SW	2500	100	1.1	100	2800	12.0%	
FL-1 T	2700	100	1.5	100	2800	3.7%	
		F	LOOR 2				
FL-2 NE	2800	100	2.4	100	3150	12.5%	
FL-2 NW	2800	100	2.3	100	3150	12.5%	
FL-2 SE	2800	100	2.2	100	3150	12.5%	
FL-2 SW	2800	100	2.1	100	3150	12.5%	
		F	LOOR 3				
FL-3 NE	2800	100	3.4	100	3500	25.0%	
FL-3 NW	2800	100	3.3	100	3500	25.0%	
FL-3 SE	2800	100	3.2	100	3500	25.0%	
FL-3 SW	2800	100	3.1	100	3500	25.0%	
FL-3 T	2800	100	3.5	100	3200	14.3%	
		F	LOOR 4				
FL-4	3000	0	4.1	160	3500	16.7%	
		F	LOOR 5				
FL-5 E	2500	100	5.2	100	2800	12.0%	
FL-5 W	2500	100	5.1	100	2800	12.0%	

Table 1.3A Ventilation Air Comparison.

addendum. Outdoor air supply is necessary to satisfy the latent load of the space. The latent load removed by the ventilation air quantity calculated based on Standard 62.1 Addendum N should be checked. If it is greater than the latent load of the space then the air from the ASHRAE standard should be supplied.

If the latent load removed by the ASHRAE standard air is less than that of the space, then the ventilation required to move the space latent load should be calculated using the traditional equation:

$$CFM_{L} = \frac{Q_{L}}{0.68 \cdot (W_{RA} - W_{SA})}$$

Table 1.3A gives a comparison of the original design values versus the new values according to ASHRAE Standard 62.1 Addendum N.

1.3.5 LEED Assessment

Leadership in Energy and Environmental Design (LEED) Green Building ratings are meant to encourage sustainable design practices within the construction industry. Points are assigned based on different "green" design categories. Because the Administration building was a renovation project, it received only 6 LEED points in the assessment. Recent research of mine has led to the discovery of LEED Core and Shell Development (LEED-CS). This rating program is currently being developed. It is based on the same categories as new building LEED rating system is: Sustainable Sites, Water Efficiency, Energy and Atmosphere, Materials and Resources, Indoor Environmental Quality, and Innovation and Design Process. However, different requirements will be assigned to each subdivision of the categories. Also, it will only evaluate the parts of core and shell design and construction that the owner controls. LEED design was not considered in the original SDP building and was not considered in the design alternatives.

1.3.6 Building Envelope and Lighting Compliance: ASHRAE Standard 90

Standard 90 establishes minimum requirements for the energy-efficient design of buildings (with the exception of low-rise residential buildings). The building envelope consists of the walls, windows, and roof of a building that separates the outdoor environment from the indoor conditioned spaces. Building lighting power requirements are established to keep energy usage to a minimum within the building.

The original mechanical system was modeled using Trane's Trace program. Using the design values obtained from this model, the Administration building complied with walls and

Jayme Antolik	
---------------	--

window U-values, but not roof values. Due to the addition of the 3-story atrium, the building exceeded the maximum roof percentage for skylights as well.

Also taken from the Trace model was the lighting power density, 6 watts per square foot (W/SF). This value did not comply with Standard 90. However, this value is a combination of lighting and equipment. Because my original analysis was based on the shell and core renovations, specific lighting power density of the fit-out (what is actually in the space now) was not known. Comparing the design values to the requirements in Standard 90 is not accurate. The air handling units chosen for the design are in mechanical rooms in the core of the building. Floors 1 through 3 have two mechanical rooms each. There are two mechanical rooms totaling 2500 SF on each the first floor and third floor. The second floor has two mechanical rooms totaling 1900 SF. One mechanical room on the fourth floor totals 635 SF and one on the fifth floor takes up 1250 SF of its floor area. The internal load may have been design at 6 W/SF due to the heat given off by these mechanical rooms with the air handling units in them.

1.3.7 Lost Rentable Space

All building systems require the usage of rentable space. Depending on the type of systems within the building, the amount of lost rentable space may vary. Each building system (mechanical, electrical, and plumbing) contributes to this lost space. For the School District's building, the total lost rentable space amounts to 5.68% of the total floor area with mechanical rooms amounting to 2.27% of the total building floor area. Total unusable space is 27,916 square feet of 491,658 square feet between floors 1 and 5. One of the many objectives for the alternative designs is that the lost rentable space will be reduced. In some cases this objective is met and in others it is not.

1.3.8 System First Cost

For most owners, the first cost of the mechanical system is given the most attention. Some of the more energy efficient systems may be overlooked because of their higher first cost. Essentially, these more efficient systems will save money on operating costs in the long run. A strong analysis of first cost and operating cost should be done before selecting a system. Maintenance is also a cost concern. Ease of maintenance is a priority amongst building owners and may relate to the system's first cost. The School District of Philadelphia wanted a system that could be maintained easily and could be mainly be done by their employees. The electric system implemented in the Administration building is small in first cost and easy to maintain, but pricey in operating cost. See Table 1.3B for the SDP building mechanical system first cost. (Operating cost/energy utilization will be discussed in the following section.) This first cost estimate is straight from the guaranteed maximum price bid. This includes mechanical costs for the entire building mechanical system and will be modified for the analysis in this report.

Equipment	\$2,963,000.00
Equipment Premium	\$60,000.00
Sheetmetal/Air Distribution Systems	\$948,000.00
Testing Existing DX Units	\$5,000.00
ATC/BMS	\$250,000.00
Insurance	\$198,500.00
Hoisting	\$32,000.00
Total	\$4,456,500.00

Table 1.3B Existing System First Cost.

1.3.9 Energy Utilization and Cost

The energy use of the SDPAH is based on the energy consumption obtained from the Trace model. Because the system in the Administration building uses DX cooling coils and electric heating coils, all energy consumption is due to electricity. Table 1.3C gives the energy consumption for the analysis of the existing system that was completed in this report.

	Electric	Gas	Water	Percent of	Total Source
	Consumption	Consumption	Consumption	Total Energy	Energy
	(kWh)	(therms)	(1000 gallons)	%	(kBtu/yr)
Primary Heating					
Primary Heating	1209479.5	0.0		3.7	123851.0
Primary Cooling					
Cooling Compressor	5206464.0			16.1	533143.2
Tower/Cond Fans	420212.0		25396.4	1.3	43029.8
Condenser Pump	1205839.1			3.7	123478.2
Other CLG Accessories	876.0				89.7
Cooling Subtotal	6833391.1		25396.4	21.1	699740.9
Auxiliary					
Supply Fans	2062867.0			6.4	211238.1
Circ Pumps					
Base Utilities					
Aux Subtotal	2062867.0			6.4	211238.1
Lighting/Equipment					
Lighting/Equipment	22285440.0			68.8	2282034.3
5 5 1 1					

Table 1.3C Energy Consumption by Existing System.

1.3.10 Operating Cost

The operating cost of the existing system is directly proportional to the energy used. PECO's energy rates were used to find the operating cost of the mechanical system. A hypothesis for a result of this report is that the energy and operating cost of the systems with a central chilled and hot water plant will be less than that of the all electric existing system.

System 1							
	EI	ectric On-Pea	k	Gas On-Peak	Water On-Peak		
	Consumption	Consumption Demand To		Consumption	Consumption	Monthly Total	
	\$	\$	\$	\$	\$	\$	
-							
January	\$86,748	\$51,369	\$138,117	\$0	\$9,732	\$147,849	
February	\$78,598	\$51,281	\$129,879	\$0	\$8,753	\$138,632	
March	\$86,343	\$51,085	\$137,428	\$0	\$11,049	\$148,477	
April	\$83,678	\$51,077	\$134,755	\$0	\$11,942	\$146,697	
Мау	\$85,556	\$53,245	\$138,801	\$0	\$14,156	\$152,957	
June	\$96,157	\$55,333	\$151,490	\$0	\$15,524	\$167,014	
July	\$102,654	\$56,647	\$159,301	\$0	\$17,629	\$176,930	
August	\$99,425	\$55,178	\$154,603	\$0	\$16,066	\$170,669	
September	\$92,724	\$53,102	\$145,826	\$0	\$13,939	\$159,765	
October	\$85,818	\$50,677	\$136,495	\$0	\$12,245	\$148,740	
November	\$82,858	\$50,670	\$133,528	\$0	\$11,063	\$144,591	
December	\$86,267	\$50,943	\$137,210	\$0	\$10,281	\$147,491	
Totals	\$1,066,826	\$630,607	\$1.697.433	\$0	\$152.379	\$1,849,812	

Table 1.3D Existing Mechanical System Operating Cost.

Electricity is one of the most costly sources of energy that can be used if it is bought from a public utility. It takes the use of many sources to make electricity and the efficiency of transmitting it is so poor that the cost is high. Using a central chilled water and hot water plant may be more energy efficient and may operate at a smaller cost.

1.3.11 Emissions

Exelon, the parent company of PECO, uses nuclear power to make electricity which reduces emissions by a great degree compared to coal and oil. Emissions from electricity depend on the amount of electricity consumed by the systems of the building. Exelon uses a mixture of energy sources to make electricity which is done efficiently with nuclear power.

2004 Exelon/PECO Generation Mix										
	System 1									
			Ibm Pollutant							
Fuel	% Total	kWh	Ibm Particulates	lbm SO2	lbm Nox	lbm CO2				
Coal	6.0	1943470.7	35630.3	413942.1	239936.1	69642830.4				
Oil	4.0	1295647.1	35630.3	499306.1	91663.7	68377359.0				
Nat. Gas	1.0	323911.8	0.0	437.2	82185.3	43421605.2				
Nuclear	88.0	28504236.3	0.0	0.0	0.0	0.0				
Hydro/Wind	1.0	323911.8	0.0	0.0	0.0	0.0				
Totals	100.0	32391177.6	20808.1	244101.2	143723.3	44685834.0				

Table 1.3E Emissions due to the Existing Mechanical System.

2.0 Depth Work - Alternative Mechanical Designs

2.1 Objectives

The goal of designing alternative systems is to compare energy usage, system costs, emissions, lost rentable space, and constructability. By considering the original concerns of the Philadelphia School District, one final design will be recommended based on the four topics listed above. These comparisons can be used for reference in designing other similar office buildings.

2.2 Overview of Systems

The concentration in the depth work of this report focuses on two concepts. The first is the comparison of two different airside systems: VAV and dedicated outdoor air. The second is the comparison of the existing DX-electric system to a central water plant which supplies cold and hot water to the airside system. In all cases, the fourth floor will be simulated as a constant air volume system. Also, cooling for the atrium and lobbies will not be considered. The analysis will concentrate on open office loads and the energy usage by different systems when used in commercial office buildings. The following five systems will be analyzed:

- System 1: VAV with DX coil and electric heating coils
- System 2: VAV with chilled water and hot water coils
- System 3: DOAS/VAV with DX coils and electric heating coils
- System 4: DOAS/VAV with chilled water and hot water coils
- System 5: DOAS/Radiant with chilled water and hot water coils

2.2.1 Airside

There will be a comparison of 2 different airside systems. The existing VAV system will be analyzed and a dedicated outdoor air system will be analyzed. The dedicated outdoor air system will be modeled separately with VAV as a parallel system and with radiant panels as a parallel system.

VAV — Systems 1 and 2

The VAV system can exist as a stand alone system as it does currently in the Philadelphia School District Administration Headquarters. Because of the nature of the loads within the SDP building, cooling is needed all year. Depending on the cooling load within each space, a certain quantity of air will be delivered to that space. For heating needs, return air in the plenum will be circulated directly back to the room and heated via a fan and heating coil in the parallel fan powered box.

Figure 2.2A. Plan of Airside VAV System.

DOAS - Systems 3, 4, and 5

A dedicated outdoor air system (DOAS) supplies the ventilation requirement for a particular space and is responsible for removing the latent load of that space. It is used with a parallel system which satisfies the rest of the sensible load of the space. In this report two parallel systems will be considered. The first is the existing VAV system with parallel fanpowered boxes. The second is radiant panels used for cooling and radiant baseboard heating. The DOAS in this report uses an enthalpy wheel with an effectiveness of 80 percent. Outdoor air is sent through the enthalpy wheel first. Depending on the season, temperature and humidity are increases or decreased.

During cooling, the enthalpy wheel decreases the outdoor air temperature and humidity by use of heat recovery from the exhaust air stream. The outdoor air is sent through a cooling coil next where its humidity is reduced and its temperature is reduced to 45F. This air can either be reheated to 55F for supply air using a sensible wheel in the outdoor air/exhaust air streams or it can be delivered directly to a space at 45F. The sensible wheel only increases the temperature of the air; it does not alter the humidity of the air. When considering the supply air temperature of the DOAS, it is important to remember that the DOAS is responsible for removing the entire latent load of the space. The supply temperature was determined based on the properties of the parallel systems.

During heating, the DOAS increases the temperature and humidity of the outdoor air by use of heat recovery from the exhaust stream. The enthalpy wheel has the ability to increase the temperature to 58.2F. This can only be done with the VAV system for reasons explained later. With the need for cooling during the winter, the air handling unit does not need a heating coil.

DOAS Analysis

Depending on the parallel system, the conditions of the supply air for a dedicated outdoor air system may be more or less important to control. An analysis was done on the components of the dedicated outdoor air system's air handling units. The supply air conditions required in this report were not considered in this study. The purpose of this study is to compare the cooling capacity of different configurations with the assumption that the entire latent load is satisfied by the DOAS.

Heat recovery is not a "required" component of a dedicated outdoor air system. A cooling coil can be used to remove the entire latent load of a space; however, this idea is not practical. It requires an enormous cooling coil, has a high first cost, and consumes a lot of energy. Therefore, heat recovery in a DOAS is a must. Heat recovery in the form of an enthalpy wheel, as used in the simulations in this report, reduces the load on the cooling coil. The cooling coil will reduce the outdoor air temperature to 45F and saturated. The remaining option in a DOAS is the use of reheat. This air at 45F can be supplied to the room or it can be reheated to the traditional supply air temperature of 55F. Reheat requires another wheel, a sensible wheel. This component does only sensible cooling or heating. It recovers heat from the exhaust stream to increase the temperature of the 45F air to the supply air requirement. The humidity ratio of the conditioned air does not change as it moves through the sensible wheel. Appendix B provides state point conditions and cooling capacity for the three different cooling models: 1. DOAS with enthalpy and sensible wheel, 2. DOAS with enthalpy wheel, and 3. DOAS without heat recovery. Table 2.2A summarizes the results for space FL-1 NE. The enthalpy wheel only configuration requires the least amount of cooling capacity. The supply temperature for configuration 1 with the sensible wheel is 55F which means the supply air cooling capacity is less than that of configuration 2 which supplies low temperature air at 45F.

		Required Cooling Capacity		
		DOAS	Parallel	Total
		tons	tons	tons
1	Enthalpy Wheel and Sensible Wheel	9.33	47.84	57.17
2	Enthalpy Wheel Only	11.8	36.39	48.14
3	Cooling Coil Only	153.4	38.64	192.02

Table 2.2A. DOAS Analysis Comparison for Space FL-1 NE.

The load across the cooling coil for both cases is the same because the supply air should be saturated in order to satisfy the latent load, but since the air in configuration 2 is heated back to 55F, the parallel system is required to cool more air than the parallel system in configuration 1. By adding another wheel to the outdoor air stream, the first cost of the system will increase on for both the DOAS and the parallel system. The results of this analysis makes the evaluation of reheat seem a little more important when designing the dedicated outdoor air handling unit.

Radiant Panels — System 5

Cooling

The radiant system uses ceiling panels to distribute cooling through radiation. These panels are 2 by 4 foot panels which are similar to 2 by 4 ceiling tiles. Two by 4 foot ceiling tiles are currently installed in the Administration building and were probably a request of the district or a decision made by the architect. These panels would not be complicated to co-exist with the current ceiling layout. Each radiant panel consists of 5 passes of tubing where chilled water is passed through. The heat transfer mechanism of radiation takes over and cools the building spaces.

The radiant panels pose restrictions on the DOAS. No latent load can be left for the radiant panels and the dew point temperature of the DOAS supply air must be lower than the radiant panel surface temperature in the radiant cooling application. The panel surface temperature must exceed the room dew point temperature also. Both the room dew point temperature and the supply air dew point temperature must be less than the radiant panel surface temperature. The design room conditions for cooling are 75F and 50% relative humidity. The room dew point temperature that corresponds to these conditions is 55F. The design heating temperature for winter is 70F and 50% relative humidity which correspond to a 50F dew point temperature. The inlet water conditions for these radiant panels must be at least 1 degree above the room dew point temperature. Because the summer conditions control an inlet water temperature of 56F must be used. Therefore, the dew point temperature of the DOAS supply air must be less than 56F. If the occupancy of the space increased, room dew point would increase. This will cause condensation on the radiant panels if air was supplied at 55F and saturated. Using a supply air temperature of 55F would make the chance of condensation more uncertain. Therefore, a supply temperature of 45F will be used to keep the dew point below panel surface temperature. Because the supply temperature is lower than the normal 55F supply temperature, high induction diffusers will be used with the radiant panels. High induction diffusers supply air through a narrow stream at high velocity. The high velocity causes low pressure relative to the ambient room pressure. Because of this pressure differential, room air is drawn into the supply stream where it is quickly mixed within the room. With the DOAS and radiant panels

both the latent and sensible load are satisfied.

Heating

In the winter, the dedicated outdoor air system can supply up to 58.2F air. Because SDPAH requires cooling in the winter, the DOAS must supply at 45 to avoid condensation. The leaving temperature of the enthalpy wheel is controlled by its speed. Therefore, supplying 45F air in the winter is not a problem. For any instances of heating needs, the radiant panel system is supplemented by radiant baseboard heaters along the perimeter of the building. When they sense that the room temperature is below heating thermostat temperature, they will turn on and circulate hot water through finned tubes allowing radiant heating to occur.

VAV — Systems 4 and 5

The cooling supply air temperature in the summer for the DOAS with VAV as the parallel system was also determined to be 45F. For the DOAS/VAV combination the VAV system satisfies the remaining sensible load as does the radiant panels in the previous section. The outdoor air from the DOAS can be mixed with the conditioned air from the VAV unit downstream of the VAV air handling unit. The supply air for the DOAS/VAV system does not have limits on it as it did with radiant panels. This allows the 45F DOAS air to be mixed with the 55F VAV air after both are conditioned. The schematic in Figure 2.2B shows an airside riser diagram for the mixing conditions. The amount of outdoor air being supplied at 45F by the DOAS is small compared to the amount of return air being conditioned to 55F by the VAV system. Because of the ratio of the two supply streams, the supply temperature after they mix is still close to 55F.

During the winter season, the enthalpy wheel increases the temperature and humidity of the outdoor air to 58.2F and 44.2g/lb, respectively. Because all the spaces in the SDPAH require cooling in the winter, this temperature air can mix with the air being supplied by the VAV units. To save energy, the wheel can also be set to heat to 45F where mixing conditions would be very similar to those for the summer. The VAV system has terminal heating at the parallel fan powered boxes. This takes care of any chances of space temperature dropping below heating thermostat temperature.

Jayme Antolik

Figure 2.2B. DOAS/VAV Airside Riser Diagram.

CAV—Floor 4

A constant air volume (CAV) system will be used for the fourth floor in all simulations. Floor 4 is known to be utilized as a data center and always has a constant cooling load. Because of this a constant air volume system is the most logical choice.

2.2.2 Water Side

The purpose of comparing the existing DX-electric system to a central water plant is to find yearly energy savings. The current system uses a large quantity of energy (Table 1.3C, Page 19) and a central water plant has the potential to reduce the amount of energy used.

Central Chilled Water Plant

<u>Chiller</u>

In the existing system the refrigeration cycle occurred locally within self-contained packaged air handling units positioned throughout the building using a DX (direct expansion) coil and a waterside economizer coil. An alternative to the existing system is using a central chilled water plant for the main cooling source. For cooling, the refrigeration cycle occurs in a central chiller. A chiller has all of the refrigeration components of the self contained packaged air handling units. Cool refrigerant is passed through an evaporator where it evaporates by taking the heat out of warm water returned from the air handling units or radiant panels. This chilled water is sent to the load and the hot refrigerant vapor passes to a compressor usually at 44F or 45F. A centrifugal compressor is chosen for the models in this report. This compressor has rotating mechanical element that exchanges angular momentum with the refrigerant as it continuously passes through it. The refrigerant at high pressure then passes to the condenser where it will be cooled by water from a cooling tower. The cool refrigerant passes through a pressure reducing element in order for it to enter the evaporator at low pressure. The chiller must be capable of supplying lower temperature water for the DOAS in order to supply 45F air. A heat exchanger must also be used in the application of radiant panels where entering water temperature is 56F. It should be noted that the controls between the chiller and the airside system must be extremely accurate. The focus of this report was on system performance without getting into detail about the system controls.

Cooling Tower

Condenser water from the cooling tower helps to condense the refrigerant after the cooling process. After heat rejection from the refrigerant occurs, heat rejection by the condenser water must occur. After the condenser water leaves the chiller, it is usually 95F. This hot water needs to be cooled again to flow back to the chiller. This occurs by evaporation. The goal is to expose as much water surface area to the air to induce the evaporation process. For the simulation in this report, a "direct induced draft" cooling tower is used. It is direct because the water is in direct contact with the air. It is induced draft because the air is being pulled through the tower by a high pressure water spray instead of blown through, which requires mechanical energy. The induced draft tower is widely used because of its energy efficiency. It uses an axial fan instead of a centrifugal fan. A centrifugal fan requires almost twice as much energy as an axial fan.

<u>Economizer</u>

An economizer cycle is used to model the different systems in this report. A plate and frame heat exchanger can be connected between the condenser water loop and the chilled water loop but the two loops are kept separate. The chilled water loop is connected to the cooling tower loop to transfer heat while the cooling tower loop can bypass the chiller and can provide free cooling to the space when outdoor air conditions are favorable. Favorable outdoor air conditions are typically below 55F.

Central Hot Water Plant

Perimeter heating is needed when the internal load is not large enough to satisfy the perimeter heat losses. Comparisons will be made between the existing electric heating coils and hot water coils served by the hot water plant. A gas fired hot water boiler will be used in the analysis of hot water verses electric heating coils. The boiler will be located on the roof and serve the preheat coils in the AHUs and the coils in the parallel fan powered boxes for the VAV system and the baseboard heaters for the DOAS/Radiant heating system.

2.3 Equipment

The simulations in this report were based on properties of equipment used for each system.

2.3.1 Self Contained Packaged VAV Air Handling Units

The air handling units in the existing system are McQuay self contained water cooled plenum discharge (SWP). The same units were selected for the VAV parallel system in the DOAS application. These units were selected in the existing system for ease of installation and ease of maintenance. The selection of the units depended on the supply air flow for

each space and the face velocity of the air across the coil. A small area and high velocity will give a small unit, small cost, and small mechanical room. However, condensate carryover must be considered. As hot air flows over the evaporator or cooling coil, condensate may occur. If the face velocity is too high the condensate will enter the duct system. It may cause damage to the ducts and may threaten indoor air quality. The face velocity rule of thumb of 500 feet per minute (FPM) was used to size the AHUs.

Figure 2.3A. McQuay Packaged SWP Air Handling Unit in Third Floor South Mechanical Room.

		DX-Electric Units			
Model		SWP095D	SWP095D	SWP095D	SWP065F
Floor		3	3	3	5
Quantity		2	2	1	2
Nominal cfm		33540	33540	33540	24900
SA cfm		30000	29450	27200	20700
Face Area of Unit	SF	55.9	55.9	55.9	41.5
Maximum Face Velocity	FPM	537	527	487	499
Condenser Flow Rate	GPM	257	257	256	170
DX					
Total Heat Capacity	MBH	638	632	595	429
Sensible Heat Capacity	MBH	656	654	636	454
Economizer					
Total Capacity	MBH	595	584	533	388
Sensible Capacity	MBH	576	563	505	370
Unit Size					
W	IN	84	84	84	81
L	IN	156	156	156	120
Н	IN	88	88	88	88
31				Senior	Thesis

Table 2.3A. Sample Schedule of SWP Units on Floor 3 and 5 of DOAS/VAV System.

Jayme Antolik

2.3.2 DOAS Units

The dedicated outdoor air system requires the use of an enthalpy wheel. In this case the SEMCO TE3-was selected as the manufacturer for the air handling units. The selection of the units depended on the supply air flow for each space and the face velocity of the air across the coil. Because the DOAS units only supply outdoor air, the total quantity of the air is much smaller than what is being supplied by the VAV units. Thus the location and areas served by these units are different than the VAV units. The building was divided into a North section and a South section, each being served by a DOAS unit sized for the required outdoor air for the spaces within those sections. The face velocity parameter of 500 feet per minute (FPM) was used to size the AHUS.

