

Optimizing Energy Efficiency of the Palestra Building

London, England

Buro Happold

The Palestra Building

London, England ~ Rebecca Allen, Mechanical Option

Project Team

•OWNER: Blackfriars Investment and Royal London Asset Management
•ARCHITECT: Alsop Architects
•MEP ENGINEERS: Buro Happold Ltd.
•GENERAL CONTRACTOR: Skanska UK
•ELECTRICAL CONTRACTOR: Buro Happold Ltd.
•STRUCTURAL CONTRACTOR: Buro Happold Ltd.

- Good BREEAM Rating (equivalent to LEED rating)
- Gas-Fired central boiler system
- Centralized Chiller Plant
- Mechanically Ventilated due to Urban location

•4-pipe fan coil system with units placed within structural grids to achieve most versatile open space floor plan available

Lighting/Electrical

- •4 MVA Substation servicing Palestra and surrounding buildings
- 2 1600 amp, 1000 KVA transformers feed Landlord roof plant
- •4 800 amp, 500 KVA transformers feed Tenant Load
- •415V 3 Phase Service to Tenant areas.

Architecture

- Size: 37,098 m²
- •Floors: 12
- Cost: £68 million
- Features:
- 'Dancing' Columns
- 3-9m cantilevers
- 11 degree slant on façade
- Floating Box Effect
- Completion Date: June 2006

Mechanical Structural

- Two-story raked columns at Ground and 7th levels
- Steel Construction with Concrete Slab Flooring

•9m cantilever achieved through fully fixed Vierendeel girder from 9th to 12th floors tied to cores.

Construction Features

•The proximity to the Jubilee line on the Underground required all lifts to be under 8.5 tons, resulting in the use of composite steel beams, structurally efficient, lightweight, and easy to assemble on site.

•More steel used in the 7th-9th floor than the 3rd-6th levels combined.

www.arche.psu.edu/thesis/eportfolio/current/portfolios/rsa126/

Table of Contents

		Page
	Abstract	INSERT
I.	Executive Summary	2
II.	Acknowledgements	3
III.	Introduction – Project Background	4
IV.	Building Background	5
V.	Mechanical Depth	19
	a. Existing Conditions	19
	b. Chiller Plant Optimization	27
	i. Proposed Redesign: IC Engine-driven Chiller Plant	
	c. Ventilation Optimization	32
	i. Proposed Redesign: Dedicated Outdoor Air System with Chi	lled
	Beams	
	d. Comparison and Results	41
VI.	Renewable Resource Breadths	42
	a. Solar Energy – Photovoltaic Cells	42
	b. Wind Energy – Wind Turbine	45
VII.	Acoustical Breadth – Mechanical Noise Impact on Community	48
VIII.	Summary of Results and Conclusion	54
IX.	References	56
Apper Apper Apper Apper Apper	ndix A – Existing Conditions: Loads ndix B – Chiller Optimization Data ndix C – DOAS Data ndix D – Trace Output ndix E – Solar Energy Calculations	

Appendix F – Wind Energy Data

I. Executive Summary

This report studies the energy optimization of The Palestra Office Building in London, England, by analyzing proposed systems such as an IC engine-driven chiller plant, Dedicated Outdoor Air System (DOAS) as well as the integration of Solar PV Cells and Wind turbines and their acoustical impact on the design. This research was carried out while following the guidelines set forth by The Pennsylvania State University Department of Architectural Engineering.

A variety of resources, references, and software programs were utilized to complete the study of the chiller plant, ventilation system, and 'green' technology opportunities, including Trane's[™] Trace[®] 700 program and RETScreen[®] International Clean Energy Act Analysis Software. These materials were used to create the application of the engine driven chiller plant and Dedicated Outdoor Air System for the Palestra Building. Following the mechanical analysis of these systems it was found that with the addition of the engine driven chiller plant produced 22,886,070 kWh savings in annual energy consumption, and an 8.7% reduction in Life Cycle costs. The analysis of the DOAS design resulted in a 27,776,698 kWh savings in annual consumption, and a 10.31% reduction in Life Cycle costs. Due to the improvements that each system had on the overall efficiency of the building, an analysis was completed with the integration of both designs. This 'hybrid' design resulted in a 28,985,950 kWh annual savings, and a 10.2% reduction in Life Cycle costs. This proves that the proposed designs provide excellent financial savings, as well as a reduced environmental impact, which is the prime focus of the newest building regulations in the UK.

In addition, breadth work was completed on secondary topics, including the acoustic levels of the new chillers, as well as, the addition of green technologies such as Solar PV panels and Wind Turbines. A Composite Noise Rating analysis was completed for both the existing and proposed chiller plants, finding that there was not an increase in the noise level dramatic enough to warrant the installation of additional acoustic barriers at this time.

The study of the Solar and Wind energies provided mixed results. These additions are driven by the newest tenant for the building, and due to the timing of their request so late in the construction phase the layout of the equipment on the roof is already confirmed, creating obstacles for installing equipment that depends so heavily on placement, orientation, and floor area. Combined with the low average wind speed in London, both systems had a less than desirable payback period, 9 years for the Solar panels and over 2000 years for the Wind Turbines. It is strongly recommended that the owner abandon the idea of a wind system and out the additional roof area and funds into improving the efficiency of the Solar system.

II. Acknowledgements

This report and all the research required to complete it would not have been made possible without the support and mentorship from numerous individuals and companies.

First, I would like to thank my parents, Pam and Rick Allen, as well as my sisters, Katie and Christy. They have been my greatest supporters and the rock I have leaned on from the day I decided I wanted to be an Architectural Engineer from Penn State.

I would also like to acknowledge the people that made my research possible by providing me with the resources, materials, and guidance I needed: Pirooz Kani and Robert Okpala, Buro Happold; Stephen Fox, Skanska; Blackfriars Investments, Building Owner.

*A special thank you to Buro Happold for awarding me with the Happold Trust Scholarship, and granting me an internship in their London office. The opportunity to experience the engineering industry from a more worldly perspective was a life-changing experience that has profoundly impacted my research.

This also would not have been possible without the Architectural Engineering faculty. It is because of your passion for our industry that I have also come to love building services so much. The most important lesson you have given me is that learning doesn't stop at the classroom door; I will be a life-long learner. And thank you Professor Moses Ling for all of your encouragement over the years, from my first Honors option with you on Green Design to

study abroad opportunities and advice on real life. Your faith and dedication have truly inspired me.

In addition I would like to thank the Pennsylvania State University Schreyer Honors College for their financial support, allowing me to arrange a site visit to London to continue my research.

III. Introduction – Project Background

The fifth-year curriculum for Architectural Engineering students includes a year-long design project, where each student selects a recently renovated or constructed building to study and examine its systems. All design documents and specifications are donated by the project's owner, engineers, and contractors. The first half of the year is spent writing three technical papers on the existing conditions of the design looking at its code compliance, energy efficiency, utility consumption, and budget. Once a good sense of the building's systems has been gained a redesign is proposed to increase the efficiency of the existing design. This proposal must include a detailed analysis within the student's area of specialty (lighting/electrical, mechanical, structural, construction management), as well as two additional studies into non-option areas. The second half of the year is then spent implementing the design schemes set forth in the proposal. The year ends with the completion of the final thesis report and presentation to the jury consisting of Architectural Engineering faculty.

In addition to the research and analysis, each student is required to create and maintain a Capstone Project e-portfolio (CPEP) website displaying their progress throughout the year. This includes all technical reports, proposal and building information. The website serves as an excellent means of communicating our work with design professionals and faculty as well as fellow students.

This report is a culmination of a year-long study to optimize the design of the Palestra Building in London, England with an emphasis on mechanical, solar, wind, and acoustical systems. The report presents the feasibility the proposed designs and their impact on the overall scheme of the building. These findings are available only for educational purposes, and will be shared only with the afore mentioned sponsors.

IV. Building Background

Architecture and General Information

The Palestra development is currently the largest office building currently under construction in London, England. Located across the street from the Southwark tube station, and just minutes from the Tate Modern museum as well as Waterloo Station, Palestra was destined to be a high-profile building. The location only enhances the 'quirky' design of the architect, Will Alsop from Alsop Architects in London.

This twelve story design is not your average office building, incorporating many dramatic features including two-story 'dancing' columns, large cantilevers, and tilted façade. The raked columns on the 1st and 7th stories were dubbed 'dancing columns' for the movement perceived by the observer due to the striking angles they are erected at. The entire design team finds humor in the community's reaction to Palestra. One concerned neighbor

Figure 3.1 Palestra under Construction

even wrote a letter to the project manager voicing concerns about these columns that were severely out of plumb, not realizing the intention of the architect.

The average passerby also notices that the building appears to be two large boxes set atop one another. This effect is achieved at the 9th story where there is a 1.5 meter overhang on three sides of the building, and then a spectacular 9 meter cantilever overhanging Blackfriars road on the fourth side. The result is very much a floating effect where there are no visible signs as to how the top box is held in place with the absence of any diagonal bracing or tensioned cables.

Accenting these unusual yet inspiring characteristics is the slanted façade present on the lower 'box' enhancing the raked columns. All of the floors are horizontal while the façade is at an ll

The Palestra Building

London, England

degree slant. This degree is sufficient enough for the façade to touch ground level on the east

Figure 3.2 North Façade Elevation

side while elevated 2 stories high on the west side. This creates a very appealing and open pedestrian walkway while creating an inviting entrance to those travelers exiting the tube station.

Building Envelope

The building is fully glazed, with acoustic glazing on the North and West sides of the bottom 'box,' utilizing 5 different types of double glazing. There is an additional colored ceramic frit pattern across the façade incorporating three colours. These ceramic frits are 60% solid and 500mm wide.

The façade would allow sufficient daylight to enter the space so that for a high percentage of the time the electric lighting in the perimeter areas could be switched off if, resulting to energy savings. Efficient use of systems and controls and any further energy saving measures will ensure that the above targets are achieved and the impact of the building on the environment is minimised.

Construction

Build-ability was a large concern from the beginning of the design process for Palestra because of the site's close proximity to roads, the main railway line from Charing Cross, and the Jubilee line on the underground. Any crane over 8.5 ton is deemed a 'controlled lift' requiring special supervision from National Rail, so every effort was made to remain below this weight. The result was composite steel beams that were structurally efficient as well as

light-weight and east to assemble on site. The steel frame was also strong enough to hold its own dead loads, so that the slabs could be poured at a later date.

Because there was a substation located in the basement of the existing building, a temporary substation also needed to be erected on the Gambia street side to service the site and several surrounding buildings during the construction process and to decommission and remove the old substation as well.

Figure 3.5 Steel Erection on Palestra Site

Primary Project Team

Owner: Blackfriars Investments and Royal London Asset Management

- Website: www.blackfriars-uk.com, www.rlam.co.uk
- Architect: Alsop Architects (Will Alsop)
 - Website: www.alsoparchitects.com
- **MEP Engineers:** Buro Happold Ltd.
 - Website: www.burohappold.com
- General Contractor: Skanska UK
 - Website: www.skanska.com
- Structural Engineers: Buro Happold Ltd.
 - Website: www.burohappold.com

ELECTRICAL

Building Systems

A 4MVA substation will be installed in the basement plant room to service Palestra and surrounding buildings formerly dependent on the substation in Orbit House. The load will be fed by 4 transformers of 1,000kVA, 1600 amp, each with a capacity of 2 No. 1600 amp, 1000kVA low voltage supplies from this substation would feed landlord plant on the roof. 4 No. 800 amp, 500kVA low voltage supplies service tenant load via busbar risers.

The Palestra Building London, England

Tenant supplies are based on following electric loadings:

Lighting	15W/m^2		
Small Power	30W/m	^2	
FCU	15W/m	^2	
Sub-Total	60W/m	^2	
Office Area	26,000 m^2		
Total 1560k	W	1835kVA	2780amp

The busbars extend to roof level with a capacity of 4×800 amp = 3200 amp, leaving 420 amp, 275 kVA capacity not used by the tenants. This supplies the Landlord's non-essentials loads in the basement and at ground level. Then the landlord main distribution board can be located on the roof adjacent to the main landlord loads.

The main landlord switchboards in the basement feed...

- Boilers and associated pumps
- Sprinkler pumps
- Entrance area lighting and power
- Car Park and plant room lighting and power
- Core Lighting and power on Levels B to 5
- Substation Ventilation

- External Lighting
- Security/Fire control center
- Water tanks and associated pumps
- Loading Dock Lighting and power

The two main landlord LV switchboards at the roof level will be fed by 1600 amp supplies in XLPE/SWA/LSF cables/busbars from the LE substation, via isolators in the basement, so the service can be isolated by the landlord's staff without entering the LE substation.

Each of these main switch panels will have the facility to incorporate power factor correction equipment to achieve an optimum power factor of 0.95 lagging.

Four tenant distribution boards are provided on each floor serving the area corresponding to one tenant and fed by metered tap-offs from the busbar risers. These boards feed the lighting, Fan Coil Units (FCUs), and a small number of 'cleaners' sockets on the cores. There will also be a raised accessible flooring system to provide electrical and data services with maximum versatility.

Back-up power supplies for Fire Alarm, emergency lighting, voice alarm, BMS head-end, security systems will be provided by battery power.

LIGHTING

Lighting to the open plan office spaces will be provided using recessed modular fluorescent luminaries, fitted with high frequency control gear and providing brightness management complying with the requirements of LG3 category 2. The lighting will be arranged on a 'checkerboard' grid with 2.1m between fittings. All luminaries will be plugged into a lighting relay box mounted in the ceiling. This will allow for local switching to be installed as partitions are moved around by the tenant, as well as space for additional luminaries to be

installed. These 'cores' will also allow for future linking of automatic time-based switching and daylight control.

When possible in the office areas low energy compact source lamps will be installed for energy efficiency and ease of maintenance.

The car park and plant room spaces will be fitted with robust fluorescent fittings with lighting controls designed to minimize lighting of unoccupied spaces.

External lighting will be designed in partnership with the Architect, but will provide adequate lighting for security and closed-circuit television (CCTV).

Lighting in toilets, stairs, toilet lobbies, and car parks will be controlled by presence detectors. Lighting in the main lobbies will be BMS time clock controlled to correspond with the tenant occupancy levels.

Emergency lighting will be battery units with a three hour life at reduced output, and where possible they will be integrated into the general luminaries.

MECHANICAL

The Palestra building is equipped with a gas-fired central boiler and chiller plant. And due to the close proximity to surrounding structures as well as the public transport, high quality fresh air is limited requiring a mechanically ventilated design.

The boiler room is located on the roof, and runs on four boilers, three of which run at 100% to met the daily demands while the fourth is a backup during times of maintenance or it can be used as a 'booster boiler' to generate the morning warm-up. These boilers service a low

temperature hot water system fed to AHU ventilation systems, fan coil units (FCU), and heater batteries.

Fig 3.7 Boiler Pump in Rooftop Plant

Fig 3.6 Existing Air-Cooled Screw Chillers

Fig 3.8 Central Boiler Plant

The chiller plant is located on the roof and consists of seven packaged air-cooled chiller units, six of which run at full load daily, while the seventh serves as a backup unit. These units run the building's chilled water system fed to the fan coil units and cooling coils in the air handling plant. The primary and secondary constant temperature pumps and circuits are located on the room next to the chiller units. On the office levels the owner required the design team to achieve a versatile open floor plan layout. Therefore one FCU was placed in each structural bay. Depending on the desired office layout of the tenant more FCUs can be added for increase climate control for the employees. This is based on a four-pipe fan coil system used on each office level, including water-side controls for responsible operation, room temperature sensors, and variable speed heating and chilled water pumps to conserve energy.

Because the reception area could be operating 24 hours, it was found to be more efficient to have an independent system to run separately at off-peak hours. This area is mechanically heated, cooled and ventilated in the same manner as the rest of the building. However instead

of the standard FCU a Direct Expansion FCU was chosen, utilizing heat pumps rather than LTHW or chilled water.

To meet the minimum fresh air requirements two roof-mounted fresh air ventilation plants were installed.

All mechanical components are routed through the building's BMS (Building Management System) to maximize efficiency.

STRUCTURAL

Fig 3.9 Steel Framework of Palestra

The structural systems of Palestra are probably one of its main selling points. As previously mentioned there are two stories of double height 'dancing columns' (raked) on the Ground-First floors as well as the 7th -8th floors. Each column is paired so that when one is leaning one way, there is another column leaning the

exact opposite. However, the pairings are spread out so that this isn't quickly apparent to an observer. While these loads balance one another, they also create a strong twisting moment in the floor slabs that is directed to the stair and lift cores which use the conventional steel K-braced frames.

There a larger 9m cantilever on the west side of the building

Fig 3.10 Raked Column Design as well. Because the architect placed firm restrictions on the use of diagonal bracing and

more traditional support methods the result is a fully fixed Vierendeel girder from the 9th to 12th floors and tied to the primary cores. This member is made up of very substantial plate girders with flanges made from 70-80mm plates. There is as much steel on the ninth floor as the third through sixth floors combined.

Everything between the first and seventh floor is vertical. Then there are two stories of 'dancing columns,' and at the ninth floor the steel grid changes from $10m \times 7.5m$ to $12m \times 7.5m$ because of the 1.5m cantilever all around. Due to this transition none of the columns from the 8th floor meet those on the 9th and the entire grid is offset to the west by 7.5m.

Fig 3.11 Lateral Load Schematic

FIRE PROTECTION

Provision has been made for mechanical smoke extract to exit through the current ventilation extract system, extracting up to 6 air changes per hour. In basement areas the 10 air changes per hour will be provided. The loading bay will be naturally ventilated with 2.5% of the floor area open to fresh air.

The upper floors will have sprinkler systems installed, following BS 5306 Part 2 regulations. Basement and ground floors' sprinklers will be serviced by the town mains, while the upper floors will be serviced by a 180 cubic meter water storage tank in the basement. The system is distributed to the east and west cores and rise throughout the building.

Two fire fighting shafts shall be provided with smoke control within each shaft using the alternative 'chimney' design of smoke shaft following BRE standards. Each shaft will also be fitted with a dry riser with an outlet at each fire fighting lobby and inlets located at ground level.

PLUMBING

There are 2 No 150mm fire supplies from alternate water supplies in Blackfriars Rpad and Union Street. There are also three water supplies entering the site, one on Blackfriars Road, one in Union Street, and one in Gambia Street. The Blackfriars supply will service the building's domestic water demands because the supply on Gambia is only 100mm diameter and the 175mm main in Union is already servicing the fire main.

The building's demand is approximately 4.1L/s with a 4" main.

TELECOMMUNICATIONS

Communication risers will be provided at four locations around the building with two risers servicing each tenant. Using galvanized cable trays the risers can handle copper, fiber optic or blown fiber cables as required by the tenant.

Landlord installation will include a structured data cabling scheme servicing the plant rooms, lift motor rooms, reception, and one outlet per tenant area (4 outlets per floor). A landlord telephone exchange will be installed to provide for future additions to a building telephone exchange connection. The BMS and Access Control terminals will also be connected through the structured data cabling system.

Tenant installation will include the installation and routing of data cabling from wire closets to user equipment through access flooring provided. Communication links between the communication risers is limited but can accommodate for fiber optic or multi-pair telephone cables.

TRANSPORTATION

The central passenger transportation will consist of seven lifts located in the central core. Each lift will be sized at 1600kg/21 persons each, operate at 1.6 m/s, and meet disabled access requirements, achieving a waiting time of 30 seconds as recommended by BCO. Each lift will service all twelve floors, with one serving the basement additionally. The basement access will be monitored through a card swipe controlled by the BMS. The lift motors will be located in the roof plant area.

Two 630kg/8person fire fighting lifts have been provided, one in the east core and one in the west core following BS 5266 and BS 5588. They will have electric traction lift drives and operate at 1 m/s and will service ground floor through the 11th floor.

An additional goods lift is located in the east core of the building. The good lift is 3000kg/40 persons and will also have the electric traction lift drives and service -1 through 11. The motor room will be located in the roof plant area, with an additional hoisting system on the 11th floor to lift materials onto the roof.

SPECIAL SYSTEMS

Security

A security system will be installed providing CCTV, access control, entry phone, and intruder detection. CCTV cameras will be located at all entrances and lobby areas in the building and will run 24 hours a day. A card access system will allow access into the building and then between certain areas within the building (i.e. basement lift).

Lightning Protection

A lightning protection scheme will be provided to fully protect the building, its contents and occupants against possible lightning strikes. Generally an air termination network is installed

across the site, providing an inter-linked grid pattern of high conductivity copper tape located at roof level. A down conductor network will be provided around the perimeter, leading to the earth termination network via a test link.

Building Management System (BMS)

The system should have the ability to monitor and or control the following

- Heating, Ventilation and Comfort Cooling Plant and equipment
- AHU plant (fans enable/disable and status<alarm>, filter status <alarm>, flow <alarm>, damper/valve monitoring)
- Chiller
- Boilers (if appropriate)
- FCUs in tenanted areas to be fitted with controllers and networked for monitoring and control.
- Pump(s)
- Pressurization Unit
- Toilet Extract Fans
- Gas Valve
- Car Park extract system
- Basement ventilation system
- Cold water booster sets
- Electricity, gas and chilled and low temperature hot water meters
- LV distribution networks
- Fire and Smoke Control System
- Fire Alarm Systems
- Automatic Sprinkler system
- Emergency Generators
- Lifts

V. Mechanical Depth

a. Existing Conditions

Approach and Strategy

The Palestra Building is the result of a business collaboration between Insignia Richard Ellis Development and Blackfriars Investment. The team wanted to create an iconic landmark office building in southern

Figure 5.1 Palestra Under Construction London as an effort to spur regeneration in the area. In addition to an exciting and contemporary design, great efforts were made to develop the most efficient building from an engineering standpoint as well. With the complex structural systems incorporated throughout the building with the 'dancing columns' and 9 meter cantilever, careful integration of the building services distribution systems was imperative. Due to the 'glass box' nature of the design, a detailed solar shading study was completed to ensure system efficiency with minimal impact on the views from the office space.

