

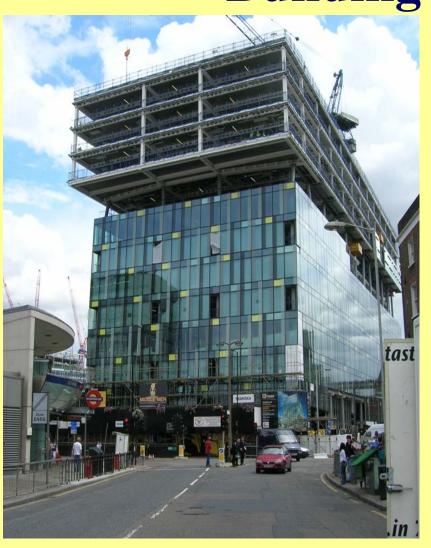
Project Team

Existing Conditions

Mechanical Redesign

Chiller Plant Optimization

Dedicated Outdoor Air System (DOAS)


Solar Energy Feasibility Study

Wind Energy Feasibility Study

Conclusions

Acknowledgements

Occupancy: Multi-Tenant Office Space

• Location: London, England

■ **Size:** 37,098 m² (399,319 ft²)

■ Cost: £68 million

■ **Procurement Type:** Design & Build

■ **Projected Completion:** July 2006

Project Team

Existing Conditions

Mechanical Redesign

Chiller Plant Optimization

Dedicated Outdoor Air System (DOAS)

Solar Energy Feasibility Study

Wind Energy Feasibility Study

Conclusions

Acknowledgements

Project Team

Owner: Blackfriars Investments and Royal London Asset Management

Architect: Will Alsop, Alsop Architects

MEP Engineers: Buro Happold Ltd.

•General Contractor: Skanska UK

Structural Engineers: Buro Happold Ltd.

Andrew Lacey, Structural Engineer
*Former Leeds Exchange Student

Building Background
Project Team

Existing Conditions

Mechanical Redesign

Chiller Plant Optimization

Dedicated Outdoor Air System (DOAS)

Solar Energy Feasibility Study

Wind Energy Feasibility Study

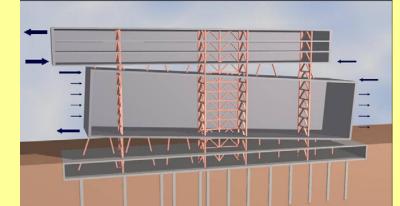
Conclusions

Acknowledgements

Architectural Concept

- Floating Boxes
- Dancing' Columns
- Tilted Facade

Lighting/Electrical


- ■4MVA substation in basement
- ■Lighting Density: 15 W/m²
- ■4 800 amp, 500kVA busbars service tenant area

•Recessed modular flourescent fixtures, fitted with

controls for brightness management

Structural

- Steel construction
- Dancing columns
- •9 m cantilever
- ■10m x 7.5m structural bays

Mechanical

- •(7) 537 kW Air-cooled Screw Chillers
 - Chilled Water Supply 7°C
- •(4) 800 kW Natural Gas-fired Boilers
- •(7) Constant Air Volume Units coupled with terminal Fan Coil Units

Space Design Conditions

Outdoor Air Temperature:

WINTER, 4°C

SUMMER, 29°C DBT 20°C WBT

Internal Air Temperature:

22°C ± 2°C, Office Space

18°C min, Toilets and Stairs

Air Movement:

WINTER, 0.15 m/s (30 fpm)

SUMMER, 0.25 m/s (50 fpm)

Relative Humidity:

35-65%, output from FCUs

Project Team

Existing Conditions

Mechanical Redesign

Chiller Plant Optimization

Dedicated Outdoor Air System (DOAS)

Solar Energy Feasibility Study

Wind Energy Feasibility Study

Conclusions

Acknowledgements

Chiller Plant Optimization

Proposal

Replace existing Electric Chiller Plant with Gas Engine Driven Chiller Plant

Justification for Proposal

- Natural Gas prices
- Opportunities for lower building emissions/heat recovery
- ■No base-loaded turbine

Utility Rates - London, England

Electric	
Day	4.592 p/kWh
Night	2.658 p/kWh
Supply Point Charge	55.88 £/month
Availability Charge	106 p/kVA
Gas	
per unit	1.515 p/kWh
Water	
per unit	88.85 p/m^3
Fixed cost for	
connection	860 £/year
2 1:66	

3 pence difference per kWh at peak

Chiller Plant Optimization

IC Engine Selection

•(5) 200 ton Tecogen Water-Cooled Gas Engine Driven Chillers

Electric versus IC Engine Chiller Costs

Type Cost Per Unit	Electric Air- Cooled Screw £51,320.00	Water-Cooled Engine Driven £103,625.00
No. Units	7	5
Total Cost	£359,240.00	£518,125.00