Figure 2.3B. SEMCO Packaged Energy Recovery System, EPC-24/EP-43

			Motor	
	Airflow	Chilled Water	Supply	Return
	CFM	GPM	HP	HP
EPC-24	16150	119	15	15
EPC-43	29100	256	20	20

Table 2.3B. DOAS AHU Schedule.

2.3.3 Enthalpy Wheel

The enthalpy wheel in the SEMCO unit can be individually selected. In this case the EXCLU-SIEVE enthalpy exchanger is chosen. The enthalpy wheel slowly takes the sensible and latent energy from the exhaust stream and shifts it to the transfer core which is made of an aluminum coating with a 3Å molecular sieve desiccant. The energy from the exhaust is transferred to the supply stream saving energy used by traditional systems. This occurs because the air entering the cooling coil after leaving the enthalpy wheel is cooler than it would have been if it skipped the heat recovery process by the enthalpy wheel. The cooling coil is then required to do less work.

In the winter, frost is a possibility on the enthalpy wheel in cold climates. The winter room design conditions are 70F, 50% RH and the winter outdoor air design conditions are 11F, 30% RH. If these two points are connected on a psychrometric chart and the line crosses the saturation curve, then frost may occur. By doing this, it is found that frost does not occur.

When the outdoor air temperature starts to get near the supply temperature an economizer cycle begins. The wheel's speed will slow in response to the set supply temperature. The wheel effectiveness is decreased, however, free cooling is being provided.

Figure 2.3C. SEMCO Model TE3-24-3Å/TE3-43-3Å

2.3.4 High Induction Diffusers

High induction diffusers must be used to supply low temperature air. Trane was chosen for these diffusers. These diffusers supply air tightly against the ceiling so that it induces the room air into its stream and the two can fully mix.

igure 2.3D. Trane's High Induction Diffuser Performance.

F

2.3.5 Radiant Panels and Baseboard Heating

Sterling's smooth face linear extrusion radiant panel Type D at 35Btu/SF was used to complete the DOAS/Radiant calculations. The linear extrusion radiant panels will architecturally work with the current ceiling of 2 by 4 acoustic tiles. Sterling's Versa-Line finned tube baseboard radiators were selected for the baseboard heating in the DOAS/Radiant application.

Figure 2.3E. Smooth Face Linear Extrusion Panel Type D by Sterling.

2.3.6 Chillers and Boilers

For purposes of modeling the alternative mechanical systems, the standard chillers and boilers were used from Trace. Two electric centrifugal chillers piped in parallel with variable primary flow characteristics were chosen each with a 0.52 kW/ton rating. The boiler chosen in Trace was a gas-fired 83% efficient boiler.

2.3.7 Pumps

Pumps were sized using Bell and Gossett's VSCS model catalog. Based on the flow and head required for each system the motor horsepower was taken from the pump curves at an average efficiency of about 80%.

2.4 Procedure and Calculations for Alternative Designs

The following sections give the details in designing the alternative systems. The procedure and calculations of the five base systems were described in this section. The fourth floor CAV system design will be described first. Based on the energy consumption of the fourth floor with and without an economizer the main building systems for the other floors will be analyzed with a waterside economizer.

- System 1: VAV with DX coil and electric heating coils
- System 2: VAV with chilled water and hot water coils
- System 3: DOAS/VAV with DX coils and electric heating coils
- System 4: DOAS/VAV with chilled water and hot water coils
- System 5: DOAS/Radiant with chilled water and hot water coils

2.4.1 New Space Designations

For simplicity of analysis, new spaces designations were created. The general idea of serving five different zones was kept; however, they were squared off from the center of the building so that there are four basic quadrants along with the south wing section. The cardinal directions were used in the designations, which will make it easier to know what unit is serving what space once familiarity sets in with the orientation of the building. "FL-1 NE" is referring to the equipment

serving the northeast corner of the first floor. Use Figure 2.4F and this key to correspond with the analysis ahead in this report.

2006

Figure 2.4A. New Service Designation for AHUs.

There will be 16 VAV air handling units in the alternative designs. There will be two DOAS air handling units: One serving the north section and one serving the south section.

2.4.2 Space Loads

Each system was modeled in a separate file using the software Trace by HVAC manufacturer Trane. Spaces were set up in the "Rooms" section of this program according to the floor area served by each air handling unit, the exterior wall, window, and roof areas, the internal load of the building, and other space properties. Once the simulation of the spaces was run, space loads were given. The simulations with VAV as an airside system all had the same space loads because the air handling units where included in the lighting/equipment internal loads. The simulation for the DOAS-Radiant model had slightly smaller space loads because the internal lighting/equipment loads were reduced without the air handling units on each floor. The following tables give each space heating and cooling peak load used in the simulations and calculations in the next sections. It should be noted that the sensible load in winter is a positive value, meaning that cooling is necessary in the winter.

	Coo	-	Heating	
	Sensible	Latent	Sensible	
	FLO	OR 1		
FL-1 NE	517725	20000	346867	
FL-1 NW	480276	20000	360694	
FL-1 SE	510438	20000	357927	
FL-1 SW	428994	20000	386150	
FL-1 T	540264	20000	348706	
	FLO	OR 2		
FL-2 NE	577357	20000	423699	
FL-2 NW	555183	20000	435325	
FL-2 SE	581823	20000	450197	
FL-2 SW	575225	20000	456172	
	FLO	OR 3		
FL-3 NE	582810	20000	384254	
FL-3 NW	609033	20000	385486	
FL-3 SE	579808	20000	440467	
FL-3 SW	590399	20000	442701	
FL-3 T	515911	20000	413353	
	FLO	OR 4		
FL-4	17202746	0	16812040	
	FLO	OR 5		
FL-5 E	401390	20000	224655	
FL-5 W	418200	20000	226799	

Table 2.4A. Space Heating and Cooling Loadswith VAV as an Airside System [Btu/h].

	600						
	600	ling	Heating				
	Sensible	Latent	Sensible				
	FLO	OR 1					
FL-1 NE	517725	20000	346867				
FL-1 NW	480276	20000	360694				
FL-1 SE	510438	20000	357927				
FL-1 SW	428994	20000	386150				
FL-1 T	540264	20000	348706				
	FLOO	OR 2					
FL-2 NE	577357	20000	423699				
FL-2 NW	555183	20000	435325				
FL-2 SE	581823	20000	450197				
FL-2 SW	575225	20000	456172				
FLOOR 3							
FL-3 NE	582810	20000	384254				
FL-3 NW	609033	20000	385486				
FL-3 SE	579808	20000	440467				
FL-3 SW	590399	20000	442701				
FL-3 T	515911	20000	413353				
	FLOO	OR 5					
FL-5 E	401390	20000	224655				
FL-5 W	418200	20000	226799				

Table 2.4B. Space Heating and Cooling Loads with Radiant Panels as the Parallel System [Btu/h].

2.4.3 Air Properties for Designs

All simulations and calculations were done using the same design air temperatures. The design outdoor air temperatures and properties for heating and cooling based on weather for Philadelphia, PA were taken from ASHRAE Fundamentals. The room air and supply air temperatures and properties were taken as typical design procedure for commercial office buildings. For the DOAS, the supply air temperature was decided to be 45F previously in this report. The following designations are used in Table 2.4C: OA—Outdoor Air, RA—Room Air, SA—Supply Air, DB—Dry Bulb Temperature, RH—Relative Humidity, WB—Wet Bulb Temperature, h—Enthalpy, rho—Density, HR—Humidity Ratio.

		Hea	ting		Cooling	
Properties	Units	OA	RA	OA	RA	SA
DB	F	11.0	70.0	92.0	75.0	55.0
RH	%	30.0	50.0	47.0	50.0	80.0
WB	F	7.2	58.6	75.0	62.4	51.6
h	Btu/lb	3.11	25.3	38.4	28.2	21.1
rho	lb/cf	0.070		0.084		
HR	gr/lb	2.8	54.5	113.5	64.0	52.0

Table 2.4C. Air Properties for Design VAV Conditions.

2.4.4 CAV System

The fourth floor was modeled as a constant volume system. The space loads, room air conditions, and supply air conditions are needed to find the required air flow for the space.

$$CFM_{L} = \frac{Q_{L}}{0.68 \cdot (W_{RA} - W_{SA})} CFM_{S} = \frac{Q_{S}}{1.08 \cdot (T_{RA} - T_{SA})}$$

Using the latent load and sensible load equations above, the flow rate can be found. There is no latent load in the space because it is used as a data center and people will not occupy the space for more time than maintenance requires. If there is a case where it is occupied

for more than a short time, outdoor air is still supplied based on the floor air requirement. The internal load of the space was 100W/SF which was recommended by a faculty consultant. This is a huge number which can be seen by the sensible load in Table 2.4D.

Floor 4 Design			
Sensible Load	17202.75 Mbh		
Supply Air Quantity	799423 CFM		
Outdoor Air Quantity	3000 CFM		

Table 2.4D. Peak Cooling Design Floor 4 CAV.

Floor 4 was simulated 5 different ways, all with CAV as the airside system. The original DX packaged units were modeled first. The second set of simulations involved the use of an electric centrifugal chiller with an electric boiler and with a gas-fired boiler. The last set of simulations included the use of the electric centrifugal boiler with an economizer and electric boiler and with an economizer and electric boiler.

The total system capacity is about 1550 tons. By the results of this analysis, it was decided that the systems being analyzed for the open office space will all be modeled with a waterside economizer.

2.4.5 VAV with DX coils and electric heating coils - System 1

A model of the existing system was built in order to have a comparison for the models of the alternative systems. Loads from the model were used to find the supply air quantity. The supply air requirement for each space was used to size the air handler. The total load served by the air handlers were used to size the cooling tower. Heating is provided by parallel fan powered boxes.

Required for Calculations

Space Sensible Loads	Occupancy	Room Dry Bulb Temperature
Space Latent Loads	Floor Area	Supply Dry Bulb Temperature

Calculation Procedure

Cooling Supply Air Quantity

Cooling is needed in both summer and winter for the SDPAH building. In both cases, the required outdoor air quantity should be calculated based on ASHRAE Standard 62.1. For open office space 5CFM/person and 0.05CFM/SF is required. The constant 0.8 is used as a

$$CFM_{vent} = \frac{0.06 \cdot Area + 5 \cdot People}{0.8}$$

This value will be used if it is more than the outdoor air required to satisfy the latent load. The outdoor air required to satisfy the latent load is determined by the following equation:

$$CFM_{L} = \frac{Q_{L}}{0.68 \cdot (W_{RA} - W_{SA})}$$

Jayme Antolik

40

Senior Thesis

Mechanical Option

CFM_L is the outdoor air quantity, Q_L is the latent load in Btu/hr, W_RA is the humidity ratio of the room air, and W_SA is the humidity ratio of the supply air. If the quantity required to satisfy the latent load is larger then it is supplied to the space. The rest of the space load, the sensible load, is satisfied by the air quantity calculated by the following equation:

$$CFM_{S} = \frac{Q_{S}}{1.08 \cdot (T_{RA} - T_{SA})}$$

The outdoor air and the air that satisfies the sensible load combined is the total supply air to the space. The full spreadsheet of space loads and required supply air quantities is found in Appendix B. This supply air quantity is used to size the air handling unit. A sample selection is provided in Appendix B. It should be noted that during the summer the room air temperature is 75F and humidity ratio is 64 and during the winter the room air temperature is 70 and humidity ratio is 54.5. During the winter a lower sensible load must be met and there is no latent load to be met. The lack of a latent load means that the minimum required outdoor air quantity based on Standard 62.1 must be supplied to the space.

The final cooling capacity for System 1 is 1150 tons.

Sample Calculation for Summer Cooling for FL-1 NE. CFM_vent = (0.06*Area + 5*People)/0.8 CFM_vent = 0.06*25000 + 5*90 = 1950CFM

CFM_L = Q_L/(0.68*(W_RA-W_SA)) CFM_L = 18000/(0.68*(64-52)) = 2206CFM *2206CFM controls

CFM_S = Q_S/(1.08*(T_RA-T_SA)) CFM_S = 625550/(1.08*(75-55)) = 28961 CFM

CFM_total = CFM_L + CFM_S = 2206 + 28961 = **31167CFM**

Jayme Antolik	41	Senior Thesis

Mechanical Option

The source of cooling and heating for the VAV system with a central water plant is chilled and hot water. The procedure for finding the required supply airflow for the DX-electric units should be used to find the supply airflow for air handling units being provided chilled and hot water. Because the airflow is the same and the standard face velocity is the same (500FPM) for both cases, the same minimum face area is required. Although the size and flow rate for the coils are not necessary inputs for Trace to do an energy analysis, they are needed for cost analysis. Carrier's Air Handling Unit Builder was used to find the sizes of the coils based on the load requirements, airflow, and the entering air dry bulb and wet bulb temperatures. For simplicity in all selections the entering dry bulb and wet bulb temperatures in the summer were assumed based on mixing conditions to be 76.2F and 63.3F, respectively. In the winter entering dry bulb and wet bulb temperatures were assumed to be 65.7F and 55.3F, respectively. The mixing equation used to find these temperatures was based on the ventilation outdoor air mixing perfectly with the return air from the space.

$$T_{Mixed} = \frac{T_{OA} \cdot CFM_{OA} + T_{RA} \cdot CFM_{RA}}{CFM_{SA}}$$

See Appendix B for full results of the mixing calculations.

The final equipment size for System 2 is 1150 tons, the same as System 1.

2006

2.4.7 DOAS/VAV — System 3 and System 4

SEMCO's packaged energy recovery systems give the choice of cooling with DX or chilled water coils and heating with electric or hot water coils. The load satisfied by the DOAS must be known to do calculations and equipment selection for the parallel system.

Required for DOAS Calculations

Sensible Load Latent Load

Supply Air Conditions Outdoor Air Conditions Enthalpy Wheel Sensible & Latent Effectiveness

Room Air Conditions Ventilation Airflow

Calculation Procedure

DOAS Cooling Conditions

The first calculation that should be done is the required outdoor airflow. This should be based on ASHRAE Standard 62.1 and on the latent load (Refer to System 1 of the Procedure and Calculations section for more details on these calculations). The larger of the two values should be used in the DOAS calculations. The supply airflow is also what is used to select a SEMCO air handling unit. A sample selection is provided in Appendix B for the North DOAS air handling unit.

Figure 2.4B. DOAS Air Handling Unit State Points.

Figure 2.4B shows the different state points within the DOAS air handling unit used for the calculation procedure. Outdoor air enters the enthalpy wheel at summer conditions, 92F DBT and 75WBT, an ASHRAE design guideline. From this we can get the different properties

Jayme Antolik	43	Senior Thesis
		000/

of the outdoor air. Supply air conditions were set at 45F and saturated in the previous discussion and the room air conditions are 75F dry bulb and 50% relative humidity. Table 2.4E gives the conditions of the outdoor, supply, and room air.

	A - OA -	C - SA -	D - RA -
Property	Outdoor Air	Supply Air	Room Air
DBT [F]	92	45	75
WBT [F]	75	45	62.4
% RH	47	100	50
W [g/lb]	113.5	44	64
h [Btu/lb]	38.4	17.6	28.2

Table 2.4E. Summer DOAS Outdoor, Supply, and Room Air Conditions.

The temperature and humidity ratio at state B governs the effectiveness of the enthalpy wheel. The temperature and humidity ratio at state B can be calculated using the enthalpy wheel effectiveness. The sensible effectiveness can be calculated using the following equation:

$$\varepsilon_{\text{SEN}} = \frac{\text{DBT}_{\text{A}} - \text{DBT}_{\text{B}}}{\text{DBT}_{\text{A}} - \text{DBT}_{\text{D}}}$$

The effectiveness is assumed to be 0.80, therefore, this equation can be solved for the dry bulb temperature at state B (DBT_B).

 $DBT_B = DBT_A - \epsilon_{SEN} \cdot (DBT_A - DBT_D)$

The humidity ratio at state B can be calculated using a similar equation.

$$W_B = W_A - \varepsilon_{LAT} \cdot (W_A - W_D)$$

Mechanical Option

The dry bulb temperature and humidity ratio reduction at point B will now determine the total cooling coil load. The required outdoor airflow should be used in the following series of equations to calculate the load across the cooling coil.

$$\label{eq:QCC,S} \begin{array}{rcl} = & 1.08 \ \cdot \ CFM_{OA} & \cdot \ (\ DBT_B \ - \ DBT_C \) \\ \\ Q_{CC,L} & = & 0.68 \ \cdot \ CFM_{OA} & \cdot \ (\ W_B \ - \ W_C \) \\ \\ Q_{total} & = & Q_{CC,S} \ + \ Q_{CC,L} \end{array}$$

$$Q_{cc,S} = & 1.08 \ ^* 1950 \ ^* (78.4 \ - \ 45) = & 70.340 \ MBH \\ Q_{cc,I} & = & 0.68 \ ^* 1950 \ ^* (73.9 \ - \ 44) = & 39.647 \ MBH \\ \\ Q_{total} & = & 70.340 \ + & 39.647 \ = & 109.988 \ MBH = & 9.17 \ tons \end{array}$$

The total and sensible load across the cooling coil is used to select a coil with Carrier's AHU Builder.

In order to find the parallel system cooling capacity the DOAS cooling capacity must be calculated.

$$Q_{SA} = 1.08 \cdot CFM_{OA} \cdot (T_D - T_C)$$

 $Q_SA = 1.08 \times 1950 \times (75 - 45) = 63.180MBH$

This is where the room sensible load becomes important. The DOAS has satisfied a certain portion of the sensible load (Q_SA) and this can be subtracted from the room sensible load to find the required capacity of the parallel system.

 $Q_{parallel} = Q_{SEN} - Q_{SA}$

 $Q_SEN = 625.550MBH$

Q_parallel = 625.550 - 63.180 = 562.370MBH

DOAS Heating Conditions

Table 2.4F gives the outdoor, supply, and room air conditions for heating design. Remember, cooling is needed so there is no need for a heating coil within the DOAS unit.

		C - SA -	D - RA -
Property	Outdoor	Supply Air	Room Air
DBT [F]	11	45	70
WBT [F]	7.2	45	58.6
% RH	30	100	50
W [g/lb]	2.8	44	54.5
h [Btu/lb]	3.11	17.6	25.3

Table 2.4F. Winter DOAS Outdoor, Supply, and Room Air Conditions.

The same basic equations are used for heating conditions.

 $DBT_{B} = DBT_{A} - \varepsilon_{SEN} \cdot (DBT_{A} - DBT_{D})$ $W_{B} = W_{A} - \varepsilon_{LAT} \cdot (W_{A} - W_{D})$

Building space FL-1 NE will be used to as an example for the heating calculations.

 $DBT_B = DBT_A - Eff^*(DBT_A - DBT_D)$ $DBT_B = 11 - 0.8^*(11 - 70) = 58.2F$ $W_B = W_A - Eff^*(W_A - W_D)$ $W_B = 2.8 - 0.8^*(2.8 - 54.5) = 44.2 \text{ g/lb}$ ENTHALPY WHEEL E - 11F/2.8g/lb D - 70F/54.5g/lb A - 11F/2.8g/lb B - 58.2F/44.2g/lb

Figure 2.4D. Enthalpy Wheel Effectiveness – Winter.

Appendix B gives a sample selection of the North DOAS air handling unit.

Jayme Antolik	46	Senior Thesis
Mechanical Option		2006

Parallel VAV

The design procedure for System 1 and 2 in the Procedure and Calculations section is used to calculate the supply air required for the parallel VAV system. The supply air for System 3 and 4 is less than that supplied by the existing case. The percent reduction can be found in Table 2.4G. Using the new supply air quantity, McQuay units were selected for the parallel VAV application. A sample selection can be found in Appendix B.

	Sup	ply Air	Percent	
Space	Existing	System 3 / 4	Reduction	
	FL	DOR 1		
FL-1 NE	28000	25200	10.00%	
FL-1 NW	28000	25200	10.00%	
FL-1 SE	28000	23750	15.18%	
FL-1 SW	28000	23750	15.18%	
FL-1 T	28000	27300	2.50%	
	FL	OOR 2		
FL-2 NE	31500	28500	9.52%	
FL-2 NW	31500	28500	9.52%	
FL-2 SE	31500	29000	7.94%	
FL-2 SW	31500	29000	7.94%	
FLOOR 3				
FL-3 NE	35000	30000	14.29%	
FL-3 NW	35000	30000	14.29%	
FL-3 SE	35000	29450	15.86%	
FL-3 SW	35000	29450	15.86%	
FL-3 T	35000	27200	22.29%	
	FL	DOR 5		
FL-5 E	28000	20700	26.07%	
FL-5 W	28000	20700	26.07%	

Table 2.4G. Supply Air Reduction for Parallel VAV System.

The total supply air for the DOAS/VAV system is that provided by both the DOAS and VAV units. These two air streams are mixed after both have been conditioned. The following equation was used to find the supply air temperature for the mixed air:

$$SAT_{Mixed} = SAT_{VAV} \cdot \frac{CFM_{VAV}}{CFM_{TOTAL}} + SAT_{DOAS} \cdot \frac{CFM_{DOAS}}{CFM_{TOTAL}}$$

SAT—Supply Air Temperature, CFM—Cubic Feet per Minute

See Appendix B for the mixed air calculations.

The final equipment size required by SDPAH for System 3 and 4 is 1236 tons.

Machanical Ontion		
Jayme Antolik	47	Senior Thesis

2.4.8 DOAS/Radiant with chilled water and hot water coils — System 5

Because the latent load of the space remains the same as the systems change, the dedicated outdoor air design procedure remains the same for all three dedicated outdoor air systems.

Required for Radiant Panel Calculations

Calculated Parallel System Capacity Panel Entering Water Temperature Panel Sensible Load Absorption Capacity

Calculation Procedure

Panel inlet water temperature must be at least one degree above room dew point temperature. Room design dew point is 55F, therefore the water temperature must be at least 56F. Using Sterling's design procedure, the estimated temperature rise is 10F— leaving water temperature is 66F. Half of the temperature rise is added to the entering water temperature to find the mean water temperature, which is 61F. The difference between the room dry bulb temperature and the mean water temperature, 14F, is used to find a set of panels that will work with out design. If we restrict the ceiling to 50 percent coverage by radiant panels then the capacity of the panel per square foot can be calculated.

Area_{panels} =
$$\frac{\text{Area}_{\text{ceiling}}}{2}$$

$$Q_{perSF} = \frac{Q_{parallel}}{Area_{panels}}$$

Using FL-1NE as an example: Q_perSF = 436725Btu/hr ÷ 12500SF = 34.938Btu/hr per SF

Panel selection C at 35Btu/SF will work. Using 2 by 4 panels each panel will remove 280Btu/hr. Dividing the total parallel load by the capacity of the panel will give the number of panels for the space.

Panels = 436725Btu/hr ÷ 280Btu/hr / Panel = 1560 Panels

Optimizing the pressure drop, capacity, and flow rate for a circuit will give the absorption,

Jayme Antolik	48	Senior Thesis

pressure drop, and flow per circuit. See Appendix B for the results of this optimization. In space FL-1 NE, 1GPM was chosen as the flow rate because the pressure drop for higher flow rates were more than tripled that of the 1GPM flow. This corresponds to a pressure drop of 6.8 FT WG per circuit and absorption of 5000Btu/hr per circuit. The number of circuits can be calculated by dividing the total parallel load by 5000Btu/hr. Eighty eight (88) circuits will be needed for this space. Now the radiant ceiling panels can be laid out.

A circulation pump will be assigned to each space, increasing the required pumping energy. To counterbalance this increase in energy, the fan energy will be decreased tremendously since there are only two DOAS air handling units.

The final equipment size required by SDPAH for System 5 is 840 tons.

*All system calculation spreadsheets can be found in Appendix B.

2.5 Results and Recommendations

An analysis on the fourth floor CAV system was completed first to find the savings potential of an electric centrifugal chiller with and without an economizer and to find the savings potential of a gas-fired boiler compared to an electric boiler. The result of the analysis on the fourth floor data center helped to do analysis on the rest of the building spaces. A final recommendation will be made based on energy usage, system costs, lost rentable space, and constructability.