The Palestra Building London, England

Key Objectives

- At least 280,000 square feet of office space
- High Asset Value
- Flexible design to meet current and future business needs
- Design should comply with design specification set forth by Insignia Richard Ellis
- Flexible enough to allow for multi-tenant occupiers, up to four per floor
- Minimal impact on Building Services as office layouts are modified
- Cost Effective and Economic design
- Energy Efficient with Low Operating Costs

Occupied Environment

Temperature: The air and radiant temperatures shall meet the occupant's perception of their thermal environment comfort zone.

Air Movement: In order to meet the fresh air requirements for comfort while avoiding draughts the air velocity shall be limited to 0.15m/s in the winter and 0.25 during summer conditions.

Indoor Air Quality: To maintain appropriate contaminant levels (including C02) from office equipment and equipment the ventilation system shall be designed for 10-16L/s per person.

Humidity: Due to the moderate climate found in London, England the only critical season is winter when the humidity level can fall below 30%.

Acoustics: Too much background noise can be distracting, however a moderate amount has been proven to enhance concentration and disguise general conversations.

Lighting: Adequate levels of lighting must be provided throughout the building, yet it must be of the appropriate quality and also coordinate with the day lighting studies.

In addition to these specific strategies it is important to note that when utilizing air as the predominant means for heating and cooling internal spaces you will be able to satisfy up to 80% of the occupants. And through the fan coil unit layout chosen for the Palestra building limits the amount of humidity control the occupants will have, however the humidity levels should remain between 35-65% most of the year. However individual user controls will also be provided to account for the psychological aspect of how an occupant perceives his/her thermal environment.

Additional design criteria are summarized in Table 5.1.

Table 5.1Design Criteria

Design			Commen	Comments		
Parameter						
Outdoor	Winter	Summer				
temperature	-4°C sat	29°C db, 20)°C wb			
Internal	Offices	Toilets &	22 °C ± 2	Toilets &	The internal temperatures specified are more	
temperature	22°C ± 2	Stairs		Stairs	onerous than the BCO recommendations	
		18°C min		uncontroll	and will increase the building maximum	
		(Winter)		ed	demand and year round energy	
				(summer)	consumption.	
Air Movement	Winter	0.15m/s	max	To avoid s	To avoid stratification when heating is required the 0.15	
	Summer	0.25m/s max		m/s criteri	a can be relaxed for systems supplying at	
				high level		
Relative	35 - 65% areas conditioned by		Initial installation will not contain humidity control.			
Humidity	fancoil systems (expected levels -		Space shall be provided within the office area AHU on			
	note the humidity levels are not		the roof for future tenant installation of humidification			
	controlled). Other areas no		system.			
	control.					

The Palestra Building London, England

Heating and Cooling Loads

The system was designed to handle 1796 kW of heating loads and 3871 kW of cooling to the building. The heating is supplied through a central gas-fired boiler plant located on the roof, while the cooling is provided through a central air-cooled chiller plant also located on the roof. For a further breakdown of the loads please refer to Appendix A.

Air-Side Systems

The air-side ventilation system in the Palestra Building consists of a constant volume system served by seven different air handling units. Four of the AHUs are located on the roof, two are located in the basement plant room, and one is located in the level 1 mechanical space.

Air Handling Units 1 and 2 are located on the roof and supply air to 16107m² of open plan office space disbursed evenly throughout the twelve levels at a rate of 38,139.84 cfm. Each AHU maintains a negative pressure of 500 Pa, and includes a heat exchanger in the form of a heat wheel, a cooling coil, a heating coil, a panel filter of grade G4, and a variable frequency drive supply and extract fan.

Air Handling Units 3 and 4 service the building's water closets and are also located in the roof ventilation plant. Unit 3 supplies air to 498m2 of toilets on the west side of the building, and Unit 4 supplies ventilation to 627m2 of toilet space on the east side. Each unit is sized to supply 6,420.21cfm to their respective areas. These are constant volume systems, and each includes a frost coil, cooling coil, heating coil, as well as supply and extract fans.

Air Handling Units 5 and 6 are located in the basement plant room. Units 5 and 6 are design to serve as extract systems for the toilets as well as the sprinkler plant and boiler rooms. Each unit includes a panel filter of grade G4, a cooling coil, and a heating coil. Units 5 and 6 were designed to provide adequate smoke clearance to these vital mechanical spaces with a flow of 6,356.64 cfm. Approved Document F requires a minimum of 12 m/s face velocity for ventilation extract in the case of fire.

Air Handling Unit 7 is located in the Ground Floor mechanical room and solely supplies air to the reception area, 772m2, at a constant volume flow rate of 7,627.97 cfm. This unit contains a heating coil, cooling coil, a panel filter of grade G4, as well as, supply and extract fans.

Water-Side Systems

The Palestra Building's water-side systems consist of a centralized boiler and chiller plant. Cooling is provided through a chiller plant located on the roof and consisting of seven 537 kW packaged air-cooled chiller units, six of which run at full load daily, while the seventh serves as a backup unit. The total estimated cooling load for the building is 3,291 kW. Chilled water is provided to the building at 7°C and returned to the plant at 12°C. These units run the building's chilled water system fed to the fan coil units and cooling coils in the air handling plant. The primary and secondary constant temperature pumps and circuits are located on the room next to the chiller units.

Heating is provided through a natural gas-fired central boiler system. The boiler room is located in the basement, and runs on four 800 kW boilers, three of which run at 100% to meet the daily demands while the fourth is a backup during times of maintenance or it can be used as a 'booster boiler' to generate the morning warm-up. The estimated heating load for the building is 2,135 kW. These boilers serve a low temperature hot water system fed to AHU ventilation systems, fan coil units, and heater batteries and operate with an 11°C differential.

In addition to these systems there are 314 fan coil units placed on a grid system throughout the building to maximize thermal comfort. The grid layout reiterates the design goal to create office spaces that will meet the needs of current and future tenants. Depending on the desired office layout of the tenant more FCUs can be added for increase climate control for the employees. This is based on a four-pipe fan coil system used on each office level, including water-side controls for responsible operation, room temperature sensors, and variable speed heating and chilled water pumps to conserve energy.

Critique of System

The existing mechanical systems in the Palestra Building were well-designed and efficient, with the emphasis maintained on the ability of the system to be flexible, catering to its tenants (current and future), as well as creating a high level of reliability and redundancy.

The centralized boiler and chiller plant will be very useful in the coming years as more efficient technologies come along. Having all of the systems in one location will make it easy to replace them at once rather than disrupting locations throughout the building as would be require with localized heating and cooling systems.

In order to maximize the versatility and flexibility of the rentable office space the design team created open floor office plans with fan coil units placed on a grid system. This allows the space to function well with minimal walls and obstructions. However if the tenants desire more of a closed office layout, or would like to provide their employees with more personalized control over their environment more fan coil units may be added to this grid, with additional capacity on AHU-3 and AHU-4 to handle these possible loads.

Accessibility to the main plant rooms was also well-designed with thought put into how future replacements for all of the equipment will be moved in and out. The fan coil units throughout the design are located in the suspended ceiling and can be accessed by removing the acoustic ceiling tiles.

The design team also made a smart choice in selecting the 4 pipe fan coil system, and providing gas heating versus a 2 pipe unit using electric heating. Not only does Gas provide a much lower life cycle cost, but it is releases fewer emissions into the environment thus earning more 'Green' points which was a prime objective with the Palestra Building.

With all the benefits of the system and the forward thinking of the design team, there is no set means to control the humidity levels in the building. It is noted that London, England is a

very moderate climate with minimal humidity issues through the spring, summer and fall seasons. However, there is a tendency for the humidity level to drop below 35% during the winter months. Accommodations have been made to allow for future installment of humidifiers in the Air Handing system as needed. Investigation into the feasibility of a dedicated outdoor air system could be a possible response to the humidity control issues. A closer look at what efficiency was compromised in order to maximize the flexibility would also be valuable, and how much efficiency the Building Management System can compensate for.

Alternatives Considered

Several schemes for a mechanical redesign of the Palestra Building were contemplated during the research of existing systems. These included a Combined Heat and Power plant, Day lighting Aperture Optimization, and possibly reducing the number of air handling units.

Building Combined Heat and Power (BCHP) is becoming increasingly popular as a means to increase system efficiency and thus decrease emissions by fully burning more of the energy inputted. With the new emission regulations outlined in Approved Document L and the increasing rates for electricity this seemed to be an interesting solution. However BCHP requires a large amount of waste heat and a fairly constant demand load to be most successful. One possibility was to coordinate a system between Palestra and the surrounding residential buildings to balance each buildings' demand peaks, as well as provide the necessary amount of waste heat. The Palestra already shares an electrical substation in its basement with several surrounding buildings, so this would have been a continuation of the current setup. This proposal would require extreme coordination with many stakeholders, and also require a large amount of floor space in the Palestra Building which is at a premium. The commitment on behalf of Palestra's owner would significantly increase, which may not be of interest to them regardless of the long term gains.

Maximizing the benefits of day lighting can have a large impact on the energy efficiency of a building, especially within the Palestra Building's 'glass box' design. By increasing the window efficiency and minimizing the glazing area the overall design could benefit from the increased insulation. However, due to the extensive research already done in this area by the design team, there is little probability that a better design could be achieved without sacrificing the design's architectural integrity. Therefore the efforts of this research would be better served investigating other topics.

Reducing the number of air handling units was also a consideration. Currently there are seven units servicing the building. Two units are dedicated to servicing the toilet areas, two serve as extracts to the toilets and plant spaces, one supplies the basement and lobby, and two additional units service all of the office space. It seems a bit imbalanced to have two units supplying over 80% of the floor area, while five smaller units were included in the design to serve such little area. However, this design does have excellent redundancy and it has additional capacity to meet future demands according to the tenant and office layout. In the end due to the lack of operable windows in the design, and the need for the system to meet current and future occupant demands to maximize desirability and profit it was decided that this system is effective as currently designed.

b. Chiller Plant Optimization

i. Proposed Redesign: IC Engine-driven Chiller Plant

Proposed Redesign and Justification

Building design in the United Kingdom is currently undergoing some significant changes with respect to emissions and energy consumption. Across the country there has been a dramatic increase in natural gas consumption over the past decade as electric generation has become more dependent on gas. Compared to other energy resources available gas is still the cheapest and most efficient option for consumers. Following the publication of the Fuel Poverty Strategy in 2001 the leaders of the country have been encouraging increased coverage of the gas network. In a recent publication from the Department of Trade and Industry in the UK, The Fuel Poverty Strategy reported that the lack of access to gas mains was the main cause of fuel poverty in 54% of the households included in the study. This is a dramatic example of the value of gas-driven systems in the UK today. Thus it was deemed beneficial to look into a natural gas-based system for the Palestra building.

The largest electrically-driven plant in this urban development is the existing chiller plant. The current design includes seven 535 kW air-cooled screw chillers produced by McQuay. This report will look at the advantages and disadvantages of replacing the electric chiller plant with an IC engine-driven plant coupled with the current gas-fired boiler plant.

The current chiller plant in the Palestra Building utilizes electric chillers and provides 18% additional capacity on the system. While this system functions well in the space, it accumulates large operating costs in order to meet the peak electric loads during the day. The current spark gap between peak electric and gas utility costs is over 3 pence per kilowatt-hour. A gas-based system not only allows for greater efficiency onsite, but the use of current and future technologies such as thermal storage and other forms of heat recovery. That flexibility

could prove beneficial in the future as the Emission Regulations in the UK become more and more strict. Flexibility was one of the driving factors throughout the rest of the design, and should be carried through here.

A hybrid system with IC engines and gas turbines was also considered but due to the low base load for the building it will not be included in these calculations. Although the building is not fully operating yet, the calculations have been based on a previous project with a similar expected load profile. Thus it was deemed more worthy to analyze an IC engine driven chiller plant.

Calculations

Trace[™] 700 was used for all of the energy simulations. Trace[™] 700 is a software program developed and distributed by Trane[®], with the ability to model HVAC systems, economic and utility constraints to easily compare design alternatives.

Туре	Water-Cooled
Series	STx Series
Model	CH-200x
No.	7
Full Load Rating	200 ton
Fuel Consumption	42.36 m^3/h
Chilled Water Flow	1.81 m^3/min
Physical Data	
Length	4.214 m
Width	1.32 m
Height	2.057 m
Weight	9842 kg

Table 5.2 Tecogen Gas Engine Driven Chiller

Figure 5.2 Tecogen Chiller

Here five 200 ton (703kW) water-cooled IC engine chillers were selected to meet Palestra's cooling load of 3,291 kW. This size allows for moderately-sized chiller unit, while maintaining high percentage loads, redundancy, and additional cooling capacity that is built into the current design. However with fewer units each weight more than double the original electric units it was important to keep the necessary amount of equipment to a minimum for structural purposes.

· · · · · · · · · · · · · · · · · · ·		
Electric		
Day	4.592 p/kWh	
Night	2.658 p/kWh	
Supply Point Charge	55.88 £/month	
Availability Charge	106 p/kVA	
Gas		
per unit	1.515 p/kWh	
Water		
per unit	88.85 p/m^3	
Fixed cost for connection	860 £/year	

Table 5.3 Utility Rates - London, England

The design conditions were inputted in accordance with Table 5.1 and Table 5.3. Due to the fact that Palestra is still under construction the utility rates listed are based on another project of similar size and scope.

*p, pence

Results

Table 5.4 Trace[™] Energy Consumption Data

	Original Electric Scheme		Proposed En	gine Scheme
Monthly Energy Consumption	Energy, kWh	Cost, £	Energy, kWh	Cost, £
Electric	20,394,152 kWh	£937,840.56	12,803,427 kWh	£589,274.44
Gas	8,288,669 kWh	£14,622.22	8,182,627 kWh	£14,435.56
Water			4,285 kL	£11,325.56
Total Monthly Utility Cost		£952,462.78		£615,035.56
Total Yearly Consumption	69,913,486 kWh		47,027,416 kWh	
Life Cycle Cost		£17,704,689.24		£16,163,972.20

The existing heating and airside systems were integrated with the new chiller plant, and the energy and cost simulation results are summarized in Table 5.4. As compared to the original electric scheme the gas engine driven plant decreased the yearly energy consumption by 33%. There are significant savings in electrical usage, reducing monthly consumption by 7,590,725 kWh and £348,566, which could continue to increase as the price of electricity rises relative to the natural gas rate. On the whole the life cycle costs can be reduced by an additional 8.7%.

Table 5.5	Electric	versus l	C Engine	Chiller	Costs

	Electric Air-Cooled	Water-Cooled Engine	
Туре	Screw	Driven	
Cost Per Unit	£51,320.00	£103,625.00	
No. Units	7	5	
Total Cost	£359,240.00	£518,125.00	

Despite the energy savings, it is important to note the difference in first cost for each system (Table 5.5). While an electric air-cooled screw chiller costs approximately £360,000, an engine driven chiller is almost £520,000. However, the 44% in capital cost is more than accounted for by the energy savings as shown in the Life Cycle Cost reductions.

Overall, the gas-engine driven chiller plant could provide significant savings for both Palestra's owner and tenants. And with the long term energy crisis in the United Kingdom, a gas-based system is a smart choice. The other considerations that should be taken into account are the weight of the new equipment and its structural impact on the building, the increase in acoustic levels due to the engines, and the actual first costs. Many times the Utility or government programs will supplement your initial costs when you select an energy friendly product.

Proposed Redesign and Justification

The second proposed design is the installation of a dedicated outdoor air system (DOAS) supplemented with chilled beams throughout the occupied spaces. DOAS not only reduces the ductwork and equipment sizes, but also increases humidity control and reduces energy and first costs. This system meets the latent loads by providing dry outdoor air at low temperatures, while the sensible load is accounted by using the chilled ceiling beams. An additional benefit of this system is the increased indoor air quality. DOAS could prove to solve several of the design challenges that faced the Palestra Building regarding its urban location and lack of humidity controls.

In a 100% outdoor air system such as this the air handling units (AHU) are sized to provide the minimum amount of fresh air required based on function and occupancy of the space. These guidelines are set forth in ASHRAE Standard 62, and those values for Palestra are listed in Table 5.7. In addition an enthalpy wheel is installed in each AHU to maximize heat

recovery while also providing excellent humidity control where there currently is none. This equipment will meet all of the building's latent load, and 38% of the sensible load. The remainder of the sensible load will be controlled by chilled beams suspended from the ceiling within the open office spaces, as shown in Figure 5.3.

Figure 5.3 Chilled Beam Diagram

The greatest fault with DOAS is the likelihood for condensation to form if the supply air temperature would drop below the dew point of the space. Fortunately in the UK where the weather is quite mild compared to most regions in the United States, the chance of that happening is greatly decreased.

Calculations

Latent Load:

Occupancy = 1100 people per unit Q_latent = .0586 kW/person Q_lat = .0586kW*1100 = 64.46kW (220,000 Btu/h)

Outdoor Air Conditions:

Dry Bulb Temperature = 32°C

Humidity Ratio = 0.015 kg/kg

Space Air Conditions (Point D):

Dry Bulb Temperature = 26° C

Humidity Ratio = .0093 kg/kg (65 gr/lbma) ← moisture content of dry air

Supply Air Temperature: 22°C

Enthalpy Wheel Selection:

Manufacturer: Novelaire Technologies Model: ECW1086 Volume Flow Rate = 7644.7 L/s (16200 cfm) Latent Effectiveness $\rightarrow \epsilon_1 = 0.76$ Sensible Effectiveness $\rightarrow \epsilon_s = 0.79$ Pressure Drop $\rightarrow \Delta p = 0.74$ inches wg Face Velocity = 520 sfpm = 2.62 m/s

The Palestra Building London, England

Design Conditions at Point A:

 $W_{OA-EW} = - \epsilon_{l} * (W_{OA} - W_{EA-SW}) + W_{OA}$ = -(.76)*(0.15 kg/kg- 0.0093 kg/kg) + 0.015 kg/kg = 0.0107 kg/kg DBT_{OA-EW} = - \epsilon_{s} * (DBT_{OA} - DBT_{EW-SW}) + DBT_{OA} = -(.79)*(32°C - 23.2°C) + 32°C = 25.05°C

Design Conditions at Point C:

 $Q_{latent} = .68 \text{*cfm}^{*} \Delta W$ $W_{SA} = W_{RA} - (Q_{latent} / (.68 \text{*cfm}))$ = 65 gr/lbma - (220,000 Btu/h / (.68 *16200cfm))= 45.03 gr/lbma = 0.00643 kg/kg

 $DBT_C = 22^{\circ}C$

Design Conditions at Point B:

 $W_{B} = -Q_{latent}/(.68*cfm) + W_{space}$ = (-220,000Btu/h)/(.68*16200cfm) + 65 gr/lbma = 45.03 gr/lbma = 0.00643 kg/kg

[Check: $W_B = W_C$, correct] DBT_B = 19.2°C

Selecting the Number of Chilled Beams Required

The process used to determine the appropriate square footage of chilled beams in the Palestra Building is described in "Ceiling Radiant Cooling Panels as a Viable Distributed Parallel Sensible Cooling Technology Integrated with Dedicated Outdoor Air Systems" by Dr. Stanley A. Mumma and Christopher L. Conroy.

Step 1: Room Design Conditions

Room Dry Bulb Temperature -Winter: 22°C -Summer: 26°C Relative Humidity: 40-60% Room Dew Point Temperature: 8-17°C

Step 2: Minimum Rate of Heat Removal Required

Figure 5.4 is taken from the afore mentioned published research by Dr. Mumma and Christopher Conroy and describes the rate of heat removal from the conditioned space based on the room's design dry bulb temperature and relative humidity level.

If 60% RH \rightarrow 32 W/m² If 40% RH \rightarrow 95 W/m²

The Palestra Building

London, England

Figure 5.4

Informatior	Pertinent to the	CRCP Cooling	selection
-------------	------------------	---------------------	-----------

Column 1	2	3	4	5	6	7
Room design DBT °F (°C)	Room design % RH	Room design DPT °F (°C)	DOAS supply DPT with 20 scfm/person °F (°C)	Panel t _{fi} room DPT+3°F °F (°C)	Mean panel temp. assuming t _{fi} +5°F °F (°C)	Q _s , Btu/h·ft ² (W/m ²)
72 (22)	40	46 (8)	37 (3)	49 (9)	54 (12)	30 (95)
72 (22)	60	57 (14)	51 (11)	60 (16)	65 (18)	10 (32)
78 (26)	40	52 (11)	44 (7)	55 (13)	60 (16)	30 (95)
78 (26)	60	63 (17)	58 (14)	66 (19)	71 (22)	10 (32)

Step 3: Calculate Amount of Sensible Cooling Chilled Beams must provide.

Office Area: 31,606m² Occupancy: 2202 Combined Sensible Load: 45 W/m²

Building's Total Sensible Load:

Q_total = 45 W/m^2 * 31,606m^2 = 142,270 W

Outdoor Air Supply: 16 L/s per person

Ventilation Rate:

m dot = 16 L/s/person*2202 = 35,232 L/s

Sensible Load Met by DOAS:

 $Q_DOAS = m_dot^*Cp^*\Delta T$

Q_DOAS = (35,232L/s)*1.2*(26-13) = 549,619 W

Sensible Load to be met by Chilled Beams:

 $Q_Beams = Q_total - Q_DOAS = 872,650 W$

Step 4: Select Appropriate Chilled Beam

Halton – CLL @ 275 W/m² > Minimum Required Rate (32 W/m², 95 W/m²)

Area of Beam Coverage = Q_Beam * Area = 275 W/m² * 31,606 m² = 3173.28 m² Beam Coverage per Floor = 3173.28 m² / 11 = 288.48 m²

No. Beams per Floor = Floor Beam Area/ Beam Area = $288.48 \text{ m}^2 / 4.018 \text{ m}^2$ = 71.80 = 72 Beams per floor

Total Chilled Beams Needed: 718 Beams

Table 5.6 Chilled Beam Specification

Brand	Halton
Model	CLL/2- 780-4100; AC=CP/CLL-S,BV
Cooling Capacity	275 W/m^2
Length	4100 mm
Width	780 mm
Height	80 mm

Figure 5.5 Halton CLL Chilled Beam

Re-sizing the Air Handling Units

As stated previously, each air handling unit was resized to the minimum outdoor air ventilation required for the type of space each unit serves. That data for each unit is summarized in Table 5.7.

