Electrical Breadth

The Hearst Tower is currently served by (4)-4000 amp service takeoffs. Each takeoff is then served by one 6000A service switch. Secondary service to the building is 480/277 V, three phase from the primary transformers.

Since the building is set to achieve LEED Gold certification, steps were taken to make the electrical/lighting systems energy efficient. Occupancy sensors are installed throughout the tower and work to control the lighting system, shutting down the lights and unused electrical equipment when a space is unoccupied. Daylight sensors are also used in conjunction with the lighting controls to reduce energy use and maximize the use of natural light. Aside from the energy conservation benefits, studies have shown natural light improves productivity and occupant health.

Electrical Equipment: Existing and Proposed

The current chiller plant serving the Tower contains three electric centrifugal chillers. There are (2)-1200 ton chillers and (1)-400 ton chiller served by four headered chilled water pumps and four headered condenser water pumps. All eight pumps are 100 hp split-coupled, vertical inline centrifugal pumps.

Since chiller one and two (both 1200 ton) are so large and require a large electric power input, both chillers are connected directly to a service switch, service switch #2. Each chiller is fed from the switch by a 2000A fuse. The chillers are wired to the service switch using six sets of 3-#400 MCM with 1-#3/0 ground in six 3" conduits.

Chiller three, the smallest of the three, is fed from switchboard #1 using an 800A fuse. This chiller is wired with two sets of 3-#500 MCM with a #2/0 ground wire in two 3.5" conduits.

The proposed chiller plant contains three 600 ton steam driven absorption chillers. Since these chillers use steam as a power source, very little electric power is required. In addition to the annual energy savings calculated in the "System Simulation" section of this report, changing the chillers results in a large first cost savings. According to the chiller specifications provided by Carrier, the total electric current needed for the chillers is 30A. Therefore, the new chillers can be fed by a 40A fuse and 3-#6 wires with one #10 ground wire in 1" conduit.

The airside of the system analyzed in this report includes four large central air handling units located in the 28th floor mechanical equipment room. These units are designed for a maximum airflow of 110,000 cfm each, and therefore have very large supply fans. Each unit has 100 hp dual supply fans with 124A full load ampacity (FLA) each. The supply fans are wired using 3-#2/0 with one #4 ground wire in 2" conduit.

The return fans are separate from the air handling units and are also located in the 28^{th} floor mechanical room. The return fans are 50hp 65A full load ampacity fans. These fans are wired using 3-#2/0 with a #8 ground in a 1.5" conduit. A complete motor control schedule describing the current equipment is provided in **Figure#**.

FLOOR MOUNTED	VOLTS	460Y/255V	BUS RATING	2006A	PHASE: 3	WEES: 4	
DESIGNATION	HP or	FULL	STARTER	SWITCH	FUSE	FEEDER	
	(kW)	LOAD AMP	NEWA SIZE	SIZE	SIZE	SZE	
PANEL HV-28-M	(42.94kW)	54	-	200AS	200AF	200 1	
AHU-28-1-1	100	124	-	200AS	175AF	175 (
AHU-28-1-2	100	124	-	200AS	175AF	175 0	
AHU-28-2-1	100	124	-	200AS	175AF	175 0	
AHU-28-2-2	100	124	-	200AS	175AF	175 0	
AHU-28-3-1	100	124	-	200AS	175AF	175 0	
AHU-28-3-2	100	124	-	200AS	175AF	175 0	
AHU-28-4-1	100	124	-	200AS	175AF	175 0	
SPARE	100	124	-	200AS	175AF	-	
SPARE	100	124	-	200AS	175AF	-	
AHU-28-4-2	100	124	-	200AS	175AF	175 6	
RETURN FAN RF-28-2	50	65	-	100AS	100AF	115 6	
RETURN FAN RF-28-3	50	65	-	100AS	100AF	115 0	
RETURN FAN RF-28-5	50	65	-	100AS	100AF	115 0	
RETURN FAN RF-28-6	50	65	-	100AS	100AF	115 6	
EXHAUST FAN EF-28-7	15	21	2	60AS	60AF	60 6	
EXHAUST FAN EF-28-8	7.5	11	1	30AS	20AF	20 0	
EXHAUST FAN EF-28-9	15	21	2	60AS	60AF	60 0	
EXHAUST FAN EF-28-10	0.5	1.1	1	30AS	15AF	20 6	
HOT WATER HEATER	15	19	-	30AS	30AF	30.6	
SPARE		-	1	60AS	-	-	
SPARE	50	65	-	100AS	100AF	-	
SPARE	-	-	1	100AS	-	-	
PUMP MUP-28-1	3	4.8	1	30AS	15AF	20 0	
SPARE	-	-	1	100AS	-	-	
SPACES	-	-	-	-	-	-	