2.5.1 Floor 4 Results

The fourth floor was simulated as a traditional CAV airside system with different waterside systems. The purpose of this analysis was two-fold. The first purpose was to find an energy efficient system that can be useful for the fourth floor's application. The second purpose was to choose what systems the office spaces would be modeled with based on the results from Floor 4's simulations. The full results are detailed in Appendix B. The total energy savings of using a central chilled water and hot water plant can be seen in Chart 2.5A. The base case is the packaged McQuay SWP units. Not only does this system use a lot of energy, 6074637.7 kBtu/yr, but it would require a large amount of floor space to put the units. For data centers, usually air is pushed through underfloor air distribution. The floor panels are perforated and air can be circulated within the electrical and data equipment. Special structural designs should be considered for this system.

From Chart 2.5A, it can be seen that a chiller saves about 350 kBtu per year. Implementing a gas-fired boiler increases this amount by about 6 kBtu per year and using a plate and frame heat exchanger adds another 6 kBtu per year of savings. For the analysis of the office space, it was decided that an electric water cooled chiller with an economizer and a gas-fired boiler would be the basis of comparison to the existing system on the water side of the system.

Chart 2.5A. Total Energy Savings Using an Electric Centrifugal Chiller—Floor 4.

2.5.2 Energy Usage and Cost

A good argument for choosing a particular system is yearly energy cost. The total source energy consumed per year by each system is given in Chart 1. "Source" means the part of the mechanical system using energy. The energy represented in this chart includes all forms of energy used in the systems (electric, gas, and water). The values are in MBtu/year—million Btu/hr per year. Compressor energy, the tower fan energy, and the condenser pump energy are all included in the "Primary Cooling" category. It was expected that the DX/Electric systems would use more energy, thus cost more to operate. It was unknown exactly how much more energy the DX/Electric systems would require. System 1—VAV with DX and electric coils and system 3—DOAS/VAV with chilled and hot water coils utilize the largest kW per ton which is why they use the most energy in the end. The systems using VAV as the primary system or as a parallel system require the most fan energy and the radiant system uses the most pumping energy.

Chart 2.5B. Total Source Energy Consumption by System.

The amount of piping due to the radiant panels is the main reason for this increased piping energy. In general, the high energy consumption is due to the large amount of cooling needed in the summer. During the winter, the chiller can use the economizer cycle to provide free cooling. In general, using a central chilled water plant saves on energy consumption. If the decision of what system should be used was solely based on energy consumption it would be easy—the DOAS/Radiant system would be chosen, however, most of the time first cost is the deciding factor for owners. For full energy consumption results, see Appendix B.

Energy usage is directly related to energy cost. Table 2.5A shows the energy cost per year in US dollars for each system. These costs are based on energy rates from PECO— Philadelphia Electric Company and Philadelphia Water Department (See Appendix B). Rates as well as more detailed yearly cost information can be found in Appendix B. It is not surprising that electricity is the most costly of the energy sources. By choosing a central chilled and hot water plant, savings compared to the all electric systems can be from \$287,603 to \$634,504 per year. For heating, the DOAS/Radiant system was the highest in cost which should be expected since low temperature air is supplied directly to the space unlike the DOAS/VAV system where it was mixed beforehand. Still, the radiant system holds for the lowest yearly operating cost while all electric systems are highest in operating cost.

	1	2	3	4	5
Electric	\$1,697,433	\$1,463,243	\$1,793,130	\$1,495,847	\$1,180,379
Gas	\$0	\$37,455	\$0	\$34,661	\$41,100
Water	\$152,379	\$140,887	\$170,704	\$145,723	\$107,851
Total	\$1,849,812	\$1,641,585	\$1,963,834	\$1,676,231	\$1,329,330

Table 2.5A. Yearly Operating Cost Based on Energy Consumption.

2.5.3 First Cost

The first cost and yearly energy consumption cost usually go hand in hand. Saving money on energy in the future may cause an owner to spend a bit more up front on first cost. A number of sources were used to find the first cost of the different systems analyzed in this report. Quotes from the actual first cost of the existing system were modified to provide first cost for the alternative systems. RS Means was used to find cost of equipment that was not used in the existing system and some online resources were used to compliment RS Means. Results are summarized in Table 2.5B. With the use of DOAS/Radiant, the chiller size is reduced by more than 300 tons from the DX original system. This causes great reductions in chiller cost and when only considering the alternatives with a water cooled chiller, the option of the dedicated outdoor air system and radiant panels is lest costly than

the alternatives with VAV as an airside system. The systems packaged using DX units are the least expensive, but their energy use is very high. In this case, for a savings in energy use and a slightly higher first cost, the DOAS/Radiant system should be

chosen.

	VA	DOAS/Radiant			
			DOAS/VAV DX-Electric CHW-HW		CHW-HW
	DX-Electric		DX-Electric		01111-1111
Required Chiller Size [tons]	1150	1150	1236	1236	840
Condenser Water Flow	4000	3500	4300	3750	2500
Chilled Water Flow		2500		2800	2000
Hot Water Flow		2250		2250	2250
	•				
АНИ	\$700,000	\$1,050,000	\$660,000	\$911,000	\$81,000
Chiller		\$460,000		\$495,000	\$340,000
Pump		\$38,000		\$42,000	\$30,000
CT/Fan	\$120,000	\$105,000	\$130,000	\$115,000	\$75,000
Pump	\$60,000	\$52,000	\$65,000	\$55,000	\$38,000
Boiler		\$38,000		\$38,000	\$38,000
Pump		\$34,000		\$34,000	\$34,000
Resistance Heaters	\$50,000		\$50,000		
VAV boxes	\$310,000	\$390,000	\$340,000	\$430,000	
Radiant Panels					\$2,750,000
Pumps					\$30,000
Piping					\$40,000
Baseboard Heaters					\$120,000
CDW/CHW/HW Piping (Primary)	\$290,000	\$195,000	\$320,000	\$250,000	\$144,000
Ductwork (Mains)	\$2,000,000	\$2,000,000	\$2,000,000	\$2,000,000	\$500,000
Totals	\$3,530,000	\$4.362.000	\$3,565,000	\$4,370,000	\$4,220,000

Table 2.5B. First Cost of Base and Alternative Mechanical Systems.

Senior Thesis

2.5.4 Emissions

Exelon Corporation, the parent company of PECO, generates electricity primarily with the use of nuclear power. Some coal, oil, natural gas, and hydro power also help to generate

the electricity provided by Exelon Corporation. The emissions based on the electricity consumed for each system can be calculated by knowing the percentages of the different resources used to make electricity. Using nuclear power as a primary source for producing electricity helps save on emissions greatly as it does not produce any pollutants. Keeping the use of coal to produce electricity to

Coal	6.0%
Oil	4.0%
Nat. Gas	1.0%
Nuclear	88.0%
Hydro/Wind	1.0%
All	100.0%

Table 2.5C. Generation Fuel Mix.

a minimum helps too since it produces the most NOx. Exelon Corporation's 2004 quantities were used to find the amount of particulates, SO2, NOx, and CO2 produced by electricity consumed by each system summarized in Table 2.5D. (The detailed result of these calculations can be found in Appendix B.) It is not surprising that the amount of emissions is proportional to the amount of electricity consumed and therefore System 3 produces the most emissions.

	Ibm Pollutant					
System	Particulates	SO2	NOx	CO2		
1	20808.1	244101.2	143723.3	44685834.0		
2	17974.1	210855.6	124148.8	38599804.1		
3	21969.9	257730.3	151747.9	47180815.2		
4	18322.5	214942.7		39348004.3		
5	14400.1	168929.1	99463.1	30924628.5		

Table 2.5D. System Emissions due to Electricity Consumption.

NOx is also produced from the burning of natural gas in a boiler. Since a boiler was used as the heating source in the central hot water plant, NOx calculations can be done based on the NOx emissions for the boiler. The NOx emission from the boiler is 0.144lbm/year per 1 MMBtu, which is quite small compared to the amount given off by the use of electricity.

55

2.5.5 Lost Rentable Space

The School District of Philadelphia occupies the entire building and therefore any space saved from an alternative system is theirs to use. The alternative systems using VAV as an airside system (Systems 2-4) will require the same mechanical room space that the existing system requires because the amount of air handling units were not reduced. In fact, Systems 3 and 4 with the DOAS, will require more mechanical room space for the new air handling units. The DOAS/Radiant system, System 5, will require the least amount of mechanical room space. For the two DOAS air handling units, one can be placed on the fifth floor and one can be placed on the third floor, North wing. Small pump rooms will be required on each floor for circulation of the cool water in the radiant panels but these rooms will not need nearly as much space as the air handling units. These require no more than 100 SF of space which is about 1/12 of what the AHUs require.

2.5.6 Integration

The SDPAH is located in an existing building. This calls for special attention to the ability to construct the system. The structural integrity of the building must be checked. Constructing a chiller and boiler on the roof transfers more load to the structural members, the columns, beams, girders. The members must be checked to make sure they are strong enough to transfer the load to the ground. The existing building at 440 North Broad poses an advantage to a typical speculative office building in that it was originally built as a printing facility with floor live loads of 125 PSF. Integration of the structural system will be further investigated in the Breadth section of this paper (3.0).

Constructing the system is another issue that must be addressed. Placing chillers on the roof would require a crane. The location of this equipment is important to the surrounding community. Will it cause disturbances in everyday life of downtown Philadelphia? Also, moving material around within the building is an important concern. The freight elevators will be a great assistance in moving material vertically from floor to floor. These topics too will be discussed in the Breadth section of this paper.

2.5.7 Recommendation

Although the existing system is not expensive and can be easily installed, the DOAS/Radiant with water cooled chiller and waterside economizer provides a great savings in yearly operating cost and would be recommended to an owner if he or she desired a central water plant. At around 1.3 million dollars to operate yearly, the DOAS/Radiant system offers a payback period of about 1 year, 4 months relative to the existing system. Comparatively to the VAV with central chilled water and hot water, the pay back would be 6 months. In either case, the energy savings is worth the first cost.

A possible consideration for further investigation is using air cooled chillers with and without an airside economizer. Air cooled chillers are smaller than cooled, water usually available up to about 400 tons so they would have to be used in parallel. The air cooled chillers are typically more expensive than water cooled, but save first cost without having to buy a cooling tower.

	VAV		DOAS/VAV		DOAS/Radiant
	DX-Electric	CHW-HW	DX-Electric	CHW-HW	CHW-HW
Mechanical System Cost	\$3,530,000	\$4,362,000	\$3,565,000	\$4,370,000	\$4,220,000
Yearly Energy Consumption	\$1,849,812	\$1,641,585	\$1,963,834	\$1,676,231	\$1,329,330

Table 2.5E. Cost Summary.

Jayme Antolik

3.0 Breadth Work — Integration of Structural System and Constructability

3.1 Overview

The Philadelphia School District chose to relocate in an existing building instead of building a new facility. A concern with moving into an existing building is constructing the new building systems within it. All building systems must be integrated with the existing structure. The first topic to be explored is structural compatibility. The weight of the system to be constructed should be checked against what the existing structural system can withstand. Modifications may be needed in order to fit the new equipment in the building or on the roof.

The second topic to be discussed is constructability. Since 440 North Broad is an existing building there are boundaries as to how equipment can be moved inside the building and once inside, how it can be moved around within the building. Heavy equipment like cranes may need to be positioned and the surrounding areas must be considered when locating the crane.

The mechanical system recommendation was to install a DOAS/Radiant system with a water cooled centrifugal chiller and a gas-fired boiler. This requires placing a chiller and a cooling tower on the roof. The structural system will be checked and a constructability study will be completed.

2006

3.2 Structural Analysis

The existing structural system consists of 5 inch slab on deck with steel columns and girders. The existing mechanical system required a cooling tower at 44,000 pounds (lbs) to be placed on the roof. The designers used column extensions for one central bay and built a new exterior concrete slab about 4 feet above the roof. The cooling tower sits on another slab which lies on top of the addition floor. The mechanical system recommendation requires two new rooftop packaged chillers in addition to the existing cooling tower. Because the existing design using column extensions works for the cooling tower, the same design will be modeled for the chillers. The original building was a printing facility which had floors designed for 125 PSF. Because the building is now being used as office space the live load will be assumed to be 80 PSF so that corridors can be placed at any location. A dead load of 75 will be assumed due to a 5" normal weight concrete slab and MEP loads on the floor.

This structural analysis will include modeling the bay that will be affected by the mechanical equipment in SAP2000 and in RAM, two structural modeling programs. The reason for using two different programs will be explained further on. It is required of the structural system to be able to take the load of the new rooftop chillers each weighing 70,000 lbs. They will take up a total area of 15 by 8 square feet. A typical bay in the School District of Philadelphia Administration Headquarters is 25 feet by 25 feet. The proposal is to build another floor above a central bay away from the cooling tower, Figure 3.2A. Like mentioned before, this is not what the cooling tower lies on-it is another slab which is on top of the new floor. The top slab is 24 by 18 feet, red in Figure 3.2B and was modeled in SAP so that the reactions can be found and placed on the model in RAM. This was done by placing pins at each point labeled 1-8 in Figure 3.2B and by placing a distributed load over the area of

the slab. Distributed Load = 70,000 lbs x 2 ÷ (24' x 18') = 324 PSF

Figure 3.2B. New Mechanical Floor Above Roof.

The output can be seen on the next page. If the beams and the columns on the top and bottom floors of the existing building are the same size or larger than the ones given in the RAM model, then the same design for the existing cooling tower can be used to design a new floor for a chiller for the DOAS/Radiant system. The existing column extensions for the cooling tower are W12x40 and the first floor columns are W12x72. The existing beams are HSS20x12x12 and HSS12x6x1/2. The beams were set in the RAM program and it was allowed to calculate the column sizes. The results from RAM

This gave the reaction of 1 KIP at points 2, 3, 6, and 7 and 136.2 KIPS at points 1, 4, 5, and 8. The deflection can be seen on the next page. The 136.2 KIP loads were converted to a line load acting from points 1 to 5 and from points 4 to 8.

Line Load = 136.2 KIP x 2 ÷ 18' = 15.13 KIP per LF

This would be worst case scenario at full load design. These reactions were then put on the RAM model, Figure 3.2C. The model was ran using the dead and live loads assumed per floor and these point and line loads.

show that the column sizes needed for this structural renovation coincide with what is in the building currently. The framing plan also coincides with the W16s currently in the building. See Appendix C for the beam design calculations

Figure 3.2D. Top Slab without Deflection.

Figure 3.2E. Top Slab with Deflection.

3.2.2 RAM Results

Figure 3.2H. New Floor Beams.

Senior Thesis

3.3 Constructability

This constructability study will include a sequence schedule and a site analysis. The sequence schedule will compare installing the VAV system compared to installing the DOAS/Radiant system. The site analysis will give locations of construction equipment and how it affects the surrounding neighborhood.

3.3.1 Sequence Schedule

The sequence schedule is appropriate for installing both the VAV and the DOAS/Radiant system. The expansive areas within the SDPAH accommodate having large lay down areas—areas where construction crews can keep material until it is time for them to install or build it. The spaces within the building are similar which allows for an even distribution of equipment and material.

Each sequence in this schedule includes the construction for five different activities. The first activity is the construction of interior walls. The second set of activities includes the construction of the ceiling plenum. This is done by constructing the systems that are highest in the plenum first. The plumbing piping usually requires a fall for a certain length so this goes into the plenum first. The ductwork takes up a lot of space and is installed next. The sprinklers are installed after the ductwork but before the electrical equipment and lighting is installed last. The sequences will be laid out by wing of each floor.

Figure 3.3A. Sequence Numbering.

The first crew will move into space 1 and build the interior walls When they are finished they will move to space 2 (Part a, Figure 3.3B) and the plumbing crew will come in to space 1 to install plumbing lines. The ductwork crew will begin installation after the plumbers and so on and so forth. This is described visually in Figure 3.3B.

Figure 3.3B. Sequences Started and Finished.

For the VAV system, the ductwork will be assumed to take the longest time to install. From The weight of the galvanized steel ductwork was estimated to be 8 pounds per square foot at 0.2 inches thick. The estimate of the area of ductwork per sequence was taken from the mechanical construction documents and it was found that ductwork would take 35 days to install.

Installation of Ductwork		Installation of Radiant Panels			
Weight of Ductwork	500000	lbs	Length of Pipe 80000 ft		ft
Total Daily Output	14250	lbs	Total Daily Output	5250	lbs
Duration to Install	35	days	Duration to Install	15	days

Figure 3.3C. VAV Critical Activity

Figure 3.3D. Critical Activity

For the DOAS installation, each sequence will include the same activities as are included in the VAV installation, but with the addition of installing the radiant panels. The radiant panel installation will be included in the ductwork activity. The amount of ductwork included with the DOAS is minimal compared to that included in the VAV application. An assumption will be made that installing the radiant panels will take longer than the other activities—15 days. These activities were modeled using a scheduling program called Primavera. The ductwork and the radiant panels are on the critical path, meaning that if the crews installing

64

this equipment falls behind schedule, it affects the activities after them as well (sprinklers and electrical), putting the whole project behind schedule. The VAV system was found to take 256 days, approximately 8 and ½ months. The radiant panel system was found to take 110 days to install the whole project, approximately 3 and 2/3 months.

3.3.2 Site Analysis

The existing site has many opportunities for easy construction. There are several freight elevators that can be used to move material from floor to floor within the building. Page 10 includes a table of all elevators located within the building. There are loading docks on the 15th Street side of the building where material can be brought into the building. There is a parking lot for Turner's construction office where a crane can be located (the red box). The crane would be necessary to move the chillers and cooling towers onto the roof of the building. The only issues with construction could be getting material into Philadelphia. The downtown location of the building and the tight streets that are around it could make it difficult for delivery trucks to get through. But once on site, construction crews have many paths they can use in order to move the system's equipment throughout the building.

Figure 3.3E. Site Analysis.

References

ASHRAE Handbook of Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 2001

"CoolTools Chilled Water Plant Design and Specification Guide." Pacific Gas and Electric Company. May 2000.

CostWorks. R.S. Means Inc. 2005

"Dedicated Outdoor Air Systems." http://doas-radiant.psu.edu/

McQuiston, Faye, Parker, Jerald, Spitler, Jeffrey. Heating, Ventilation, and Air Conditioning Analysis and Design. 5th Edition. John Wiley&Sons. 2000.

Acknowledgements

I would like to thank the following:

My fellow mechanical options—especially Evan, Jessica, Jenny, and Yulien—for putting up with my bad moods and for all their help with this project.

My fellow "other" options—Lourdes, for being there and for help with my structural breadth, Bryan—for his help with my construction management breadth.

The mechanical faculty—especially my advisor, Jae-Weon Jeong—for all their help with this project.

Mike Rush from Cannon Design for answering all of my questions regarding the Administration building's mechanical system.

Bill Harrington from Turner Construction for giving me a tour of the semi-finished Administration building.

My ipod. 😊

Appendices

Included in this section are

Appendix A Building Overview

Appendix B Alternative Mechanical Designs

Appendix C

Integration of Structural System and Constructability

Appendix A—Building Overview

- 1. McQuay Self-Contained Packaged DX Air Handling Unit with Economizer Coil.
- 2. Sample Space and Coil Loads for Space FL-1 NE System 1—VAV-DX/Electric.

^{1.} McQuay Self-Contained Packaged DX Air Handling Unit with Economizer Coil.

Appendix 2. Sample Space and Coil Loads for Space FL-1 NE System 1—VAV-DX/Electric.

The internal loads of the heating coil show a positive value which means the space needs cooling even in the winter. The envelope heating loads are negative which means the parallel fan powered box will be activated to supply warm are to that space.

> Room Checksums By ae

FL-1 NE

	COOLIN	IG C	OIL PEAK			CLG SPAC	E PEAK			HEATING	COIL PEAK		TEM	TEMPERATURES		
Pea	aked at Time: Outside Air:			o/Hr: 7/15 /HR: 90/74/1	101		r:7/11 9:83			Mo/Hr: OADB:			SADB Plenum	Cooling 55.0 75.0	1	ting 70.0 70.0
			Plenum Sens. + Lat Btu/h		Percent Of Total	Sensib	e Percent e Of Total			Space Peak Space Sens Btu/h	Tot Sens	s Of Total	Return Ret/OA En MtrTD	75.3 76.6 0.1		70.0 14.0 0.0
Envelope Load		luin	Blum	Blu/n	(%)	Blu	h (%)	Envelope	Loade	Blum	Blu/r	(%)		0.1		0.0
Skylite Solar	5	n	0	n	0.00		0 0.00			0	c	0.00	En Frict	0.7		0.1
Skylite Cond		ñ	0	0	0.00		0 0.00			0			FILFILL	0.7		0.1
Roof Cond		n	0	0	0.00		0 0.00			0						
Glass Solar	54.		0	54.721	6.82					0						
Glass Cond		345	0	9,345	1.16	4,62				-42,110						
Wall Cond	17.		0	17,872	2.23	10.42				-42,110			A	IRFLOWS		
Partition	17,	872 N	U	17,872	2.23		0 1.00			-37,048				Cooling	Hard	
		0		0	0.00					0				Cooling	Heat	ung
Exposed Floor		0		0	0.00					0			Vent	2,500		0
Infiltration							0 0.00						Infil	0		
SubTotal ==>	81,	938	0	81,938	10.21	91,10	0 14.51	SubTota	9) ==>	-79,758	-79,758	41.74	Supply	28,161		0
								Internal L	oade				MinStop/Rh			0
Internal Loads									uaus	511.050	511.050	367.04	Return	28,161		0
Lights	511,		0	511,950	63.80	511,95				511,950			Exhaust	2,500		0
People	45,			45,000	5.61	25,00				25,000			Rm Exh	0		0
Misc		0	0	0	0.00		0 0.00			0			Auxil	0		0
Sub Total ==>	556,	950	0	556,950	69.40	536,95	0 85.49	SubTota	9/==>	536,950	536,950	-280.99				
Ceiling Load		0	0	0	0.00		0 0.00	Ceiling Lo	bad	0			ENGIN		cks	
Ventilation Loa		0	0	123,211	15.35			Ventilatio		0						
Ov/Undr Sizing		0		0	0.00		0 0.00	Ov/Undr S		-536,950				Cooling	Heat	ing
Exhaust Heat			-741	-741	-0.09			Exhaust H			0		% OA	8.9		
Sup. Fan Heat				32,889	4.10			OA Prehe	at Diff.		-111,336	58.26	cfm/ft ²	1.13		0.00
Ret. Fan Heat			8,222	8,222	1.02			RA Prehe	at Diff.		0		cfm/ton	421.11		
Duct Heat Pkup)		0	0	0.00			Additiona	l Reheat		0		ft²/ton	373.85		
Reheat at Desi	gn			0	0.00			System P	lenum He	eat	0	0.00	Btu/hr·ft ²	32.10	- 4	4.45
Grand Total ==>	638.	888	7.481	802.469	100.00	628.05	0 100.00	Grand Tota	d ==>	-79.758	-191.094	100.00	No. People	100		
or and rotal			COOLING				- 100.00	· orana roa		AREAS			ATING COIL		-	
	Total Capa	city	Sens Cap.			N DB/WB/HR	Leave D	B/WB/HR		Gross Total	Glass	HE/		Coil Airflow		Lva
		1Bh	MBh	cfm	°F	°F gr/lb	°F	°F gr/lb		01030 10101	ft ² (%)		MBh	cfm	۴F	۴F
Main Clg	66.9 80	2.5	701.1	27.750	76.6	61.7 58.5	53.9 5	51.6 53.3	Floor	25,000		Main Htg	0.0	0	0.0	0.0
Aux Cla	0.0	0.0	0.0	21,130	0.0	0.0 0.0		0.0 0.0	Part	25,000		Aux Hta	-79.8	Ő	0.0	0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0 0.0		0.0 0.0	ExFlr	0		Preheat	-111.3	2,500	14.0	53.9
oprivent	0.0	0.0	0.0	0	0.0	0.0 0.0	0.0	0.0 0.0	Roof	0	0 0	Reheat	-111.3	2,500	0.0	0.0
Total	66.9 80	2.5							Wall	5,968	1,442 24	Humidif	0.0	0	0.0	0.0
i otali	00.8 80	12.0							wall	0,908	1,442 24	Opt Vent	0.0	0	0.0	0.0
														0	0.0	0.0
									1			Total	-191.1			

Appendix B—Alternative Mechanical Designs

- 1. DOAS Analysis.
- 2. Supply Air Requirements for VAV System.
- 3. Mixed Air Conditions.
- 4. McQuay Air Handling Unit Example Selection Procedure.
- 5. Mixed Air Dry and Wet Bulb Temperatures.
- 6. SEMCO Air Handling Unit Example Selection Procedure.
- 7. Radiant Panel Optimization.
- 8. System Calcs.
- 9. Energy Consumption per System.
- 10. Energy Rates.
- 11. Yearly Operating Cost.
- 12. Emissions Generated per System.
- 13. Floor 4 Systems Analysis Energy Consumption Results.
- 14. Chilled Water Distribution Schematic—DOAS/Radiant, System 5.