	Original Scheme	Proposed DOAS Scheme	% Difference
AHU -1	18977 L/s	7644.7 L/s	-59.78%
AHU -2	18346 L/s	7600.12 L/s	-58.57%
AHU -3	2332.7 L/s	237.6 L/s	-89.81%
AHU -4	3204 L/s	280.8 L/s	-91.24%
AHU -7	1026 L/s	923.5 L/s	-9.99%

Tabla	E 7		Desising
rapie	J.1	AUD	Resizing

Note that there is a significant decrease in the sizing of Air Handling Units 3 and 4 serving as supply and extract for the toilets. These units were intentionally oversized originally to account for the additional loads that the tenants would install as well. For example, one tenant is planning to install a data center space, and the additional ventilation needs for that area will be accounted for by these units. For the purpose of this report the new AHUs were resized for the existing, permanent load. For actual application, the extra tenant loads should be accounted for.

Results

Table 5.8 Trace™ Energy Consumption Data

	Original Ventilation Scheme		Proposed DC	OAS Scheme
Monthly Energy Consumption	Energy, kWh	Cost, £	Energy, kWh	Cost, £
Electric	20,394,152 kWh	£937,840.56	13,608,401 kWh	£626,238.89
Gas	8,288,669 kWh	£14,622.22	1,242,134 kWh	£2,191.11
Water				
Total Monthly Utility Cost		£952,462.78		£628,430.00
Total Yearly Consumption	69,913,486 kWh		42,136,788 kWh	
Life Cycle Cost		£17,704,689.24		£15,878,842.97

The new ventilation system was integrated with the existing chiller and boiler plants. The data from the TraceTM simulation is summarized in Table 5.8, with the cost values based on the utility rates noted in Table 5.3. By reducing the size of each air handling unit and replacing the fan coil units with chilled beams the life cycle cost was reduced by 10.31%, saving over 2.7 million kWh annually and £3,888,384.

Table 5.9 Fan Coil versus Chilled Beam First Costs

				Chilled
		Beam		
	Type 1 -	Type 2 -	Туре 3 -	
	Perimeter	Internal	Lobby	
Cost per Unit	£885.00	£743.00	£743.00	£500.00
No. Units	343	394	22	991
Sub Total	£303,555.00	£292,742.00	£16,346.00	£495,500.00
		Total Cost	£612,643.00	£495,500.00
		% Savings	-19.12%	

*Total Cost denotes first cost excluding installation fees

The Palestra Building

London, England

			Existing AHUs	-		
	AHU 1	AHU 2	AHU 3	AHU 4	AHU 7	Total Costs
Size, L/s	18977	18346	2332.7	3204	1026	
Size, cfm	40041	38710	4922	6760	2165	
Cost per Unit	£85,000.00	£85,000.00	£13,781.00	£13,781.00	£16,700.00	£214,262.00

	Proposed AHUs				
			AHU 3+4		
	AHU 1	AHU 2	(Combined)	AHU 7	
Size, L/s	7644.7	7600.12	518.4	923.5	
Size, cfm	16130	16036	1094	1949	
Cost per Unit	£47,880.00	£47,880.00	£10,845.00	£7,965.00	

Tables 5.9 and 5.10 take a look at the savings in First Costs when using reduced Air Handling Units and Chilled Beams versus the existing AHUs with fan coil units. There is a 19% reduction in cost when using a Chilled Beam system versus fan coil units. And there are more significant savings when reducing the Air Handling Units so dramatically, thus reducing the life cycle costs even further.

The benefits of a Dedicated Outdoor Air system are overwhelming for application in the Palestra building, and would be an excellent design alternative. The current constant air volume system with fan coil units isn't terribly different from a pure DOAS, making a future renovation quite feasible.

Table 5.10 AHU First Cost Savings

£114,570.00

c. Comparison and Results

Both mechanical design alternatives studied in this report had favorable results to improve both the energy efficiency and economic value of the Palestra Building. The Gas Driven Chiller plant saved over 7 million kWh and 9.54% in Life Cycle costs, while the DOAS design with parallel chilled beams reduced the annual energy consumption by 2.7 million kWh and 9.16% in Life Cycle Costs.

Due to the success of each proposed system, a 'hybrid' design was then simulated in Trace[™] as well. This integrated a Dedicated Outdoor Air System and chilled beams with a gas engine driven chiller plant and the existing gas-fired boiler plant. The results of those calculations are summarized in Table 5.11.

	Original Scheme		Proposed DOAS+Engir	e Chiller Scheme
Monthly Energy Consumption	Energy, kWh	Cost, £	Energy, kWh	Cost, £
Electric	20,394,152 kWh	£937,840.56	12,669,017 kWh	£583,102.22
Gas	8,288,669 kWh	£14,622.22	2,770,855 kWh	£4,888.33
Water			19,061 kL	£14,794.44
Total Monthly Utility Cost		£952,462.78		£602,785.00
Total Yearly Consumption	69,913,486 kWh		40,927,536 kWh	
Life Cycle Cost		£17,704,689.24		£15,899.365.13

Table 5.11 Trace™ Energy Consumption Data

When combined the owners of the Palestra Building could reduce the Life Cycle cost by 10.2% and save over £349,677 a month in energy costs. Over the life span of a building this could be an excellent investment. In addition to the economic benefits there should be improved thermal comfort and humidity control, and opportunities to incorporate new technologies and forms of heat recovery as needed.

VI. Renewable Resource Breadths

The Palestra Building has been under construction for the past 18 months, with a completion date for July 2006. However, the London Development Agency (LDA) has recently signed on as tenants for the fifth and sixth floors. This Agency will be responsible for all of the planning of the 2012 Summer Olympics in London. One of their primary requests has been to install both Solar PV cells and Wind Turbines on the roof with the intention of using any generated power in their office space, and possibly selling any excess energy back to the grid. London was granted the 2012 Olympics due in great part to their platform of a Zero Impact/"Green" design scheme, and the Agency wants to prove it is fluent with these technologies. As of a visit in March of 2006 no one was certain about any details for these plans: how many/large these technologies would be, their locations, or effectiveness. Therefore this report will complete a feasibility study for both technologies to better understand the amount of potential power that can be produced, smart uses for the energy, as well as cost impact of such decisions.

a. Solar Energy Breadth - Photovoltaic (PV) Cells

The mean solar radiation incident on the mainland of the United Kingdom is at best 5 kWh/m^2. The Palestra Building is tall enough relative to the surrounding structures so that

there is an unobstructed southern exposure from the roof level, allowing maximum solar gains, as shown in the image to the right. However, the placement of the solar PV cells is crucial to the success of such a system. And unfortunately due to the

Figure 6.1 The Palestra Building super-imposed onto its lot.

timing of this addition to the design, there is little available space on the roof. The total area of the roof is 1236 m². Provisions were made for a 200 m² array of PV cells facing south.

Calculations

RETScreen International Clean Energy Project Analysis Software, Photovoltaic Project Model was used to create an energy simulation of the array of solar PV panels. The following calculations were based on a solar cell manufactured by BP Solar, BP 5160 S. Physical data coordinating to this model is summarized in Table 6.1.

Model	BP 5160 S
Maximum Nominal Output	160 W
Maximum Panel Voltage	1000 V
Dimensions:	
Length	1596 mm
Width	790 mm
Height	0 mm
Weight	15 kg

Table 6.1 PV Cell Data

Within the 100 m² allotted an array of 155 panels can be assembled, adding a total of 2325kg to the roof structure. The Annual Energy Produced by the modules is listed in Table 6.2. The 63 units can deliver over 8,000 kWh per annum. Currently the annual consumption for the space to be occupied by the LDA is 12,711,542 kWh. Therefore 0.16% of the demand can be met by solar energy.

Specific Yield	102.4 kWh/m^2
Overall PV System Efficiency	10.20%
Renewable Energy Delivered	19,995 kWh

Table	62	Estimated	Annual	Energy	Produced
Ianic	U.Z	Louinateu	Amuai	спстуу	FIGUICEU

Cost Analysis

The financial summary for an investment in solar PV cells for the Palestra Building is summarized in Table 6.3.

The Palestra Building London, England

	·
Total Initial Cost	£205,303.00
Total Annual Cost	£ 880.00
Total Annual Savings	£31,152.00
Simple Payback	9.1 years
Years to Positive Cash Flow	6 years
Net Present Value (NPV)	£125,778.00
Annual Life Cycle Cost Savings	£12,805.00

Table 6.3 Cost Summary

The initial cost for the system is £205,000, with annual savings of £31,152.00. However the simple payback period is 9 years, with no positive cash flow until year 6. That length is quite long compared to what most investors would consider a strong investment where less than 3 years for a return is typical. All additional data, calculations, and specification sheets can be found in Appendix VI.

b. Wind Energy Breadth – Wind Turbine

The challenges that faced the implementation of a solar system on the roof of the Palestra Building hold true for the wind system as well. Although with wind turbines there is the additional sensitivity of height. You must be careful not to create an imbalance in the frame of the structure, or a 'top heavy' scenario. Recently the SWIFT Rooftop Wind Energy System[™] has been developed and implemented in residential locations in Scotland. It is a modified wind system for smaller buildings, with a maximum output of 1.5kW based on a wind speed of 12.5 m/s. And at that rate it can displace up to 1.4 tonnes of CO2 per year, making it easier to meet new building emission regulations.

Figure 6.2 Residential Application of SWIFTTM technology.

This product has recently received the support of the Scottish government, and is the only product of its type that has been approved for government grants making it possible for any

Figure 6.3 Commercial Application of SWIFTTM technology.

person or company to afford renewable technologies. The micro-turbines are set for mass production in the coming months which will drive the price from the current £3500 to £1500 per unit. And much of the remaining sum will be eligible for a grant as well, bring the first costs down to practically nothing.

Building Regulations in the UK are beginning to require that every building provide at least 10% of its energy through renewable resources or Combined Heat and Power (CHP). In an area with high enough wind speeds, that percentage could easily be met with this wind technology.

The Palestra Building

London, England

Table 6.4 contains the technical data for each micro wind turbine.

Table 6.4 Rooftop Wind Turbine Specifications

Manufacturer	SWIFT™
Rated Output @ 12.5 m/s	1.5 kW
Output @ 4.6 m/s (London)	60 W
CO2 Displacement	1.4 tonnes per year
Turbine	5 blade HAWT wind turbine
Rotor Diameter	2.12 m
Weight	95 kg

Figure 6.4 shows the Power Curve for the Micro Turbine. As

you can see its power output is highest between 12 and 20 m/s. Unfortunately the average wind speed in London is 4.6 m/s, resulting in 60W output per unit. Due to the small amount of power available it is unlikely that wind energy would be an efficient means of energy production for the Palestra Building. However because the National London Agency, a tenant in the Palestra Building, is set on installing wind technology regardless of the efficiency, it is beneficial to complete an analysis to see how the amount of energy gained may be effectively used.

Table 6.5 Wind Turbine Costs

No. Units	10
Clearance Per Unit	2.12 m
Area Required	50 m^2
Total Weight	950 kg
Initial Investment	£15,000
Total Power Output	600 W
Annual Savings	120 kWh

Based on the limited amount of free area on the roof, the light weight of each wind turbine (95kg), and low power output from each, and the relatively low first costs, 10 units were assumed to be a reasonable numbers of fans for the system. Table 6.5 outlines the assumptions made for the Cost Analysis.

Payback Period

 $Payback \ Period \ (in \ years) = \frac{Initial \ Investment}{Annual \ Savings} \ (Cash \ Flow)$

Assuming annual savings at peak electrical rate:

Annual Savings = 120 kWh * 4.592 p/kWh = 551.04p = £5.51

Payback Period = $\pm 15,000 = 2722$ years ± 5.51

The hypothesis that the wind technology would have little to no value for the Palestra Building is correct. With such a large payback period it would never be economical as long as the average wind speed for the area is so low. It is strongly suggested that wind technology not be installed, and invest the additional spaces and finances to increasing the efficiency of the Solar PV system which has much more potential to produce significant annual savings.

The Palestra Building London, England

The only time wind turbines would still be a smart investment is if a Federal Grant covered all or most of the first costs for the turbine units. In that case all energy produced would be 'free' and while still not a useful amount of energy, it wouldn't be at a deficit to the project cost.

VII. Acoustical Breadth – Mechanical Noise Impact on Community

When altering the mechanical equipment that is place outdoors (i.e. roof level) it is important to understand the acoustical effects of these changes to ensure that neighboring buildings are not affected by the additional noise, if any.

An increase in acoustical levels is expected when switching from electric air-cooled chiller to IC engine driven chillers because of the nature of the machines. However, if there is a dramatic increase in sound pressure levels then measures will need to be taken to install acoustical barriers.

The following are the calculations used to determine the community's reaction to the existing chiller plant in comparison to the proposed engine driven chiller plant.

Step 1: Plot decibel (dB) levels for the sound emitter on the Composite Noise Rating (CNR) curve. The CNR rating is the lowest CNR curve not exceeded.

Step 2: Correct for Background Noise

Condition	Background Correction Number
Nighttime, rural: no nearby traffic of concern	+15
Daytime, pural: no nearby traffic of concern	+10
Nighttime suburban: no nearby traffic of concern	+10
Daytime, suburban: no nearby traffic of concern	+5
Nighttime, urban: no nearby traffic of concern	+5
Davtime, urban: no nearby traffic of concern	0
Nighttime, business or commercial area	0
Daytime, business or commercial area	-5
Nighttime, industrial or manufacturing area	-5
Daytime, industrial or manufacturing area	-10
Within 90 m of intermittent light traffic	0
Within 90 m of continuous light traffic	-5
Within 90 m of continuous medium-density traffic	-10
Within 90 m of continuous heavy-density traffic	-15
90 to 300 m from intermittent light traffic	+5
90 to 300 m from continuous light traffic	0
90 to 300 m from continuous medium-density traffic	-5
90 to 300 m from continuous heavy-density traffic	-10
300 to 600 m from intermittent light traffic	+10
300 to 600 m from continuous light traffic	+5
300 to 600 m from continuous heavy-density traffic	-5
600 to 1200 m from intermittent light traffic	+15
600 to 1200 m from continuous light traffic	+10
600 to 1200 m from continuous medium-density traffic	+5
600 to 1200 m from continuous heavy-density traffic	0

Figure 7.2 Correction Values for Possible Background Noise

Step 3: Correct for other factors.

Correction for time-of-day and seasonal factors (for full-time operation, total correction is 0)	
Daytime only	
Nighttime (2200 to 0700 hrs)	(
Winter only	-5
Winter and summer	(
Correction for intermittency	143
(ratio of source "on" time to reference time period)	
1.00 to 0.57	C
0.56 to 0.18	-5
0.17 to 0.06	-10
0.05 to 0.018	-15
0.017 to 0.0057	-20
0.0057 to 0.0018	-25
Correction for character of noise	
Noise is very low frequency (peak level at 1/1 octave center frequency of 125 Hz or lower)	+5
Noise contains tonal components	+5
Impulsive sound	+5
Correction for previous exposure and community attitude	
No prior exposure	+5
Some previous exposure but poor community relations	+5
Some previous exposure and good community relations	0
Considerable previous exposure and good community relations	-5

Figure 7.3 Correction Values for Other Factors

Step 4: Determine probable community reaction.

Figure 7.4 Community Reaction Graph

Tables 7.1 and 7.2 outline the acoustic calculations for both the existing conditions and the proposed engine system.

Table 7.1 Existing HVAC Acoustics

Composite Noise Rating (CNR)

Existing	Electric	Chillers
----------	----------	----------

Freq	dBA @ 1m	dBA-dB conversion	dB	
63	57	-26.2	31	
125	71	-16.1	55	
250	70	-8.6	61	
500	72	-3.2	69	
1000	66	0	66	
2000	62	1.2	63	
4000	55	1	56	
8000	46	-1.1	45	
		Uncorrected CNR = 70		

Background Noise Correction Factors

90-300m from continuous heavy density traffic = -10

Time of Day

Daytime Only = -5

Winter and Summer = 0

Intermittency

1.00-0.57 = 0

Character of Noise

None

Previous Exposure and Community Attitude

Considerable previous exposure and good community relations = -5

Corrected CNR 50 REACTION: No reaction, although noise is generally noticeable

Table 7.2 Proposed HVAC Acoustics

The Palestra Building London, England

Composite Noise Rating (CNR)

Proposed Engine Driven Chiller

Freq	dB @ 1m
63	72
125	78
250	84
500	89
1000	86
2000	80
4000	72
8000	64
	Uncorrected CNR = 85

Background Noise Correction Factors

90-300m from continuous heavy density traffic = -10

Time of Day

Daytime Only = -5

Winter and Summer = 0

Intermittency

1.00 - 0.57 = 0

Character of Noise

None

Previous Exposure and Community Attitude

Considerable previous exposure and good community relations = -5

Tables 7.1 and 7.2 also summarize the results of the Composite Noise Rating for the electric chiller scheme as well as the IC engine driven chiller plant. The community's reaction to the

existing design is "No reaction, although noise is generally noticeable," while the new plant has a reaction of "Sporadic Complaints." The Palestra Building has a large advantage because of its location with respect to noise because it is such a high traffic area with the Underground Station, the above ground trains, and a busy intersection. The members of the community are somewhat desensitized to the additional noise created.

Figure 7.5 View of High Traffic Areas from 7th Floor

VIII. Summary of Results and Conclusion

Studying the impact of a gas driven chiller plant with a Dedicated Outdoor Air System has proven to be a successful proposal. The seven existing air-cooled electric chillers were replaced with five gas engine driven chillers to take advantage of additional heat recovery opportunities as well as the lower cost of natural gas in the UK. Each air handling unit was also resized to meet only the fresh air requirements for the spaces each serves, and installed with an enthalpy wheel for latent heat recovery. To meet the entire sensible load through out the building a parallel chilled beam system was also installed. When both systems are integrated with the existing boiler plant the Life Cycle costs were found to decrease by over 9%, while also decreasing annual energy consumption by 29 million kWh which is a significant financial and environmental impact. In addition the acoustic levels of the new equipment on the roof was analyzed, finding only a slight increase in the community's reaction, but nothing great enough to warrant additional acoustical barriers at this time.

The first tenant obtained for the Palestra Building was the London Development Agency, which is the committee responsible for the planning of the 2012 Olympics in London. Because they promoted 'Green' design in their bid for the Olympics, they want to install 'Green' technologies in the form of Solar PV panels and Wind Turbines on the roof essentially to show that they implement the ideas they promote, but with little regard for the actual efficiency of these systems. The construction of the Palestra Building is set to be completed during the summer of 2006, four months from now and the designs for these systems have yet to be confirmed. After analyzing the possibilities for each design with respect to the existing roof top configuration it was concluded that more than 100 m^2 of solar PV panels would be needed to create a system with a payback within 4 years. And due to the extremely low average wind speed in London at 4.6 m/s, even the most advanced rooftop wind turbine would be unable to produce more than 60 W of energy per unit. Thus it

is recommended that the plans for installing wind turbines be abandoned, using the funding to improve the Solar design.

The data collected is very valuable for the engineers, owners, and project managers for insight into the effects of design alternatives as well as to serve as a reference on future projects. Hopefully the results of the Solar and Wind energy studies will be taken into account when finalizing these design schemes.

X. References

- American Society of Heating, Air Conditioning and Refrigeration. <u>Energy Standard</u> <u>for Buildings Except Low-Rise Residential</u>. By ASHRAE, ANSI, and IESNA. Ed. ASHRAE Standard Standing Committee.
- American Society of Heating Air Conditioning and Refrigeration, ed. <u>Handbook of Fundamentals</u>. 2001.
- Apogee. "Compare Operating and Maintenance Costs Chillers." <u>Cooling System</u> <u>Alternatives</u>. 2 Dec. 2005 < http://tristate.apogee.net/cool/ cmomc.asp>.
- Architectural Engineering Faculty. Personal interview. Winter 2005. Insignia Richard Ellis Development. "Design Criteria: Palestra Building." Memo to Buro Happold Ltd. 2004.
- ASHRAE. "Ventilation for Acceptable Indoor Air Quality." <u>Standard 62: Section 6</u>. By American Socity of Heating Air Conditioning and Refrigeration. N.p.: n.p., 2001.
- Buro Happold Ltd. "Palestra Building." Memo to Skanska. May 2004. Mechanical Drawings and Specifications.
- Daniels, Stephen H. "Emerging Technologies." <u>Hughes. Solution. Supply. Service.</u> May 2002. Hughes. 9 Dec. 2005 <<u>http://www.thesourcemag.com/Main/</u> Articles.asp?ArticleID=7>.
- Department of Trade and Industry. <u>Report of the Working Group on Extending the</u> <u>Gas Network</u>. By DTI and DETR Ministers. 2005. 1 Apr. 2006 <<u>http://www.dti.gov.uk></u>. Path: Energy.
- Hanscomb International Construction Consultants. "Proposed Office Development at Southpoint, Blackfriars Road: Stage D Cost Plan." Memo to Buro Happold Ltd. 2004.
- Meckler, Milton, P.E. "Do the Math: Chiller Plant Optimization Strategies." <u>Engineered System Home</u>. Oct. 2002. 2 Dec. 2005 <http://www.esmagazine.com/CDA/ArticleInformation/features/ BNP_Features_Item/0,2503,86656,00.html>.