44% INCREASE IN FIRST COSTS

Chiller Plant Optimization

TraceTM **Energy Consumption Data**

	Original Elec	tric Scheme	Proposed En	gine Scheme
Monthly Energy				
Consumption	Energy, kWh	Cost, £	Energy, kWh	Cost, £
Electric	20,394,152 kWh	£937,840.56	12,803,427 kWh	£589,274.44
Gas	8,288,669 kWh	£14,622.22	8,182,627 kWh	£14,435.56
Water			4,285 kL	£11,325.56
Total Monthly				
Utility Cost		£952,462.78		£615,035.56
First Costs		£359,240.00		£518,125.00
Total Yearly				
Consumption	69,913,486 kWh		47,027,416 kWh	
Life Cycle Cost		£17,704,689.24		£16,163,972.20

8.7% LCC savings; £337,427 Monthly Savings

Project Team

Existing Conditions

Mechanical Redesign

Chiller Plant Optimization

Dedicated Outdoor Air System (DOAS)

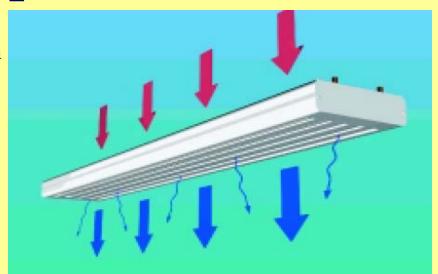
Solar Energy Feasibility Study

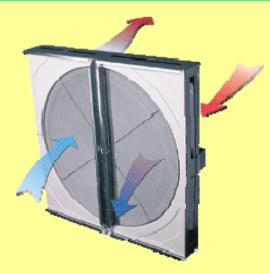
Wind Energy Feasibility Study

Conclusions

Acknowledgements

Ventilation Optimization


Replace existing CAV system with FCUs with Dedicated Outdoor Air System (DOAS) with Suspended Chilled Beams


Justification for Proposal

- Better humidity control
- Lowered first costs
- Smaller Duct sizes, reduced costs

DOAS Design

- Run as a "neutral" system where air is supplied at same temperature as typical VAV system
- ■Total and Sensible Heat Recovery
- Additional Sensible Load met by Chill Beams

Ventilation Optimization

Chilled Beam Selection

Building's Total Sensible Load:

 $Q_{total} = 1,422,700 \text{ W}$

Sensible Load Met by DOAS:

 $Q_{DOAS} = 549,619 \text{ W}$

No. Beams per Floor = 72

Total Beams Needed: 718

Halton CLL2/780/4100 Passive Beam

AHU Resizing

	Original Scheme % Difference				
AHU -1		Existing	Proposed	Savings	-59.78%
AHU -2	AHUS 18346 L/s	£214,262.00	7600,12 I/s £114,570.00	46.53%	-58.57%
AHU -3	2332.7 L/s Chilled Beams		237.6 L/s £495,500.00 280.8 L/s		-89.81%
AHU -4	3204 L/s	6612 642 00			-91.24%
AHU -7	1026 L/s	£612,643.00	923.5 L /s	19.12%	-9.99%

Ventilation Optimization

Table 5.8 TraceTM **Energy Consumption Data**

	Original Ventilation Scheme		Proposed DC	OAS Scheme
Monthly Energy Consumption	Energy, kWh	Cost, £	Energy, kWh	Cost, £
Electric	20,394,152 kWh	£937,840.56	13,608,401 kWh	£626,238.89
Gas	8,288,669 kWh	£14,622.22	1,242,134 kWh	£2,191.11
Water				
Total Monthly Utility Cost		£952,462.78		£628,430.00
Total Yearly Consumption	69,913,486 kWh		42,136,788 kWh	
Life Cycle Cost		£17,704,689.24		£15,878,842.97

10.3% LCC savings; £324,032 Monthly Savings

Building Optimization

TraceTM **Energy Consumption Data**

	Original Scheme		Proposed DOAS+Engine Chiller Scheme	
Monthly Energy				
Consumption	Energy, kWh	Cost, £	Energy, kWh	Cost, £
Electric	20,394,152 kWh	£937,840.56	12,669,017 kWh	£583,102.22
Gas	8,288,669 kWh	£14,622.22	2,770,855 kWh	£4,888.33
Water			19,061 kL	£14,794.44
Total Monthly Utility Cost		£952,462.78		£602,785.00
Total Yearly				
Consumption	69,913,486 kWh		40,927,536 kWh	
Life Cycle Cost		£17,704,689.24		£15,899.365.13

10.2% LCC savings; £349,677 Monthly Savings

Project Team

Existing Conditions

Mechanical Redesign

Chiller Plant Optimization

Dedicated Outdoor Air System (DOAS)