Figure # Existing AHU Motor Control Schedule

The motor control center (MCC) described above will support a total connected load of 1697 amps. Using the 1.25 multiplier for wire sizing, the MCC requires six sets of 3-#500 MCM wires with one #250 MCM ground in six runs of 3.5" conduit.

The proposed air side changes will require much smaller AHU's than those currently installed in the Hearst Tower. The new system will contain (3)-40,000 cfm dedicated outdoor air units containing both a supply and return fan. The supply fans will be 50 hp, 77A full load ampacity and will be wired using 3-#2 with 1-#8 ground in 1.5" conduit. The return fans are slightly smaller, requiring only 50 hp and 65A (FLA). These fans require 3-#4 wires with 1-#8 ground wire in 1.5" conduit. A schedule showing the proposed equipment motor control is shown below in **Figure#**.

FLOOR NOUNTED	VOLTS	4801/2651	BUS RATING	2000A	PHASE: 3	MRES 4	
DESIGNATION	HP or	FULL	STARTER	SWITCH	FUSE	FEEDER	
	(kW)	LOAD AMP	NEWA SIZE	SIZE	SIZE	SIZE	
PANEL HV-28-M	(42.94kW)	54	-	200AS	200AF	200 N	
AHU-28-1-SF	55	77	-	100AS	100AF	100 6	
AHU-28-1-RF	50	65	-	100AS	90AF	85 6	
AHU-28-2-SF	55	77	-	100AS	100AF	100 6	
AHU-28-2-RF	50	65	-	100AS	90AF	85 6	
AHU-28-3-SF	55	77	-	100AS	100AF	100 6	
AHU-28-3-RF	50	65	-	100AS	90AF	85 6	
SPARE	-	-	-	100AS	100AF	-	
SPARE	-	-	-	100AS	SOAF	-	
EXHAUST FAN EF-28-7	15	21	2	60AS	50AF	60 G	
EXHAUST FAN EF-28-8	7.5	11	1	30AS	20AF	20 6	
EXHAUST FAN EF-28-9	15	21	2	60AS	50AF	60 G	
EXHAUST FAN EF-28-10	0.5	1.1	1	30AS	15AF	20 6	
HOT WATER HEATER	15	19	-	30AS	30AF	30 6	
SPARE		-	1	60AS	-	-	
SPARE	50	65	-	100AS	100AF	-	
SPARE	-	-	1	100AS	-	-	
PUMP MUP-28-1	3	4.8	1	30AS	15AF	20 6	
SPARE	-	-	1	100AS	-	-	
SPACES	-	-	-	-	-	-	

Figure # Proposed Equipment Motor Control Schedule

The proposed motor control center (MCC) will support a much lower connected load than the original, serving on 623 amps. Again, using the 1.25 multiplier for sizing wire, the MCC requires three sets of 3-#500 MCM with one #2/0 ground wire. The three sets will be placed in three runs of 3.5" conduit. **Figure#** shows a feeder schedule which explains the feeder sizing used in **Figure # &#**.