- Mumma, Stanley A, PhD, P.E. "Dedicated Outdoor Air System (DOAS)." <u>Dedicated</u> <u>Outdoor Air Systems</u>. 1 Apr. 2006 <<u>http://doas-radiant.psu.edu/</u> doas.html>.
- Office of the Deputy Prime Minister, ed. <u>Approved Document F: Ventilation</u>. 2006. <u>Approved Document F: Ventilation</u>. Ed. Office of the Deputy Prime Minister. 2006. 1 Apr. 2006 http://www.odpm.gov.uk/ index.asp?id=1164179>.
- Office of the Deputy Prime Minister, ed. <u>Approved Document L2A: Conservation of</u> <u>Fuel and Power</u>. 2006. <u>Part L 2006: Building Regulations</u>. Office of the Deputy Prime Minister. 1 Apr. 2006 <<u>http://www.odpm.gov.uk/index.asp?id=1164177></u>.
- Penn State Architectural Engineering. Rev. of <u>ePortfolio Archives</u>. Architectural Engineering. Dept. home page. 2005. The Pennsylvania State University. 1 Apr. 2006 http://www.arche.psu.edu/thesis.
- Platts Research and Consulting. "Natural Gas Chillers." <u>BCHydro</u> (Oct. 2004). Rpt. in <u>Power Smart Tips & Practices</u>. Platts, 2004. 2 Dec. 2005 <<u>http://www.bchydro.com/business/investigate/investigate806.html></u>.
- Professor Blahnfleth. "Chilled Water System Design Procedure." Unpublished notes, Nov. 2005. AE 557.
- Professor Bourroghs. "Composite Noise Rating." Unpublished notes, Jan. 2006. AE 458.
- Renewable Devices. <u>SWIFT Rooftop Wind Energy System</u>. <u>Techincal Information</u> <u>Pack</u>.Renewable Devices. 1 Apr. 2006 <http://www.renewabledevices.com/swift/>.
- Skanska. "The Palestra Building." Memo to Buro Happold Ltd. Spring 2005. Ventilation Schematics.
- Southern California Gas Company, and New Buildings Institute. "Gas Engine-Driven Chillers." <u>New Buildings Institute</u> (Nov. 1998). 2 Dec. 2005 <http://www.newbuildings.org/downloads/guidelines/GasEngine.pdf>.

APPENDIX A: Existing Conditions – Internal Loads

Fabric Heating Load				
Total Fabric insulation	17014	W/K		
(from Appendix H)				
External temperature	-3	deg.C		
Internal temperature		0		
(Assume identical	22	deg.C		
, throughout)		0		
Total Fabric load	425351	W		
Infiltration Heating Load				
Total Façade area	10800	m ²		
Infiltration rate	2.5	m³/hr/m2		
temperature difference (as	25	К		
above)			Indexes	
Volume of infiltration	7.5	m³/s	Building Floor	
			height	3.6
Thermal capacity of air	1200	J/m3.K	Air changes per	
			hour	0.23
lotal Infiltration load	225000	W		
Machanical Vantilation Heatin	alaad			
Total floor area	26677	m^2		
	20077	m²/occupont		
	12			
Ventilation Flow rate	16	i/s/occupant		
Air tempered to	22	deg.C		
	-3 FO	deg.c		
Ventilation plant	50	%		
	12 5	V		
Vontilation Flow rate	12.0	m_3/s		
Air thormal Capacity	1200.0	11173 1/m3 K		
	1200.0	J/111 ³ .K		
System losses	10%			
Ventilation heat load	586894	W		
Ventilation heat load	586894	W		
Ventilation heat load Total Heating Load Total Heating Load	586894	W	Indovos	
Ventilation heat load Total Heating Load Total Heating Load Spare capacity	586894 1,237 10%	W KW	Indexes	
Ventilation heat load Total Heating Load Total Heating Load Spare capacity	586894 1, 237 10%	W KW	Indexes	
Ventilation heat load Total Heating Load Total Heating Load Spare capacity Pre-heat period	586894 1,237 10% 32%	W KW	Indexes Building Floor area	26677
Ventilation heat load Total Heating Load Total Heating Load Spare capacity Pre-heat period	586894 1,237 10% 32%	W KW	Indexes Building Floor area Load per m2	26677

Breakdown of cooling loads

	BH proposed Brief	
Internal Cooling Load		
persons	10 W/m2	m ² /occupant
light	15 W/m2	W/m ²
equip	30 W/m2	W/m ²
Fan Coil units	6 W/m2	W/m ²
total - Internal	61 W/m2	W/m ²
Environmental Cooling		
Room Temperature	22	dea C
Outdoor temperature	29	deg.C
Difference	7	deg.C
Solar cooling load	25	W/m ² (estimate) *
Fabric cooling load	5	W/m ² (estimate) *
Infiltration cooling load	1.9	W/m ² (estimate) *
Total Environmental	32 W/m2	
Mechanical Ventilation Coo	ling Load	
Total floor area	26677	m ²
Occupancy	12	m ² /occupant
Ventilation Flow rate	16	l/s/occupant
Air tempered to	22	deg.C
External All	29	deg.C
ventilation plant	50	% (estimate) *
Temperature difference	-3.5	К
Ventilation Flow rate	35.6	m³/s
Air thermal Capacity	1200.0	J/m ³ .K
Ventilation cooling load	149391	W (estimate) *
Ventilation cooling load	5.6	W/m ² (estimate) *
total W/m2	99	W/m ²
Area	26416	m ²
Total Cooling Load	2602	W
Sensible Heat Ratio	15%	
System Losses	10%	
Total	3,291 kW	
Proposed chillers	Capacity	Spare
6 x 0.553 MW	3,318 kW	0.81%
7 x 0.553 MW	3,871 kW	17.61%

APPENDIX B: Chiller Optimization Data

TECOCHILL[®] Gas Engine Driven Chillers

Water-Cooled Models 150 Tons to 400 Tons

Key Features & Options

- Non-ozone depleting HFC-134a
- TecoDrive 7400[™] Natural Gas Engine
- Single Screw Balanced Action Compressor
- High Efficiency Flooded Evaporator
- IPLV's Exceeding 2.5
- Footprint equivalent to electric chillers
- Variable engine speed operation for excellent part load performance and longer life
- TecoNETTM Microprocessor-based Control System with precise PID Control for fully automatic operation, continuous system monitoring, digital display, fault diagnostics, and tie-in to an energy management system
- Remote Monitoring and Control System (RMCS) that permits remote real-time monitoring, data acquisition, and system control by telephone
- ETL Listed

TECOGEN, Inc.

The Industry Leader In Gas Cooling

www.tecogen.com

		ST _Y SERIES		DT _x Series			
S.	Full Load Rating [tons]	CH-150 <i>x</i> 150	CH-200.x 200	CH-300 <i>x</i> 300	CH-350.x 350	CH-400 <i>x</i> 400	
	IPLV COP4	2.6	2.6	2.6	2.6	2.6	
	Full Load COP	1.7	1.6	1.7	1.7	1.6	
	COP with Engine Heat Recovery	2.1	1.9	2.0	2.0	1.9	
	Fuel Consumption [MBtu/hr @ HHV 1020 Btu/scf]	1,032	1,526	2,157	2,529	3,052	
	Fuel Consumption [sefi]	1,012	1,496	2,115	2,479	2,992	
	Fuel Pressure [in. wc, 27,703 in. wc = 1 psig]	7-28	13-28	7-28	13-28	13-28	
	Available Engine Heat MBtuhri	323	480	675	799	960	
_	Maximum Supply Temperature I°FI	201	212	202	207	212	
>	WATER SYSTEMS	******	*****	20.00.00.00	88.8.3.8	* * * *	
	Chilled Water Flow (GPM)	360	480	720	840	960	
	Chilled Water Pressure Drop @ Rated Flow m	9.1	16.2	18.2	9.6	12.6	
\frown	Total Cooling Tower Flow IGPM	490	640	980	1,130	1,280	
	-Flow To Condenser Only IGPMI	450	600	900	1.050	1,200	
	-Flow To Dump HX Only IGPMI	40	40	80	80	80	
	Condenser Pressure Drop @ Rated Flow in	13.0	23.1	12.9	14.1	18.1	
	Cooling Tower Heat Rejection MBtubri	2.418	3.473	5.376	6.136	6,946	
	ELECTRICAL REQUIREMENT		A DE DE DE DE DE	by by by by	b b b b b	the line day the	
	Voltage Requirement	208-230.	50/60 Hz	20	8-230, 50/60	Hz	
	Electrical Service	Single Phase	with Neutral	Single	Phase with N	leutral	
	Amperage Rating	30 2.2		40 2.7			
\leq	Parasitic Power Requirement Ikwi						
	ACOUSTIC LEVELS ⁶ IdBa @ 3 ft]	· 法法法 · 法法法		the law law law	the fire fire fire	34-36-36-38-	
\smile	-with Enclosure	88	92	88	89	92	
	-without Enclosure	95	99	95	96	99	
\sim	Refrigerant	HFC-	134a		HFC-134a		
	DIMENSIONAL DATA	(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	to be be be be	Dr. Dr. Dr. Dr.	经金融 医胆管	be der des des	
	Length	13'	10"		14'3"		
	Width	4'	4"		7'0"		
	Height	6'	9"		7'7"		
	WEIGHTS	******	*****	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4444	8-9-9-9-9-	
	Rigging Weight (b)	10,4	450	24,675			
	Operational Weight [b]	11,250		28,175			
	DRIVELINE	*****	*****	***	*****		
	Engine	TecoDri	ve 7400	Te	coDrive 7400	(2)	
	Compressor	J&E Hall H	S2024GED	J&E H	all HS2024GI	ED (2)	
Concentration of the second				S Provinsi State			

NOTES: 1. Specifications subject to change without notice, all specifications are ± 5%. 2. COP ratings are based upon Fuel Highter Heating Value (HHV) @ 1020 BTU/SCF

TYPICAL TECOCHILL PART-LOAD PERFORMANCE

TECOCHILL® TECOGEI TECOGEN® Natural Gas Engine-Driven Products TECOFROST TM

45 First Avenue Waltham, MA 02451 781.466.6400 [phone] 781.466.6466 [fax] www.tecogen.com

APPENDIX C: DOAS Data

CLL -Cooling Panel with Radiant and Convective Cooling

- The CLL is a ceiling-mounted cooling and/or heating panel.
- Heat is absorbed by radiant and convective cooling.
- The unit is architecturally aesthetic and is easy to clean.
- Designed to be flush mounted within a suspended ceiling or fully exposed.
- The beam is suitable for spaces with a high cooling requirement, low humidity and ventilation loads.
- The CLL is suitable for a large range of building applications where requirement for good quality environmental conditions and individual space control is important.
- The CLL is available with factory-fitted 2- or 3-way control valves.
- Typically the CLL is used in offices, conference rooms and hotel rooms.

QUICK DATA

 Cooling capacity
 275 W/m2 (Δ)

 Length
 1100 - 4100 m

 Width
 280,380,480,5

 Height
 80 mm

275 W/m2 (ΔT=9 °C) 1100 - 4100 mm 280,380,480,580,780 and 980 mm 80 mm

FUNCTION

The excess heat in the room is absorbed by both radiation and convection.

The CLL surfaces are cooled by water circulated in the unit. The cooled surfaces absorb heat from warm room surfaces and people. The radiant effect is as high as 25% of total cooling capacity.

The beam surfaces create circulation of room air with very low velocities. The airflow rate through the cooled beam varies with the cooling load, thus creating a partly self-regulating system.

The cooling output is controlled using the room thermostat and valve to change water flow rate.

MATERIAL AND FINISHING

The CLL is manufactured of extruded aluminium, white painted, with water pipes of copper. All parts are easily recyclable.

ACCESSORIES

- Factory fitted 2-way control valve(CV/CLL-2)
- Factory fitted 3-way control valve(CV/CLL-3)
- Flexible connecting pipes (FT)
- Pipe connection straight (CP/CLL-S)
- Pipe connection up (CP/CLL-U)
- Factory fitted built-in control valve and thermostat (TV/CLL-O)
- External thermostats; capillary type (T1)
- External thermostats, electronic 24V (T2)
- External thermostats, electronic 240V (T3)
- Balancing and shut-off valve (BV)

DIMENSIONS

В	Н	d	A	L
280	80	12	140	4100
380	80	12	240	1100, 2100, 4100
480	80	12	340	1100, 2100, 4100
580	80	12	440	1100, 2100, 4100
780	80	12 640		1100, 2100, 4100
980	80	12	840	1100, 2100

COOLING CAPACITY

	Pw (W) ΔT (°C)						
	6	7	8	9	10	11	12
CLL 280-4100	196	230	276	322	368	403	449
CLL 380-1100	71	84	101	118	134	147	164
CLL 380-2100	136	160	192	224	256	280	312
CLL 380-4100	265	312	374	437	499	546	608
CLL 480-1100	90	106	127	148	170	186	207
CLL 480-2100	172	202	242	283	323	354	394
CLL 480-4100	335	394	473	552	630	690	768
CLL 580-1100	109	128	154	179	205	224	250
CLL 580-2100	207	244	293	342	390	427	476
CLL 580-4100	405	476	571	666	762	833	928
CLL 780-1100	146	172	206	241	275	301	335
CLL 780-2100	279	328	394	459	525	574	640
CLL 780-4100	544	640	768	896	1024	1120	1248
CLL 980-1100	184	216	259	302	346	378	421
CLL 980-2100	350	412	494	577	659	721	803

CORRECTION FACTOR -k- FOR OTHER WATER FLOW RATES

q _{mw} (kg/s)	0,015	0,02	0,025	0,03	0,035	0,04	0,045	0,05	0,055	0,06	0,08
k _c (CLL)	0,79	0,83	0,86	0,88	0,91	0,92	0,94	0,96	0,97	0,98	0

 $Pw = Pw(0,08kg/s) \times k_c$.

PRESSURE DROP OF WATER FLOW

CLL/2

NOTATIONS

Cooling capacity is measured according NVVS 078

ΔΤ	temperature difference Tr-(Tw1+Tw2)/2
Pw	water cooling capacity
qmw	water mass flow rate
k _c (CLL)	correction factor for other water flow rates, cooling
Δp _w	pressure drop of water flow/length of device

SPECIFICATION

The static cooling panel shall be the Halton type CLL. The unit shall consist of heat transfer surfaces, with integrated water pipework and open slots for the air to pass through. The cooling/heating surfaces shall be manufactured from aluminium profiles. The water circuit shall be constructed of copper pipes nominal 12 mm outside diameter. The water circuit maximum working pressure is 1,0 MPa. All the joints shall be fully soldered and factory pressure tested.

PRODUCT CODE

Specifics and accessories

AC= Accessories CV/CLL-2=Factory fitted 2-way control valve CV/CLL-3=Factory fitted 3-way control valve FT=Flexible connecting pipes CP/CLL-S=Pipe connection straight CP/CLL-U=Pipe connection up TV/CLL-O=Built-in control valve and thermostat T1=External thermostats, capillary type T2=External thermostats, electronic 24V T3=External thermostats, electronic 240V BV=Balancing and shut-off valve

CLL/1-480-2100;AC=CP/CLL-S,BV CLL/2-780-1100;AC=BV

INSTALLATION

The cooled beam CLL can be installed flush with a suspended ceiling or fully exposed. In the case of flush installation, openings for return room air must be provided. To secure convection, the beam should be mounted so that the distance to the ceiling is 0,25 x the width of the beam when installed away from wall surfaces, or 0,35 x beam width when installed close to partitioning walls.

Each beam is fixed to the ceiling with expansion anchors and threaded drop rods (by others). On the beam, two (or three for 4100 mm) mounting brackets are fixed approx. 1/5 from the end of the beam (and in the middle on 4100 mm). The exact position of the brackets is adjusted according to the rod's position and the beam is easily adjusted both horizontally and vertically. Mounting brackets are supplied as standard in the package. The installation company must supply threaded rods and expansion anchors.

SERVICE

The CLL requires little maintenance. It may be necessary to clean the cooling profiles after 3 -5 years, depending on room conditions and air quality. The cooling profiles are easy to clean with a vacuum cleaner, without the need to open or dismount the beam.

ADJUSTMENT

Commissioning of the beam system is carried out in the conventional way.

- · Fill up and flush the main pipelines.
- Fill up and vent the beam circuits.
- Adjust correct water flows with balancing valves for all main lines
- · Adjust correct water flows for all beams.

В	X		
280	100		
380	200		
480	300		
580	400		
780	600		
980	800		

Picture 1. Installation - distance from the ceiling

APPENDIX D: Trace Output

The Palestra Building London, England

Existing Systems Energy Simulation

By ae

Alternative: 1 Palestra Building

		Monthly Consumption													
Eauipment - l	Jtilit∨	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total	
Lights															
	Electric (kWh) Peak (kW)	135,459.5 439.7	122,510.0 439.7	145,343.4 439.7	129,495.7 439.7	140,401.4 439.7	139,379.6 439.7	130,517.6 439.7	145,343.4 439.7	129,495.7 439.7	140,401.4 439.7	134,437.6 439.7	130,517.6 439.7	1,623,302.8 439.7	
MISC LD															
	Electric (kWh) Peak (kW)	234,034.4 816.2	211,696.4 816.2	253,279.4 816.2	223,381.2 816.2	243,657.1 816.2	242,625.8 816.2	224,412.1 816.2	253,279.4 816.2	223,381.3 816.2	243,657.1 816.2	233,003.5 816.2	224,412.1 816.2	2,810,820.0 816.2	

AHU 1

Eq4371 - Fan coil supply fan (Main Clg Fan) Electric (kWh) 266,006.9 254,985.8 306,652.6 263,462.2 336,715.3 345,809.9 404,881.2 433,306.1 344,123.8 313,433.8 266,362.5 251,983.3 3,787,723.3 Peak (kW) 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,500.0 1,500.0 1,500.0 1,425.0 1,425.0 1,425.0 1,425.0 1,500.0

AHU 2

Eq4371 - Fan coil supply fan (Main Clg Fan) Electric (kWh) 251,393.2 229,756.5 278,262.3 243,554.5 272,396.3 273,698.9 263,497.0 294,199.0 251,853.8 286,334.8 252,604.0 240,197.4 3,137,747.8 Peak (kW) 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0

AHU 3

Eq4372 - Unit	vent supply fa	an (Mai	n Clg Far	ו)										
	Electric (kWh)	5,364.1	3,898.3	4,612.9	3,854.4	2,920.2	2,904.0	2,902.6	3,037.7	2,695.7	3,074.8	4,348.7	4,114.1	43,727.5
	Peak (kW)	55.0	55.0	55.0	55.0	38.5	38.5	40.2	38.5	38.5	38.5	55.0	55.0	55.0

AHU 4

Eq4372 - Unit vent supply	Eq4372 - Unit vent supply fan (Main Clg Fan)													
Electric (kWh)	6,044.0	4,274.3	4,922.9	3,904.2	2,929.2	2,912.6	3,419.0	3,066.5	2,727.9	3,182.5	4,816.4	4,466.5	46,666.0	
Peak (kW)	55.0	55.0	55.0	55.0	38.5	38.5	55.0	38.5	38.5	38.5	55.0	55.0	55.0	

AHU 7

					N	Ionthly Co	onsumptio	n					
Equipment - Utility	Jan	Feb	Mar	Apr	Mav	June	Julv	Auq	Sept	Oct	Nov	Dec	Total
AHU 7													
Eq4371 - Fan coil supply	rfan (Mai	in Clg Far	1)										
Electric (kWi Peak (kW	n) 76,020.0 V) 400.0	68,780.0 400.0	83,260.0 400.0	72,400.0 400.0	79,640.0 400.0	79,640.0 400.0	72,400.0 400.0	83,260.0 400.0	72,400.0 400.0	79,640.0 400.0	76,020.0 400.0	72,400.0 400.0	915,860.0 400.0
Cpl 1: CHILLERS													
Chiller 2 (Cooling Equ	ipment)												
Electric (kWł Peak (kW	n) 225.8 V) 30.5	170.5 30.4	223.3 30.3	414.3 41.3	1,479.8 41.3	2,236.1 41.3	17,037.9 148.6	5,798.3 118.7	2,895.4 84.1	1,269.4 41.3	266.1 34.2	250.4 41.3	32,267.2 148.6
Eq5221 - Condenser fan													
Electric (kWł Peak (kW	n) 829.9 V) 17.2	747.5 17.2	944.4 17.2	941.5 17.2	2,252.7 17.2	2,138.4 17.2	4,785.9 17.2	4,138.8 17.2	2,750.6 17.2	1,381.3 17.2	852.9 17.2	796.1 17.2	22,559.8 17.2
Eq5001 - Cnst vol chill w	ater pump	(Misc A	ccessory	Equipmen	nt)								
Electric (kWł Peak (kW	n) 11.0 V) 0.9	5.5 0.9	7.3 0.9	14.7 0.9	132.1 0.9	181.6 0.9	238.4 0.9	232.0 0.9	167.8 0.9	134.8 0.9	11.0 0.9	8.3 0.9	1,144.4 0.9
Eq5011 - Cnst vol cnd w	ater pump	(Misc A	ccessory I	Equipmen	t)								
Electric (kWł Peak (kW	n) 96.8 V) 8.1	48.4 8.1	64.6 8.1	129.1 8.1	1,161.9 8.1	1,597.6 8.1	2,097.8 8.1	2,041.3 8.1	1,476.5 8.1	1,186.1 8.1	96.8 8.1	72.6 8.1	10,069.4 8.1
Eq5302 - Cntl panel & in	terlocks (Misc Acce	essory Eq	uipment)									
Electric (kWł Peak (kW	n) 1.2 V) 0.1	0.6 0.1	0.8 0.1	1.6 0.1	14.4 0.1	19.8 0.1	26.0 0.1	25.3 0.1	18.3 0.1	14.7 0.1	1.2 0.1	0.9 0.1	124.8 0.1
Chiller 3 (Cooling Equ	ipment)												
Electric (kWł Peak (kW	n) 0.0 V) 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	5,856.1 148.6	0.0 118.7	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	5,856.1 148.6
Eq5221 - Condenser fan													
Electric (kWł Peak (kW	n) 0.0 V) 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	673.1 16.1	0.0 13.7	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	673.1 16.1
Eq5001 - Cnst vol chill w	ater pump	(Misc A	ccessory	Equipmen	it)								
Electric (kWł Peak (kW	n) 0.0 /) 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	55.0 0.9	0.0 0.9	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	55.0 0.9