1. DOAS Analysis.

The following figures and tables show the difference in required cooling capacity for the three difference configurations of a DOAS air handling unit.

- 1. With Enthalpy Wheel and Sensible Wheel.
- 2. With Enthalpy Wheel.
- 3. Without Heat Recovery.

Figure D1. DOAS AHU with Enthalpy Wheel and Sensible Wheel.

Figure D2. DOAS AHU with Enthalpy Wheel.

Figure D3. DOAS AHU without Heat Recovery.

Jayme Antolik

With Enthalpy Wheel and Sensible Wheel.

Room Properties Area [SF] 25000 25000 Floor to Ceiling Height [FT] 12.5 13.5 13.5 Floor to Ceiling Height [FT] 15.5 13.5 13.5 Volume [CF] 31.2500 31.2500 31.2500 Just 1000 Occupancy 100 34000 34000 Supply Air Required to Satisfy Latent Load at 44F/Saturated 1471 1471 Room Loads Q SEM [btu/hr] 20000 20000 Required Outdoor Air Quantity [cfm] 2500 32500 Enthalpy Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 A - OA DBT [F] 92 92 92 Outdoor Air WBT [F] 75 75 To Sign Properties NRH 47 47 W [gfb] 113.5 113.5 113.5 Italian (Marking Marking Mar	Enthalpy Wheel and Se	and the second se		
Flor to Ceiling Height [F1] 12.5 12.5 12.5 13.5 15.5 12.50 31.2500	V FL-1 SE	FL-2 SE FL	FL-2 NW	FL-2 SW
Floor to Ceiling Height [F1] 12.5 12.5 12.5 12.5 12.5 13.5 15.5 16.5 16.7 14.7 17.7 17.2.7 17.2.7	24000	29000 2	29000	29000
Pierum Depth [FT] 3 3 3 Floor to Floight [FT] 15.5 312500 312500 Ventilation Air Requirement to Satisfy Standard 62.1 2500 2500 34000 Supply Air Requirement to Satisfy Standard 62.1 2500 34000 34000 Supply Air Requirement to Satisfy Latent Load at 44F/Saturated 1471 1471 Room Loads Q. EXI [btu/hr] 20000 20000 tequired Outdoor Air Quantity [cfm] 2500 2500 Enthalpy Wheel Charc. ES 0.8 0.8 0.8 Sensible Wheel Charc. ES 0.8 0.8 0.8 A - OA DBT [F] 92 92 92 Outdoor Air WBT [F] 75 75 entering enthalpy wheel WBT [F] 92 92 Outdoor Air [gilb] 113.5 113.5 entering cooling coil h [Btu/b] 30.2 30.2 C - OA-SW DBT [F] 45 45 Outdoor Air % RH 90 <	12.5	13.5	13.5	13.5
Volume [CF] 312500 312500 Occupancy 100 100 Ventilation Air Requirement to Satisfy Standard 62.1 2500 34000 Supply Air Required to Satisfy Latent Load at 44F/Saturated 1471 1471 Room Loads Q. SEN [btulhy] 622000 20000 equired Outdoor Air Quantity [cfm] 2500 2500 enthalpy Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 A - OA DBT [F] 92 92 0utdoor Air 0.8 0.8 entering enthalpy wheel WE [F] 75 75 75 75 M (gfb) 113.5 113.5 113.5 113.5 113.5 entering enthalpy wheel WE [gfb) 122.7 72.7 72.7 entering cooling coil M [Rtulb] 30.2 30.2 30.2 C - OA-SW DBT [F] 46 46 45 Outdoor Air % RH 52 52	3	3	3	3
Occupancy 100 100 Ventilation Air Requirement to Satisfy Standard 62.1 2500 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 32000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 <	15.5		16.5	16.5
Ventilation Air Requirement to Satisfy Standard 62.1 2500 Latent Load Satisfy Decimant (1) 2500 34000			391500	391500
Latent Load Satisfied by Standard 62.1 Vent. Requirement 34000 34000 Supply Air Required to Satisfy Latent Load at 447/Saturated 1471 1471 Room Loads Q. SEN [btulhy] 623000 50000 equired Outdoor Air Quantity [cfm] 2500 2500 Enthalpy Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 A - 0A DBT [F] 92 92 00tdoor Air 0.8 0.8 entering enthalpy wheel WBT [F] 75 75 75 75 M (gfb) 113.5 113.5 113.5 113.5 113.5 B - 0A-EW DBT [F] 641.4 648.4 648.4 Outdoor Air WBT [F] 45 45 45 Ieaving cooling coil M [Btulb] 30.2 30.2 30.2 30.2 C - 0A-SW DBT [F] 45 45 45 45 45 Outdoor Air WBT [F] 45 45	100	100	100	100
Latent Load Satisfied by Standard 62.1 Vent. Requirement 34000 34000 Supply Air Required to Satisfy Latent Load at 44/5/sturated 1471 1471 Room Loads Q. SEN [btu/hy] 622000 50000 equired Outdoor Air Quantity (cfm) 2500 2500 Enthalpy Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 A - 0A DBT [F] 92 92 0utdoor Air 0.8 0.8 entering enthalpy wheel WBT [F] 75 75 75 75 M (gfb) 113.5 113.5 113.5 113.5 113.5 entering enthalpy wheel WT [gfb) 72.7 72.7 72.7 entering cooling coil h [Btu/lb] 30.2 30.2 30.2 C - 0.A-SW DBT [F] 46 46. 45 Outdoor Air % RH 52 52 52 52 Leaving cooling coil WT [gfb) 44.0 44.0 44.	2500			2800
Supply Air Required to Satisfy Latent Load at 44F/Saturated 1471 1471 Room Loads Q_SEN [btu/hr] 628050 99060 equired Outdoor Air Quantity [cfm] 2500 2500 Enthalpy Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 A - OA DBT [F] 92 92 92 Outdoor Air DBT [F] 75 75 Gutdoor Air DBT [F] 66.4 66.4 Outdoor Air DBT [F] 66.4 66.4 Outdoor Air DBT [F] 44.0 44.0 Outdoor Air DBT [F] 45 45 Outdoor Air DBT [F] 45 45 Outdoor Air W [gilb] 44.0 44.0 Ieaving enthalpy wheel entering sensible wheel W [gilb] 44.0 44.0 Outdoor Air Sensible Wheel DFT [F] 45 45 Outdoor Air Sensible Wheel DFT [F] 64 4	34000		2800 38080	38080
Room Loads Q_SEN [btu/hr] 628050 59060 equired Outdoor Air Quantity [cfm] 2500 2500 Enthalpy Wheel Charac. ES 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 A - OA DBT [F] 92 92 Outdoor Air WBT [F] 75 75 entering enthalpy wheel WBT [F] 75 75 M (glib) 113.5 113.5 113.5 B - OA-EW DBT [F] 68.4 68.4 Outdoor Air W (glib) 72.7 72.7 entering cooling coil h [Btu/b] 30.2 30.2 C - OA-SW DBT [F] 45 45 Outdoor Air % RH 90 92.9 Eaving conling coil W [glib] 30.2 30.2 G - OA-SW DBT [F] 45 45 Outdoor Air % RH 90 90.9 Isaving	1471		1471	1471
Q_LAT [btu/hr] 20000 20000 equired Outdoor Air Quantity [cfm] 2500 2500 Enthalpy Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 A - OA DBT [F] 92 92 92 Outdoor Air WBT [F] 75 75 entering enthalpy wheel W[gifb] 113.5 113.5 B - OA-EW DBT [F] 68.4 68.4 Outdoor Air W [gifb] 72.7 72.7 entering cooling coil M [gifb] 70.2 30.2 30.2 C - OA-SW DBT [F] 64.4 64.4 64.4 leaving ensible wheel W [gifb] 44.0 44.0 44.0 Ieaving ensible wheel W [gifb] 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 44.0 <				1
equired Outdoor Air Quantity [cfm] 2500 2500 Enthalpy Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 A - OA DBT [F] 92 92 0.1 0.8 0.8 A - OA DBT [F] 92 92 0.1 0.8 0.8 Outdoor Air WBT [F] 75 75 75 1.35 1.15.5 1.15.5 1.15.5 1.15.5 1.15.6 1.11.05 1.15.5 1.15.6 1.15.7 1.	617350	705800 69	679160	699202
Enthalpy Wheel Charac. ES 0.8 0.8 Sensible Wheel Charac. EL 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 Outdoor Air entering enthalpy wheel 0.8 (PI) 92 92 92 WigT (F) 75 75 75 75 N (gli0) 113.5 113.5 113.5 113.5 B - OA-EW DBT (F) 68.4 68.4 68.4 Outdoor Air leaving enthalpy wheel W (gli0) 72.7<	20000	20000 2	20000	20000
Enthalpy Wheel Charac. ES 0.8 0.8 Sensible Wheel Charac. EL 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 Sensible Wheel Charac. ES 0.8 0.8 0.8 Outdoor Air entering enthalpy wheel 0.8 (PI) 92 92 92 WigT (F) 75 75 75 75 N (gli0) 113.5 113.5 113.5 113.5 B - OA-EW DBT (F) 68.4 68.4 68.4 Outdoor Air leaving enthalpy wheel W (gli0) 72.7<	2500	2800 2	2800	2800
EL 0.8 0.8 Sensible Wheel Charc. ES 0.8 0.8 A - OA DBT [F] 92 92 Outdoor Air entering enthalpy wheel WBT [F] 92 92 Outdoor Air W [gitb] 113.5 113.5 113.5 B - OA-EW DBT [F] 68.4 66.4 Outdoor Air leaving enthalpy wheel entering cooling coil DBT [F] 68.4 66.4 C - OA-SW DBT [F] 45 45 Outdoor Air leaving cooling coil NR H 100 100 Ieaving sensible wheel DBT [F] 45 45 Outdoor Air leaving cooling coil W [gitb] 44.0 44.0 Outdoor Air leaving sensible wheel DBT [F] 45 45 D - SA DBT [F] 45 45 Supply Air leaving sensible wheel W [gitb] 44.0 44.0 M [gitb] 30.2 30.2 30.2 E - RA DBT [F] 65 65 E whaust Air leaving sensible wheel WBT [F] <td>2300</td> <td>2000</td> <td>2000</td> <td>2000</td>	2300	2000	2000	2000
Sensible Wheel Charc. ES 0.8 0.8 A - OA Outdoor Air entering enthalpy wheel DBT [F] 92 92 WBT [F] 75 75 WBT [F] 75 75 WBT [F] 75 75 WBT [F] 60.4 64.4 WU [gftb] 113.5 113.5 h [Btufb] 38.4 38.4 B - OA-EW DBT [F] 66.4 66.4 Outdoor Air entering cooling coil W [gftb] 72.7 72.7 C - OA-SW DBT [F] 45 45 Outdoor Air entering cooling coil W [gftb] 44.0 44.0 Ieaving sonisble wheel entering sensible wheel entering room DST [F] 45 45 D - SA DST [F] 45 45 55 Supply Air leaving sensible wheel entering room NGT [F] 55 55 E - RA DBT [F] 62.4 62.4 62.4 MBT [F] 62.5 62.5 62.5 62.5 WBT [F] 6	0.8		0.8	0.8
A - OA DBT [F] 92 92 Outdoor Air entering enthalpy wheel WBT [F] 75 75 B - OA-EW W[gib] 113.5 113.5 N [Btuilb] 38.4 38.4 B - OA-EW DBT [F] 68.4 68.4 Outdoor Air entering cooling coil W [gib] 72.7 72.7 I eaving cooling coil W [gib] 44.0 44.0 Outdoor Air entering cooling coil W [gib] 44.0 44.0 I eaving cooling coil W [gib] 44.0 44.0 B + DF [F] 45 45 45 Supply Air PF [F] 55 55 Supply Air PS [F] 75 75 E + RA DBT [F] 75 75 E + RA DBT [F] 62.4 62.4	0.8	0.8	0.8	0.8
A - OA DBT [F] 92 92 Outdoor Air entering enthalpy wheel WBT [F] 75 75 B - OA-EW WBT [F] 75 75 In [Btuilb] 113.5 113.5 113.5 In [Btuilb] 38.4 38.4 38.4 B - OA-EW DBT [F] 68.4 68.4 68.4 Outdoor Air entering cooling coil W [gilb] 72.7 72.7 C - OA-SW DBT [F] 45 45 Outdoor Air entering cooling coil W [gilb] 40.0 44.0 Ieaving cooling coil W [gilb] 44.0 44.0 Ieaving cooling coil W [gilb] 44.0 44.0 W [gilb] 44.0 44.0 44.0 D - SA DBT [F] 55 55 Supply Air leaving cooling coil W [gilb] 44.0 44.0 W [gilb] 44.0 44.0 44.0 B - SA DBT [F] 75 75 Eaving cooling coil DBT [F] 75				1
Outdoor Air entering enthalpy wheel WBT [F] 75 75 % RH 47 47 W [g/tb] 113.5 113.5 b (Bul/b) 33.4 38.4 B - 0.A-EW DBT [F] 68.4 38.4 Outdoor Air % RH 60 52. leaving enthalpy wheel W [g/tb] 12.7 72.7 Outdoor Air % RH 100 100 100 leaving cooling coil b [Btu/b] 30.2 30.2 30.2 C - 0.A-SW DBT [F] 45 46. 44.0 Outdoor Air % RH 100 1	0.8	0.8	0.8	0.8
Outdoor Air entering enthalpy wheel WBT [F] % RH 75 75 % RH 47 47 W [g/lb] 113.5 113.5 h (Btu/b) 38.4 38.4 B - OA-EW DBT [F] 68.4 68.4 Outdoor Air % RH 60 52 leaving enthalpy wheel W [g/lb] 72.7 72.7 C - OA-SW DBT [F] 45 45 Outdoor Air % RH 100 100 leaving enthalpy wheel W [g/lb] 44.0 44.0 Outdoor Air % RH 100 100 leaving sensible wheel W [g/lb] 44.0 44.0 D - SA DBT [F] 45 45 Supphy Air % RH 52 55 Eaving sensible wheel WE [g/lb] 44.0 44.0 h (Btu/b] 30.2 30.2 30.2 E - RA DBT [F] 65 65 WE [g/lb] 44.0 44.0 44.0	92	92	92	92
entering enthalpy wheel % RH 47 47 W [q/ib] 113.5 113.5 113.5 h [Buu/b] 33.4 33.4 B - 0.A-EW DBT [F] 68.4 68.4 Outdoor Air % RH 60 52 entering cooling coil W [g/ib] 72.7 72.7 entering cooling coil % [RH 60 52 Outdoor Air % RH 100 100 leaving cooling coil % [RH 100 100 entering sensible wheel W [g/ib] 44.0 44.0 D - SA DBT [F] 45 45 Supply Air % RH 52 52 Ieaving sensible wheel W [g/ib] 44.0 44.0 WBT [F] 62.4 62.4 62.4 E - RA DBT [F] 62.4 62.4 E - RA DBT [F] 62.5 55 WBT [F] 62.4 62.4 62.4 Sthaust Air DBT [F] 62.5	75	75	75	75
W [gilb] 113.5 113.5 h (Bturb) 38.4 38.4 Outdoor Air 5.6 38.4 Isaving enthalpy wheel entering cooling coil W [gilb] 72.7 C - OA-SW DBT [F] 46.4 Outdoor Air W [gilb] 72.7 C - OA-SW DBT [F] 45 Outdoor Air % RH 100 leaving cooling coil W [gilb] 44.0 entering sensible wheel W [gilb] 44.0 D - SA DPT [F] 45 Supphy Air % RH 52 Isaving sensible wheel entering sensible wheel entering sensible wheel W [gilb] 44.0 D - SA DBT [F] 65 56 Supphy Air % RH 52 52 E + RA DBT [F] 62.4 62.4 M [Btulb] 30.2 30.2 30.2 To tal Load DBT [F] 62.5 62.5 W [gilb] 64.4 64.4 64.4 W [WT [F] 62.5	47		47	47
h (Bullb) 38.4 38.4 B - OA-EW DBT (F) 68.4 68.4 Outdoor Air % RH 60 52 Ieaving enthalpy wheel W (gilb) 72.7 72.7 C - OA-SW DBT (F) 45 45 Ieaving cooling coil h (Btulb) 30.2 30.2 C - OA-SW DBT (F) 45 46 Ieaving cooling coil W (gilb) 44.0 44.0 Ieaving cooling coil W (gilb) 17.6 17.6 D - SA DBT (F) 45 45 Supply Air % RH 52 52 Ieaving sensible wheel W (gilb) 44.0 44.0 entering room W (Bitb) 30.2 30.2 F - RA DBT (F) 65 55 Exhaust Air WBT (F) 62.4 62.4 (W WBT (F) 62.4 62.4 62.4 (W WBT (F) 62.5 62.5 62.5 W B WF (F) 62.4 62.4 <td>113.5</td> <td>113.5 1</td> <td>113.5</td> <td>113.5</td>	113.5	113.5 1	113.5	113.5
Outdoor Air leaving enthalpy wheel entering cooling coil % Rit 60 52 C - OA-SW Outdoor Air leaving cooling coil W [gitb] 72.7 72.7 C - OA-SW Outdoor Air leaving cooling coil DBT [F] 45 45 Outdoor Air leaving cooling coil W [gitb] 44.0 44.0 DPT [F] 45 45 5 Supply Air leaving sensible wheel DPT [F] 45 45 D - SA DBT [F] 55 55 Supply Air leaving sensible wheel W [gitb] 44.0 44.0 D - SA DBT [F] 55 55 Supply Air leaving sensible wheel W [gitb] 40 40 MBT [F] 75 75 55 E - RA DBT [F] 75 55 WBT [F] 55 55 55 WBT [F] 62.4 62.4 64 \W = Wroom - Wsa 20.0 22.0 22.2 F - EA DBT [F] 62.5 6.5 5.5 E - RA DBT [F	38.4	38.4	38.4	38.4
Outdoor Air leaving enthalpy wheel entering cooling coil % Rit 60 52 W [gib] 72.7 72.7 72.7 N Building 30.2 30.2 C - 0A-SW Outdoor Air leaving cooling coil DBT [F] 45 45 W [gib] 74.7 72.7 72.7 N DBT [F] 45 44.0 Outdoor Air leaving cooling coil W [gib] 44.0 44.0 DPT [F] 45 45 76 DFT [F] 45 45 76 DYT [F] 55 55 52 Supply Air leaving sensible wheel W [gib] 44.0 44.0 WBT [F] 75 75 75 E - RA DBT [F] 75 75 E - RA DBT [F] 75 55 E - RA DBT [F] 75 55 E - RA DBT [F] 62.4 62.4 WBT [F] 62.5 55 55 E - RA DBT [F] 62.2 </td <td></td> <td></td> <td></td> <td>-</td>				-
leaving enthalpy wheel entering cooling coil W [gitb] 172.7 172.7 C - 0.A SW 08T [F] 46 46 Outdoor Air leaving cooling coil % RH 100 100 entering sensible wheel W [0m]h 44.0 44.0 44.0 D - SA DBT [F] 46 46.5 45.5 Supply Air leaving sensible wheel DBT [F] 56 56.5 52.5 Leaving sensible wheel W [0m]h 44.0 44.0 44.0 D - SA DBT [F] 56 56.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 55.5	68.4 52		68.4 52	68.4 52
entering cooling coil h (Btu/ib) 39.2 39.2 C - 0A-SW Outdoor Air DBT (F) 45 45 Outdoor Air % RH 100 100 leaving cooling coil W (gnb) 44.0 44.0 entering sensible wheel W (Bm/ba) 0.00629 0.00629 DPT (F) 45 45 45 Supply Air 52 52 52 leaving sensible wheel W (gmb) 44.0 44.0 DYT (F) 56 56 56 Supply Air 52 52 52 leaving sensible wheel W (gmb) 44.0 44.0 M ST (F) 55 55 55 Exhaust Air WBT (F) 55 55 Exhaust Air WBT (F) 65.5 55 Exhaust Air DBT (F) 65.5 65 W Wroom - Wsa 20.0 22.0 22.2 22.2 Exhaust Air DBT (F) 65.5 65.5 65.6				
C - O.A-SW Outdoor Air leaving cooling coll entering sensible wheel DBT [F] % RH 45 45 0 - SA DP SA Supply Air leaving sensible wheel W [Ibm/Iba] W [Ibm/Iba] 0.05829 0.05829 0.05829 0.05829 0.05829 0.05829 D - SA D - SA D - SA Exhaust Air leaving sensible wheel DBT [F] W [Ib] 55 55 E - RA Exhaust Air leaving sensible wheel DBT [F] W [Ib] 64.0 44.0 WBT [F] 62.4 62.4 62.4 F - RA Exhaust Air leaving sensible wheel DBT [F] 62.5 55.5 W [BT/Ib] 0.0 20.0 20.0 F - EA Exhaust Air leaving sensible wheel DBT [F] 62.5 62.5 F - EA Exhaust Air leaving sensible wheel DBT [F] 62.5 62.5 Cooling Coil Loads Sensible Load [Btu/hr] 63180 63180 Cooling Coil Loads Sensible Load [Btu/hr] 63180 63180 Cooling Coil Loads Cermin 23.3 3.33 SA Cooling Capacity [Btu/hr] 54000 54000 North SA [cfm] 250.0 2500	72.7		72.7 30.2	72.7
Outdoor Air leaving cooling coil entering sensible wheel % Ri 100 100 W [Bm/Bba] 0.00629 0.00629 0.00629 0.00629 DF [F] 45 45 45 Dr SA DFT [F] 45 45 Supply Air leaving sensible wheel entering room 087 [F] 56 56 M [Btu/Bb] 30.2 30.2 30.2 E - RA DBT [F] 65 55 Exhaust Air leaving room entering room DBT [F] 75 75 Exhaust Air leaving sensible wheel WBT [F] 62.4 62.4 M WBT [F] 62.4 62.4 62.4 M WBT [F] 62.5 62.5 50.5 W [ginb] 64 64 64 \M W Wroom - Waa 20.0 22.0 27.6 E - RA DBT [F] 62.5 62.5 E Ahaust Air leaving sensible wheel % RH 100 44.9 M (Gilbu/H) 27.6 27.6 27.6 Cooling Coil Loads Sensible Loa	30.2	30.2	30.2	30.2
Outdoor Air leaving cooling coil entering sensible wheel % Ri 100 100 W [Bm/Ba] 0.00629 0.00629 0.00629 DF [F] 45 45 D Stappity Air leaving sensible wheel 007 [F] 45 45 Suppity Air leaving sensible wheel 007 [F] 56 56 Th [Btu/Bb] 30.2 30.2 30.2 E - RA entering room entering room entering room DBT [F] 65 55 E - RA Exhaust Air leaving sensible wheel DBT [F] 75 75 E - RA entering room entering room entering sensible wheel DBT [F] 62.4 62.4 WB Wroom - Waa 20.0 20.0 20.0 F - EA Exhaust Air leaving sensible wheel WB [F] 62.5 62.5 E - RA Exhaust Air leaving sensible wheel DBT [F] 62.5 62.5 Cooling Coil Loads Sensible Load [Btu/hr] 63180 63180 Cooling Coil Loads Sensible Load [Btu/hr] 63180 63180 Cooling Coil Loads Sensible Load [Btu/hr] 54.000 54.000	45	45	45	45
entering sensible wheel W (Ibm/Iba) 0.00623 0.00623 DF [F] 45 45 D- SA DFT [F] 45 45 Supply Air % RH 52 52 Ieaving sensible wheel entering room W [ipm] 43.0 44.0 H [Btu/Ib] 30.2 30.2 30.2 E - RA DBT [F] 65 55 Exhaust Air WBT [F] 62.4 62.4 Ieaving sensible wheel W [ipi] 64.0 44.0 MWBT [F] 62.4 62.4 62.4 Ieaving sensible wheel W [ipi] 64.4 64 \W W Wroom - Waa 20.0 20.0 20.0 F - EA DBT [F] 62.5 62.5 Exhaust Air % RH 100 49.5 Jeaving sensible wheel W [ibi] 62.7.6 22.7.6 Cooling Col Loads Sensible Load [Btu/hr] 63180 63180 Cooling Col Loads Sensible Load [Btu/hr] 63180 63180 <	100	100	100	100
DPT [F] 45 45 h [Biulb] 17.6 17.6 Supply Air leaving sensible wheel % RH 52 52 W [Qib] 44.0 44.0 44.0 h [Biulb] 30.2 30.2 30.2 E - RA entering room entering room entering sensible wheel DST [F] 75 75 E - RA bearing sensible wheel 0BT [F] 75 55 55 W [Qib] 64 63 63 <td< td=""><td>44.0</td><td></td><td>44.0</td><td>44.0</td></td<>	44.0		44.0	44.0
h (Biuñb) 17.6 17.6 D - SA OBT (F) 56 56 Supply Air % RH 52 52 leaving sensible wheel entering room % (fg/lb) 44.0 44.0 h (Biu/b) 30.2 30.2 30.2 rho (lbicf) 0.073 0.073 0.073 E - RA DBT (F) 75 75 Exhaust Air WBT (F) 62.4 62.4 entering room entering sensible wheel % RH 50 50 W (gitb) 64.04 64 64 \W Wroom - Waa 20.0 220.0 220.0 F - EA DBT (F) 62.5 62.5 Exhaust Air % RH 100 49.5 leaving sensible wheel W (gitb) 63.16.0 63.160 Cooling Coil Loads Sensible Load (Btu/hr) 63.180 63.180 Leatent Load (Btu/hr) 54.000 54.000 54.000 North SA (cfm) 250.0 250.0 Soubl SA<			0.00629	0.00629
D - SA Supply Air leaving sensible wheel entering room DBT [F] 55 56 Supply Air entering room ½ RH 52 52 W [gilb] 44.0 44.0 h [Btulb] 30.2 30.2 Tho [Bicf] 0.073 0.073 E - RA DBT [F] 75 75 E - RA DBT [F] 62.4 62.4 WBT [F] 65 55 E - RA DBT [F] 62.5 62.5 W [Gilb] 64 64 3W ≈ Wroom - Wsa 20.0 20.0 N RH 50 55 55 55 55 55 Exhaust Air DBT [F] 62.5	45	45	45	45
Supply Air leaving sensible wheel entering room % Rit W [gib] 52 52 E - RA Exhaust Air entering room DBT [F] 0.073 0.073 E - RA Exhaust Air entering sensible wheel DBT [F] 75 75 E - RA Exhaust Air entering sensible wheel DBT [F] 62.4 62.4 W W W [F] 64.64 64 // W = Wroom - Wsa 20.0 20.0 W [gib] 64.64 64 // W = Wroom - Wsa 20.0 20.0 E - EA Exhaust Air leaving sensible wheel % RH 100 45.5 Cooling Coil Loads Sensible Load [Btu/hr] 64.0 64.0 M [gib] 64.0 64.5 63.160 Cooling Coil Loads Sensible Load [Btu/hr] 63.160 63.160 Cooling Coil Loads Sensible Load [Btu/hr] 48.760 48.760 SA Cooling Capacity [Btu/hr] 54.000 50.000 North SA [cfm] 250.0 250.00 South SA [cfm] 250.0 55.600 South SA	17.6	17.6	17.6	17.6
Supply Air leaving sensible wheel entering room % Rit W [gib] 52 52 E - RA Exhaust Air entering room DBT [F] 0.073 0.073 E - RA Exhaust Air entering sensible wheel DBT [F] 75 75 E - RA Exhaust Air entering sensible wheel DBT [F] 62.4 62.4 W W W [F] 64.64 64 // W = Wroom - Wsa 20.0 20.0 W [gib] 64.64 64 // W = Wroom - Wsa 20.0 20.0 E - EA Exhaust Air leaving sensible wheel % RH 100 45.5 Cooling Coil Loads Sensible Load [Btu/hr] 64.0 64.0 M [gib] 64.0 64.5 63.160 Cooling Coil Loads Sensible Load [Btu/hr] 63.160 63.160 Cooling Coil Loads Sensible Load [Btu/hr] 48.760 48.760 SA Cooling Capacity [Btu/hr] 54.000 50.000 North SA [cfm] 250.0 250.00 South SA [cfm] 250.0 55.600 South SA	55	55	55	55
Iteaving sensible wheel entering room W [g/lb] h [Bt/lb] 44.0 44.0 h [Bt/lb] 30.2 30.2 rho [ib/cf] 0.073 0.073 E + RA DBT [F] 75 75 Exhaust Air leaving room entering sensible wheel WBT [F] 62.4 62.4	52		52	52
entering room h [Btullb] 30.2 30.2 rho [Bicf] 0.073 0.073 E - RA D8T [F] 0.75 0.75 Exhaust Air WBT [F] 62.4 62.4 Isving room 0.97 [F] 55 55 entering sensible wheel % RH 50 55 W [grib] 64 64 // W = Wroom Wsa 20.0 20.0 h [Btullb] 28.2 28.2 28.2 Exhaust Air M [Btullb] 28.2 28.2 Exhaust Air % RH 100 46.5 Baving sensible wheel % [Btullb] 27.6 27.6 Cooling Coil Loads Sensible Load [Btulhr] 48760 48760 Total Load [Btulhr] 54000 54000 54000 North SA [cfm] 2500 25000 Soud SA [cfm] 2500 2500 Soudi SA [cfm] 2500 2500	44.0		44.0	44.0
rho [ib/cf] 0.073 0.073 E - RA DBT [F] 75 75 Exhaust Air WBT [F] 62.4 62.4 ieaving room 0.073 0.073 0.073 entering sensible wheel % RH 55 55	30.2		30.2	30.2
Exhaust Air WBT [F] 62.4 62.4 leaving room DPT [F] 55 55 entering sensible wheel % RH 50 50 W [gfb] 64 64 64 /W = Wroom- Wsa 20.0 20.0 20.0 N = Wroom- Wsa 20.0 20.0 20.0 h [Btulb] 28.2 28.2 28.2 F - EA DBT [F] 62.5 62.5 Exhaust Air % RH 100 49.5 Jeaving sensible wheel W [gfb] 64.0 64.0 K H 100 49.5 Cooling Coil Loads Sensible Load [Btu/hr] 63.160 63.160 Latent Load [Btu/hr] 48.790 48.790 48.790 Total Load [Btu/hr] 54.000 54000 54000 North SA [cfm] 2500 25000 South SA [cfm] 2500 25000 South SA [cfm] 574050 558607	0.073		0.073	0.073
Exhaust Air leaving room entering sensible wheel WBT [F] 56.24 62.4 DPT [F] 55 55 % RH 50 50 W[gftb] 64 64 \W Wroom -Wsa 20.0 220.0 W[gftb] 64 64 \W Wroom -Wsa 20.0 220.0 F - EA DBT [F] 62.5 62.5 Exhaust Air % RH 100 49.5 Ieaving sensible wheel W [gftb] 64.0 64.0 DOAS W[Gftb] 63.160 63.160 Cooling Coil Loads Sensible Load [Btu/hr] 63.180 63.180 Lattern Load [Btu/hr] 48.780 48.780 48.780 North SA [cfm] 250.0 250.0 South SA [cfm] 250.0 250.0 South SA [cfm] 250.0 250.0				
Iteaving room entering sensible wheel DPT [F] 55 55 % RH 50 50 W [g/lb] 64 64 //W = Wroom Ws 20.0 20.0 h [Btuilb] 28.2 28.2 28.2 Exhaust Air leaving sensible wheel M [G/lb] 64.0 64.0 Cooling Coil Loads Sensible Load [Btu/hr] 63.160 63.180 Latent Load [Btu/hr] 63.160 63.180 63.180 Latent Load [Btu/hr] 111970 111970 111970 Total Load [Cfm] 2500 2500 5000 North SA [cfm] 2500 2500 South SA [cfm] 57.4050 53.666	75	75	75	75
wheel % RH 50 50 W [01b] 64 64 \W & Wroom - Wsa 20.0 220.0 F - EA DBT [F] 62.5 62.5 Exhaust Air % RH 100 49.5 leaving sensible wheel W [01b] 64.0 64.0 DOAS W [01b] 62.5 62.5 Cooling Coil Loads Sensible Load [8tu/hr] 63.160 63.160 Latent Load [8tu/hr] 40.750 49.750 49.750 Total Load [10tu/hr] 40.750 40.750 50.000 North SA [cfm] 25.00 25.00 South SA [cfm] 25.00 25.000	62.4		62.4	62.4
W [gitb] 64 64 MW = Wrom - Wsa 20.0 20.0 h [Btu/lb] 28.2 28.2 Exhaust Air % RH 100 49.5 Ieaving sensible wheel % [Btu/lb] 27.6 27.6 DOAS Cooling Coll Loads Sensible Load [Btu/hr] 63180 63180 Cooling Coll Loads Sensible Load [Btu/hr] 48790 48790 Total Load [Btu/hr] 111970 111970 111970 SA Cooling Capacity [Btu/hr] 54000 5000 North SA [cfm] 2500 2500 South SA [cfm] 2500 2500 Total Load [Btu/hr] 54050 55660*	55		55	55
MW = Wroom - Wea 20.0 20.0 h (Brulhe) 28.2 28.2 F - EA DBT [F] 62.5 62.5 Exhaust Air % RH 100 49.5 leaving sensible wheel W [ghtb] 64.0 64.0 DOAS W[ghtb] 63.160 63.160 Cooling Coil Loads Sensible Load [Btulhr] 63.160 63.160 Lattent Load [Btulhr] 48.750 48.750 Total Load [Btulhr] 9.33 9.33 9.33 SA Cooling Capacity [Btulhr] 54.000 54000 North SA [cfm] 2500 2500 South SA [cfm] 2500 2500	50		50	50
h (Bturlib) 28.2 28.2 F - EA DBT (F) 62.5 62.5 Exhaust Air % RH 100 49.5 leaving sensible wheel W (gib) 64.0 64.0 DOAS W (gib) 27.6 27.6 Cooling Coll Loads Sensible Load (Btu/hr) 63180 63180 Latent Load (Btu/hr) 48790 48790 Total Load (Btu/hr) 111970 111970 SA Cooling Capacity (Btu/hr) 54000 5000 North SA (cfm) 2500 2500 South SA (cfm) 574050 55860*	64 20.0		64 20.0	64 20.0
F - EA DBT [F] 62.5 62.5 Exhaust Air % RH 100 49.5 leaving sensible wheel W [ghb] 64.0 64.0 DOAS W[ghb] 27.6 27.6 Cooling Coil Loads Sensible Load [Btuthr] 63.160 63.160 Latent Load [Btuthr] 49.750 49.750 Total Load [Btuthr] 111070 1111970 SA Cooling Capacity (Btuthr) 54.000 54000 North SA [cfm] 2500 2500 Fotal Load [Btuthr] 574050 55860*	20.0		20.0	20.0
Exhaust Air leaving sensible wheel % Rif 100 49.5 W[gfb] 64.0 64.0 64.0 b W[gfb] 27.6 27.6 Cooling Coil Loads Sensible Load [Btuthr] 63.160 63.160 Latent Load [Btuthr] 48750 48750 Total Load [Btuthr] 111070 111070 SA Cooling Capacity (Btuthr] 54000 North SA [cfm] 2500 South SA [cfm] 2500 Total Load [Btuthr] 574050 55860'	20.2	20.2	20.2	20.2
Exhaust Air leaving sensible wheel % RH 100 49.5 W [g/tb] 64.0 64.0 64.0 DOAS 27.6 27.6 Cooling Coil Loads Sensible Load [Bturhr] 63180 63180 Total Load [Bturhr] 49790 49790 Total Load [Bturhr] 111970 111970 SA Cooling Capacity [Bturhr] 54000 North SA [cfm] 2500 South SA [cfm] 2500 Parallel System 574050 55860	62.5	62.5 6	62.5	62.5
h (Btufb) 27.6 27.6 DOAS DOAS 0 Cooling Coil Loads Sensible Load (Btu/hr) 63180 63180 Latent Load (Btu/hr) 49790 49790 Total Load (Btu/hr) 111970 111970 SA Cooling Capacity (Btu/hr) 54000 54000 North SA [cfm] 2500 2500 South SA [cfm] 2500 2500 Total Load [Btu/hr) 54050 55860'	49.5	49.5	49.5	49.5
DOAS Sensible Load [Bturhr] 63180 63180 Cooling Coli Loads Sensible Load [Bturhr] 63780 63780 Latent Load [Bturhr] 48790 48790 48790 Total Load [Bturhr] 111970 111970 111970 SA Cooling Capacity [Bturhr] 5300 5000 North SA [cfm] 2500 2500 South SA [cfm] 2500 2500 Total Load [Bturhr] 574050 53660*	64.0		64.0	64.0
Cooling Coil Loads Sensible Load [Btu/hr] 63180 63180 Latent Load [Btu/hr] 49790 49790 Total Load [Btu/hr] 111970 111970 Total Load [Btu/hr] 9.33 9.33 SA Cooling Capacity [Btu/hr] 54000 54000 North SA [cfm] 2500 2500 South SA [cfm] 5700 53660 Total Load [Btu/hr] 574050 53660	27.6	27.6 2	27.6	27,6
Cooling Coil Loads Sensible Load [Btu/hr] 63180 63180 Latent Load [Btu/hr] 49790 49790 Total Load [Btu/hr] 111970 111970 Total Load [Btu/hr] 9.33 9.33 SA Cooling Capacity [Btu/hr] 54000 54000 North SA [cfm] 2500 2500 South SA [cfm] 5700 53660 Total Load [Btu/hr] 574050 53660				
Latent Load (Bituling) 48790 48790 Total Load (Bituling) 101870 111870 111970 Total Load (tons) 9.33 9.33 9.33 SA Cooling Capacity (Bituling) 54000 54000 North SA (cfm) 2500 2500 South SA (cfm) 2500 2500 Total Load [Btuling) 574050 53660	63180	70762 7	70762	70762
Total Load [Btu/hr] 111970 111970 Total Load [Itons] 9.33 9.34 9.34	48790	54645 5	54645	54645
Total Load [tons] 9.33 9.33 SA Cooling Capacity [Btu/hr] 54000 54000 North SA [cfm] 2500 2500 South SA [cfm] 2500 2500 Total Load [Btu/hr] 574050 53660			125406	125406
SA Cooling Capacity [Btu/hr] 54000 54000 North SA [cfm] 2500 2500 South SA [cfm] 2500 2500 Parallel System Total Load [Btu/hr] 574050 53660	9.33		10.45	10.45
North SA [cfm] 2500 2500 South SA [cfm] 2500 2500 Parallel System Total Load [Btu/hr] 574050 53660	54000		60480	60480
Parallel System Total Load [Btu/hr] 574050 536601			2800	
Total Load [Btu/hr] 574050 536601	2500	2800 2		2800
Total Load [Btu/hr] 574050 536601				
	563350	645320 63	618680	638722
	46.95		51.56	53.23
[tons] 47.84 44.72			01,00	
Total Chiller Size [tons] 57.17 54.05	56.28	64.23 6	62.01	63.68