Solar Energy Feasibility Study

Wind Energy Feasibility Study

Conclusions

Acknowledgements

Solar Energy

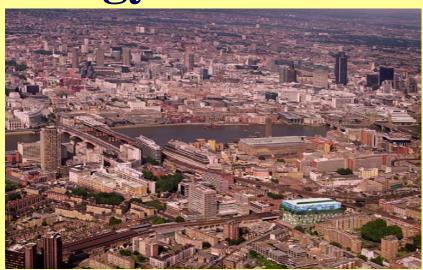
Solar PV Cell Selection

BP Solar 5160 S

Max Output: 160 W

Weight: 15 kg

Area Allotted: 100m²


Estimated Annual Energy Produced

Specific Yield	102.4 kWh/m^2
Overall PV System Efficiency	10.20%
Renewable Energy Delivered	19,995 kWh

Solar Energy

RETScreen Cost Summary

Total Initial Cost	£205,303.00
Total Annual Cost	£ 880.00
Total Annual Savings	£31,152.00
Simple Payback	9.1 years
Years to Positive Cash Flow	6 years
Net Present Value (NPV)	£125,778.00
Annual Life Cycle Cost Savings	£12,805.00

Project Team

Existing Conditions

Mechanical Redesign

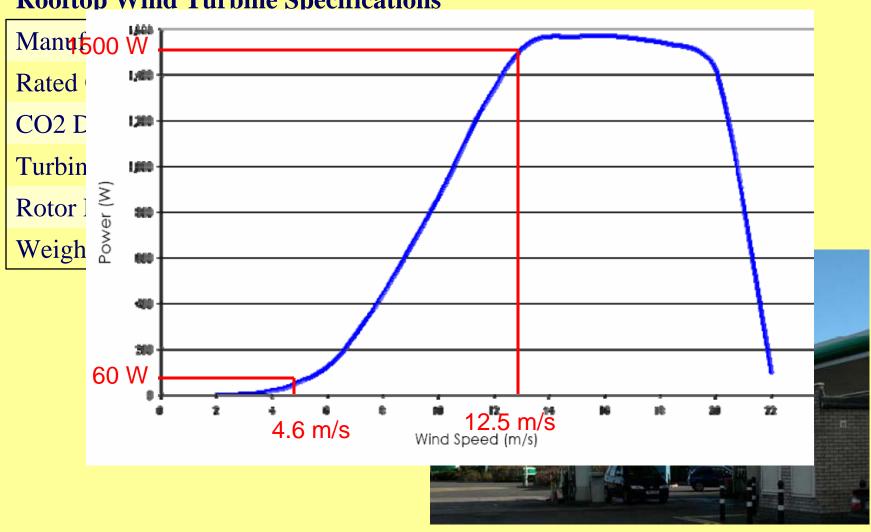
Chiller Plant Optimization

Dedicated Outdoor Air System (DOAS)

Solar Energy Feasibility Study

Wind Energy Feasibility Study

Conclusions


Acknowledgements

Wind Energy

Rooftop Wind Turbine Specifications

Wind Energy

Wind Turbine Costs

No. Units	10
Clearance Per Unit	2.12 m
Area Required	50 m^2
Total Weight	950 kg
Initial Investment	£15,000
Total Power Output	600 W
Annual Savings	120 kWh

$$Payback \ Period \ (in \ years) = \frac{Initial \ Investment}{Annual \ Savings \ (Cash \ Flow)}$$

Payback Period =
$$\underbrace{£15,000}_{£5.51}$$
 = 2722 years

Project Team

Existing Conditions

Mechanical Redesign

Chiller Plant Optimization

Dedicated Outdoor Air System (DOAS)

Solar Energy Feasibility Study

Wind Energy Feasibility Study

Conclusions

Acknowledgements

Conclusions

RECOMMENDATIONS

- Chiller Optimization: Natural Gas Engine Driven Chiller Plant ✓
- Ventilation Optimization: Dedicated Outdoor Air System ✓
- Building Optimization: Integration of both proposed schemes ✓
- Solar Energy: Payback Period 9.1 years
- Wind Energy: Payback Period 2722 years

Project Team

Existing Conditions

Mechanical Redesign

Chiller Plant Optimization

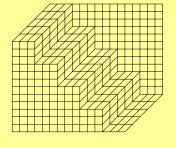
Dedicated Outdoor Air System (DOAS)

Solar Energy Feasibility Study

Wind Energy Feasibility Study

Conclusions

Acknowledgements


Acknowledgements

Coworker

- Buro Happold Ltd.: Pirooz Kani
- Skanska UK: Adrian Head, Stephen Fox
- Blackfriars Investments
- Penn State Schreyer Honors College
- AE Faculty, especially Prof Ling
- AE Class 2006
- Friends and Family

Buro Happold

Project Team

Existing Conditions

Mechanical Redesign

Chiller Plant Optimization

Dedicated Outdoor Air System (DOAS)

Solar Energy Feasibility Study

Wind Energy Feasibility Study

Conclusions

Acknowledgements