	Monthly Consumption													
Equipment - Utility	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total	
Cpl 1: CHILLERS														
Eq5012 - Cnst vol	cnd water pump	o (Misc A	ccessory	Equipmen	it)									
Electr Pe	ic (kWh) 0.0 eak (kW) 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	581.3 9.7	0.0 9.7	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	581.3 9.7	
Eq5302 - Cntl pane	el & interlocks	(Misc Acc	essory Eq	uipment)										
Electr Pe	ic (kWh) 0.0 eak (kW) 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	6.0 0.1	0.0 0.1	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	6.0 0.1	
Chiller 4 (Cooling	g Equipment)													
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	148.5	0.0	0.0	0.0	0.0	0.0	148.5	
Eq5221 - Condens	er fan													
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	16.1	0.0	0.0	0.0	0.0	0.0	16.1	
Eq5001 - Cnst vol	chill water pum	p (Misc A	ccessory	Equipmer	nt)									
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.9	
Eq5011 - Cnst vol	cnd water pump	o (Misc A	ccessory	Equipmen	t)									
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	8.1	0.0	0.0	0.0	0.0	0.0	8.1	
Eq5302 - Cntl pane	el & interlocks	(Misc Acc	essory Eq	uipment)										
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	
Chiller 5 (Cooling	g Equipment)													
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	148.5	0.0	0.0	0.0	0.0	0.0	148.5	
Eq5221 - Condens	er fan													
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	16.1	0.0	0.0	0.0	0.0	0.0	16.1	
Eq5001 - Cnst vol	chill water pum	p (Misc A	ccessory	Equipmer	nt)									
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.9	
Eq5011 - Cnst vol	cnd water pump	o (Misc A	ccessory	Equipmen	t)									
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	8.1	0.0	0.0	0.0	0.0	0.0	8.1	
Eq5302 - Cntl pane	el & interlocks	(Misc Acc	essory Eq	uipment)										
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	
Chiller 6 (Cooling	g Equipment)													
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	148.5	0.0	0.0	0.0	0.0	0.0	148.5	
Eq5221 - Condens	er fan													
Electric Pe	eak (kW) 0.0	0.0	0.0	0.0	0.0	0.0	16.1	0.0	0.0	0.0	0.0	0.0	16.1	
²roject Name: Dataset Name: P:∖becca's	trace\Palestra.TR	C						Al	TRAC ternative - 1	CE® 700 v4 Equipmen	.1 calculated t Energy Co	d at 08:02 PM nsumption re	1 on 03/28/2006 port page 3 of 6	

Alternative: 1 Palestra Building

-

					N	lonthly Co	onsumptic	on					
Equipment - Utility	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
Cpl 1: CHILLERS													
Eq5001 - Cost vol chill wa	ter numn	(Misc A	cessory l	 Equipmer	nt)								
Electric Peak (kW)		0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.9
Eq5302 - Cott papel & inte	erlocks (Misc Acce	essory Fai	uipment)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1
Chiller 7 (Cooling Equir	oment)						••••						••••
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	134.9	0.0	0.0	0.0	0.0	0.0	134.9
Eq5221 - Condenser fan													
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	14.8	0.0	0.0	0.0	0.0	0.0	14.8
Eq5001 - Cnst vol chill wa	ter pump	(Misc A	ccessorv I	Eauipmer	nt)								
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.9
Eq5302 - Cntl panel & inte	erlocks (Misc Acce	essorv Ea	uipment)									
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1
Chiller 1 (Cooling Equip	oment)												
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	135.0	0.0	0.0	0.0	0.0	0.0	135.0
Eq5221 - Condenser fan													
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	14.8	0.0	0.0	0.0	0.0	0.0	14.8
Eq5001 - Cnst vol chill wa	ter pump	(Misc A	ccessory I	Equipmer	nt)								
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.9
Eq5302 - Cntl panel & inte	erlocks (Misc Acce	essory Eq	uipment)									
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1
Hpl 1: BOILERS													
Boiler 1 (Heating Equip	ment)												
Gas (kWh) Peak (kW)	287,220.4 975.6	281,241.8 975.6	338,255.3 975.6	240,878.6 975.6	167,499.1 975.6	165,143.7 975.6	51,019.5 975.6	98,907.3 975.6	102,842.2 975.6	162,823.1 975.6	262,783.5 975.6	234,140.6 975.6	2,392,755.3 975.6
Eq5020 - Heating water ci	rc pump	(Misc Ac	cessory E	quipment	t)								
Electric (kWh) Peak (kW)	294,450.0 975.0	268,125.0 975.0	340,275.0 975.0	253,500.0 975.0	, 196,950.0 975.0	193,050.0 975.0	63,375.0 975.0	123,825.0 975.0	122,850.0 975.0	214,500.0 975.0	286,650.0 975.0	273,000.0 975.0	2,630,550.0 975.0

Alternative: 1 Palestra Building

					N	Ionthly Co	onsumptio	n					
Equipment - Utility	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
Hpl 1: BOILERS													
Eq5240 - Boiler forced	draft fan	(Misc Acce	ssory Equ	lipment)									
Electric (kV Peak (k	/h) 824.6 W) 2.7	750.9 2.7	952.9 2.7	709.9 2.7	551.5 2.7	540.6 2.7	177.5 2.7	346.8 2.7	344.0 2.7	600.7 2.7	802.7 2.7	764.5 2.7	7,366.6 2.7
Eq5307 - Boiler cntl par	nel & inter	(Misc Acc	essory Ec	quipment)									
Electric (kV Peak (k	/h) 151.0 W) 0.5	137.5 0.5	174.5 0.5	130.0 0.5	101.0 0.5	99.0 0.5	32.5 0.5	63.5 0.5	63.0 0.5	110.0 0.5	147.0 0.5	140.0 0.5	1,349.0 0.5
Boiler 2 (Heating Equ	ipment)												
Gas (kV Peak (k	/h) 278,048 W) 975.6	.9 265,365.8 975.6	321,951.3 975.6	232,376.6 975.6	139,441.6 975.6	113,490.8 975.6	34,944.8 975.6	74,469.3 975.6	76,375.6 975.6	138,526.9 975.6	237,073.3 975.6	220,487.8 975.6	2,132,552.8 975.6
Eq5020 - Heating water	circ pump	(Misc Ac	cessory E	Equipment	t)								
Electric (kV Peak (k	/h) 249,600. N) 975.0	.0 222,300.0 975.0	246,675.0 975.0	175,500.0 975.0	128,700.0 975.0	111,150.0 975.0	43,875.0 975.0	93,600.0 975.0	86,775.0 975.0	128,700.0 975.0	216,450.0 975.0	200,850.0 975.0	1,904,175.0 975.0
Eq5240 - Boiler forced	draft fan	(Misc Acce	ssory Equ	ipment)									
Electric (kW Peak (k	/h) 699.0 W) 2.7	622.5 2.7	690.8 2.7	491.5 2.7	360.4 2.7	311.3 2.7	122.9 2.7	262.1 2.7	243.0 2.7	360.4 2.7	606.2 2.7	562.5 2.7	5,332.5 2.7
Eq5307 - Boiler cntl par	nel & inter	(Misc Acc	essory Ec	quipment)									
Electric (kW Peak (k	/h) 128.0 W) 0.5	114.0 0.5	126.5 0.5	90.0 0.5	66.0 0.5	57.0 0.5	22.5 0.5	48.0 0.5	44.5 0.5	66.0 0.5	111.0 0.5	103.0 0.5	976.5 0.5
Boiler 3 (Heating Equ	ipment)												
Gas (kV Peak (k	/h) 268,825 N) 975.6	.0 256,255.0 975.6	291,909.8 975.6	218,536.6 975.6	116,359.2 975.6	111,219.5 975.6	19,512.2 975.6	35,386.3 975.6	60,698.7 975.6	115,316.5 975.6	237,073.3 975.6	220,487.8 975.6	1,951,579.8 975.6
Eq5020 - Heating water	circ pump	(Misc Ac	cessory E	Equipment	t)								
Electric (kW Peak (k	/h) 249,600. N) 975.0	.0 222,300.0 975.0	228,150.0 975.0	159,900.0 975.0	111,150.0 975.0	111,150.0 975.0	19,500.0 975.0	48,750.0 975.0	67,275.0 975.0	128,700.0 975.0	216,450.0 975.0	200,850.0 975.0	1,763,775.0 975.0
Eq5240 - Boiler forced	draft fan	(Misc Acce	ssory Equ	ipment)									
Electric (kW Peak (k	/h) 699.0 W) 2.7	622.5 2.7	638.9 2.7	447.8 2.7	311.3 2.7	311.3 2.7	54.6 2.7	136.5 2.7	188.4 2.7	360.4 2.7	606.2 2.7	562.5 2.7	4,939.3 2.7
Eq5307 - Boiler cntl par	nel & inter	(Misc Acc	essory Ec	quipment)									
Electric (kW Peak (k	/h) 128.0 W) 0.5	114.0 0.5	117.0 0.5	82.0 0.5	57.0 0.5	57.0 0.5	10.0 0.5	25.0 0.5	34.5 0.5	66.0 0.5	111.0 0.5	103.0 0.5	904.5 0.5

Project Name:

Dataset Name: P:\becca's trace\Palestra.TRC

 $\begin{array}{c} {\sf TRACE} \$ \ 700 \ v4.1 \ calculated \ at \ 08:02 \ PM \ on \ 03/28/2006 \\ {\sf Alternative - 1} \quad {\sf Equipment \ Energy \ Consumption \ report \ page \ 5 \ of \ 6 \end{array}$

						N	lonthly Co	nsumptio	n					
Equipmer	nt - Utilitv	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
Hpl 1: BC	DILERS													
Boiler 4	(Heating Equipn	nent)												
	Gas (kWh) Peak (kW)	257,550.5 975.6	235,986.4 975.6	280,975.7 975.6	218,452.8 975.6	111,945.3 975.6	98,637.2 975.6	19,512.2 975.6	5,717.9 975.6	36,875.7 975.6	100,372.3 975.6	232,103.8 975.6	213,651.8 975.6	1,811,781.6 975.6
Eq5020 -	Heating water cir	c pump	(Misc Ac	cessory E	quipment	:)								
	Electric (kWh) Peak (kW)	233,025.0 975.0	206,700.0 975.0	209,625.0 975.0	159,900.0 975.0	111,150.0 975.0	111,150.0 975.0	19,500.0 975.0	7,800.0 975.0	41,925.0 975.0	112,125.0 975.0	216,450.0 975.0	200,850.0 975.0	1,630,200.0 975.0
Eq5240 -	Boiler forced draf	ft fan (N	lisc Acces	ssory Equ	ipment)									
	Electric (kWh) Peak (kW)	652.6 2.7	578.8 2.7	587.0 2.7	447.8 2.7	311.3 2.7	311.3 2.7	54.6 2.7	21.8 2.7	117.4 2.7	314.0 2.7	606.2 2.7	562.5 2.7	4,565.2 2.7
Eq5307 -	Boiler cntl panel	& inter	(Misc Acc	essory Ec	juipment)									
	Electric (kWh) Peak (kW)	119.5 0.5	106.0 0.5	107.5 0.5	82.0 0.5	57.0 0.5	57.0 0.5	10.0 0.5	4.0 0.5	21.5 0.5	57.5 0.5	111.0 0.5	103.0 0.5	836.0 0.5

MONTHLY ENERGY CONSUMPTION

By ae

Alternative: 1 Palestra Building

		Monthly Energy Consumption													
Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total	
Electric															
	On-Pk Cons. (kWh)	2,005,564	1,819,345	2,105,694	1,692,834	1,633,466	1,621,389	1,280,122	1,502,611	1,353,867	1,659,670	1,911,922	1,807,670	20,394,152	
	On-Pk Demand (kW)	7,543	7,687	7,687	7,456	7,352	7,316	7,321	7,349	7,306	7,317	7,454	7,694	7,694	
Gas															
	On-Pk Cons. (kWh)	1,091,644	1,038,849	1,233,092	910,244	535,245	488,491	124,989	214,481	276,792	517,039	969,033	888,768	8,288,669	
	On-Pk Demand (kW)	3,902	3,902	3,902	3,902	3,902	3,902	3,902	3,902	3,902	3,902	3,902	3,902	3,902	
Building	g Energy Consumpt	ion =		3,332	MJ/(m2	-year)									

Ballang Energy Concamption	0,001	1110, (111 <u></u>) out)
Source Energy Consumption =	8,123	MJ/(m2-year)
Floor Area =	30,992	m2

ENERGY CONSUMPTION SUMMARY

By ae

	Elect Cons. (kWh)	Gas Cons. (kwh)	Percent of Total Energy	Total Source Energy* (kWh/yr)
Primary heating				
Primary heating	26,269.6	8,288,669.0	29.0 %	8,803,731.0
Primary cooling				
Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal	38,123.2 23,232.9 10,650.8 130.8 72,137.7		0.1 % 0.1 % 0.0 % 0.0 % 0.3 %	114,381.1 69,705.7 31,955.5 392.4 216,434.7
Auxiliary				
Supply Fans Circ Pumps Base Utilities	7,931,724.5 7,929,899.5		27.7 % 27.7 %	23,797,552.0 23,792,076.0
Aux Subtotal	15,861,624.0		55.3 %	47,589,628.0
Lighting				
Lighting	1,623,302.6		5.7 %	4,870,394.5
Receptacle				
Receptacles	2,810,820.3		9.8 %	8,433,304.0
Heating plant load Base Utilities			0.0 %	0.0
Cogeneration				
Cogeneration			0.0 %	0.0
Totals				
Totals**	20,394,154.0	8,288,669.0	100.0 %	69,913,488.0

* Note: Resource Utilization factors are included in the Total Source Energy value. ** Note: This report can display a maximum of 6 utilities. If additional utilities are used, they will be included in the total.

MONTHLY UTILITY COSTS

By ae

Alternative: 1

					N	Monthly U	tility Costs	s					
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Electric													
On-Pk Cons. (\$) Off-Pk Cons. (\$)	165,872 101	150,480 101	174,149 101	140,023 101	135,116 101	134,118 101	105,910 101	124,300 101	112,006 101	137,282 101	158,132 101	149,515 101	1,686,906 1,207
Total (\$):	165,973	150,581	174,249	140,124	135,217	134,219	106,011	124,401	112,106	137,383	158,233	149,616	1,688,113
Gas													
On-Pk Cons. (\$)	3,466	3,299	3,916	2,890	1,700	1,551	397	681	879	1,642	3,077	2,822	26,320

Monthly Total (\$):	169,440	153,880	178,165	143,014	136,917	135,770	106,408	125,082	112,985	139,025	161,310	152,438	1,714,433
---------------------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	-----------

ELECTRICAL PEAK CHECKSUMS

By ae

Alternative: 1 Palestra Building Yearly Time of Peak: 14(Hr) 7(Month)

Equipment Description		Electrical Demand (kw)	Percent of Total (%)
Cooling Equipment			
Chiller 2		0.74	0.01
	Sub total	0.74	0.01
Heating Equipment			
Boiler 1		978.23	12.72
	Sub total	978.23	12.72
Fan Equipment			
SUMMATION OF FAN ELECTRICAL DEMAND		1,350.00	17.56
SUMMATION OF FAN ELECTRICAL DEMAND		1,350.00	17.56
SUMMATION OF FAN ELECTRICAL DEMAND		40.00	0.52
SUMMATION OF FAN ELECTRICAL DEMAND		55.00	0.72
SUMMATION OF FAN ELECTRICAL DEMAND		55.00	0.72
	Sub total	2,850.00	37.08
Miscellaneous			
Lights		329.39	4.28
Base Utilities		0.00	0.00
Misc Equipment		601.41	7.82
	Sub total	930.80	12.10
	Total	4,759.77	62

YEARLY CASH FLOW

By ae

Alternative:1Life Cycle Cost:31,868,440.64

Year	Utility Cost (\$)	Maint. Cost (\$)	Interest Cost (\$)	Principal Cost (\$)	Property Taxes (\$)	Insurance Cost (\$)	Revenue Penalty (\$)	Replace. Expenses (\$)	Deprec. Tax (\$)	Cash Flow Effect (\$)	Present Value (\$)
0	0	0	0	17,826,732	0	0	0	0	0	17,826,732	17,826,732
1	1,714,433	306,000	0	0	0	0	0	0	891,337	1,438,079	1,250,504
2	1,714,433	367,200	0	0	0	0	0	0	891,337	1,487,039	1,124,415
3	1,714,433	440,640	0	0	0	0	0	0	891,337	1,545,791	1,016,383
4	1,714,433	528,768	0	0	0	0	0	0	891,337	1,616,294	924,121
5	1,714,433	634,522	0	0	0	0	0	0	891,337	1,700,897	845,646
6	1,714,433	761,426	0	0	0	0	0	0	891,337	1,802,420	779,236
7	1,714,433	913,711	0	0	0	0	0	0	891,337	1,924,248	723,396
8	1,714,433	1,096,453	0	0	0	0	0	0	891,337	2,070,442	676,831
9	1,714,433	1,315,744	0	0	0	0	0	0	891,337	2,245,875	638,418
10	1,714,433	1,578,893	0	0	0	0	0	0	891,337	2,456,394	607,183
11	1,714,433	1,894,671	0	0	0	0	0	0	891,337	2,709,016	582,285
12	1,714,433	2,273,605	0	0	0	0	0	0	891,337	3,012,164	562,995
13	1,714,433	2,728,326	0	0	0	0	0	0	891,337	3,375,941	548,685
14	1,714,433	3,273,992	0	0	0	0	0	0	891,337	3,812,473	538,812
15	1,714,433	3,928,790	0	0	0	0	0	0	891,337	4,336,311	532,909
16	1,714,433	4,714,548	0	0	0	0	0	0	891,337	4,964,918	530,575
17	1,714,433	5,657,457	0	0	0	0	0	0	891,337	5,719,245	531,466
18	1,714,433	6,788,949	0	0	0	0	0	0	891,337	6,624,439	535,289
19	1,714,433	8,146,739	0	0	0	0	0	0	891,337	7,710,670	541,793
20	1,714,433	9,776,086	0	0	0	0	0	0	891,337	9,014,148	550,767

TRACE® 700 Economic Summary

Alternative 1 - - Palestra Building

By ae

Project Information

Weather file	Heathrow, England
Project Name	
Location	London, England
Building Owner	Balckfriars Investment
User	
Company	Penn State University
Comments	

Economic Summary

Alternative	Installed	First Year	Final Year	First Year	Final Year	Life Cycle
Number	Cost	Util.Cost	Util. Cost	Maint. Cost	Maint. Cost	Cost
1	17,826,732.00	1,714,433.42	1,714,433.42	306,000.00	9,776,086.14	31,868,440.64

Monthly Utility Costs per Utility

(1 alternative)

Equipment Energy Consumption by Alternative

	Elect Cons. (kWh)	Gas Cons. (kwh)	Percent of Total Energy	Total Source Energy* (kWh/yr)
Alternative: 1 - Palestra Buil	ding			
Primary heating	26,269.6	8,288,669.0	29.0%	8,803,731.0
Cooling Compressor	38,123.2		0.1%	114,381.1
Tower/Cond Fans	23,232.9		0.1%	69,705.7
Condenser Pump	10,650.8		0.0%	31,955.5
Other CLG Accessories	130.8		0.0%	392.4
Supply Fans	7,931,724.5		27.7%	23,797,552.0
Circ Pumps	7,929,899.5		27.7%	23,792,076.0
Lighting	1,623,302.6		5.7%	4,870,394.5
Totals	20,394,154.0	8,288,669.0	100.0%	69,913,488.0

* Note: Resource Utilization factors are included in the Total Source Energy value.