With Enthalpy Wheel.

				Enthalpy Wheel						
		FL-1 NE	FL-1 NW	FL-1 SE	FL-1 SW	FL-1 T	FL-2 NE	FL-2 NW	FL-2 SE	FL-2 S
Room Properties	Area (SF)	25000	25000	24000	24000	27500	29000	29000	29000	2900
room riopenies	Floor to Ceiling Height [FT]	12.5	12.5	12.5	12.5	27500	13.5	13.5	13.5	13.5
	Plenum Depth [FT]	3	3	3	3	3	3	3	3	3
	Floor to Floor Height [FT]	15.5	15.5	15.5	15.5	32	16.5	16.5	16.5	16.5
	Volume [CF]	312500	312500	300000	300000	797500	391500	391500	391500	39150
	Occupancy	100	100	100	100	100	100	100	100	100
Vestilation Als Description	nt to Satisfy Standard 62.1	2500	2500	2500	2500	2500	2800	2800	2800	2800
	ndard 62.1 Vent. Requirement	34000	34000	34000	34000	34000	38080	38080	38080	3808
	Latent Load at 44F/Saturated	1471	1471	1471	1471	1471	1471	1471	1471	1471
sppiy An Required to Satisf	Catern Load at 447 Saturated	147.1	1411	14/1	141.1	147.1	147.1	1471	147.1	147.1
Room Loads	Q_SEN [btu/hr]	517725	480276	510438	428994	540264	577357	555183	581823	57522
	Q_LAT [btu/hr]	20000	20000	20000	20000	20000	20000	20000	20000	2000
aired Outdoor Air Quantity	[cfm]	2500	2500	2500	2500	2500	2800	2800	2800	2800
nthalpy Wheel Charac.	ES	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
	EL	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
A - 0A	DBT [F]	92	92	92	92	92	92	92	92	92
Outdoor Air	WBT [F]	75	75	75	75	75	75	75	75	75
ntering enthalpy wheel	% RH	47	47	47	47	47	47	47	47	47
	W [g/lb]	113.5	113.5	113.5	113.5	113.5	113.5	113.5	113.5	113.
	h [Btu/lb]	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
B - OA-EW	DBT [F]	78.4	78.4	78.4	78.4	78.4	78.4	78.4	78.4	78.4
Outdoor Air	% RH	52	52	52	52	52	52	52	52	52
eaving enthalpy wheel	W [g/lb]	73.9	73.9	73.9	73.9	73.9	73.9	73.9	73.9	73.9
entering cooling coil	h [Btu/lb]	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2
	rho [lb/cf]	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.07
		a subarta s		e constant						
C - SA	DBT [F]	45	45	45	45	45	45	45	45	45
Supply Air	% RH	100	100	100	100	100	100	100	100	100
leaving cooling coil	W [g/lb]	44	44	44	44	44	44	44	44	44
entering room	W [ibm/iba]	0.00629	0.00629	0.00629	0.00629	0.00629	0.00629	0.00629	0.00629	0.0063
	DPT [F]	45 17.6	45	45 17.6	45 17.6	45 17.6	45	45	45 17.6	45 17.6
	h [Btu/lb]	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6
D-RA	DBT [F]	75	75	75	75	75	75	75	75	75
Exhaust Air	WBT (F)	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4
leaving room	DPT [F]	55	55	55	55	55	55	55	55	55
ntering enthalpy wheel	% RH	50	50	50	50	50	50	50	50	50
	W [g/lb]	64	64	64	64	64	64	64	64	64
	∆W = Wroom - Wsa	20.0	20.0	20.0	20.0	20.0	20.0 28.2	20.0	20.0	20.0
	h [Btu/lb]	28.2	28.2	28.2	28.2	28.2	28.2	28.2	28.2	28.2
E-EA	DBT (F)	92.0	92.0	92.0	92.0	92.0	92.0	92.0	92.0	92.0
Exhaust Air	% RH	47.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0
eaving enthalpy wheel	W [g/lb]	113.5	113.5	113.5	113.5	113.5	113.5	113.5	113.5	113.
2010/17/03/2017/17/201322	h [Btu/lb]	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
	AS									
Cooling Coil Loads	Sensible Load [Btw/hr]	90180	90180	90180	90180	90180	101002	101002	101002	10100
	Latent Load [Btu/hr]	50830	50830	50830	50830	50830	56930	56930	56930	5693
	Total Load [Btu/hr]	141010	141010	141010	141010	141010	157931	157931	157931	15793
	Total Load [tons]	11.8	11.8	11.8	11.8	11.8	13.2	13.2	13.2	13.2
SA Cooling Capacity	[Btu/hr]	81000	81000	81000	81000	81000	90720	90720	90720	9072
North SA	[cfm]	2500	2500				2800	2800		
South SA	[cfm]			2500	2500	2500			2800	2800
Basellel C.	Radiant Panels									
Total Load	[Btu/hr]	436725	399276	429438	347994	459264	486637	464463	491103	48450
.our coau	[tons]	36.39	33.27	35.79	29.00	38.27	40.55	38.71	40.93	40.3
		48.14	45.02	47.54	40,75	50.02	53,71	51,87	54.09	53.5

Without Heat Recovery.

		FL-1 NE	FL-1 NW	FL-1 SE	FL-1 SW	FL-1 T	FL-2 NE	FL-2 NW	FL-2 SE	FL-2 S
		PL-1 NE	FL-1 NW	PL-1 SE	FL-1 SW	PL-11	PL-2 NE	PL-2 NW	FL-2 SE	FL-2 S
Room Properties	Area [SF]	25000	25000	24000	24000	27500	29000	29000	29000	2900
noom r topetties	Floor to Ceiling Height [FT]	12.5	12.5	12.5	12.5	29	13.5	13.5	13.5	13.5
	Plenum Depth [FT]	3	3	3	3	3	3	3	3	3
	Floor to Floor Height [FT]	15.5	15.5	15.5	15.5	32	16.5	16.5	16.5	16.5
	Volume [CF]	312500	312500	300000	300000	797500	391500	391500	391500	39150
	Occupancy	100	100	100	100	100	100	100	100	100
	occupancy	100	100	100	100	100	100	100	100	100
Ventilation Air Requiren	ent to Satisfy Standard 62.1	2500	2500	2500	2500	2500	2800	2800	2800	2800
	andard 62.1 Vent. Requirement	34000	34000	34000	34000	34000	38080	38080	38080	3808
	sfy Latent Load at 44F/Saturated	1471	1471	1471	1471	1471	1471	1471	1471	1471
Room Loads	Q_SEN [btu/hr]	517725	480276	510438	428994	540264	577357	555183	581823	57522
Brand Andrew Coll	Q_LAT [btu/hr]	20000	20000	20000	20000	20000	20000	20000	20000	2000
aired Outdoor Air Quantity	/[cfm]	2500	2500	2500	2500	2500	2800	2800	2800	2800
A - OA	DBT [F]	92	92	92	92	92	92	92	92	92
Outdoor Air	WBT [F]	92 75	92	92	92	92	92	92	92	92
									47	
entering cooling coil	% RH	47	47	47	47	47	47	47		47
	W [g/lb]	113.5	113.5	113.5	113.5	113.5	113.5	113.5	113.5	113.
	h [Btu/lb]	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
B - SA	DBT (F)	55	55	55	55	55	55	55	55	55
B - SA Supply Air leaving cooling coil	% RH	100	100	100	100	100	100	100	100	0
	W [g/b]	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0	64.0
entering room	h [Btu/b]	27.9	27.9	27.9	27.9	27.9	27.9	27.9	27.9	27.9
entering room	ii [bturb]	21,3	21,5	27.3	21.3	21.3	21.3	£1.7	21.5	21.3
D-RA	DBT (F)	75	75	75	75	75	75	75	75	75
Exhaust Air	WBT [F]	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4	62.4
leaving room	DPT (F)	55	55	55	55	55	55	55	55	55
iouting room	% RH	50	50	50	50	50	50	50	50	50
	W [g/lb]	64	64	64	64	64	64	64	64	64
	∆W = Wroom - Wsa	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
	h [Btu/lb]	28.2	28.2	28.2	28.2	28.2	28.2	28.2	28.2	28.2
	DOAS						4			
Cooling Coil Loads	Sensible Load [Btu/hr]	99900	99900	99900	99900	99900	111888	111888	111888	11188
	Latent Load [Btu/hr]	84150	84150	84150	84150	84150	94248	94248	94248	9424
	Total Load [Btu/hr]	184050	184050	184050	184050	184050	206136	206136	206136	20613
	Total Load [tons]	153.4	153.4	153.4	153.4	153.4	171.8	171.8	171.8	171.4
SA Cooling Capacity	[Btu/hr]	54000	54000	54000	54000	54000	60480	60480	60480	6048
North SA	[cfm]	2500	2500				2800	2800		
South SA	[cfm]			2500	2500	2500		5 S	2800	2800
	el System									
Total Load	[Btu/hr]	463725	426276	456438	374994	486264	516877	494703	521343	51474
	[tons]	38.64	35.52	38.04	31.25	40.52	43.07	41.23	43.45	42.9
The second s		100.00	1 400.00	101.11	101.00	100.00	1 011.05	010.01	015.00	
Total Chiller Size	[tons]	192.02	188.90	191.41	184.62	193.90	214.85	213.01	215.23	214.6

2. Supply Air Requirements for VAV System.

Based on the calculation procedure in the body of this report, the following airflows were found.