Figure # Feeder Schedule

	FEEDER SCHEDULE										
			COPPER CONDUCTORS (75° C) PER SET								
FEEDER DESIGNATION	No. OF SETS	PHASE CONDUCTORS	P PARTIAL NEUTRAL CONDUCTOR	N NEUTRAL CONDUCTOR	NN OVERSIZED NEUTRAL CONDUCTOR	G GROUND CONDUCTOR	I ISOLATED & EQUIPMENT GROUND CONDUCTOR				
15	1	3 # 12		1 ∦ 12	1 ∦ 10	1 ≇ 12	2 # 12				
20	1	3 # 12		1 ≇ 12	1 # 8	1 ≇ 12	2 # 12				
30	1	3 # 10		1 <i>≇</i> 10	1∉6	1 ∉ 12	2 # 12				
50	1	3 # 8		1 # 8	1 # 2	1 ≇ 12	2 # 12				
60	1	3∦6		1∉6	1#1	1 # 10	2 # 10				
85	1	3#4		1 # 4	1 # 2/0	1 # 8	2 # 8				
100	1	3 ∉ 2	1 # 8	1 # 2	1 # 3/0	1∦8	2 # 8				
115	1	3 # 2	1#6	1 # 2	1 # 4/0	1 # 8	2 # 8				
130	1	3 # 1	1∦6	1#1	1 # 300	1 # 6	2 # 6				
150	1	3 # 1/0	1#4	1 # 1/0	2 # 1/0	1 ≇ 6	2 # 6				
175	1	3 # 2/0	1 / 2	1 # 2/0	2 # 2/0	1#4	2 # 4				
200	1	3 # 3/0	1#2	1 # 3/0	2 # 3/0	1#4	2 # 4				

Cost Savings

Thus far, only the nominal size differences between the wiring for the existing and proposed mechanical systems have been discussed. The differences in sizes do however equate to substantial first cost savings in some instances. The wiring currently installed throughout Hearst is of type THHN cooper, since this wire type is pretty standard, it will also be used with the redesigned system. The table below, **Table#**, shows the pricing differences between both systems. All cost data was found from R.S. Means 2005 sections 16120 "Conductors and Cable," and section 16132 'Conduit."

Existing System							
Size	Item	Service	Unit Cost (per 100 L.F.)				
400 MCM	THHN Wire	Chiller 1&2	660				
#3/0	THHN Wire	Chiller 1&2 GRND	386				
500 MCM	THHN Wire	Chiller 3	765				
#2/0	THHN Wire	Chiller 3 GRND	296				
#2/0	THHN Wire	AHU-28-1,2,3,4-SF	296				
#4	THHN Wire	AHU-28-1,2,3,4-SF GRND	136				
#2	THHN Wire	AHU-28-1,2,3,4-RF	178				
#8	THHN Wire	AHU-28-1,2,3,4-RF GRND	78				

Table # Wire and Conduit Cost Table

Size	Item	Service	Unit Cost (per L.F.)
3"	Conduit	Chiller 1&2	41.50
3.5"	Conduit	Chiller 3	49.50
2"	Conduit	AHU-28-1,2,3,4-SF	20.50
1.5"	Conduit	AHU-28-1,2,3,4-RF	16.40

Proposed System									
Size	Size Item Service								
#6	THHN Wire	Chiller 1,2,3	100						
#8	THHN Wire	AHU-28-1,2,3 SF&RF GRND	78						
#2	THHN Wire	AHU-28-1,2,3 SF	178						
#4	THHN Wire	AHU-28-1,2,3 RF	136						
	•	•							
Size	Item	Service	Unit Cost (per L.F.)						
1=	Conduit	Chiller 1,2,3	12.13						
1.5"	Conduit	AHU-28-1,2,3 SF&RF	16.40						

From the cost tables above, it was determined that the wiring for Chiller 1&2 would cost about \$391.00/linear foot each. Wiring for Chiller 3 would cost \$150.00/linear foot. With the proposed system requiring only a 40 amp feed each, wiring would only cost around \$15.60/linear foot. Since the chillers would be located in the same space as the

existing chillers, the distance to the main electrical room from each chiller would be the same and these numbers can therefore be used to estimate cost savings. Original design for chiller plant (2@\$391.00+\$150.00): \$932.00/linear foot Proposed design for chiller plant (3@\$15.60): \$46.80/linear foot

Therefore, the cost of wiring the new chiller plant is about 5% of the cost of the original plant.

The wiring cost for the original air handling units is approximately \$213.00/ linear foot, while the new air system for all three units is \$131.34/linear foot. The new air system results in a 40% savings in wiring costs.

All wire sizes were determined using the method described in Chapter 11 and Table 11.1 of "Electrical Systems in Buildings" (Hughes 1988). The tables provided within this chapter are replicated from the National Electric Code. Power requirements for the proposed equipment were found in the equipment specifications included in the Appendix section of this report.