The Palestra Building London, England

Natural Gas Engine Driven Chiller Plant Energy Simulation

Alternative: 1 Palestra Building

						N	Ionthly Co	onsumptio	n					
Equipment	- Utilitv	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
Lights														
	Electric (kWh) Peak (kW)	171,215.5 640.1	154,884.0 640.1	185,958.4 640.1	163,314.5 640.1	178,587.0 640.1	178,057.5 640.1	163,844.0 640.1	185,958.4 640.1	163,314.5 640.1	178,587.0 640.1	170,686.0 640.1	163,844.0 640.1	2,058,250.8 640.1
MISC LD														
	Electric (kWh) Peak (kW)	234,034.4 816.2	211,696.4 816.2	253,279.4 816.2	223,381.2 816.2	243,657.1 816.2	242,625.8 816.2	224,412.1 816.2	253,279.4 816.2	223,381.3 816.2	243,657.1 816.2	233,003.5 816.2	224,412.1 816.2	2,810,820.0 816.2
AHU 1														
Eq4371 - F	an coil supply f	an (Mai	n Clg Fan)										
	Electric (kWh) Peak (kW)	1,773.4 9.5	1,699.9 9.5	2,044.4 9.5	1,756.4 9.5	2,244.8 9.5	2,305.4 10.0	2,699.2 10.0	2,888.7 10.0	2,294.2 9.5	2,089.6 9.5	1,775.8 9.5	1,679.9 9.5	25,251.5 10.0
AHU 2														
Eq4371 - F	an coil supply f	an (Mai	n Clg Fan)										
	Electric (kWh) Peak (kW)	1,676.0 9.5	1,531.7 9.5	1,855.1 9.5	1,623.7 9.5	1,816.0 9.5	1,824.7 9.5	1,756.7 9.5	1,961.3 9.5	1,679.0 9.5	1,908.9 9.5	1,684.0 9.5	1,601.3 9.5	20,918.3 9.5
AHU 3														
Eq4372 - U	Init vent supply	fan (Ma	in Clg Fa	n)										
	Electric (kWh) Peak (kW)	350.5 4.9	289.4 5.1	368.2 4.9	355.0 3.9	436.5 3.9	364.5 3.9	554.6 3.9	473.5 3.9	372.2 3.9	377.4 3.9	314.1 5.1	344.8 5.0	4,600.6 5.1
AHU 4														
Eq4372 - U	Init vent supply	fan (Ma	in Clg Fa	n)										
	Electric (kWh) Peak (kW)	350.3 5.5	338.7 5.5	418.4 5.5	345.5 5.3	524.5 5.4	515.4 4.7	832.2 5.5	792.6 5.0	563.3 4.7	400.8 4.9	360.3 5.5	331.1 5.5	5,773.0 5.5

AHU 7

Alternative: 1 Palestra Building

					N	Ionthly Co	onsumptio	n					
Equipment - Utility	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
AHU 7													
Eq4371 - Fan coil supply	fan (Ma	in Clg Fan)										
Electric (kWh Peak (kW) 1,900.5) 10.0	1,719.5 10.0	2,081.5 10.0	1,810.0 10.0	1,991.0 10.0	1,991.0 10.0	1,810.0 10.0	2,081.5 10.0	1,810.0 10.0	1,991.0 10.0	1,900.5 10.0	1,810.0 10.0	22,896.5 10.0
Cpl 1: IC Engine Chiller F	Plant												
IC Chiller 1 (Cooling Ed	quipment)												
Gas (kWh Peak (kW) 622.7) 80.3	467.9 80.2	621.4 80.1	1,056.5 94.5	5,550.6 94.5	8,379.2 94.5	32,928.5 393.7	16,273.2 193.9	9,352.1 141.8	4,416.9 94.5	710.3 85.6	662.4 94.5	81,041.5 393.7
Eq5100 - Cooling tower													
Electric (kWh Peak (kW) 2,260.9) 13.6	2,026.9 13.9	2,450.6 14.2	2,311.0 16.8	4,401.3 21.5	4,531.9 21.5	6,880.6 21.5	6,962.3 21.5	4,951.1 21.5	4,005.2 18.1	2,342.0 14.1	2,252.0 15.1	45,375.5 21.5
Eq5100 - Cooling tower													
Make Up Water (kL Peak (kL/Hr) 124.3) 3.6	112.1 3.8	143.0 4.1	145.9 4.8	392.4 5.5	364.8 6.0	1,294.6 11.3	708.0 8.0	456.7 6.5	216.4 4.8	128.3 3.7	119.0 3.7	4,205.4 11.3
Eq5001 - Cnst vol chill wa	ater pump	(Misc A	ccessory	Equipmer	nt)								
Electric (kWh Peak (kW) 14.6) 1.8	10.9 1.8	14.6 1.8	29.2 1.8	262.7 1.8	361.2 1.8	474.3 1.8	461.5 1.8	328.3 1.8	268.2 1.8	21.9 1.8	16.4 1.8	2,263.7 1.8
Eq5010 - Cnst vol cnd wa	ater pump	(Misc Ad	ccessory I	Equipmen	nt)								
Electric (kWh Peak (kW) 25.1) 3.1	18.8 3.1	25.1 3.1	50.1 3.1	451.1 3.1	620.2 3.1	814.4 3.1	792.5 3.1	563.8 3.1	460.5 3.1	37.6 3.1	28.2 3.1	3,887.3 3.1
Eq5300 - Cntl panel & int	erlocks (Misc Acce	essory Eq	uipment)									
Electric (kWh Peak (kW) 8.0) 1.0	6.0 1.0	8.0 1.0	16.0 1.0	144.0 1.0	198.0 1.0	260.0 1.0	253.0 1.0	180.0 1.0	147.0 1.0	12.0 1.0	9.0 1.0	1,241.0 1.0
EDC Heater (Misc Acc	essory Equ	uipment)											
Electric (kWh Peak (kW) 110.4) 0.2	99.9 0.2	110.4 0.2	105.6 0.2	90.0 0.2	78.3 0.2	72.6 0.2	73.7 0.2	81.0 0.2	89.6 0.2	106.2 0.2	110.3 0.2	1,127.9 0.2
IC CHiller 2 (Cooling E	quipment)												
Gas (kWh Peak (kW) 0.0) 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	7,500.0 393.7	0.0 193.9	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	7,500.0 393.7

Project Name:

 $\label{eq:TRACE} \begin{array}{l} {\sf TRACE} \$ \ 700 \ v4.1 \ calculated \ at \ 08:12 \ PM \ on \ 03/28/2006 \\ {\sf Alternative - 1} \quad {\sf Equipment \ Energy \ Consumption \ report \ page \ 2 \ of \ 6 \end{array}$

					N	Ionthly Co	onsumptio	n					
Equipment - Utility	Jan	Feb	Mar	Apr	Mav	June	Julv	Auq	Sept	Oct	Nov	Dec	Total
Cpl 1: IC Engine Chiller Pla	int												
Eq5100 - Cooling tower													
Electric (kWh) Peak (kW)	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	965.3 21.5	0.0 21.5	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	965.3 21.5
Eq5100 - Cooling tower													
Make Up Water (kL) Peak (kL/Hr)	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	79.3 3.3	0.0 2.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	79.3 3.3
Eq5001 - Cnst vol chill wate	er pump	(Misc A	ccessory	Equipmer	nt)								
Electric (kWh) Peak (kW)	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	, 0.0 0.0	0.0 0.0	82.1 1.8	0.0 1.8	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	82.1 1.8
Eq5010 - Cnst vol cnd wate	er pump	(Misc Ac	cessory I	Equipmen	nt)								
' Electric (kWh) Peak (kW)	0.0 0.0	、 0.0 0.0	0.0 0.0	0.0 0.0	, 0.0 0.0	0.0 0.0	141.0 3.1	0.0 3.1	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	141.0 3.1
Eq5300 - Cntl panel & inter	locks	(Misc Acce	essory Ea	uipment)									
Electric (kWh) Peak (kW)	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	45.0 1.0	0.0 1.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	45.0 1.0
EDC Heater (Misc Acces	sorv Eau	uipment)											
Electric (kWh) Peak (kW)	111.6 0.2	100.8 0.2	111.6 0.2	108.0 0.2	111.6 0.2	108.0 0.2	104.9 0.2	111.6 0.2	108.0 0.2	111.6 0.2	108.0 0.2	111.6 0.2	1,307.3 0.2
IC Chiller 3 (Cooling Equ	(ipment)												
Gas Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	393.7	0.0	0.0	0.0	0.0	0.0	393.7
Eq5100 - Cooling tower													
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	21.5	0.0	0.0	0.0	0.0	0.0	21.5
Eq5100 - Cooling tower													
Make Up Water Peak (kL/Hr)	0.0	0.0	0.0	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	3.3
Eq5001 - Cnst vol chill wate	er pump	(Misc A	cessory	Equipmer	nt)								
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	1.8
Eq5010 - Cnst vol cnd wate	er pump	(Misc Ac	cessory I	Equipmen	nt)								
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0	0.0	3.1
Eq5300 - Cntl panel & inter	locks	(Misc Acce	essory Eq	uipment)									
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0
roject Name: vataset Name: P:\becca's trace\IC E	Engine.TRC	2						Alt	TRAC ernative - 1	CE® 700 v4. Equipment	1 calculated Energy Col	d at 08:12 PM nsumption re	1 on 03/28/2006 port page 3 of 6

						N	Ionthly Co	onsumptio	n					
Equipment -	Utilitv	Jan	Feb	Mar	Apr	Mav	June	Julv	Auq	Sept	Oct	Nov	Dec	Total
Cpl 1: IC Eng	gine Chiller Pla	nt												
EDC Heater	(Misc Acces	sorv Eau	(ipment)											
	Electric (kWh) Peak (kW)	111.6 0.2	100.8 0.2	111.6 0.2	108.0 0.2	111.6 0.2	108.0 0.2	111.6 0.2	111.6 0.2	108.0 0.2	111.6 0.2	108.0 0.2	111.6 0.2	1,314.0 0.2
IC CHiller 4	(Cooling Equ	upment)												
Gas	Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	393.7	0.0	0.0	0.0	0.0	0.0	393.7
Eq5100 - Co	oling tower													
Electric	Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	21.5	0.0	0.0	0.0	0.0	0.0	21.5
Eq5100 - Co	oling tower													
Make Up Water	Peak (kL/Hr)	0.0	0.0	0.0	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	3.3
Eq5001 - Cn	st vol chill wate	er pump	(Misc A	ccessory	Equipmer	nt)								
Electric	Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	1.8
Eq5010 - Cn	st vol cnd wate	er pump	(Misc Ac	cessory I	Equipmen	t)								
Electric	Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0	0.0	3.1
Eq5300 - Cnt	tl panel & interl	locks (Misc Acce	essory Eq	uipment)									
Electric	Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0
EDC Heater	(Misc Acces	sory Equ	uipment)											
	Electric (kWh)	111.6	100.8	111.6	108.0	111.6	108.0	111.6	111.6	108.0	111.6	108.0	111.6	1,314.0
	Peak (kW)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
IC Chiller 5	(Cooling Equ	ipment)												
Gas	Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	393.7	0.0	0.0	0.0	0.0	0.0	393.7
Eq5100 - Co	oling tower													
Electric	Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	21.5	0.0	0.0	0.0	0.0	0.0	21.5
Eq5100 - Co	oling tower													
Make Up Water	Peak (kL/Hr)	0.0	0.0	0.0	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	3.3
Eq5001 - Cn	st vol chill wate	er pump	(Misc A	ccessory	Equipmer	nt)								
Electric	Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	1.8
Eq5010 - Cn	st vol cnd wate	er pump	(Misc Ac	cessory I	Equipmen	t)								
Electric	Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0	0.0	3.1
Eq5300 - Cnt	tl panel & interl	locks (Misc Acce	essory Eq	uipment)									
Electric	Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0
oject Name: taset Name: P:∖	becca's trace\IC E	ingine.TRC	;						Alt	TRAC ernative - 1	CE® 700 v4. Equipment	1 calculated Energy Cor	l at 08:12 PM sumption re	1 on 03/28/2006 port page 4 of 6

						N	Ionthly Co	onsumptic	on					
Equipment - U	tilitv	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
Cpl 1: IC Engi	ne Chiller Pl	ant												
EDC Heater	(Misc Acce	ssory Equ	ipment)											
	Electric (kWh) Peak (kW)	111.6 0.2	100.8 0.2	111.6 0.2	108.0 0.2	111.6 0.2	108.0 0.2	111.6 0.2	111.6 0.2	108.0 0.2	111.6 0.2	108.0 0.2	111.6 0.2	1,314.0 0.2
Hpl 1: BOILER	RS													
Boiler 1 (He	ating Equipr	ment)												
, , , , , , , , , , , , , , , , , , ,	Gas (kWh) Peak (kW)	287,220.4 975.6	279,779.7 975.6	337,934.0 975.6	244,647.7 975.6	171,879.6 975.6	159,275.1 975.6	51,019.5 975.6	101,100.0 975.6	100,938.4 975.6	163,548.8 975.6	256,205.4 975.6	232,689.0 975.6	2,386,237.8 975.6
Eq5020 - Heat	ting water ci	rc pump	(Misc Ac	cessory E	quipment	t)								
	Electric (kWh) Peak (kW)	294,450.0 975.0	265,200.0 975.0	321,750.0 975.0	253,500.0 975.0	235,950.0 975.0	210,600.0 975.0	63,375.0 975.0	142,350.0 975.0	158,925.0 975.0	193,050.0 975.0	286,650.0 975.0	273,000.0 975.0	2,698,800.0 975.0
Eq5240 - Boile	er forced dra	ft fan (N	lisc Acce	ssory Equ	ipment)									
	Electric (kWh) Peak (kW)	824.6 2.7	742.7 2.7	901.0 2.7	709.9 2.7	660.8 2.7	589.8 2.7	177.5 2.7	398.6 2.7	445.1 2.7	540.6 2.7	802.7 2.7	764.5 2.7	7,557.8 2.7
Eq5307 - Boile	er cntl panel	& inter	(Misc Acc	essory Ec	quipment)									
	Electric (kWh) Peak (kW)	151.0 0.5	136.0 0.5	165.0 0.5	130.0 0.5	121.0 0.5	108.0 0.5	32.5 0.5	73.0 0.5	81.5 0.5	99.0 0.5	147.0 0.5	140.0 0.5	1,384.0 0.5
Boiler 2 (He	ating Equipr	ment)												
	Gas (kWh) Peak (kW)	264,735.0 975.6	255,915.5 975.6	304,971.0 975.6	228,864.8 975.6	131,597.7 975.6	114,175.3 975.6	33,527.9 975.6	74,469.3 975.6	76,375.6 975.6	131,404.7 975.6	235,156.8 975.6	220,487.8 975.6	2,071,681.4 975.6
Eq5020 - Heat	ting water ci	rc pump	(Misc Ac	cessory E	quipment	t)								
	Electric (kWh) Peak (kW)	233,025.0 975.0	225,225.0 975.0	273,000.0 975.0	175,500.0 975.0	132,600.0 975.0	115,050.0 975.0	43,875.0 975.0	93,600.0 975.0	86,775.0 975.0	128,700.0 975.0	179,400.0 975.0	164,775.0 975.0	1,851,525.0 975.0
Eq5240 - Boile	er forced dra	ft fan (N	lisc Acce	ssory Equ	ipment)									
	Electric (kWh) Peak (kW)	652.6 2.7	630.7 2.7	764.5 2.7	491.5 2.7	371.3 2.7	322.2 2.7	122.9 2.7	262.1 2.7	243.0 2.7	360.4 2.7	502.4 2.7	461.4 2.7	5,185.0 2.7
Eq5307 - Boile	er cntl panel	& inter	(Misc Acc	essory Ec	quipment)									
	Electric (kWh) Peak (kW)	119.5 0.5	115.5 0.5	140.0 0.5	90.0 0.5	68.0 0.5	59.0 0.5	22.5 0.5	48.0 0.5	44.5 0.5	66.0 0.5	92.0 0.5	84.5 0.5	949.5 0.5

Alternative: 1 Palestra Building

_

					M	onthly Co	nsumptio	n					
Equipment - Utility	Jan	Feb	Mar	Apr	Mav	June	Julv	Auq	Sept	Oct	Nov	Dec	Total
Hpl 1: BOILERS													
Boiler 3 (Heating Equipn	nent)												
Gas (kWh) Peak (kW)	257,561.1 975.6	242,992.9 975.6	280,975.7 975.6	218,536.6 975.6	115,121.9 975.6	111,219.5 975.6	19,512.2 975.6	34,470.0 975.6	60,869.8 975.6	112,195.1 975.6	227,055.0 975.6	218,329.6 975.6	1,898,839.4 975.6
Eq5020 - Heating water cir	c pump	(Misc Ac	cessory E	quipment)								
Electric (kWh) Peak (kW)	216,450.0 975.0	209,625.0 975.0	235,950.0 975.0	175,500.0 975.0	115,050.0 975.0	111,150.0 975.0	19,500.0 975.0	48,750.0 975.0	67,275.0 975.0	112,125.0 975.0	175,500.0 975.0	164,775.0 975.0	1,651,650.0 975.0
Eq5240 - Boiler forced draf	ft fan (N	lisc Acces	ssory Equ	ipment)									
Electric (kWh) Peak (kW)	606.2 2.7	587.0 2.7	660.8 2.7	491.5 2.7	322.2 2.7	311.3 2.7	54.6 2.7	136.5 2.7	188.4 2.7	314.0 2.7	491.5 2.7	461.4 2.7	4,625.3 2.7
Eq5307 - Boiler cntl panel	& inter ((Misc Acc	essory Ec	quipment)									
Electric (kWh) Peak (kW)	111.0 0.5	107.5 0.5	121.0 0.5	90.0 0.5	59.0 0.5	57.0 0.5	10.0 0.5	25.0 0.5	34.5 0.5	57.5 0.5	90.0 0.5	84.5 0.5	847.0 0.5
Boiler 4 (Heating Equipn	nent)												
Gas (kWh) Peak (kW)	247,156.2 975.6	231,219.4 975.6	280,975.7 975.6	208,181.2 975.6	113,339.2 975.6	97,531.8 975.6	19,512.2 975.6	6,035.5 975.6	35,733.9 975.6	90,007.1 975.6	216,585.4 975.6	191,049.7 975.6	1,737,327.1 975.6
Eq5020 - Heating water cir	c pump	(Misc Ac	cessory E	quipment)								
Electric (kWh) Peak (kW)	216,450.0 975.0	194,025.0 975.0	235,950.0 975.0	175,500.0 975.0	115,050.0 975.0	111,150.0 975.0	19,500.0 975.0	7,800.0 975.0	41,925.0 975.0	112,125.0 975.0	175,500.0 975.0	161,850.0 975.0	1,566,825.0 975.0
Eq5240 - Boiler forced drat	ft fan (N	lisc Acces	sory Equ	ipment)									
Electric (kWh) Peak (kW)	606.2 2.7	543.4 2.7	660.8 2.7	491.5 2.7	322.2 2.7	311.3 2.7	54.6 2.7	21.8 2.7	117.4 2.7	314.0 2.7	491.5 2.7	453.3 2.7	4,387.8 2.7
Eq5307 - Boiler cntl panel	& inter ((Misc Acc	essory Ec	quipment)									
Electric (kWh) Peak (kW)	111.0 0.5	99.5 0.5	121.0 0.5	90.0 0.5	59.0 0.5	57.0 0.5	10.0 0.5	4.0 0.5	21.5 0.5	57.5 0.5	90.0 0.5	83.0 0.5	803.5 0.5

MONTHLY ENERGY CONSUMPTION

By ae

						Month	nlv Enera	v Consum	nption					
Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Electric	;													
	On-Pk Cons. (kWh) On-Pk Demand (kW)	1,377,723 5,395	1,271,762 5,396	1,519,245 5,397	1,178,114 5,397	1,035,685 5,404	983,671 5,407	552,818 5,222	749,894 5,352	756,026 5,346	982,237 5,409	1,232,433 5,396	1,163,818 5,399	12,803,427 5,409
Gas														
	On-Pk Cons. (kWh) 1,057,295 1,010,376 1,205,477 901,287 537,489 490,581 164,000 232,348 283,270 501,573 935,713 863,21 On-Pk Demand (kW) 3,983 3,983 3,982 3,997 3,997 3,997 3,997 3,997 3,997 3,997 3,997 3,988 3,997												863,219 3,997	8,182,627 3,997
Water	Cons. (kL) 124 112 143 146 392							1,374	708	457	216	128	119	4,285
Building Source Floor A	g Energy Consumpt Energy Consumption Trea =	ion = on =		2,438 5,464 30,992	MJ/(m2 MJ/(m2 m2	-year) -year)								

ENERGY CONSUMPTION SUMMARY

By ae

	Elect Cons. (kWh)	Gas Cons. (kwh)	Water Cons. (kL)	Percent of Total Energy	Total Source Energy* (kWh/yr)
Primary heating					
Primary heating	25,739.8	8,094,085.5		38.7 %	8,597,317.0
Primary cooling					
Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal	46,340.8 4,028.2 7,663.1 58,032.1	88,541.5 88,541.5	4,284.7 4,284.7	0.4 % 0.2 % 0.0 % 0.0 % 0.7 %	93,201.6 139,036.2 12,085.9 22,991.6 267,315.3
Auxiliary					
Supply Fans Circ Pumps Base Utilities Aux Subtotal	79,439.9 7,771,146.0 7,850,586.0			0.4 % 37.0 % 0.0 % 37.4 %	238,343.6 23,315,768.0 0.0 23,554,112.0
Lighting					
Lighting	2,058,250.8			9.8 %	6,175,369.5
Receptacle Receptacles	2,810,820.3			13.4 %	8,433,304.0
Heating plant load Base Utilities				0.0 %	0.0
Cogeneration Cogeneration				0.0 %	0.0
Totals					
Totals**	12,803,429.0	8,182,627.0	4,284.7	100.0 %	47,027,416.0

* Note: Resource Utilization factors are included in the Total Source Energy value. ** Note: This report can display a maximum of 6 utilities. If additional utilities are used, they will be included in the total.

MONTHLY UTILITY COSTS

By ae

Alternative: 1

					N	Monthly U	tility Costs	s					
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Electric													
On-Pk Cons.(\$) Off-Pk Cons.(\$)	113,978 101	105,219 101	125,675 101	97,479 101	85,706 101	81,407 101	45,794 101	62,084 101	62,591 101	81,288 101	101,969 101	96,297 101	1,059,487 1,207
Total (\$): 114,078	105,320	125,776	97,579	85,807	81,507	45,895	62,184	62,691	81,389	102,069	96,398	1,060,694
Gas													
On-Pk Cons. (\$)	3,357	3,208	3,828	2,862	1,707	1,558	521	738	900	1,593	2,971	2,741	25,984

Monthly Total (\$):	117,436	108,528	129,604	100,441	87,514	83,065	46,416	62,922	63,591	82,982	105,040	99,139	1,086,678

ELECTRICAL PEAK CHECKSUMS

By ae

Alternative: 1 Palestra Building Yearly Time of Peak: 17(Hr) 7(Month)

Equipment Description		Electrical Demand (kw)	Percent of Total (%)
Cooling Equipment			
IC Chiller 1		15.36	0.28
IC CHiller 2		0.15	0.00
IC Chiller 3		0.15	0.00
IC CHiller 4		0.15	0.00
IC Chiller 5		0.15	0.00
	Sub total	15.96	0.28
Heating Equipment			
Boiler 1		978.23	18.13
	Sub total	978.23	18.13
Fan Equipment			
SUMMATION OF FAN ELECTRICAL DEMAND		2.04	0.04
SUMMATION OF FAN ELECTRICAL DEMAND		0.47	0.01
SUMMATION OF FAN ELECTRICAL DEMAND		10.00	0.19
SUMMATION OF FAN ELECTRICAL DEMAND		2.45	0.05
SUMMATION OF FAN ELECTRICAL DEMAND		0.85	0.02
	Sub total	15.81	0.31
Miscellaneous			
Lights		640.05	11.86
Base Utilities		0.00	0.00
Misc Equipment		816.20	15.12
	Sub total	1,456.25	26.98
	Total	2,466.25	46

YEARLY CASH FLOW

By ae

Alternative:1Life Cycle Cost:28,724,974.84

Year	Utility Cost (\$)	Maint. Cost (\$)	Interest Cost (\$)	Principal Cost (\$)	Property Taxes (\$)	Insurance Cost (\$)	Revenue Penalty (\$)	Replace. Expenses (\$)	Deprec. Tax (\$)	Cash Flow Effect (\$)	Present Value (\$)
0	0	0	0	17,826,732	0	0	0	0	0	17,826,732	17,826,732
1	1,086,678	306,000	0	0	0	0	0	0	891,337	935,875	813,804
2	1,086,678	367,200	0	0	0	0	0	0	891,337	984,835	744,677
3	1,086,678	440,640	0	0	0	0	0	0	891,337	1,043,587	686,175
4	1,086,678	528,768	0	0	0	0	0	0	891,337	1,114,089	636,984
5	1,086,678	634,522	0	0	0	0	0	0	891,337	1,198,692	595,962
6	1,086,678	761,426	0	0	0	0	0	0	891,337	1,300,215	562,119
7	1,086,678	913,711	0	0	0	0	0	0	891,337	1,422,044	534,599
8	1,086,678	1,096,453	0	0	0	0	0	0	891,337	1,568,237	512,660
9	1,086,678	1,315,744	0	0	0	0	0	0	891,337	1,743,670	495,660
10	1,086,678	1,578,893	0	0	0	0	0	0	891,337	1,954,189	483,046
11	1,086,678	1,894,671	0	0	0	0	0	0	891,337	2,206,812	474,339
12	1,086,678	2,273,605	0	0	0	0	0	0	891,337	2,509,959	469,129
13	1,086,678	2,728,326	0	0	0	0	0	0	891,337	2,873,736	467,062
14	1,086,678	3,273,992	0	0	0	0	0	0	891,337	3,310,268	467,836
15	1,086,678	3,928,790	0	0	0	0	0	0	891,337	3,834,107	471,191
16	1,086,678	4,714,548	0	0	0	0	0	0	891,337	4,462,713	476,907
17	1,086,678	5,657,457	0	0	0	0	0	0	891,337	5,217,041	484,798
18	1,086,678	6,788,949	0	0	0	0	0	0	891,337	6,122,234	494,708
19	1,086,678	8,146,739	0	0	0	0	0	0	891,337	7,208,466	506,505
20	1,086,678	9,776,086	0	0	0	0	0	0	891,337	8,511,944	520,082

TRACE® 700 Economic Summary

Alternative 1 - - Palestra Building

By ae

Project Information

Weather file	Heathrow, England
Project Name	
Location	London, England
Building Owner	Balckfriars Investment
User	
Company	Penn State University
Comments	

Economic Summary

Alternative	Installed	First Year	Final Year	First Year	Final Year	Life Cycle
Number	Cost	Util.Cost	Util. Cost	Maint. Cost	Maint. Cost	Cost
1	18,112,724.00	1,107,063.98	1,107,063.98	306,000.00	9,776,086.14	29,095,149.96

Monthly Utility Costs per Utility

Equipment Energy Consumption by Alternative

	Elect Cons. (kWh)	Gas Cons. (kwh)	Water Cons. (liters)	Percent of Total Energy	Total Source Energy* (kWh/yr)
Alternative: 1 - Palestra Buil	ding				
Primary heating	25,739.8	8,094,085.5		38.7%	8,597,317.0
Cooling Compressor		88,541.5		0.4%	93,201.6
Tower/Cond Fans	46,340.8		4,284.7	0.2%	139,036.2
Condenser Pump	4,028.2			0.0%	12,085.9
Other CLG Accessories	7,663.1			0.0%	22,991.6
Supply Fans	79,439.9			0.4%	238,343.6
Circ Pumps	7,771,146.0			37.0%	23,315,768.0
Lighting	2,058,250.8			9.8%	6,175,369.5
Totals	12,803,429.0	8,182,627.0	4,284.7	100.0%	47,027,416.0

* Note: Resource Utilization factors are included in the Total Source Energy value.