			Std. 62.1				Summer						Winter		
			Vent. Air		Suppl	y Air		Outdoor Air	Supply Air	Return Air	Supply /	Air	Outdoor Air	Supply Air	Return Ai
	Occupancy	Floor Area	CFM	Sensible Load	CFM	Latent Load	CFM	CFM	CFM	CFM	Sensible Load	CFM	CFM	CFM	CFM
								FLOOR 1							
FL-1 NE	100	25000	2500	628050	29076	20000	2451	2500	31576	29076	454693	28067	2500	30567	28067
FL-1 NW	100	25000	2500	590601	27343	20000	2451	2500	29843	27343	468519	28921	2500	31421	28921
FL-1 SE	100	24000	2500	617350	28581	20000	2451	2500	31081	28581	462339	28539	2500	31039	28539
FL-1 SW	100	24000	2500	535906	24810	20000	2451	2500	27310	24810	490562	30282	2500	32782	30282
FL-1 T	100	27500	2700	659122	30515	20000	2451	2700	33215	30515	467564	28862	2700	31562	28862
FLOOR 2															
FL-2 NE	100	29000	2800	701334	32469	20000	2451	2800	35269	32469	539666	33313	2800	36113	33313
FL-2 NW	100	29000	2800	679160	31443	20000	2451	2800	34243	31443	551052	34016	2800	36816	34016
FL-2 SE	100	29000	2800	705800	32676	20000	2451	2800	35476	32676	566174	34949	2800	37749	34949
FL-2 SW	100	29000	2800	699202	32370	20000	2451	2800	35170	32370	571899	35302	2800	38102	35302
								FLOOR 3							
FL-3 NE	100	29000	2800	711863	32957	20000	2451	2800	35757	32957	372900	23019	2800	25819	23019
FL-3 NW	100	29000	2800	742208	34361	20000	2451	2800	37161	34361	373045	23027	2800	25827	23027
FL-3 SE	100	29000	2800	704972	32638	20000	2451	2800	35438	32638	522584	32258	2800	35058	32258
FL-3 SW	100	29000	2800	716604	33176	20000	2451	2800	35976	33176	524713	32390	2800	35190	32390
FL-3 T	100	28000	2800	666900	30875	20000	2451	2800	33675	30875	371753	22948	2800	25748	22948
								FLOOR 5							
FL-5 E	100	19250	2500	497134	23015	20000	2451	2500	25515	23015	224206	13840	2500	16340	13840
FL-5 W	100	19250	2500	514744	23831	20000	2451	2500	26331	23831	225693	13932	2500	16432	13932

3. Mixed Air Conditions.

For the DOAS/VAV application, the outdoor air is mixed with the VAV supply air after both are conditioned separately. The temperature of the mixed air had to be calculated to check if it is within an acceptable range. Supplying air between 54F and 56F is acceptable.

	VAV Su	pply Air	DOAS S	upply Air	Mixed Su	upply Air				
	Quantity	Dry Bulb T	Quantity	Dry Bulb Te	Quantity	Dry Bulb				
Space	CFM	F	CFM	F	CFM	F				
			FLOOR 1							
FL-1 NE	25200	55	2500	45	27700	54.10				
FL-1 NW	25200	55	2500	45	27700	54.10				
FL-1 SE	23750	55	2500	45	26250	54.05				
FL-1 SW	23750	55	2500	45	26250	54.05				
FL-1 T	27300	55	2500	45	29800	54.16				
FLOOR 2										
FL-2 NE	28500	55	2800	45	31300	54.11				
FL-2 NW	28500	55	2800	45	31300	54.11				
FL-2 SE	29000	55	2800	45	31800	54.12				
FL-2 SW	29000	55	2800	45	31800	54.12				
			FLOOR 3							
FL-3 NE	30000	55	2800	45	32800	54.15				
FL-3 NW	30000	55	2800	45	32800	54.15				
FL-3 SE	29450	55	2800	45	32250	54.13				
FL-3 SW	29450	55	2800	45	32250	54.13				
FL-3 T	27200	55	2800	45	30000	54.07				
			FLOOR 5							
FL-5 E	20700	55	2500	45	23200	53.92				
FL-5 W	20700	55	2500	45	23200	53.92				

Table E1. DOAS/VAV Summer Mixed Air Conditions.

	VAV Su	pply Air	DOAS S	upply Air	Mixed S	upply Air			
	Quantity	Dry Bulb T	Quantity	Dry Bulb Te	Quantity	Dry Bulb			
Space	CFM	F	CFM	F	CFM	F			
			FLOOR 1						
FL-1 NE	25200	55	1950	58.2	27150	55.23			
FL-1 NW	25200	55	1950	58.2	27150	55.23			
FL-1 SE	23750	55	1890	58.2	25640	55.24			
FL-1 SW	23750	55	1890	58.2	25640	55.24			
FL-1 T	27300	55		58.2	29450	55.23			
FLOOR 2									
FL-2 NE	28500	55	2080	58.2	30580	55.22			
FL-2 NW	28500	55	2075	58.2	30575	55.22			
FL-2 SE	29000	55	2080	58.2	31080	55.21			
FL-2 SW	29000	55	2075	58.2	31075	55.21			
			FLOOR 3						
FL-3 NE	30000		2190	58.2	32190	55.22			
FL-3 NW	30000	55	2190	58.2	32190	55.22			
FL-3 SE	29450	55	2190	58.2	31640	55.22			
FL-3 SW	29450	55	2190	58.2	31640	55.22			
FL-3 T	27200	55	2080	58.2	29280	55.23			
			FLOOR 5						
FL-5 E	20700	55	1605	58.2	22305	55.23			
FL-5 W	20700	55	1605	58.2	22305	55.23			

Table E2. DOAS/VAV Winter Mixed Air Conditions.

4. McQuay Air Handling Unit Example Selection Procedure.

This example is for the FL-1 NE VAV air handling unit in the DOAS/VAV system.

Find Maximum Face Area 1. Supply Air Quantity = 25200CFM Maximum Face Area = Supply Air Quantity/Maximum Face Velocity = 25200CFM/500FPM = 50.4SF *Check SWP080 with Face Area of 51.1SF 2. Find CFM Correction Factor CFM Correction Factor = Supply Air Quantity/Nominal CFM = 25200CFM/30660CFM = 0.823A. **DX Coil Selection DX** Cooling Capacity Correction Factors Total Heat = $0.968 + ((0.82 - 0.8) \times 100) \times 0.0006 = 0.969$ Sensible Heat = 0.9+((0.82-0.8)*100)*0.005 = 0.911Capacity Required by Space = 562.370MBH [Thousand Btu/h] Total Capacity Required by Coil = 562.370/0.969 = 580.36MBH Total Sensible Capacity Required by Coil =562.370/0.911 =617.31MBH Total Capacity Available from SWP080F = 907MBH Sensible Capacity Available from SWP080F = 708MBH *Both are capacities are greater than what is required, SWP080F is ok! SWP080F: 80F EDB, 67F EWB, 85F EWT, 56.8 LDB, 56.7 LWB, 214GPM

3B. Cooling Coil Selection

For the chilled water application, the chilled water coils were selected using Carrier's Air Handling Unit Builder. A typical coil was sized for each unit based on the average supply air quantity (32750CFM), total and sensible cooling capacity (668Mbh/648Mbh). A 4 row, 8 fin per inch coil was chosen with 45F EWT, 55F LWT, 782 SMbh, 691 TMbh, 5.6' P.D., and 156GPM.

4. Find Condenser Flow Rate

Condenser Flow Rate = 214GPM*Total Heat Correction Factor

= 214GPM*0.969 = 207GPM

5. Economizer Coil Selection

Economizer Cooling Capacity Correction Factors

Total Heat = $0.92 + ((0.82 - 0.8) \times 100) \times 0.004 = 0.929$

Sensible Heat = $0.87 + ((0.82 - 0.8) \times 100) \times 0.006 = 0.883$

Capacity Required by Space = 562.370MBH

Total Capacity Required by Coil = 562.370*0.929 = 494MBH

Total Sensible Capacity Required by Coil = 562.370*0.883 = 469MBH

Economizer Flow Rate = Condenser Flow Rate = 207GPM

Total Capacity Available from SWP080F = 592MBH

Sensible Capacity Available from SWP080F = 558MBH

*Both are capacities are greater than what is required, SWP080F is ok!

- SWP080F: 55F EWT, 80F EDB, 67F EWB, 61.8F LDB, 60.5F LWB, 61.0F LWT
- 6A. Electric Heating Coil Capacity

68KW, 232MBH

6B. Hot Water Coil Capacity

1058MBH, 155.8F LWT, 100.0F LDB, 90GPM

7A. Fan/Motor Selection with Electric Heating Coil

Internal Static Pressure [ISP]

	Filter:	0.251625 inches water gage [in wg]							
	Economizer:	0.413250 in wg							
	DX coil:	0.778750 in wg							
	Discharge Plenum:	0.461000 in wg							
ISP = 0.251625 + 0.413250 + 0.778750 + 0.461000 = 1.904625 in									
Extern	al Static Pressure [ES	[P]							
	Supply Duct:	1.00 in wg							
EXP =	EXP = 1.00 in wg								
Total Static Pressure = ISP + ESP = 2.904625 in wg									
*A 25HP airfoil fan is chosen									

Jayme Antolik

wg

7B. Fan/Motor Selection with Hot Water Coil

Internal Static Pressure [ISP]

Discharge Plenum:

*Total

Compressor/Condenser:

Variable Frequency Drive:

		· · · · · · · · · · · · · · · · · · ·	-
		Filter:	0.251625 inches water gage [in wg]
		Economizer:	0.413250 in wg
		Cooling Coil:	0.778750 in wg
		HW coil:	0.147750 in wg
		Discharge Plenum:	0.461000 in wg
	ISP	= 0.251625 + 0.4132	250 + 0.778750 + 0.147750 + 0.461000
		= 2.052375 in wg	
	Exterr	nal Static Pressure [ES	P]
		Supply Duct:	1.00 in wg
	EXP	= 1.00 in wg	
	Total	Static Pressure = ISP -	+ ESP = 3.052375 in wg
	*A 25	HP airfoil fan is chosen	I Contraction of the second
Unit S	ize and	Weight	
	Size:	144L x 84W x 88H (ir	n inches)
	Weigh	it:	
		Basic Unit:	4021 lbs
		Filter:	96 lbs
		Evaporator Coil:	755 lbs
		Economizer Coil:	723 lbs
		Economizer Water We	eight: 203 lbs
		Electric Heating Coil:	40 lbs
		Supply Fan Motor:	366 lbs

Jayme Antolik

1003 lbs

1684 lbs

100 lbs

8991 lbs

8.

5. Mixed Air Dry and Wet Bulb Temperatures.

When using Carrier's Air Handling Unit Builder, the entering air dry and wet bulb temperatures are required to size a cooling coil. This table shows the mixed air conditions entering the VAV unit for conditioning.

					Summer					
			Dry Bulb					Wet Bulb		
	Outd	oor Air	Retu	ırn Air	Mixed Air	Outd	oor Air	Retu	ırn Air	Mixed Air
	Quantity	Temperature	Quantity	Temperature	Temperature	Quantity	Temperature	Quantity	Temperature	Temperatur
Space	CFM	F	CFM	F	F	CFM	F	CFM	F	F
					FLOOR 1		197 - S. 197			99
L-1 NE	2500	92	29076	75	76.35	2500	75	26755	62.4	63.48
L-1 NW	2500	92	27343	75	76.42	2500	75	25021	62.4	63.54
L-1 SE	2500	92	28581	75	76.37	2500	75	26259	62.4	63.50
L-1 SW	2500	92	24810	75	76.56	2500	75	22489	62.4	63.66
-L-1 T	2700	92	30515	75	76.38	2700	75	28309	62.4	63.50
				- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	FLOOR 2	а. 				
FL-2 NE	2800	92	32469	75	76.35	2800	75	30019	62.4	63.47
L-2 NW	2800	92	31443	75	76.39	2800	75	28986	62.4	63.51
L-2 SE	2800	92	32676	75	76.34	2800	75	30226	62.4	63.47
FL-2 SW	2800	92	32370	75	76.35	2800	75	29914	62.4	63.48
					FLOOR 3					
L-3 NE	2800	92	32957	75	76.33	2800	75	30434	62.4	63.46
L-3 NW	2800	92	34361	75	76.28	2800	75	31674	62.4	63.42
L-3 SE	2800	92	32638	75	76.34	2800	75	30269	62.4	63.47
L-3 SW	2800	92	33176	75	76.32	2800	75	30765	62.4	63.45
E-3 T	2800	92	30875	75	76.41	2800	75	28226	62.4	63.54
					FLOOR 4			-		
FL-4	3000	92	793423	75	75.06	3000	75	793423	62.4	62.45
					FLOOR 5					
L-5 E	2500	92	23015	75	76.67	2500	75	20524	62.4	63.77
L-5 W	2500	92	23831	75	76.61	2500	75	21301	62.4	63.72
		Average Mixe	d Air Dry Bu	Ib Temperature	76.3		Average Mixe	d Air Wet Bu	Ib Temperature	63.5

					Winter					
			Dry Bulb					Wet Bulb		
	Outd	oor Air	Retu	rn Air	Mixed Air	Outd	oor Air	Retu	rn Air	Mixed Air
	Quantity	Temperature	Quantity	Temperature	Temperature	Quantity	Temperature	Quantity	Temperature	Temperature
Space	CFM	F	CFM	F	F	CFM	F	CFM	F	F
					FLOOR 1					
L-1 NE	2500	11	28067	70	65.17	2500	7.2	26755	58.6	54.21
=L-1 NW	2500	11	28921	70	65.31	2500	7.2	25021	58.6	53.93
L-1 SE	2500	11	28539	70	65.25	2500	7.2	26259	58.6	54.13
L-1 SW	2500	11	30282	70	65.50	2500	7.2	22489	58.6	53.46
=L-1 T	2700	11	28862	70	64.95	2700	7.2	28309	58.6	54.12
FLOOR 2										
FL-2 NE	2800	11	33313	70	65.43	2800	7.2	30019	58.6	54.21
L-2 NW	2800	11	34016	70	65.51	2800	7.2	28986	58.6	54.07
L-2 SE	2800	11	34949	70	65.62	2800	7.2	30226	58.6	54.24
FL-2 SW	2800	11	35302	70	65.66	2800	7.2	29914	58.6	54.20
					FLOOR 3					
-L-3 NE	2800	11	23019	70	63.60	2800	7.2	30434	58.6	54.27
L-3 NW	2800	11	23027	70	63.60	2800	7.2	31674	58.6	54.43
FL-3 SE	2800	11	32258	70	65.29	2800	7.2	30269	58.6	54.25
-L-3 SW	2800	11	32390	70	65.31	2800	7.2	30765	58.6	54.31
FL-3 T	2800	11	22948	70	63.58	2800	7.2	28226	58.6	53.96
					FLOOR 4					
FL-4	3000	11	1037780	70	69.83	3000	7.2	793423	58.6	58.41
					FLOOR 5					
L-5 E	2500	11	13840	70	60.97	2500	7.2	20524	58.6	53.02
L-5 W	2500	11	13932	70	61.02	2500	7.2	21301	58.6	53.20
		-		-			· · · ·			
		Average Mixe	ed Air Dry Bul	b Temperature	64.8		Average Mixe	d Air Wet Bul	b Temperature	54.3

Jayme Antolik

Senior Thesis

6. SEMCO Air Handling Unit Example Selection Procedure.

This example is for the North DOAS air handling unit.

1. Select Unit Based on Supply Air Quantity

Supply Air Quantity = 14400CFM

- *Choose EP-24 with a minimum 11000CFM and maximum 18000CFM
- 2. Select Unit Configuration
 - In addition to the cooling/dehumidification done by the enthalpy wheel in the summer, additional cooling will be needed to obtain the required supply temperature.

In addition to the heating/humidification done by the enthalpy wheel in the winter, the outdoor air will need additional heating.

*Choose EPCH-24 with a cooling and heating coil

3. Determine Total Static Pressure for Supply Side

Internal Static Pressure [ISP]

OA Opening:	0.085 in wg
SA Opening:	0.085 in wg
Damper:	0.094 in wg
OA Filter:	0.434 in wg
Wheel:	0.569 in wg
CHW Coil:	0.564 in wg
HW Coil:	0.095 in wg
Casing:	0.300 in wg
Total:	2.226 in wg
External Static Press	ure [ESP]
Supply Duct:	1.000 in wg

- *Total Static Pressure = ISP + ESP = 3.226 in wg
- 4. Determine Total Static Pressure for Return Side
 - Internal Static Pressure [ISP]
 - EA Opening: 0.254 in wg
 - RA Opening: 0.254 in wg

Jayme Antolik

94 in wg
34 in wg
69 in wg
00 in wg
05 in wg

External Static Pressure [ESP]

Supply Duct: 0.500 in wg

*Total Static Pressure = ISP + ESP = 2.505 in wg

5. Determine Total Supply Air Volume

Purge/Seal Air Volume = 1735CFM

*Total Supply Air Volume = 14400CFM + 1735CFM = 16135CFM

6. Determine Motor Horsepower

Supply Motor:13.4HPReturn Motor:10.8HP

*Choose 15HP motors for both the supply fan and return fan

- 7. Base Wheel Effectiveness: 80.6%
- 8. Unit Size and Weight

Size: 262L x 122W x 110H (in inches)

Weight: 8450 lbs

7. Radiant Panel Optimization.

The supply water temperature had to be supplied at a higher temperature than the room dew point temperature.

Supply Water Temperate	ure Analysis
RA DPT [F]	55
Inlet Water Temperature [F]	56
Assumed Temp Rise [F]	10
Mean Water Temperature [F]	61.0
RA DBT - MWT [F]	14.0

Table J1. Supply Water Temperature Analysis.

A flow rate of 1GPM can have 17 panels on one circuit, will have 6.8' pressure drop per circuit, will absorb 5000Btu/hr, and will require 841GPM total flow. These results are only for floors 1 and 2.

Max Pressure		Absorption Capacity		Pressure Drop		
Drop per 2'x4'	Flow Rate	f. Flow Rate	# Panels	per Circuit	# Circuits	Total Flow
5 pass	gpm	Btu/hr		ft. wg.		gpm
0.1	0.5	2500	8	0.8	1786	893
0.4	1	5000	17	6.8	841	841
1.4	2	10000	35	49.0	409	818
2	2.5	12500	44	88.0	325	813
2.8	3	15000	53	148.4	270	810

Table J2. Flow Optimization.

8. System Calculations.

Calculations were documented for each system. The VAV only case is in Appendix E.

		FL-1 NE	FL-1 NW	FL-1 SE	FL-1 SW	FL-1 T	FL-2 NE	FL-2 NW	FL-2 SE	FL-2 S
Room Properties	Area [SF]	25000	25000	24000	24000	27500	29000	29000	29000	29000
	Floor to Ceiling Height [FT] Plenum Depth [FT]	12.5	12.5	12.5	12.5	29	13.5	13.5	13.5	13.5
	Floor to Floor Height [FT]	15.5	15.5	15.5	15.5	32	16.5	16.5	16.5	16.5
	Volume [CF] Occupancy	312500 100	312500 100	300000 100	300000 100	797500	391500 100	391500 100	391500 100	39150 100
Ventilation Air Dequirem	ent to Satisfy Standard 62.1	2500	2500	2500	2500	2500	2800	2800	2800	2800
Latent Load Satisfied by Sta	indard 62.1 Vent. Requirement	34000	34000	34000	34000	34000	38080	38080	38080	38080
Supply Air Required to Satis	fy Latent Load at 44F/Saturated	1471	1471	1471	1471	1471	1471	1471	1471	1471
Room Loads	Q_SEN [btu/hr] Q_LAT [btu/hr]	628050 20000	590601 20000	617350 20000	535906 20000	659122 20000	701334 20000	679160 20000	705800 20000	69920 2000
										-
uired Outdoor Air Quantity		2500	2500	2500	2500	2500	2800	2800	2800	2800
Enthalpy Wheel Charac.	ES EL	0.8	0.8	0.8 0.8	0.8	0.8	0.8	0.8	0.8	0.8
A - 0A	DBT [F]	92	92	92	92	92	92	92	92	92
Outdoor Air	WBT [F]	75	75	75	75	75	75	75	75	75
entering enthalpy wheel	% RH W (g/lb]	47 113.5	47 113.5	47 113.5	47 113.5	47 113.5	47 113.5	47 113.5	47 113.5	47
	h [Btu/lb]	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
B - OA-EW	DBT (F)	78.4	78.4	78,4	78.4	78.4	78.4	78.4	78.4	78.4
Outdoor Air leaving enthalpy wheel	% RH W (g/lb)	52 73.9	52 73.9							
entering cooling coil	h (Btu/ib)	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2
	rho [lb/cf]	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073
C - SA Supply Air	DBT (F) % RH	45 100	45 100							
leaving cooling coil	W_SA [g/lb]	44	44	44	44	44	44	44	44	44
entering room	W_ SA [lbm/lba] DPT [F]	0.00629 45	0.00629 45	0.00629 45	0.00629 45	0.00629 45	0.00629 45	0.00629 45	0.00629 45	0.0062
	h [Btu/lb]	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6
D - RA	DBT [F]	75	75	75	75	75	75	75	75	75
Exhaust Air leaving room	WBT (F) DPT (F)	62.4 55	62.4							
entering enthalpy wheel	% RH	50	50	50	50	50	50	50	50	50
	W [g/lb]	64 20.0	64 20.0							
	h [Btu/lb]	28.2	28.2	28.2	28.2	28.2	28.2	28.2	28.2	28.2
E - EA	DBT (F)	92.0	92.0	92.0	92.0	92.0	92.0	92.0	92.0	92.0
Exhaust Air leaving enthalpy wheel	% RH W [g/lb]	47.0 113.5	49.0 113.5	49.0						
leaving enthalpy wheel	h [Btu/lb]	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
D	DAS									
Cooling Coil Loads	Sensible Load [Btu/hr]	90180 50830	90180 50830	90180 50830	90180 50830	90180 50830	101002 56930	101002 56930	101002 56930	10100
	Latent Load [Btu/hr] Total Load [Btu/hr]	141010	141010	141010	141010	141010	157931	157931	157931	15793
	Total Load [tons]	11.8	11.8	11.8	11.8	11.8	13.2	13.2	13.2	13.2
SA Cooling Capacity North SA	[Btu/hr] [cfm]	81000 2500	81000 2500	81000	81000	81000	90720 2800	90720 2800	90720	9072
South SA	[cfm]	2000	2,000	2500	2500	2500	2000	2000	2800	2800
	ystem: VAV								-	
arallel Cooling Capacity Cooling Coil	[Btu/hr] Entering DBT	547050 75.0	509601 75.0	536350 75.0	454906 75.0	578122 75.0	610614 75.0	588440 75.0	615080 75.0	60848 75.0
Cooling Coll	Sensible Load [Btu/hr]	547050	509601	536350	454906	578122	610614	588440	615080	60848
	Latent Load [Btu/hr]	0	0	0	0	0	0	0	0	0
	Total Load [Btu/hr] Total Load [tons]	547050 45.6	509601 42.5	536350 44.7	454906 37.9	578122 48.2	610614 50.9	588440 49.0	615080 51.3	60848
Supply Air	DBT (F)	55	55	55	55	55	55	55	55	55
	[cfm]	25326	23593	24831	21060	26765	28269	27243	28476	2817
	DBT [F]	54.10	54.04	54.09	53.94	54.15	54.10	54.07	54.10	54.1