Downsizing of the major mechanical equipment in the Hearst Tower resulted in large first cost savings of wiring and conduit. Installing equipment will less required power input allows circuit breaker frame size to be decreased which saves on panel board space and allows for easier installation; ultimately this results in lower cost circuit breakers with respect to both first cost and installation. Essentially the main goal of the proposed design was achieved, lowering the electrical consumption of the building and lessening the load on the district electric grid of NYC.

Electrical Breadth

Appendix A

Electrical Data for Semco Packaged Energy Recovery Unit Electrical Wiring Schematic for Enthalpy Wheel Fan Selection Table for DOAS AHU Model 16NK Absoprtion Chiller Specifications

Electrical Data

	3 Pha	se Full Load	Minimum	Minimum Efficiency		
HP	208V	240V	480V	Efficiency Std. Motors	High Eff. Motors	
1/6	0.6	0.6	0.3	-	-	
1/4	1.0	1.0	0.5	-	-	
1/2	2.4	2.2	1.1	-	-	
3/4	3.5	3.2	1.6	73	-	
1	4.6	4.2	2.1	76.6	82.5	
1-1/2	6.6	6.0	3.0	80	84	
2	7.5	6.8	3.4	79.9	84	
3	10.6	9.6	4.8	83.1	86.5	
5	16.7	15.2	7.6	83.4	87.5	
7-1/2	24.2	22	11	86.6	88.5	
10	30.8	28	14	88.2	89.5	
15	46.2	42	21	89.3	90.2	
20	59.4	54	27	90.4	91	
25	74.8	68	34	90.5	92.4	
30	0.88	80	40	89.3	93	
40	114	104	52	90	93	
50	-	130	65	91.2	94.1	
60	-	-	77	92	93.6	
75	-	-	96	92.4	94.1	
100	-	-	124	92.5	94.1	
HP	3Ø Variabk	Frequency l	Drive (VFD)	Yaskawa	Model #	
1/2	3.9	3.9	-	CIMR-V7	A M20 P4	
1/2	-	-	1.6	CIMR-V7	AM40P2	
1	6.4	6.4	-	CIMR-V7	A M20 P7	
1	-	-	4.7	CIMR-V7	A M 40 P 7	
	Control Po	ower Transfor	mer (CPT)			
150 VA	0.7	0.6	0.4			
500 VA	2.4	2.0	1.0			
3 KVA	14.4	13.0	6.25			

Note 1: To determine Minimum Circuit Ampacity, add the FLA's for each fan motor, the FLA of the constant speed wheel motor or the Variable Frequency Drive. Then add the CPT amps and 25 percent of the largest motor FLA.

Note 2: Fuse Recommendations: Size fuses at the unit FLA and 75% of the largest motor FLA, then select the next larger size Dual-Element, Time-Delay Fuses (LOW-PEAK®, FUSETRON® or equivalent). If the fuses don't hold, consult N.E.C. for suitability of larger sized fuses.

Note 3: Use a 3KVA transformer for units with 120 volt lights. Otherwise use the 180 VA transformer.