The Palestra Building London, England

Dedicated Outdoor Air System Energy Simulation

By ae

Alternative: 1 Palestra Building

Monthly Consumption														
Equip	ment - Utilitv	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
Lights														
	Electric (kWh) Peak (kW)	26,869.5 97.7	24,305.9 97.7	29,140.7 97.7	25,636.5 97.7	28,005.2 97.7	27,907.7 97.7	25,733.9 97.7	29,140.7 97.7	25,636.5 97.7	28,005.1 97.7	26,772.1 97.7	25,733.9 97.7	322,887.8 97.7
MISC	LD													
	Electric (kWh) Peak (kW)	42,556.8 148.4	38,494.9 148.4	46,056.4 148.4	40,619.6 148.4	44,306.7 148.4	44,119.2 148.4	40,807.1 148.4	46,056.4 148.4	40,619.7 148.4	44,306.7 148.4	42,369.4 148.4	40,807.1 148.4	511,119.9 148.4
AHU 3	B DOAS													
Eq437	2 - Unit vent supply f	fan (Ma	in Clg Fai	n)										
	Electric (kWh) Peak (kW)	9,933.0 55.0	9,244.8 55.0	10,208.7 55.0	6,768.3 55.0	3,557.9 55.0	3,255.1 55.0	5,253.7 54.9	3,083.8 51.4	3,823.7 55.0	7,507.6 55.0	10,277.8 55.0	9,804.8 55.0	82,719.2 55.0

AHU 4 DOAS

-

(Main Clg Fan) Eq4372 - Unit vent supply fan Electric (kWh) 9,933.0 9,358.5 3,224.1 81,560.2 10,454.2 6,422.3 3,255.6 3,075.7 5,880.5 3,071.8 7,064.3 10,282.4 9,537.8 Peak (kW) 55.0 55.0 55.0 55.0 55.0 55.0 43.6 55.0 55.0 55.0 53.4 55.0 55.0

AHU DOAS 1

Eq4371 - Fan coil supply fan (Main Clg Fan) Electric (kWh) 285,833.6 258,752.1 316,639.5 288,376.0 353,275.5 366,008.5 354,184.3 403,746.6 333,903.9 332,078.9 289,910.3 276,110.4 3,858,819.8 Peak (kW) 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0 1,425.0

AHU DOAS 2

Eq4371 - Fan coil supply fan (Main Clg Fan) Electric (kWh) 285,021.1 257,552.2 311,965.2 281,604.2 327,899.3 332,123.8 349,410.6 385,116.4 313,078.7 316,818.9 280,214.3 272,554.4 3,713,359.0 Peak (kW) 1,425.0 1,425

AHU DOAS 7

Alternative: 1 Palestra Building

					N	Ionthly Co	onsumptio	n					
Equipment - Utilitv	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
AHU DOAS 7													
Eq4371 - Fan coil supply	fan (Mai	n Clg Fan	1)										
Electric (kWh Peak (kW) 76,020.0) 400.0	68,780.0 400.0	83,260.0 400.0	72,400.0 400.0	79,640.0 400.0	79,640.0 400.0	72,400.0 400.0	83,260.0 400.0	72,400.0 400.0	79,640.0 400.0	76,020.0 400.0	72,400.0 400.0	915,860.0 400.0
Cpl 1: CHILLERS													
Chiller 2 (Cooling Equi	pment)												
Electric (kWh Peak (kW) 74,462.7) 104.1	67,254.1 104.1	74,462.5 104.1	72,071.4 104.6	74,708.3 121.0	72,858.9 128.2	75,280.6 133.3	77,756.5 133.2	73,316.3 137.9	74,553.4 122.0	72,061.5 104.2	74,462.0 104.4	883,248.2 137.9
Eq5221 - Condenser fan													
Electric (kWh Peak (kW) 9,929.7) 17.2	9,017.1 17.2	10,065.8 17.2	9,674.0 17.2	10,207.6 17.2	9,876.1 17.2	9,503.0 17.2	10,756.8 17.2	10,166.6 17.2	10,119.5 17.2	9,705.8 17.2	9,963.0 17.2	118,984.9 17.2
Eq5001 - Cnst vol chill wa	ater pump	(Misc A	ccessory	Equipmer	nt)								
Electric (kWh Peak (kW) 682.2) 0.9	616.2 0.9	682.2 0.9	660.2 0.9	682.2 0.9	660.2 0.9	682.2 0.9	682.2 0.9	660.2 0.9	682.2 0.9	660.2 0.9	682.2 0.9	8,032.8 0.9
Eq5011 - Cnst vol cnd wa	ater pump	(Misc A	ccessory I	Equipmen	t)								
Electric (kWh Peak (kW) 6,002.9) 8.1	5,422.0 8.1	6,002.9 8.1	5,809.3 8.1	6,002.9 8.1	5,809.3 8.1	6,002.9 8.1	6,002.9 8.1	5,809.3 8.1	6,002.9 8.1	5,809.3 8.1	6,002.9 8.1	70,679.6 8.1
Eq5302 - Cntl panel & int	erlocks (Misc Acce	essory Eq	uipment)									
Electric (kWh Peak (kW) 74.4) 0.1	67.2 0.1	74.4 0.1	72.0 0.1	74.4 0.1	72.0 0.1	74.4 0.1	74.4 0.1	72.0 0.1	74.4 0.1	72.0 0.1	74.4 0.1	876.0 0.1
Chiller 3 (Cooling Equi	pment)												
Electric (kWh Peak (kW) 416.4) 104.1	312.3 104.1	416.3 104.1	418.3 104.6	419.5 104.9	420.2 105.1	18,143.0 131.8	1,959.1 118.2	315.2 105.1	523.8 104.8	416.8 104.2	313.3 104.4	24,074.2 131.8
Eq5221 - Condenser fan													
Electric (kWh Peak (kW) 51.8) 12.9	38.8 12.9	51.7 12.9	52.0 13.0	52.2 13.0	52.3 13.1	2,141.0 14.8	245.5 13.6	39.2 13.1	65.1 13.0	51.8 13.0	38.9 13.0	2,880.2 14.8
Eq5001 - Cnst vol chill wa	ater pump	(Misc A	ccessory	Equipmer	nt)								
Electric (kWh Peak (kW) 3.7) 0.9	2.8 0.9	3.7 0.9	3.7 0.9	3.7 0.9	3.7 0.9	183.4 0.9	21.1 0.9	2.8 0.9	4.6 0.9	3.7 0.9	2.8 0.9	239.3 0.9

Project Name:

Alternative: 1 Palestra Building

					N	Ionthly Co	onsumptio	n					
Equipment - Utility	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
Cpl 1: CHILLERS													
Eq5012 - Cnst vol cnd wate	r pump	(Misc Ac	cessory I	Equipmen	t)								
Electric (kWh) Peak (kW)	38.8 9.7	29.1 9.7	38.8 9.7	38.8 9.7	38.8 9.7	38.8 9.7	1,937.8 9.7	222.9 9.7	29.1 9.7	48.4 9.7	38.8 9.7	29.1 9.7	2,528.8 9.7
Eq5302 - Cntl panel & interle	ocks	(Misc Acce	essory Eq	uipment)									
Electric (kWh) Peak (kW)	0.4 0.1	0.3 0.1	0.4 0.1	0.4 0.1	0.4 0.1	0.4 0.1	20.0 0.1	2.3 0.1	0.3 0.1	0.5 0.1	0.4 0.1	0.3 0.1	26.1 0.1
Chiller 4 (Cooling Equipm	ent)												
Electric (kWh) Peak (kW)	416.2 104.1	312.2 104.1	416.1 104.0	418.1 104.5	419.2 104.8	420.0 105.0	2,480.4 131.7	421.5 105.4	315.0 105.0	523.5 104.7	416.6 104.2	313.1 104.4	6,871.8 131.7
Eq5221 - Condenser fan													
Electric (kWh) Peak (kW)	51.7 12.9	38.8 12.9	51.7 12.9	52.0 13.0	52.1 13.0	52.2 13.1	290.4 14.5	52.4 13.1	39.2 13.1	65.1 13.0	51.8 13.0	38.9 13.0	836.5 14.5
Eq5001 - Cnst vol chill wate	r pump	(Misc Ad	ccessory	Equipmen	it)								
Electric (kWh) Peak (kW)	3.7 0.9	2.8 0.9	3.7 0.9	3.7 0.9	3.7 0.9	3.7 0.9	22.9 0.9	3.7 0.9	2.8 0.9	4.6 0.9	3.7 0.9	2.8 0.9	61.4 0.9
Eq5011 - Cnst vol cnd wate	r pump	(Misc Ac	cessory I	Equipmen	t)								
Electric (kWh) Peak (kW)	32.3 8.1	24.2 8.1	32.3 8.1	32.3 8.1	32.3 8.1	32.3 8.1	201.7 8.1	32.3 8.1	24.2 8.1	40.3 8.1	32.3 8.1	24.2 8.1	540.6 8.1
Eq5302 - Cntl panel & interle	ocks	(Misc Acce	essory Eq	uipment)									
Electric (kWh) Peak (kW)	0.4 0.1	0.3 0.1	0.4 0.1	0.4 0.1	0.4 0.1	0.4 0.1	2.5 0.1	0.4 0.1	0.3 0.1	0.5 0.1	0.4 0.1	0.3 0.1	6.7 0.1
Chiller 5 (Cooling Equipm	ent)												
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	113.9	0.0	0.0	0.0	0.0	0.0	113.9
Eq5221 - Condenser fan													
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	12.4	0.0	0.0	0.0	0.0	0.0	12.4
Eq5001 - Cnst vol chill wate	r pump	(Misc Ad	ccessory	Equipmen	it)								
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.9
Eq5011 - Chst Vol chd Wate	rpump	(IVIISC AC		=quipmen	t) 0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.4
Electric Peak (KW)	0.0	0.0	0.0	0.0	0.0	0.0	8.1	0.0	0.0	0.0	0.0	0.0	8.1

Alternative: 1 Palestra Building

_

					N	lonthly Co	onsumptio	n					
Equipment - Utility	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
Cpl 1: CHILLERS													
Eq5302 - Cntl panel & interl	ocks (Misc Acce	essory Equ	uipment)									
Electric Peak (kW)	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1
Hpl 1: BOILERS													
Boiler 1 (Heating Equipm	ent)												
Gas (kWh) Peak (kW)	150,923.0 975.6	139,198.3 975.6	163,219.6 975.6	93,904.9 975.6	39,733.7 938.9	38,581.3 963.1	10,992.3 340.0	19,381.0 491.4	26,485.3 912.1	78,093.5 969.4	126,214.7 975.6	130,800.2 975.6	1,017,527.9 975.6
Eq5020 - Heating water circ	; pump	(Misc Ac	cessory E	quipment	t)								
Electric (kWh) Peak (kW)	307,125.0 975.0	280,800.0 975.0	358,800.0 975.0	202,800.0 975.0	187,200.0 975.0	208,650.0 975.0	53,625.0 975.0	97,500.0 975.0	109,200.0 975.0	245,700.0 975.0	307,125.0 975.0	275,925.0 975.0	2,634,450.0 975.0
Eq5240 - Boiler forced draft	fan (N	lisc Acces	ssory Equ	ipment)									
Electric (kWh) Peak (kW)	860.1 2.7	786.4 2.7	1,004.8 2.7	567.9 2.7	524.2 2.7	584.3 2.7	150.2 2.7	273.0 2.7	305.8 2.7	688.1 2.7	860.1 2.7	772.7 2.7	7,377.5 2.7
Eq5307 - Boiler cntl panel &	inter	(Misc Acc	essory Ec	uipment)									
Electric (kWh) Peak (kW)	157.5 0.5	144.0 0.5	184.0 0.5	104.0 0.5	96.0 0.5	107.0 0.5	27.5 0.5	50.0 0.5	56.0 0.5	126.0 0.5	157.5 0.5	141.5 0.5	1,351.0 0.5
Boiler 2 (Heating Equipm	ent)												
Gas (kWh)	34,884.7	33,547.3	36,369.7	7,086.8	0.0	0.0	0.0	0.0	0.0	0.0	32,597.3	24,106.5	168,592.4
Peak (kW)	975.6	975.6	975.6	356.0	0.0	0.0	0.0	0.0	0.0	0.0	975.6	975.6	975.6
Eq5020 - Heating water circ	pump	(Misc Ac	cessory E	quipment	t)			0.0	0.0		40 750 0	00.075.0	044 705 0
Electric (kVVh) Peak (kW)	48,750.0 975.0	42,900.0 975.0	52,650.0 975.0	23,400.0 975.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	48,750.0 975.0	28,275.0 975.0	244,725.0 975.0
Eq5240 - Boiler forced draft	fan (N	lisc Acces	ssory Equ	ipment)									
Electric (kWh)	136.5	120.1	147.4	65.5	0.0	0.0	0.0	0.0	0.0	0.0	136.5	79.2	685.3
	2.7	2.7	2.7	2.7	0.0	0.0	0.0	0.0	0.0	0.0	2.7	2.7	2.7
Eq5307 - Boiler cnti panel &	inter	(IVIISC ACC	essory Ec	upment)	0.0	0.0	0.0	0.0	0.0	0.0	25.0	145	125 5
Peak (kW)	0.5	0.5	0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.5

Alternative: 1 Palestra Building

-

					N	Ionthly Co	onsumptic	n					
Equipment - Utility	Jan	Feb	Mar	Apr	Mav	June	Julv	Aua	Sept	Oct	Nov	Dec	Total
Hpl 1: BOILERS				_									
Boiler 3 (Heating Equipm	nent)												
Gas (kWh) Peak (kW)	14,936.6 975.6	14,530.4 975.6	13,203.2 502.7	0.0 0.0	4,037.2 975.6	4,234.1 586.3	50,941.6 975.6						
Eq5020 - Heating water circ	c pump	(Misc Ac	cessory Ed	quipment	:)								
Electric (kWh) Peak (kW)	24,375.0 975.0	21,450.0 975.0	26,325.0 975.0	0.0 0.0	7,800.0 975.0	22,425.0 975.0	102,375.0 975.0						
Eq5240 - Boiler forced draft	t fan (N	lisc Acces	ssory Equi	oment)									
Electric (kWh) Peak (kW)	68.3 2.7	60.1 2.7	73.7 2.7	0.0 0.0	21.8 2.7	62.8 2.7	286.7 2.7						
Eq5307 - Boiler cntl panel &	& inter	(Misc Acc	essory Eq	uipment)									
Electric (kWh) Peak (kW)	12.5 0.5	11.0 0.5	13.5 0.5	0.0 0.0	4.0 0.5	11.5 0.5	52.5 0.5						
Boiler 4 (Heating Equipm	nent)												
Gas (kWh) Peak (kW)	3,902.4 975.6	219.3 73.1	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	950.5 237.6	0.0 0.0	5,072.2 975.6
Eq5020 - Heating water circ	c pump	(Misc Ac	cessory Ed	quipment	:)								
Electric (kWh) Peak (kW)	3,900.0 975.0	2,925.0 975.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	3,900.0 975.0	0.0 0.0	10,725.0 975.0
Eq5240 - Boiler forced draft	t fan (N	lisc Acces	ssory Equi	oment)									
Electric (kWh) Peak (kW)	10.9 2.7	8.2 2.7	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	10.9 2.7	0.0 0.0	30.0 2.7
Eq5307 - Boiler cntl panel &	& inter	(Misc Acc	essory Eq	uipment)									
Electric (kWh) Peak (kW)	2.0 0.5	1.5 0.5	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	2.0 0.5	0.0 0.0	5.5 0.5

MONTHLY ENERGY CONSUMPTION

By ae

Alternative: 1 Palestra Building

	Monthly Energy Consumption													
Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Electric	;													
	On-Pk Cons. (kWh)	1,213,757	1,098,855	1,339,253	1,038,082	1,120,458	1,155,772	1,024,439	1,149,685	992,888	1,154,644	1,193,964	1,126,604	13,608,401
	On-Pk Demand (kW)	7,331	6,632	5,594	4,463	4,046	4,046	3,697	4,022	4,046	4,046	6,839	5,658	7,331
Gas														
	On-Pk Cons. (kWh)	204,647	187,495	212,792	100,992	39,734	38,581	10,992	19,381	26,485	78,093	163,800	159,141	1,242,134
	On-Pk Demand (kW)	3,902	3,000	2,454	1,332	939	963	340	491	912	969	3,164	2,537	3,902
Building Source	g Energy Consumpt Energy Consumptio	ion = on =		4,792 13,597	MJ/(m2 MJ/(m2	-year) -year)								

11,158 m2

Floor Area =

ENERGY CONSUMPTION SUMMARY

By ae

	Elect Cons. (kWh)	Gas Cons. (kwh)	Percent of Total Energy	Total Source Energy* (kWh/yr)
Primary heating				
Primary heating	9,914.1	1,242,134.0	8.4 %	1,337,254.8
Primary cooling				
Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal	914,194.2 122,701.5 73,749.0 908.8 1,111,553.4		6.2 % 0.8 % 0.5 % 0.0 % 7.5 %	2,742,856.8 368,141.3 221,269.0 2,726.7 3,334,993.5
Auxiliary				
Supply Fans Circ Pumps Base Utilities	8,652,317.0 3,000,608.5		58.3 % 20.2 %	25,959,544.0 9,002,725.0
Aux Subtotal	11,652,926.0		78.5 %	34,962,272.0
Lighting				
Lighting	322,887.8		2.2 %	968,760.1
Receptacle				
Receptacles	511,120.0		3.4 %	1,533,513.1
Heating plant load Base Utilities			0.0 %	0.0
Cogeneration				
Cogeneration			0.0 %	0.0
Totals				
Totals**	13,608,400.0	1,242,134.0	100.0 %	42,136,788.0

* Note: Resource Utilization factors are included in the Total Source Energy value. ** Note: This report can display a maximum of 6 utilities. If additional utilities are used, they will be included in the total.
MONTHLY UTILITY COSTS

By ae

Alternative: 1

					N	Aonthly U	tility Costs	s					
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Electric													
On-Pk Cons. (\$) Off-Pk Cons. (\$)	100,425 101	90,928 101	110,798 101	85,904 101	92,713 101	95,632 101	84,777 101	95,129 101	82,169 101	95,539 101	98,789 101	93,221 101	1,126,023 1,207
Total (\$):	100,525	91,028	110,898	86,005	92,814	95,733	84,877	95,230	82,269	95,639	98,889	93,322	1,127,230
Gas													
On-Pk Cons. (\$)	650	595	676	321	126	123	35	62	84	248	520	505	3,944
Monthly Total (\$):	101,175	91,623	111,574	86,326	92,940	95,855	84,912	95,291	82,353	95,887	99,410	93,827	1,131,174

ELECTRICAL PEAK CHECKSUMS

By ae

Alternative: 1 Palestra Building Yearly Time of Peak: 9(Hr) 1(Month)