DOAS/VAV Summer Calcs—Floors 1 and 2

2006

DOAS/VAV Winter Calcs—Floors 1 and 2

		FL-1 NE	FL-1 NW	FL-1 SE	FL-1 SW	FL-1 T	FL-2 NE	FL-2 NW	FL-2 SE	FL-2 SW
Room Properties	Area [SF]	25000	25000	24000	24000	27500	29000	29000	29000	29000
	Floor to Ceiling Height [FT]	12.5	12.5	12.5	12.5	29	13.5	13.5	13.5	13.5
	Plenum Depth [FT]	3	3	3	3	3	3	3	3	3
	Floor to Floor Height [FT]	15.5	15.5	15.5	15.5	32	16.5	16.5	16.5	16.5
	Volume [CF]	312500	312500	300000	300000	797500	391500	391500	391500	391500
	Occupancy	100	100	100	100	100	100	100	100	100
Ventilation Air Requireme	nt to Satisfy Standard 62.1	2500	2500	2500	2500	2500	2800	2800	2800	2800
	ndard 62.1 Vent. Requirement	17850	17850	17850	17850	17850	19992	19992	19992	19992
	y Latent Load at 44F/Saturated	0	0	0	0	0	0	0	0	0
		15 10 00	1 1000010	1.000.000	1000000	123052.1	800000		200.111	
Room Loads	Q_SEN [btu/hr] Q_LAT [btu/hr]	454693 0	468519	462339	490562	467564	539666	551052	566174 0	571899
	GERT [brank]	0	0	0	0	, v	v			0
quired Outdoor Air Quantity	[cfm]	2500	2500	2500	2500	2500	2800	2800	2800	2800
Entholmy Milhoel Charge	ES	0.8	0.8	0.0	0.8	0.9	0.8	0.9	0.9	0.8
Enthalpy Wheel Charac.	ES	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
	EL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A - 0A	DBT (F)	11	11	11	11	11	11	11	11	11
Outdoor Air	WBT (F)	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2
entering enthalpy wheel	% RH	30	30	30	30	30	30	30	30	30
	W [g/lb]	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	h (Btu/lb)	3.11	3.11	3.11	3.11	3.11	3.11	3.11	3.11	3.11
B - OA-EW	DBT (F)	58.2	58.2	58.2	58.2	58.2	58.2	58.2	58.2	58.2
Outdoor Air	% RH	52	52	52	52	52	52	52	52	52
leaving enthalpy wheel	W [g/lb]	44.2	44.2	44.2	44.2	44.2	44.2	44.2	44.2	44.2
entering cooling coil	h [Btu/lb]	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2
	rho [lb/cf]	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073
C - SA	DBT (F)	45	45	45	45	45	45	45	45	45
Supply Air	% RH	100	100	100	100	100	100	100	100	45
leaving cooling coil	W_SA [g/lb]	44	44	44	44	44	44	44	44	44
entering room	W_SA [lbm/lba]	0.00629	0.00629	0.00629	0.00629	0.00629	0.00629	0.00629	0.00629	0.00628
chicking room	DPT [F]	45	45	45	45	45	45	45	45	45
	h [Btu/lb]	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6
D - RA	557 (2)		1 90	1 70			30	1 40		70
D - RA Exhaust Air	DBT (F) WBT (F)	70 58.6	70 58.6	70 58.6	70	70 58.6	70 58.6	70 58.6	70 58.6	70 58.6
leaving room	DPT [F]	50	50.0	50.0	50.0	50.0	50.0	50.0	50	50.0
entering enthalpy wheel	% RH	50	50	50	50	50	50	50	50	50
entering entricipy inteer	W [g/lb]	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.5
	∆W = Wroom - Wsa	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5
	h [Btu/lb]	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3	25.3
E - EA	DBT [F]	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Exhaust Air	% RH	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0
leaving enthalpy wheel	W [g/lb]	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
•	h [Btu/lb]	37.1	37.1	37.1	37.1	37.1	37.1	37.1	37.1	37.1
67	10									
Cooling Coll Loads	AS Sensible Load [Btu/hr]	35640	35640	35640	35640	35640	39917	39917	39917	39917
cooling con Londa	Latent Load [Btu/hr]	272	272	272	272	272	305	305	305	305
	Total Load [Btu/hr]	35912	35912	35912	35912	35912	40221	40221	40221	40221
	Total Load [tons]	2.99	2.99	2.99	2.99	2.99	3.35	3.35	3.35	3.35
SA Cooling Capacity	[Btu/hr]	67500	67500	67500	67500	67500	75600	75600	75600	75600
North SA	[cfm]	2500	2500				2800	2800		
South SA	[cfm]			2500	2500	2500			2800	2800
Parallel Sv	stem: VAV									
Space Sensible Load	[Btu/hr]	387193	401019	394839	423062	400064	464066	475452	490574	496299
Cooling Coil	Entering DBT	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0
-	Sensible Load [Btu/hr]	387193	401019	394839	423062	400064	464066	475452	490574	496299
	Latent Load [Btu/hr]	0	0	0	0	0	0	0	0	0
	Total Load [Btu/hr]	387193	401019	394839	423062	400064	464066	475452	490574	496299
	Total Load [tons]	32.3	33.4	32.9	35.3	33.3	38.7	39.6	40.9	41.4
Supply Air	DBT [F] [cfm]	55 23901	55 24754	55 24373	55 26115	55 24695	55 28646	55 29349	55 30282	55 30636
	Leund	23001	10112	24010	20110		20010	20010		

DOAS/Radiant Summer Calcs—Floors 1 and 2

		FL-1 NE	FL-1 NW	FL-1 SE	FL-1 SW	FL-1 T	FL-2 NE	FL-2 NW	FL-2 SE	FL-2 SW
Room Properties	Area [SF]	25000	25000	24000	24000	27500	29000	29000	29000	29000
-	Floor to Ceiling Height [FT]	12.5	12.5	12.5	12.5	29	13.5	13.5	13.5	13.5
	Plenum Depth [FT]	3	3	3	3	3	3	3	3	3
	Floor to Floor Height [FT]	15.5 312500	15.5 312500	15.5	15.5	32 797500	16.5 391500	16.5 391500	16.5 391500	16.5 391500
	Volume [CF] Occupancy	100	100	300000 100	300000 100	100	100	100	100	100
Ventilation Air Requireme	nt to Satisfy Standard 62.1	2500	2500	2500	2500	2500	2800	2800	2800	2800
Latent Load Satisfied by Star	ndard 62.1 Vent. Requirement	34000	34000	34000	34000	34000	38080	38080	38080	38080
Supply Air Required to Satisfy	Latent Load at 44F/Saturated	1471	1471	1471	1471	1471	1471	1471	1471	1471
Room Loads	Q SEN [btu/hr]	517725	480276	510438	428994	540264	577357	555183	581823	575225
	Q_LAT [btu/hr]	20000	20000	20000	20000	20000	20000	20000	20000	20000
Required Outdoor Air Quantity	(cfm)	2500	2500	2500	2500	2500	2800	2800	2800	2800
Enthalpy Wheel Charac.	ES	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
	EL	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
A - OA	DBT [F]	92	92 75	92	92 75	92 75	92	92 75	92	92
Outdoor Air entering enthalpy wheel	WBT (F) % RH	75	47	75	47	47	75	47	75	75
children and a state of the sta	W [g/lb]	113.5	113.5	113.5	113.5	113.5	113.5	113.5	113.5	113.5
	h [Btu/lb]	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
B - CA-EW	DBT (F)	78.4	78.4	78.4	78.4	78.4	78.4	78.4	78.4	78.4
Outdoor Air	% RH	52	52	52	52	52	52	52	52	52
leaving enthalpy wheel	W [g/lb]	73.9 30.2	73.9	73.9 30.2	73.9 30.2	73.9 30.2	73.9 30.2	73.9 30.2	73.9 30.2	73.9
entering cooling coil	h [Btu/lb] rho [lb/cf]	30.2 0.073	30.2 0.073	0.073	0.073	30.2	0.073	30.2 0.073	30.2 0.073	30.2
C - SA	DBT (F)	45	45	45	45	45	45	45	45	45
Supply Air	% RH	100	100	100	100	100	100	100	100	100
leaving cooling coil	W \$A [g/lb]	44	44	44	44	44	44	44	44	44
entering room	W_SA [ibm/iba]	0.00629	0.00629	0.00629	0.00629	0.00629	0.00629	0.00629	0.00629	0.00629
	DPT [F]	45 17.6	45	45	45	45	45	45	45	45
	h (Btu/lb)	17.5	17.6	17.6	17.6	17.6	17.6	17.6	17.6	17.6
D - RA Exhaust Air	DBT [F] WBT [F]	75 62.4	75 62.4	75 62.4	75 62.4	75 62.4	75 62.4	75 62.4	75 62.4	75
leaving room	DPT [F]	55	55	55	55	55	55	55	55	55
entering enthalpy wheel	% RH	50	50	50	50	50	50	50	50	50
•	W [g/lb]	64	64	64	64	64	64	64	64	64
	∆W = Wroom - Wsa h [Btu/lb]	20.0 28.2	20.0 28.2	20.0 28.2	20.0 28.2	20.0 28.2	20.0 28.2	20.0 28.2	20.0 28.2	20.0
E - EA Exhaust Air	DBT [F] % RH	92.0 47.0	92.0	92.0	92.0	92.0 49.0	92.0	92.0	92.0	92.0
leaving enthalpy wheel	W [g/lb]	113.5	113.5	113.5	113.5	113.5	113.5	113.5	113.5	113.5
	h [Btu/lb]	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
DO	AS	1					T			
Cooling Coil Loads	Sensible Load (Btu/hr)	90180	90180	90180	90180	90180	101002	101002	101002	101002
	Latent Load [Btu/hr] Total Load [Btu/hr]	50830 141010	50830 141010	50830 141010	50830 141010	50830 141010	56930 157931	56930 157931	56930 157931	56930 157931
	Total Load [tons]	141010	141010	141010	141010	141010	13.2	13/931	13/931	13.2
SA Cooling Capacity	[Btu/hr]	81000	81000	81000	81000	81000	90720	90720	90720	90720
North SA	[cfm]	2500	2500				2800	2800		
South SA	[cfm]			2500	2500	2500			2800	2800
Parallel System:							L			
Total Load	[Btu/hr] [tons]	436725 36.39	399276 33.27	429438 35.79	347994 29.00	459264 38.27	486637 40.55	464463 38.71	491103 40.93	484505 40.38
Total Chiller Size	(tons)	48.14	45.02	47.54	40.75	50.02	53.71	51.87	54.09	53.54
		40.14	40.02	47.04	40.75	30.02	33.71	01.07	34.09	33.34
Radiant Panels - Total Absorbed Energy	Sterling Type C [Btu/hr]	436725	399276	429438	347994	459264	486637	464463	491103	484505
Absorbed Energy per Panel	[Btu/hr]	436725	280	429430	280	280	280	280	280	280
Number of Panels		1560	1426	1534	1243	1640	1738	1659	1754	1730
Total Ceiling Area	[SF]	25000	25000	24000	24000	27500	29000	29000	29000	29000
Panel Area	[SF]	12478 0.50	0.46	12270	9943 0.41	13122 0.48	13904 0.48	13270	14032 0.48	13843
Panel Coverage Area Fraction										
	17	4.0014					Descent day			
Panel Coverage Area Fraction Number of Panels per Circuit Number of Circuits	17 [GPM]	1 GPM through ci 92	rcuit 84 84	90	73	96	Pressure drop pe 102	r circuit 98 98	6.8 103	102

9. Energy Consumption per System.

Values were taken from TRACE based on the energy consumption of each modeled

system.

System 1	Electric	Gas	Water	Percent of	Total Source
	Consumption	Consumption	Consumption	Total Energy	Energy
	(kWh)	(therms)	(1000 gallons)	%	(kBtu/yr)
Primary Heating					
Primary Heating	1209479.5	0.0		3.7	123851.0
Primary Cooling					
Cooling Compressor	5206464.0			16.1	533143.2
Tower/Cond Fans	420212.0		25396.4	1.3	43029.8
Condenser Pump	1205839.1			3.7	123478.2
Other CLG Accessories	876.0				89.7
Cooling Subtotal	6833391.1		25396.4	21.1	699740.9
Auxiliary					
Supply Fans	2062867.0			6.4	211238.1
Circ Pumps					
Base Utilities					
Aux Subtotal	2062867.0			6.4	211238.1
Lighting/Equipment					
Lighting/Equipment	22285440.0			68.8	2282034.3
Totals	32391177.6	0.0	25396.4	100.0	3316864.3
System 2	Electric	Gas	Water	Percent of	Total Source
	Consumption	Consumption	Consumption	Total Energy	Energy
	(kWh)	(therms)	(1000 gallons)	%	(kBtu/yr)
	(((())))	(ulenna)	(1000 galions)	70	(RDCu/yr)
Duine and Llastin a					
Primary Heating					
	22539.0	49555.3		5.0	54471.5
Primary Heating Primary Cooling	22539.0	49555.3		5.0	54471.5
Primary Heating Primary Cooling Cooling Compressor	2110947.8	49555.3		7.2	216161.6
Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans		49555.3	23481.1	7.2	
Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans Condenser Pump	2110947.8 672199.4 489990.5	49555.3	23481.1	7.2 2.3 1.7	216161.6 68833.4 50175.1
Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories	2110947.8 672199.4 489990.5 0.0	49555.3		7.2 2.3 1.7 0.0	216161.6 68833.4 50175.1 0.0
Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans Condenser Pump	2110947.8 672199.4 489990.5	49555.3	23481.1 23481.1	7.2 2.3 1.7	216161.6 68833.4 50175.1
Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary	2110947.8 672199.4 489990.5 0.0 3273137.7	49555.3		7.2 2.3 1.7 0.0 11.2	216161.6 68833.4 50175.1 0.0 335170.1
Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary Supply Fans	2110947.8 672199.4 489990.5 0.0 3273137.7 2062866.7	49555.3		7.2 2.3 1.7 0.0 11.2 7.0	216161.6 68833.4 50175.1 0.0 335170.1 211238.0
Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary Supply Fans Circ Pumps	2110947.8 672199.4 489990.5 0.0 3273137.7 2062866.7 335646.8	49555.3		7.2 2.3 1.7 0.0 11.2 7.0 1.1	216161.6 68833.4 50175.1 0.0 335170.1 211238.0 34370.3
Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary	2110947.8 672199.4 489990.5 0.0 3273137.7 2062866.7	49555.3		7.2 2.3 1.7 0.0 11.2 7.0	216161.0 68833.4 50175.7 0.0 335170.7 211238.0 34370.3 0.0
Primary Heating Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary Supply Fans Circ Pumps Base Utilities Aux Subtotal	2110947.8 672199.4 489990.5 0.0 3273137.7 2062866.7 335646.8 0.0	49555.3		7.2 2.3 1.7 0.0 11.2 7.0 1.1 0.0	216161.0 68833.4 50175.7 0.0 335170.7 211238.0 34370.3 0.0
Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary Supply Fans Circ Pumps Base Utilities Aux Subtotal Lighting/Equipment	2110947.8 672199.4 489990.5 0.0 3273137.7 2062866.7 335646.8 0.0	49555.3		7.2 2.3 1.7 0.0 11.2 7.0 1.1 0.0	216161.6 68833.4 50175.1 0.0 335170.1 211238.0
Primary Heating Primary Cooling Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary Supply Fans Circ Pumps Base Utilities	2110947.8 672199.4 489990.5 0.0 3273137.7 2062866.7 335646.8 0.0 2398513.5	49555.3		7.2 2.3 1.7 0.0 11.2 7.0 1.1 0.0 8.1	216161.6 68833.4 50175.1 0.6 335170.1 211238.6 34370.3 0.6 245608.3

Senior Thesis

	Electric	Gas	Water	Percent of	Total Source
	Consumption	Consumption	Consumption	Total Energy	Energy
	(kWh)	(therms)	(1000 gallons)	%	(kBtu/yr)
Primary Heating					
Primary Heating	1119320.9	0.0		3.3	114618.7
Primary Cooling					
Cooling Compressor	6815661.0			19.9	697925.3
Tower/Cond Fans	439288.9		28450.5	1.3	44983.3
Condenser Pump	1238664.8			3.6	126839.6
Other CLG Accessories	876.0			0.0	89.7
Cooling Subtotal	8494490.7		28450.5	24.8	869837.9
Auxiliary					
Supply Fans	2300449.5			6.7	235566.6
Circ Pumps	0.0			0.0	0.0
Base Utilities	0.0			0.0	0.0
Aux Subtotal	2300449.5			6.7	235566.6
Lighting/Equipment					
Lighting/Equipment	22285440.0			65.2	2282034.3
Totals	34199701.1		28450.5	100.0	3502057.5
System 4					
	Electric	Gas	Water	Percent of	Total Source
	Consumption	Consumption	Consumption	Total Energy	Energy
	(kWh)	(therms)	(1000 gallons)	%	(kBtu/yr)
Primary Heating					
Primary Heating	22539.8	45861.2		4.6	50583.0
Primary Cooling					
Cooling Compressor	2238820.0			7.5	229255.7
Tower/Cond Fans					
			24287.1		
	669206.8		24287.1	2.2	68526.9
Condenser Pump	669206.8 478854.3		24287.1	2.2 1.6	68526.9 49034.8
	669206.8 478854.3 0.0		24287.1 24287.1	2.2	68526.9
Condenser Pump Other CLG Accessories Cooling Subtotal	669206.8 478854.3 0.0			2.2 1.6 0.0	68526.9 49034.8 0.0
Condenser Pump Other CLG Accessories	669206.8 478854.3 0.0			2.2 1.6 0.0	68526.9 49034.8 0.0
Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary	669206.8 478854.3 0.0 3386881.1			2.2 1.6 0.0 11.3	68526.9 49034.8 0.0 346817.4
Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary Supply Fans	669206.8 478854.3 0.0 3386881.1 2300449.5			2.2 1.6 0.0 11.3 7.7	68526.9 49034.8 0.0 346817.4 235566.6
Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary Supply Fans Circ Pumps	669206.8 478854.3 0.0 3386881.1 2300449.5 526663.6			2.2 1.6 0.0 11.3 7.7 1.8	68526.9 49034.8 0.0 346817.4 235566.6 53930.5
Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary Supply Fans Circ Pumps Base Utilities Aux Subtotal	669206.8 478854.3 0.0 3386881.1 2300449.5 526663.6 0.0			2.2 1.6 0.0 11.3 7.7 1.8 0.0	68526.9 49034.8 0.0 346817.4 235566.6 53930.5 0.0
Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary Supply Fans Circ Pumps Base Utilities	669206.8 478854.3 0.0 3386881.1 2300449.5 526663.6 0.0			2.2 1.6 0.0 11.3 7.7 1.8 0.0	68526.9 49034.8 0.0 346817.4 235566.6 53930.5 0.0 289497.1
Condenser Pump Other CLG Accessories Cooling Subtotal Auxiliary Supply Fans Circ Pumps Base Utilities Aux Subtotal Lighting/Equipment	669206.8 478854.3 0.0 3386881.1 2300449.5 526663.6 0.0 2827113.1			2.2 1.6 0.0 11.3 7.7 1.8 0.0 9.5	68526.9 49034.8 0.0 346817.4 235566.6 53930.5 0.0

Jayme Antolik

	Electric	Gas	Water	Percent of	Total Source
	Consumption	Consumption	Consumption	Total Energy	Energy
	(kWh)	(therms)	(1000 gallons)	%	(kBtu/yr)
Primary Heating					
Primary Heating	25561.1	54378.8		6.7	59858.3
Primary Cooling					
Cooling Compressor	1573273.4			6.6	161103.6
Tower/Cond Fans	552840.5		17975.1	2.3	56611.0
Condenser Pump	400901.3			1.7	41052.4
Other CLG Accessories	0.0			0.0	0.0
Cooling Subtotal	2527015.2		17975.1	10.6	258767.0
Auxiliary					
Supply Fans	341908.0			1.4	35011.5
Circ Pumps	950483.1			4.0	97329.7
Base Utilities	0.0			0.0	0.0
Aux Subtotal	1292391.1			5.4	132341.2
Lighting/Equipment					
Lighting/Equipment	18571200.0			77.3	1901695.3
Totals	22416167.4		17975.1	100.0	2352661.8

10. Energy Rates.

The energy rates were based on PECO rates from 03/31/06.

PECO Unbundled Rates [03	8/31/06]	
Fixed Distribution Service Charge	\$291.43	per month
Variable Distribution Service Charge		
Demand	\$1.68	per kW
1st 150 hours of billed demand	\$0.0091	per kWh
2nd 150 hours of billed demand	\$0.0054	per kWh
All other KWH	\$0.0018	per kWh
Competitive Transition Charge		
Demand	\$4.74	per kW
1st 150 hours of billed demand	\$0.0262	per kWh
2nd 150 hours of billed demand	\$0.0158	per kWh
All other KWH	\$0.0056	per kWh
Energy and Capacity Charge		
Demand	\$6.45	
1st 150 hours of billed demand	\$0.0494	
2nd 150 hours of billed demand	\$0.0353	
All other KWH	\$0.0213	per kWh
Transmission Charge		
Demand	\$0.80	
1st 150 hours of billed demand	\$0.0043	
2nd 150 hours of billed demand	\$0.0025	per kWh
All other KWH	\$0.0008	per kWh
Time of Use Adjustment Summer	Winter	
June-Sept	Oct-May	
Off-Peak Credit (\$0.0021)	(\$0.0021)	per kWh
On-Peak Charge \$0.0058	\$0.0022	per kWh

11. Yearly Operating Cost.

The yearly operating cost for each system was based on the PECO energy rates as of 03/31/06 in the previous Appendix.

			System	1		
	EI	ectric On-Pea	k	Gas On-Peak	Water On-Peak	
	Consumption	Demand	Total	Consumption	Consumption	Monthly Total
	\$	\$	\$	\$	\$	\$
January	\$86,748	\$51,369	\$138,117	\$0	\$9,732	\$147,849
February	\$78,598	\$51,281	\$129,879	\$0	\$8,753	\$138,632
March	\$86,343	\$51,085	\$137,428	\$0	\$11,049	\$148,477
April	\$83,678	\$51,077	\$134,755	\$0	\$11,942	\$146,697
May	\$85,556	\$53,245	\$138,801	\$0	\$14,156	\$152,957
June	\$96,157	\$55,333	\$151,490	\$0	\$15,524	\$167,014
July	\$102,654	\$56,647	\$159,301	\$0	\$17,629	\$176,930
August	\$99,425	\$55,178	\$154,603	\$0	\$16,066	\$170,669
September	\$92,724	\$53,102	\$145,826	\$0	\$13,939	\$159,765
October	\$85,818	\$50,677	\$136,495	\$0	\$12,245	\$148,740
November	\$82,858	\$50,670	\$133,528	\$0	\$11,063	\$144,591
December	\$86,267	\$50,943	\$137,210	\$0	\$10,281	\$147,491
Totals	\$1,066,826	\$630,607	\$1,697,433	\$0	\$152,379	\$1,849,812

			System	2		
	EI	Water On-Peak				
	Consumption	Demand	Total	Consumption	Consumption	Monthly Total
	\$	\$	\$	\$	\$	\$
January	\$70.434	\$44,034	\$114,468	\$7.370	\$9,124	\$130,962
February	\$63,106	\$43,827	\$106,933	\$6,835	\$8,178	\$121,946
March	\$73,480	\$44,899	\$118,379	\$5,416	\$10,522	\$134,317
April	\$73,288	\$45,408	\$118,696	\$3,724	\$11,190	\$133,610
May	\$76,817	\$46,882	\$123,699	\$0	\$12,987	\$136,686
June	\$74,919	\$48,302	\$123,221	\$0	\$14,070	\$137,291
July	\$89,712	\$49,188	\$138,900	\$0	\$15,839	\$154,739
August	\$87,629	\$48,166	\$135,795	\$0	\$14,534	\$150,329
September	\$82,904	\$46,747	\$129,651	\$0	\$12,738	\$142,389
October	\$75,501	\$44,941	\$120,442	\$3,447	\$11,465	\$135,354
November	\$72,288	\$44,469	\$116,757	\$4,260	\$10,499	\$131,516
December	\$72,232	\$44,070	\$116,302	\$6,403	\$9,741	\$132,446
	•		•	•		
Totals	\$912,310	\$550,933	\$1,463,243	\$37,455	\$140,887	\$1,641,585

			System	3		
	EI	ectric On-Pea	k	Gas On-Peak	Water On-Peak	
	Consumption	Demand	Total	Consumption	Consumption	Monthly Tota
	\$	\$	\$	\$	\$	\$
January	\$93,530	\$55,620	\$149,150	\$0	\$13,604	\$162,754
February	\$84,803	\$55,443	\$140,246	\$0	\$12,349	\$152,595
March	\$92,406	\$54,953	\$147,359	\$0	\$13,943	\$161,302
April	\$88,657	\$54,074	\$142,731	\$0	\$13,744	\$156,475
May	\$89,231	\$54,625	\$143,856	\$0	\$14,392	\$158,248
June	\$100,015	\$57,870	\$157,885	\$0	\$15,382	\$173,267
July	\$106,010	\$58,478	\$164,488	\$0	\$16,861	\$181,349
August	\$102,984	\$57,604	\$160,588	\$0	\$15,656	\$176,244
September	\$96,515	\$55,628	\$152,143	\$0	\$14,003	\$166,146
October	\$90,754	\$53,967	\$144,721	\$0	\$13,927	\$158,648
November	\$88,173	\$54,362	\$142,535	\$0	\$13,284	\$155,819
December	\$92,564	\$54,864	\$147,428	\$0	\$13,559	\$160,987
Totals	\$1,125,642	\$667,488	\$1,793,130	\$0	\$170,704	\$1,963,834

			System	4		
		ectric On-Pea		Gas On-Peak	Water On-Peak	
	Consumption \$	Demand \$	Total \$	Consumption \$	Consumption \$	Monthly Total
	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ
January	\$73,309	\$45,078	\$118,387	\$6,820	\$11,164	\$136,371
February	\$65,663	\$45,486	\$111,149	\$6,325	\$10,025	\$127,499
March	\$76,189	\$45,706	\$121,895	\$5,012	\$11,932	\$138,839
April	\$74,867	\$46,006	\$120,873	\$3,447	\$11,920	\$136,240
May	\$77,522	\$46,553	\$124,075	\$0	\$12,461	\$136,536
June	\$85,105	\$48,031	\$133,136	\$0	\$13,215	\$146,351
July	\$89,110	\$48,754	\$137,864	\$0	\$14,395	\$152,259
August	\$87,687	\$47,876	\$135,563	\$0	\$13,438	\$149,001
September	\$83,567	\$46,869	\$130,436	\$0	\$12,104	\$142,540
October	\$77,090	\$45,536	\$122,626	\$3,190	\$12,085	\$137,901
November	\$74,226	\$45,274	\$119,500	\$3,942	\$11,501	\$134,943
December	\$75,197	\$45,146	\$120,343	\$5,925	\$11,483	\$137,751
Totals	\$939,532	\$556,315	\$1,495,847	\$34,661	\$145,723	\$1,676,231

			System	5		
	EI	ectric On-Pea	ık	Gas On-Peak	Water On-Peak	
	Consumption	Demand	Total	Consumption	Consumption	Monthly Total
	\$	\$	\$	\$	\$	\$
January	\$55,989	\$34,508	\$90.497	\$7,311	\$7,259	\$105.067
February	\$50,195	\$34,931	\$85,126	\$8,133	\$6,529	\$99,788
March	\$58,837	\$35,940	\$94,777	\$5,944	\$8,278	\$108,999
April	\$58,690	\$36,353	\$95,043	\$3,587	\$8,731	\$107,361
May	\$62,114	\$37,777	\$99,891	\$680	\$10,059	\$110,630
June	\$68,219	\$38,763	\$106,982	\$77	\$10,489	\$117,548
July	\$71,862	\$39,692	\$111,554	\$0	\$11,548	\$123,102
August	\$70,235	\$38,586	\$108,821	\$52	\$10,641	\$119,514
September	\$66,870	\$37,627	\$104,497	\$518	\$9,621	\$114,636
October	\$60,517	\$36,141	\$96,658	\$3,132	\$8,863	\$108,653
November	\$57,863	\$35,755	\$93,618	\$4,338	\$8,169	\$106,125
December	\$57,626	\$35,289	\$92,915	\$7,328	\$7,664	\$107,907
Totals	\$739.017	\$441,362	\$1,180,379	\$41,100	\$107.851	\$1,329,330

12. Emissions Generated per System.

These emission rates were calculated based on Exelon's 2004 generation fuel mix.