Electrical Data For Semco Packaged Energy Recovery Unit

Single Wheel Electrical Schematic

Typical EP Series Unit with Variable Speed Wheel

Electric Wiring Schematic for Single Enthalpy Wheel Configuration

Fan Selection Table for DOAS AHU

Maximum 50 hp Motor

SIZE 43X, 35XX

	STATIC PRESSURE IN INCHES OF WATER																			
	1"	SP	2"	\$P	3"	\$P	4"	\$P	5"	\$P	6"	\$P	7"	\$P	8"	SP	10"	\$P	12"	\$P
CFM	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
12000																				
14300	371	3.17																		
16600	389	3.65																		
18900	411	4.22	516	8.46																
21200	435	4.85	532	9.38	624	14.52														
23500	458	5.50	551	10.38	634	15.74														
25800	483	6.25	572	11.45	650	17.11	725	23.26												
28100	508	7.04	595	12.64	669	18.62	738	24.95	807	31.80										
30400	535	7.96	619	13.93	689	20.15	756	26.92	819	33.94	883	41.43								
32700	562	8.93	643	15.29	712	21.92	774	28.82	835	36.25	893	43.85	954	52.15						
35000	591	10.07	667	16.70	735	23.72	795	30.98	853	38.66	908	46.54	963	54.88	1020	63.77				
37300	619	11.24	692	18.23	759	25.67	817	33.21	872	41.14	926	49.48	978	58.08	1029	66.91				
39600	648	12.56	717	19.82	782	27.59	841	35.71	893	43.81	945	52.49	995	61.38	1043	70.40	1141	89.75		
41900	678	14.04	744	21.63	806	29.68	864	38.15	916	46.76	965	55.59	1013	64.72	1060	74.19	1152	93.99	1247	115.09
44200	707	15.57	771	23.52	831	31.95	888	40.81	939	49.73	987	58.95	1033	68.39	1078	78.03	1166	98.34	1253	119.68
46500	737	17.29	799	25.59	856	34.28	911	43.41	963	52.93	1009	62.31	1054	72.14	1097	82.02	1182	102.84	1265	124.79
48800	767	19.14	827	27.76	882	36.80	936	46.36	986	56.07	1033	66.08	1076	76.05	1118	86.34	1201	107.93	1280	130.21
51100	797	21.11	855	30.04	908	39.39	960	49.23	1010	59.46	1056	69.74	1099	80.19	1140	90.82	1219	112.67	1296	135.57
53400	828	23.31	884	32.55	935	42.21	985	52.33	1034	62.94	1080	73.70	1122	84.39	1163	95.53	1239	117.86	1315	141.68
55700	858	25.58	913	35.20	963	45.25	1011	55.67	1058	66.49	1103	77.56	1146	88.91	1186	100.30	1261	123.48	1334	147.70
58000	889	28.08	942	37.99	991	48.42	1037	59.11	1083	70.30	1127	81.71	1169	93.32	1209	105.14	1283	129.07	1353	153.62
60300	920	30.75	972	41.06	1019	51.72	1064	62.80	1108	74.21	1151	85.95	1193	98.07	1233	110.36	1306	134.97		
Class I	= Ma	x. 823	RPN	I Cla	ass II	= Max	. 107	0 RPN	Clas	s III =	Max.	1358	RPM						AF	PF491

Legend: Class I = First white section Class II = Blue shaded section

Class III = White section after blue section Underlined figures indicate Maximum Static Efficiency

v3.5F		Referer	nce Specif	ications		
Project :	Hearst Tower			Re	f. US -06	
Model na	ame:16NK71			3 units		
Cooling	capacity			600	USRT	
Chilled	Inlet temperatu	re			55.0	°F
water	Outlet tempera	ture			41.0	°F
	Flow rate				1,029	USgpm
	Pressure drop				53.3	ft.H₂O
	Pass number (EVAP)			5	
	Connection dia	meter(ANSI)			8	inch
	Max. working p	ressure			150	psig
	Fouling factor				0.0001	ft²h⁰F/Btu
	Brine				0.0	%
Cooling	Inlet temperatu	re			85.0	°F
water	Outlet tempera	ture			100.0	°F
	Flow rate				1,731	USgpm
	Press. drop				21.2	ft.H₂O
	Pass number (ABS/COND)			3+2	
	Connection dia	meter(ANSI)			16	inch
	Max. working p	ressure			150	psig
	Fouling factor				0.00025	ft²h°F/Btu
	Brine				0.0	%
Steam	Condition				Saturated	
line	Supply pressur	e			114	psig
	Consumption				5,420	lb/h
	Steam inlet cor	nnection(ANSI)			6	inch
	Drain outlet cor	nnection(ANSI)			2-1/2	inch
	Max. working p	ressure			114	psig
Electric	Power source		3 Phase	460	V 60	Hz
	Electric consun	nption		20.0813	W 23.6	KVA .
	l otal electric ci	urrent			30.0	A
	Motor output	No.1 ABS pump		9.01	KW 20.0	A
		No.2 ABS pump		1.5 1	KW 4.6	A
		Reingerant pump		1.31	KW 3.1	A
Overall	Longth (L)	Fulge pullip		0.751	254	inch
dimoneir	Lengui (L)				204	inch
unnensio	Height (H)				130	inch
	Space of tube i	removal			237	inch
Weight	Operation weig	ht			83.800	lhs
rogit	Max, shipping	weight			61,300	lbs
	Total shipping	weight			72,800	lbs
Shipping	method				1	section

Note) 1) Electric consumption kW = 0.85 x KVA 2)Rated in accordance with ARI-560.