		2004 1	Exelon/PECO Genera	ation Mix		
			System 1			
				lbm Pollu	tant	
Fuel	% Total	kWh	Ibm Particulates	lbm SO2	lbm Nox	lbm CO2
Coal	6.0	1943470.7	35630.3	413942.1	239936.1	69642830.4
Oil	4.0	1295647.1	35630.3	499306.1	91663.7	68377359.0
Nat. Gas	1.0	323911.8	0.0	437.2	82185.3	43421605.2
Nuclear	88.0	28504236.3	0.0	0.0	0.0	0.0
Hydro/Wind	1.0	323911.8	0.0	0.0	0.0	0.0
Totals	100.0	32391177.6	20808.1	244101.2	143723.3	44685834.0

		2004	Exelon/PECO Genera	ation Mix		
			System 2			
				lbm Pollu	tant	
Fuel	% Total	kWh	Ibm Particulates	lbm SO2	lbm Nox	lbm CO2
Coal	6.0	1678777.8	30777.6	357564.8	207257.8	60157758.5
Oil	4.0	1119185.2	30777.6	431302.6	79179.4	59064639.2
Nat. Gas	1.0	279796.3	0.0	377.6	70992.0	37507758.2
Nuclear	88.0	24622074.6	0.0	0.0	0.0	0.0
Hydro/Wind	1.0	279796.3	0.0	0.0	0.0	0.0
Totals	100.0	27979630.2	17974.1	210855.6	124148.8	38599804.1

2006

The School District of Philadelphia Administration Headquarters Shell and Core Renovations 440 North Broad Street Philadelphia, PA

			System 3			
				lbm Pollu	tant	
Fuel	% Total	kWh	Ibm Particulates	lbm SO2	lbm Nox	lbm CO2
Coal	6.0	2051982.1	37619.7	437054.0	253332.7	73531256.3
Oil	4.0	1367988.0	37619.7	527184.2	96781.6	72195128.8
Nat. Gas	1.0	341997.0	0.0	461.6	86774.0	45845999.7
Nuclear	88.0	30095737.0	0.0	0.0	0.0	0.0
Hydro/Wind	1.0	341997.0	0.0	0.0	0.0	0.0
Totals	100.0	34199701.1	21969.9	257730.3	151747.9	47180815.2

		2004	Exelon/PECO Genera	ation Mix		
			System 4			
				lbm Pollu	tant	
Fuel	% Total	kWh	Ibm Particulates	lbm SO2	lbm Nox	lbm CO2
Coal	6.0	1711318.4	31374.2	364495.7	211275.2	61323827.8
Oil	4.0	1140879.0	31374.2	439662.8	80714.2	60209520.0
Nat. Gas	1.0	285219.7	0.0	384.9	72368.1	38234790.7
Nuclear	88.0	25099337.1	0.0	0.0	0.0	0.0
Hydro/Wind	1.0	285219.7	0.0	0.0	0.0	0.0
Totals	100.0	28521974.0	18322.5	214942.7	126555.2	39348004.3

		2004 8	Exelon/PECO Genera	ation Mix		
			System 5			
				lbm Pollu	tant	
Fuel	% Total	kWh	Ibm Particulates	lbm SO2	lbm Nox	lbm CO2
Coal	6.0	1344970.0	24657.8	286466.7	166046.7	48196004.6
Oil	4.0	896646.7	24657.8	345542.5	63435.4	47320240.8
Nat. Gas	1.0	224161.7	0.0	302.5	56876.0	30049724.7
Nuclear	88.0	19726227.3	0.0	0.0	0.0	0.0
Hydro/Wind	1.0	224161.7	0.0	0.0	0.0	0.0
Totals	100.0	22416167.4	14400.1	168929.1	99463.1	30924628.5

Jayme Antolik

13. Floor 4 Systems Analysis Energy Consumption Results.

Floor 4's energy usage using combinations of a centrifugal chiller, an economizer, and a boiler.

Floor 4					
	DX Coil /	Centrifugal Chiller /	Centrifugal Chiller / Gas-	With Plate & Frame /	With Plate & Frame / Gas-
	Electric Coil (kBtu/yr)	Electric Boiler (kBtu/yr)	Fired Boiler (kBtu/yr)	Electric Boiler (kBtu/yr)	Fired Boiler (kBtu/yr)
Primary Heating					
Primary Heating	11591.7	11906.7	5379.6	11906.7	5379.6
Primary Cooling					
Cooling Compressor	856360.9	504106.0	504106.0	492590.5	492590.5
Tower/Cond Fans	84298.5	88105.8	88105.8	93130.3	93130.3
Condenser Pump	154712.4	65683.8	65683.8	65683.8	65683.8
Other CLG Accessories	89.7	0.0	0.0	0.0	0.0
Cooling Subtotal	1095461.5	657895.6	657895.6	651404.6	651404.6
Auxiliary					
Supply Fans	482454.5	482454.5	482454.5	482454.5	482454.5
Circ Pumps	0.0	90710.5	90710.5	90710.5	90710.5
Base Utilities	0.0	0.0	0.0	0.0	0.0
Aux Subtotal	482454.5	573165.0	573165.0	573165.0	573165.0
Lighting/Equipment					
Lighting/Equipment	4485130.0	4485130.0	4485130.0	4485130.0	4485130.0
Totals	6074637.7	5728097.3	5721570.2	5721606.3	5715079.2

Jayme Antolik

99

14. Chilled Water Distribution Schematic—DOAS/Radiant, System 5.

Chilled water is pumped through primary pumps directly from the chiller to secondary pumps that maintain the flow throughout the radiant panels.

Chilled Water Distribution

Appendix C—Integration of Structural System and Constructability

- 1. Gravity Beam Design.
- 2. Gravity Column Design.
- 3. Primavera Ductwork Schedule.

1. Gravity Beam Design

			<u>Gr</u>	<u>avity B</u>	eam Desig	<u>yn</u>			
RAM INTERNATIONAL	RAM Steel v DataBase: Ja Building Coo	yme Structura	ıl				St	04/05/0 eel Code: As	6 17:05:53 SD 9th Ed.
Floor Ty	pe: Mechanie	cal Equipmen	B	eam Num	ber = 16				
Beam	FORMATIC 1 Size (User S Beam Lengtl	/		SS20X12X		0,50.00)	Fy = 5	50.0 ksi	
LINE LC	DADS (k/ft):								
Load 1	Dist 3.500		LL .000	Red%	Type NonR				
2	21.500 0.000 25.000	0.096 0	.000 .000 .000		NonR				
SHEAR:	Max V (DL	+LL) = 36.30	kips f	v = 1.95 ks	si Fv = 20.00) ksi			
MOMEN		, ,	-						
Span	Cond	Moment kip-ft	@ ft	Lb ft	Cb	Tensi fb	on Flange Fb	Comp: fb	r Flange Fb
Center Controllir	Max + ng	288.3 288.3	12.5 12.5		$\begin{array}{c} 1.00\\ 1.00\end{array}$	22.32 22.32	33.00 33.00	22.32	33.00
REACTI	ONS (kips):								
	eaction +total reaction	n	3	6.30	Right 36.30 36.30				
DEFLEC	TIONS: (Ca	amber = 1/2)							
	load (in)		at	12.50 ft			L/D =	422	
	load (in) Cotal load (in)		at at	12.50 ft 12.50 ft			L/D =	1425	

2.0 Gravity Column Design

		<u>Gravity Col</u>	umn D	<u>esign</u>		
RAM Data	Steel v10.0 Base: Jayme Structur ing Code: IBC	al			Stee	04/05/06 17 l Code: ASD 9
Fy (ksi)	ipment, Column L = 50.00 (degrees) = 90.0		lumn Siz	e =	W12X40	
	N PARAMETERS:		_ :	X-Axis 4.00	Y-Axis 4.00	
				1	1	
Braced Aga	inst Joint Translation	1	_	Yes	Yes	
Column Ec	centricity (in)	Тор		8.45	6.51	
		Bottom	_	8.45	6.51	
CONTROLLIN Axial (kips)	NG COLUMN LOA	DS - Load Case 2:		Dead 38.11	Live 0.00	Roof 0.00
Moments	Top Mx (kip-ft)			25.56	0.00	0.00
	My (kip-ft)		_	0.89	0.00	0.00
	Bot Mx (kip-ft)		_	0.00	4.63	0.00
	My (kip-ft)			0.00	7.13	0.00
	rvature about X-Axis rvature about Y-Axis					
CALCULATE	D PARAMETERS:	(DL + LL + RF)				
fa (ksi)	= 3.26	Fa (ksi) =	27.78		
	= 5.96	Fbx (ks		33.00		
fby (ksi)	= 5.96 = 7.78	Fby (ks	i) =	37.50		
Cb	= 1.95					
KL/Rx	= 9.37	KL/Ry	=	24.72		
INTERACTIO fa/Fa = Eq H1-3: 0		7 = 0.505				

		<u>(</u>	Fravity Colum	n De	<u>sign</u>		
Data		v10.0 Jayme Structural ode: IBC				Stee	Page 2/6 04/05/06 17:05:53 I Code: ASD 9th Ed
Fy (ksi)	-	umn Line B - 2 = 50.00 ees) = 90.0	Column	n Size	=	W12X40	
NPUT DESIC	GN PA	RAMETERS:					
				Х	-Axis	Y-Axis	
Lu (ft)					15.00	15.00	
					1	1	
		oint Translation			Yes	Yes	
Column Ec	ccentrie	city (in) To	р		8.45	6.51	
		Bo	ottom		8.45	6.51	
		OLUMN LOADS			Dead	Live	Roof
	s)) Mx (kip-ft)			88.93 0.00	27.50 0.00	0.00 0.00
Axial (kips	s) <u> </u>	• Mx (kip-ft) My (kip-ft)			88.93 0.00 0.00	27.50 0.00 0.00	0.00 0.00 0.00
Axial (kips	s) <u> </u>	• Mx (kip-ft) My (kip-ft) t Mx (kip-ft)			88.93 0.00 0.00 0.00	27.50 0.00 0.00 1.61	0.00 0.00 0.00 0.00
Axial (kips Moments	s) <u> </u>	• Mx (kip-ft) My (kip-ft) t Mx (kip-ft) My (kip-ft)			88.93 0.00 0.00	27.50 0.00 0.00	0.00 0.00 0.00
Axial (kips Moments Single curv	s) Top Bo vature a	• Mx (kip-ft) My (kip-ft) t Mx (kip-ft)			88.93 0.00 0.00 0.00	27.50 0.00 0.00 1.61	0.00 0.00 0.00 0.00
Axial (kips Moments Single curv Single curv	s) Top Bo vature a vature a	Mx (kip-ft) My (kip-ft) t Mx (kip-ft) My (kip-ft) about X-Axis about Y-Axis			88.93 0.00 0.00 0.00	27.50 0.00 0.00 1.61	0.00 0.00 0.00 0.00
Axial (kips Moments Single curv Single curv	s) Top Bo vature a vature a	Mx (kip-ft) My (kip-ft) t Mx (kip-ft) My (kip-ft) about X-Axis about Y-Axis RAMETERS: (D	L + LL + RF)		88.93 0.00 0.00 0.00 0.00	27.50 0.00 0.00 1.61	0.00 0.00 0.00 0.00
Axial (kips Moments Single curv Single curv ALCULATE fa (ksi)	s) Top Bo vature a vature a vature a ED PAI =	Mx (kip-ft) My (kip-ft) t Mx (kip-ft) My (kip-ft) about X-Axis about Y-Axis RAMETERS: (D 9.95	L + LL + RF) Fa (ksi)	_	88.93 0.00 0.00 0.00 0.00 16.35	27.50 0.00 0.00 1.61	0.00 0.00 0.00 0.00
Axial (kips Moments Single curv Single curv ALCULATE fa (ksi) fbx (ksi)	s) Top Bo vature a vature a cD PAI = =	Mx (kip-ft) My (kip-ft) t Mx (kip-ft) My (kip-ft) about X-Axis about Y-Axis RAMETERS: (D 9.95 0.38	L + LL + RF) Fa (ksi) Fbx (ksi)	_	88.93 0.00 0.00 0.00 0.00	27.50 0.00 0.00 1.61	0.00 0.00 0.00 0.00
Axial (kips Moments Single curv Single curv ALCULATE fa (ksi) fbx (ksi) Fbx (ksi)	s) Top Bo vature a vature a cD PAI = = = =	 Mx (kip-ft) My (kip-ft) t Mx (kip-ft) My (kip-ft) about X-Axis about Y-Axis RAMETERS: (D 9.95 0.38 23.11 (Eq H1- 	L + LL + RF) Fa (ksi) Fbx (ksi) 1)	=	88.93 0.00 0.00 0.00 0.00 16.35 30.00	27.50 0.00 0.00 1.61	0.00 0.00 0.00 0.00
Axial (kips Moments Single curv Single curv ALCULATE fa (ksi) fbx (ksi) Fbx (ksi) fby (ksi)	s) Bo vature a vature a cD PAI = = = =	 Mx (kip-ft) My (kip-ft) t Mx (kip-ft) My (kip-ft) about X-Axis about Y-Axis RAMETERS: (D 9.95 0.38 23.11 (Eq H1- 2.71 	L + LL + RF) Fa (ksi) Fbx (ksi)	=	88.93 0.00 0.00 0.00 0.00 16.35	27.50 0.00 0.00 1.61	0.00 0.00 0.00 0.00
Axial (kips Moments Single curv Single curv ALCULATE fa (ksi) fbx (ksi) Fbx (ksi) fby (ksi) Cb	s) Bo vature a vature a cD PAI = = = = = =	 Mx (kip-ft) My (kip-ft) t Mx (kip-ft) My (kip-ft) about X-Axis about Y-Axis RAMETERS: (D 9.95 0.38 23.11 (Eq H1- 2.71 1.75 	L + LL + RF) Fa (ksi) Fbx (ksi) 1) Fby (ksi)	=	88.93 0.00 0.00 0.00 0.00 16.35 30.00 37.50	27.50 0.00 0.00 1.61	0.00 0.00 0.00 0.00
Axial (kips Moments Single curv Single curv ALCULATE fa (ksi) fbx (ksi) Fbx (ksi) fby (ksi)	s) Bow vature a vature a cD PAI = = = = = = = = = =	 Mx (kip-ft) My (kip-ft) t Mx (kip-ft) My (kip-ft) about X-Axis about Y-Axis RAMETERS: (D 9.95 0.38 23.11 (Eq H1- 2.71 	L + LL + RF) Fa (ksi) Fbx (ksi) 1)		88.93 0.00 0.00 0.00 0.00 16.35 30.00	27.50 0.00 0.00 1.61	0.00 0.00 0.00 0.00

INTERACTION EQUATION

fa/Fa = 0.61 Eq H1-1: 0.609 + 0.011 + 0.102 = 0.721 Eq H1-2: 0.332 + 0.013 + 0.072 = 0.417

	<u>Gravity Column De</u>	sign
	RAM Steel v10.0	Page 3/6
RAM	DataBase: Jayme Structural Building Code: IBC	04/05/06 17:05:53
INTERNATIONAL	Building Code: IBC	Steel Code: ASD 9th Ed.
Story lev	el 4th, Column Line B - 2	

Fy (ksi) = 50.00 Orientation (degrees) = 90.0 Column Size = W12X50

INPUT DESIGN PARAMETERS:

TOT DESIGN TARABLE LERS.		
	X-Axis	Y-Axis
Lu (ft)	15.00	15.00
К	1	1
Braced Against Joint Translation	Yes	Yes
Column Eccentricity (in) Top	8.60	6.54
Botto	m 8.60	6.54

CONTROLLING COLUMN LOADS - Load Case 6:

		Dead	Live	Roof
Axial (kips)		139.90	38.51	0.00
Moments	Top Mx (kip-ft)	0.00	0.00	0.00
	My (kip-ft)	0.00	2.10	0.00
	Bot Mx (kip-ft)	0.00	-1.38	0.00
	My (kip-ft)	0.00	-2.10	0.00

Single curvature about X-Axis Single curvature about Y-Axis

CALCULATED PARAMETERS: (DL + LL + RF)

fa (ksi)	=	12.22	Fa (ksi)	=	16.58	
fbx (ksi)	=	0.26	Fbx (ksi)	=	30.00	
Fbx (ksi)	=	28.26 (Eq H1-1)				
fby (ksi)	=	1.81	Fby (ksi)	=	37.50	
Cb	=	1.75				
KL/Rx	=	34.78	KL/Ry	=	91.66	
F'ex	=	123.43	F'ey	=	17.77	
Cmx	=	0.60	Cmy	=	1.00	

INTERACTION EQUATION

 $\begin{array}{rll} fa/Fa &=& 0.74\\ Eq \ H1-1: & 0.737 + 0.006 + 0.155 = 0.898\\ Eq \ H1-2: & 0.407 + 0.009 + 0.048 = 0.464 \end{array}$

	<u>Gravity Column Design</u>	
RAM Steel v10.0	Page	e 4/6
DataBase: Jayme Strue Building Code: IBC	ural 04/05/06 17:0	05:53
INTERNATIONAL Building Code: IBC	Steel Code: ASD 9t	h Ed.
Story level 3rd, Column Line I	- 2	

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu (ft)	15.00	15.00
К	1	1
Braced Against Joint Translation	Yes	Yes
Column Eccentricity (in) Top	8.55	7.49
Bottom	8.55	7.49

CONTROLLING COLUMN LOADS - Load Case 6:

		Dead	Live	Roof
Axial (kips)		190.91	56.43	0.00
Moments	Top Mx (kip-ft)	0.00	0.00	0.00
	My (kip-ft)	0.00	2.20	0.00
	Bot Mx (kip-ft)	0.00	-1.37	0.00
	My (kip-ft)	0.00	-2.40	0.00

Single curvature about X-Axis Single curvature about Y-Axis

CALCULATED PARAMETERS: (DL + LL + RF)

fa (ksi)	=	15.85	Fa (ksi)	=	20.44
fbx (ksi)	=	0.23	Fbx (ksi)	=	30.00
fby (ksi)	=	1.50	Fby (ksi)	=	37.50
Cb	=	1.75			
KL/Rx	=	34.49	KL/Ry	=	72.64
F'ex	=	125.57	F'ey	=	28.30
Cmx	=	0.60	Cmy	=	0.97

INTERACTION EQUATION

 $\begin{array}{ll} fa/Fa &=& 0.78\\ Eq \ H1-1: \ 0.776 + 0.005 + 0.088 = 0.869\\ Eq \ H1-2: \ 0.528 + 0.008 + 0.040 = 0.576 \end{array}$

Gra Gra	<u>vity Column Design</u>
RAM Steel v10.0	Page 5/6
DataBase: Jayme Structural Building Code: IBC	04/05/06 17:05:53
INTERNATIONAL Building Code: IBC	Steel Code: ASD 9th Ed.
Story level 2nd, Column Line B - 2	

Story lever 2nd, Column	L'L'III	le D - 2			
Fy (ksi)	=	50.00	Column Size	=	W12X65
Orientation (degrees)	=	90.0			

INPUT DESIGN PARAMETERS:

	X-Axis	Y-Axis
Lu (ft)	18.00	18.00
К	1	1
Braced Against Joint Translation	Yes	Yes
Column Eccentricity (in) Top	8.55	8.50
Bottom	8.55	8.50

CONTROLLING COLUMN LOADS - Load Case 6:

		Dead	Live	Roof
Axial (kips)	·	242.30	73.33	0.00
Moments	Top Mx (kip-ft)	0.00	0.00	0.00
	My (kip-ft)	0.00	2.15	0.00
	Bot Mx (kip-ft)	0.00	-1.19	0.00
	My (kip-ft)	0.00	-2.36	0.00

Single curvature about X-Axis Single curvature about Y-Axis

CALCULATED PARAMETERS: (DL + LL + RF)

fa (ksi)	=	16.53	Fa (ksi)	=	20.64
fbx (ksi)	=	0.16	Fbx (ksi)	=	30.00
fby (ksi)	=	0.97	Fby (ksi)	=	36.22
Cb	=	1.75			
KL/Rx	=	40.89	KL/Ry	=	71.56
F'ex	=	89.32	F'ey	=	29.16
Cmx	=	0.60	Cmy	=	0.96

INTERACTION EQUATION

 $\begin{array}{rll} fa/Fa &=& 0.80\\ Eq \; H1\text{-}1; \;\; 0.801 + 0.004 + 0.060 = 0.864\\ Eq \; H1\text{-}2; \;\; 0.551 + 0.005 + 0.027 = 0.583 \end{array}$

Jayme Antolik

	<u>G</u>	ravity Colum	<u>n Design</u>		
RAM St	eel v10.0				Page 6/6
PAN DataBas	e: Jayme Structural				04/05/06 17:05:53
NTERNATIONAL Building	Code: IBC			Ste	eel Code: ASD 9th Ed.
Story level 1st, Co	olumn Line B - 2				
Fy (ksi)	= 50.00	Colum	n Size =	W12X72	
Orientation (de	egrees) = 90.0				
NPUT DESIGN	PARAMETERS:				
T (C)			X-Axis	Y-Axis	
			18.00	18.00	
	and an inter-		1	1	
0	t Joint Translation		Yes		
Column Eccen	• • • •		8.65	8.50	
	Bott	iom	0.00	0.00	
	COLUMN LOADS -				
CONTROLLING	COLUMIN LOADS -	Load Case o:	Dead	Live	Roof
Axial (kips)			293.81	93.33	0.00
	Гор Mx (kip-ft)		0.00	0.00	0.00
	My (kip-ft)		0.00	2.36	0.00
	Bot Mx (kip-ft)		0.00	0.00	0.00
	My (kip-ft)		0.00	0.00	0.00
	re about X-Axis				
Single curvatu	re about Y-Axis				
	PARAMETERS: (DL	,			
	18.35		= 20.74		
fbx (ksi) =	0.00	Fbx (ksi)	= 30.00		

ia (ksi)	-	18.35	Fa (Ksi)	-	20.74
fbx (ksi)	=	0.00	Fbx (ksi)	=	30.00
fby (ksi)	=	0.87	Fby (ksi)	=	37.50
Cb	=	1.00			
KL/Rx	=	40.61	KL/Ry	=	71.05
F'ex	=	90.56	F'ey	=	29.58
Cmx	=	0.00	Cmy	=	0.60

INTERACTION EQUATION

 $\begin{array}{ll} fa/Fa &=& 0.88 \\ Eq \; H1\text{-}1\text{:} & 0.885 + 0.000 + 0.037 = 0.922 \\ Eq \; H1\text{-}2\text{:} & 0.612 + 0.000 + 0.023 = 0.635 \\ \end{array}$

3. Primavera Ductwork Schedule.

Jayme Antolik

109

Senior Thesis

Mechanical Option