Equipment Description		Electrical Demand (kw)	Percent of Total (%)
Cooling Equipment			
Chiller 2		123.28	2.34
	Sub total	123.28	2.34
Heating Equipment			
Boiler 1		978.23	18.56
Boiler 2		978.23	18.56
Boiler 3		978.23	18.56
Boiler 4		978.23	18.56
	Sub total	3,912.92	74.24
Fan Equipment			
SUMMATION OF FAN ELECTRICAL DEMAND		1,225.63	23.25
SUMMATION OF FAN ELECTRICAL DEMAND		1,325.00	25.14
SUMMATION OF FAN ELECTRICAL DEMAND		400.00	7.59
SUMMATION OF FAN ELECTRICAL DEMAND		55.00	1.04
SUMMATION OF FAN ELECTRICAL DEMAND		55.00	1.04
	Sub total	3,060.63	58.06
Miscellaneous			
Lights		93.63	1.78
Base Utilities		0.00	0.00
Misc Equipment		140.61	2.67
	Sub total	234.24	4.45
	Total	7,331.07	139

YEARLY CASH FLOW

By ae

Alternative:1Life Cycle Cost:28,947,790.94

Year	Utility Cost (\$)	Maint. Cost (\$)	Interest Cost (\$)	Principal Cost (\$)	Property Taxes (\$)	Insurance Cost (\$)	Revenue Penalty (\$)	Replace. Expenses (\$)	Deprec. Tax (\$)	Cash Flow Effect (\$)	Present Value (\$)
0	0	0	0	17,826,732	0	0	0	0	0	17,826,732	17,826,732
1	1,131,174	306,000	0	0	0	0	0	0	891,337	971,472	844,758
2	1,131,174	367,200	0	0	0	0	0	0	891,337	1,020,432	771,593
3	1,131,174	440,640	0	0	0	0	0	0	891,337	1,079,184	709,581
4	1,131,174	528,768	0	0	0	0	0	0	891,337	1,149,687	657,337
5	1,131,174	634,522	0	0	0	0	0	0	891,337	1,234,289	613,660
6	1,131,174	761,426	0	0	0	0	0	0	891,337	1,335,813	577,509
7	1,131,174	913,711	0	0	0	0	0	0	891,337	1,457,641	547,981
8	1,131,174	1,096,453	0	0	0	0	0	0	891,337	1,603,835	524,296
9	1,131,174	1,315,744	0	0	0	0	0	0	891,337	1,779,267	505,779
10	1,131,174	1,578,893	0	0	0	0	0	0	891,337	1,989,786	491,845
11	1,131,174	1,894,671	0	0	0	0	0	0	891,337	2,242,409	481,991
12	1,131,174	2,273,605	0	0	0	0	0	0	891,337	2,545,556	475,783
13	1,131,174	2,728,326	0	0	0	0	0	0	891,337	2,909,333	472,848
14	1,131,174	3,273,992	0	0	0	0	0	0	891,337	3,345,866	472,867
15	1,131,174	3,928,790	0	0	0	0	0	0	891,337	3,869,704	475,565
16	1,131,174	4,714,548	0	0	0	0	0	0	891,337	4,498,311	480,711
17	1,131,174	5,657,457	0	0	0	0	0	0	891,337	5,252,638	488,106
18	1,131,174	6,788,949	0	0	0	0	0	0	891,337	6,157,831	497,584
19	1,131,174	8,146,739	0	0	0	0	0	0	891,337	7,244,063	509,006
20	1,131,174	9,776,086	0	0	0	0	0	0	891,337	8,547,541	522,257

TRACE® 700 Economic Summary

Alternative 1 - - Palestra Building

By ae

Project Information

Weather file	Heathrow, England
Project Name	
Location	London, England
Building Owner	Balckfriars Investment
User	
Company	Penn State University
Comments	

Economic Summary

Alternative	Installed	First Year	Final Year	First Year	Final Year	Life Cycle
Number	Cost	Util.Cost	Util. Cost	Maint. Cost	Maint. Cost	Cost
1	17,436,428.00	1,131,174.34	1,131,174.34	306,000.00	9,776,086.14	28,581,917.36

Monthly Utility Costs per Utility

(1 alternative)

Equipment Energy Consumption by Alternative

	Elect Cons. (kWh)	Gas Cons. (kwh)	Percent of Total Energy	Total Source Energy* (kWh/yr)
Alternative: 1 - Palestra Buil	ding			
Primary heating	9,914.1	1,242,134.0	8.4%	1,337,254.8
Cooling Compressor	914,194.2		6.2%	2,742,856.8
Tower/Cond Fans	122,701.5		0.8%	368,141.3
Condenser Pump	73,749.0		0.5%	221,269.0
Other CLG Accessories	908.8		0.0%	2,726.7
Supply Fans	8,652,317.0		58.3%	25,959,544.0
Circ Pumps	3,000,608.5		20.2%	9,002,725.0
Lighting	322,887.8		2.2%	968,760.1
Totals	13,608,400.0	1,242,134.0	100.0%	42,136,788.0

* Note: Resource Utilization factors are included in the Total Source Energy value.

The Palestra Building London, England

DOAS and Gas Engine Driven Chiller Plant Energy Simulation

MONTHLY ENERGY CONSUMPTION

By ae

Alternative: 1 Palestra Building

						Month	nlv Enera	/ Consum	notion					
Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Electric	>													
	On-Pk Cons. (kWh) On-Pk Demand (kW)	1,134,612 7,225	1,027,392 6,526	1,259,927 5,250	961,879 4,360	1,043,115 3,943	1,080,925 3,943	928,984 3,592	1,070,529 3,923	918,740 3,946	1,077,373 3,943	1,117,477 6,734	1,048,064 5,553	12,669,017 7,225
Gas			000 400	007.045		105 075	404 407		450.000			004054	000 704	
	On-Pk Cons. (kWh)	329,670	300,139	337,815	222,079	165,275	161,187	177,088	156,263	148,989	203,775	284,854	283,721	2,770,855
	On-Pk Demand (kw)	4,068	3,166	2,998	1,675	1,114	1,143	152	671	1,092	1,522	3,330	2,705	4,068
Water														
	Cons. (kL)	1,508	1,367	1,537	1,486	1,610	1,564	2,003	1,792	1,614	1,585	1,478	1,516	19,061
Buildin Source Floor A	g Energy Consumpt Energy Consumption Trea =	ion = on =		4,982 13,207 11,158	MJ/(m2 MJ/(m2 m2	-year) -year)								

ENERGY CONSUMPTION SUMMARY

By ae

	Elect Cons. (kWh)	Gas Cons. (kwh)	Water Cons. (kL)	Percent of Total Energy	Total Source Energy* (kWh/yr)
Primary heating					
Primary heating	9,914.1	1,242,134.0		8.1 %	1,337,254.8
Primary cooling					
Cooling Compressor Tower/Cond Fans Condenser Pump Other CLG Accessories Cooling Subtotal	122,329.8 27,837.3 14,124.0 164,291.1	1,528,721.5 1,528,721.5	19,060.7 19,060.7	9.9 % 0.8 % 0.2 % 0.1 % 11.0 %	1,609,180.4 367,026.2 83,520.2 42,376.1 2,102,103.0
Auxiliary					
Supply Fans Circ Pumps Base Utilities Aux Subtotal	8,652,317.0 3,008,486.0 11,660,803.0			56.0 % 19.5 % 0.0 % 75.5 %	25,959,544.0 9,026,360.0 0.0 34,985,904.0
Lighting					
Lighting	322,887.8			2.1 %	968,760.1
Receptacle					
Receptacles	511,120.0			3.3 %	1,533,513.1
Heating plant load Base Utilities				0.0 %	0.0
Cogeneration Cogeneration				0.0 %	0.0
Totals					
Totals**	12,669,016.0	2,770,855.5	19,060.7	100.0 %	40,927,536.0

* Note: Resource Utilization factors are included in the Total Source Energy value.
** Note: This report can display a maximum of 6 utilities. If additional utilities are used, they will be included in the total.

MONTHLY UTILITY COSTS

By ae

Alternative: 1

					N	Aonthly U	tility Costs	;					
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Electric													
On-Pk Cons. (\$) Off-Pk Cons. (\$)	93,883 101	85,021 101	104,241 101	79,606 101	86,320 101	89,446 101	76,887 101	88,586 101	76,040 101	89,152 101	92,467 101	86,729 101	1,048,377 1,207
Total (\$):	93,984	85,121	104,342	79,706	86,421	89,546	76,987	88,687	76,141	89,252	92,567	86,830	1,049,584
Gas													
On-Pk Cons. (\$)	1,047	953	1,073	705	525	512	562	496	473	647	905	901	8,799
Water													
On-Pk Cons. (\$)	2,185	2,126	2,197	2,176	2,228	2,209	2,394	2,305	2,230	2,218	2,172	2,189	26,630
Monthly Total (\$):	97,216	88,200	107,612	82,588	89,174	92,267	79,944	91,488	78,844	92,117	95,644	89,920	1,085,013

ELECTRICAL PEAK CHECKSUMS

By ae

Alternative: 1 Palestra Building Yearly Time of Peak: 9(Hr) 1(Month)

Equipment Description		Electrical Demand (kw)	Percent of Total (%)
Cooling Equipment			
IC Chiller 1		16.83	0.33
IC Chiller 2		0.15	0.00
IC Chiller 3		0.15	0.00
IC Chiller 4		0.15	0.00
IC Chiller 5	_	0.15	0.00
	Sub total	17.43	0.33
Heating Equipment			
Boiler 1		978.23	18.93
Boiler 2		978.23	18.93
Boiler 4		978.23	18.93
Boiler 3		978.23	18.93
	Sub total	3,912.92	75.72
Fan Equipment			
SUMMATION OF FAN ELECTRICAL DEMAND		1,225.63	23.72
SUMMATION OF FAN ELECTRICAL DEMAND		1,325.00	25.64
SUMMATION OF FAN ELECTRICAL DEMAND		400.00	7.74
SUMMATION OF FAN ELECTRICAL DEMAND		55.00	1.06
SUMMATION OF FAN ELECTRICAL DEMAND		55.00	1.06
	Sub total	3,060.63	59.22
Miscellaneous			
Lights		93.63	1.81
Base Utilities		0.00	0.00
Misc Equipment		140.61	2.72
	Sub total	234.24	4.53

ELECTRICAL PEAK CHECKSUMS

By ae

Alternative: 1 Palestra Building Yearly Time of Peak: 9(Hr) 1(Month)

Equipment Description		Electrical Demand (kw)	Percent of Total (%)
	Total	7,225.22	140

YEARLY CASH FLOW

By ae

Alternative:1Life Cycle Cost:28,716,638.12

Year	Utility Cost (\$)	Maint. Cost (\$)	Interest Cost (\$)	Principal Cost (\$)	Property Taxes (\$)	Insurance Cost (\$)	Revenue Penalty (\$)	Replace. Expenses (\$)	Deprec. Tax (\$)	Cash Flow Effect (\$)	Present Value (\$)
0	0	0	0	17,826,732	0	0	0	0	0	17,826,732	17,826,732
1	1,085,013	306,000	0	0	0	0	0	0	891,337	934,543	812,646
2	1,085,013	367,200	0	0	0	0	0	0	891,337	983,503	743,669
3	1,085,013	440,640	0	0	0	0	0	0	891,337	1,042,255	685,300
4	1,085,013	528,768	0	0	0	0	0	0	891,337	1,112,757	636,223
5	1,085,013	634,522	0	0	0	0	0	0	891,337	1,197,360	595,300
6	1,085,013	761,426	0	0	0	0	0	0	891,337	1,298,884	561,543
7	1,085,013	913,711	0	0	0	0	0	0	891,337	1,420,712	534,098
8	1,085,013	1,096,453	0	0	0	0	0	0	891,337	1,566,905	512,224
9	1,085,013	1,315,744	0	0	0	0	0	0	891,337	1,742,338	495,281
10	1,085,013	1,578,893	0	0	0	0	0	0	891,337	1,952,857	482,716
11	1,085,013	1,894,671	0	0	0	0	0	0	891,337	2,205,480	474,053
12	1,085,013	2,273,605	0	0	0	0	0	0	891,337	2,508,627	468,880
13	1,085,013	2,728,326	0	0	0	0	0	0	891,337	2,872,404	466,846
14	1,085,013	3,273,992	0	0	0	0	0	0	891,337	3,308,936	467,648
15	1,085,013	3,928,790	0	0	0	0	0	0	891,337	3,832,775	471,027
16	1,085,013	4,714,548	0	0	0	0	0	0	891,337	4,461,381	476,765
17	1,085,013	5,657,457	0	0	0	0	0	0	891,337	5,215,709	484,674
18	1,085,013	6,788,949	0	0	0	0	0	0	891,337	6,120,902	494,600
19	1,085,013	8,146,739	0	0	0	0	0	0	891,337	7,207,134	506,412
20	1,085,013	9,776,086	0	0	0	0	0	0	891,337	8,510,612	520,001

TRACE® 700 Economic Summary

Alternative 1 - - Palestra Building

By ae

Project Information

Weather file	Heathrow, England
Project Name	
Location	London, England
Building Owner	Balckfriars Investment
User	
Company	Penn State University
Comments	

Economic Summary

Alternative	Installed	First Year	Final Year	First Year	Final Year	Life Cycle
Number	Cost	Util.Cost	Util. Cost	Maint. Cost	Maint. Cost	Cost
1	17,722,422.00	1,085,012.70	1,085,012.70	306,000.00	9,776,086.14	28,618,857.23

Monthly Utility Costs per Utility

Equipment Energy Consumption by Alternative

	Elect Cons. (kWh)	Gas Cons. (kwh)	Water Cons. (liters)	Percent of Total Energy	Total Source Energy* (kWh/yr)
Alternative: 1 - Palestra Buil	ding				
Primary heating	9,914.1	1,242,134.0		8.1%	1,337,254.8
Cooling Compressor		1,528,721.5		9.9%	1,609,180.4
Tower/Cond Fans	122,329.8		19,060.7	0.8%	367,026.2
Condenser Pump	27,837.3			0.2%	83,520.2
Other CLG Accessories	14,124.0			0.1%	42,376.1
Supply Fans	8,652,317.0			56.0%	25,959,544.0
Circ Pumps	3,008,486.0			19.5%	9,026,360.0
Lighting	322,887.8			2.1%	968,760.1
Totals	12,669,016.0	2,770,855.5	19,060.7	100.0%	40,927,536.0

* Note: Resource Utilization factors are included in the Total Source Energy value.

The Palestra Building London, England

APPENDIX E: Solar Energy Calculations

RETScreen[®] Solar Resource and System Load Calculation - Photovoltaic Project

Site Latitude and PV Array Orientation		Estimate	Notes/Range
Nearest location for weather data		London	See Weather Database
Latitude of project location	°N	51.5	-90.0 to 90.0
PV array tracking mode	-	Fixed	
Slope of PV array	0	30.0	0.0 to 90.0
Azimuth of PV array	0	0.0	0.0 to 180.0

Monthly Inputs

	Fraction of month used	Monthly average daily radiation on horizontal surface	Monthly average temperature	Monthly average daily radiation in plane of PV array	Monthly solar fraction
Month	(0 - 1)	(kWh/m²/d)	(°C)	(kWh/m²/d)	(%)
January	1.00	0.56	3.9	0.98	-
February	1.00	1.10	3.9	1.50	-
March	1.00	2.07	6.1	2.48	-
April	1.00	3.04	7.8	3.28	-
May	1.00	4.12	11.1	4.17	-
June	1.00	4.99	14.4	4.90	-
July	1.00	4.38	16.7	4.35	-
August	1.00	3.62	16.7	3.82	-
September	1.00	2.71	13.9	3.18	-
October	1.00	1.56	10.6	2.11	-
November	1.00	0.81	6.7	1.24	-
December	1.00	0.47	5.6	0.89	-
			Annual	Season of use	
Solar radiation (h	orizontal)	MWh/m²	0.90	0.90	
Solar radiation (ti	Ited surface)	MWh/m²	1.00	1.00	
Average tempera	ture	°C	9.8	9.8	

Load Characteristics		Estimate	
Application type	-	On-grid	
			Return to Energy Model sheet

Version 3.2

© Minister of Natural Resources Canada 1997 - 2005.

NRCan/CETC - Varennes

RETScreen[®] Cost Analysis - Photovoltaic Project

Type of analysis:	Pre-feasibility			Currency:		£		Cost references:	None
al Costs (Credits)	Unit	Quantity		Unit Cost		Amount F	Relative Costs	Quantity Range	Unit Cost R
easibility Study		-							
Other - Feasibility study	Cost	0	£	10,000	£	-		-	-
Sub-total :					£	-	0.0%		
evelopment									
Other - Development	Cost	0	£	15,000	£	-		-	-
Sub-total :					£	-	0.0%		
ngineering									
Other - Engineering	Cost	0	£	55,000	£	-		-	-
Sub-total :				_	£	-	0.0%		
nergy Equipment									
PV module(s)	kWp _	24.80	£	5,750	£	142,600		-	-
Transportation	project	0	£	-	£	-		-	-
Other - Energy equipment	Cost	0	£	-	£	-		-	-
Credit - Energy equipment	Credit	0	£	-	£	-		-	-
Sub-total :				_	£	142,600	50.0%		
alance of Equipment									
Module support structure	m ²	195.3	£	100	£	19,528		-	-
Inverter	kW AC	72.0	£	1,000	£	72,000		-	-
Other electrical equipment	kWp	24.80	£	-	£	-		-	-
System installation	kWp	24.80	£	1,500	£	37,200		-	-
Transportation	project	0	£	-	£	-		-	-
Other - Balance of equipment	Cost	0	£	-	£	-		-	-
Credit - Balance of equipment	Credit	0	£	-	£	-		-	-
Sub-total :				_	£	128,728	45.1%		
liscellaneous	-								
Training	p-h	6	£	65	£	390		-	-
Contingencies	%	5%	£	271,718	£	13,586		-	-
Sub-total :				_	£	13,976	4.9%		
al Costs - Total				-	£	285,303	100.0%		

Annu	lai Costs (Credits)	Unit	Quantity		Unit Cost		Amount	Relative Costs	Quantity Rang	e Unit Cost Range
08	&M					_				
	Property taxes/Insurance	project	0	£	-	£	-		-	-
	O&M labour	p-h	16	£	55	£	880		-	-
	Other - O&M	Cost	0	£	-	£	-		-	-
	Credit - O&M	Credit	0	£	-	£	-		-	-
	Contingencies	%	0%	£	880	£	-		-	-
	Sub-total :					£	880	100.0%		
Annu	ual Costs - Total					£	880	100.0%		

Perio	odic Costs (Credits)		Period		Unit Cost		Amount	Interval Range	Unit Cost Range
	Inverter Repair/Replacement	Cost	12 yr	£	50,000	£	50,000	-	-
				£	-	£	-	-	-
				£	-	£	-	-	-
	End of project life		-	£	-	£	-	Go to G	GHG Analysis sheet

Version 3.2

© Minister of Natural Resources Canada 1997 - 2005.

NRCan/CETC - Varennes

RETScreen[®] Energy Model - Photovoltaic Project

Training & Support

Site Conditions		Estimate	Notes/Range
Project name		Palestra Building	See Online Manual
Project location		London, England	
Nearest location for weather data		London	Complete SR&SL sheet
Latitude of project location	°N	51.5	-90.0 to 90.0
Annual solar radiation (tilted surface)	MWh/m ²	1.00	
Annual average temperature	°C	9.8	-20.0 to 30.0
System Characteristics		Estimate	Notes/Range
Application type	- r	On-grid	
Grid type	-	Isolated-grid	
PV energy absorption rate	%	95.0%	
PV Array	г	<u>.</u>	
PV module type	-	mono-Si	
PV module manufacturer / model #		BP Solar/ BP 5160 S	See Product Database
Nominal PV module efficiency	%	12.7%	4.0% to 15.0%
NOCT	°C	45	40 to 55
PV temperature coefficient	%/°C	0.40%	0.10% to 0.50%
Miscellaneous PV array losses	%	5.0%	0.0% to 20.0%
Nominal PV array power	kWp	24.80	
PV array area	m²	195.3	
Power Conditioning	-		
Average inverter efficiency	%	90%	80% to 95%
Suggested inverter (DC to AC) capacity	kW (AC)	22.3	
Inverter capacity	kW (AC)	72.0	
Miscellaneous power conditioning losses	%	0%	0% to 10%
Annual Energy Production (12.00 months a	nalvsed)	Estimate	Notes/Range
Specific vield	kWh/m ²	102.4	Notoo/Kango
Overall PV system efficiency	%	10.2%	
PV system capacity factor	%	9.2%	
Renewable energy collected	MWh	23,386	
Renewable energy delivered	MWh	19.995	
itenetiable energy deintered	kWh	19 995	

Version 3.2

Excess RE available

© Minister of Natural Resources Canada 1997 - 2005.

MWh

1.052

NRCan/CETC - Varennes

Complete Cost Analysis sheet

RETScreen[®] Financial Summary - Photovoltaic Project

Annual Energy Balance						Yearly C	Cash Flows		
Project name		Palestra Building				Year	Pre-tax	After-tax	Cumulative
Project location		London, England	Nominal PV array power	kWp	24.80	#	£	£	£
		-				0	(114,121)	(114,121)	(114,121)
Renewable energy delivered	MWh	19.995				1	15,681	15,681	(98,440)
Excess RE available	MWh	1.052				2	16,865	16,865	(81,575)
Firm RE capacity	kW	-				3	18,100	18,100	(63,475)
Application type		On-grid				4	19,388	19,388	(44,087)
· · · · ·						5	20,731	20,731	(23,357)
Financial Parameters						6	22,132	22,132	(1,225)
						7	23,593	23,593	22,368
Avoided cost of energy	£/kWh	0.858	Debt ratio	%	60.0%	8	25,119	25,119	47,487
RE production credit	£/kWh	0.750	Debt interest rate	%	8.5%	9	26,711	26,711	74,198
RE production credit duration	yr	25	Debt term	yr	25	10	28,372	28,372	102,570
RE credit escalation rate	%	2.0%				11	30,107	30,107	132,677
			Income tax analysis?	yes/no	No	12	(35,326)	(35,326)	97,351
			-	-		13	33,809	33,809	131,160
						14	35,785	35,785	166,945
Avoided cost of excess energy	£/kWh	-				15	37,848	37,848	204,792
						16	40,003	40,003	244,795
Energy cost escalation rate	%	5.0%				17	42,254	42,254	287,049
Inflation	%	2.5%				18	44,607	44,607	331,656
Discount rate	%	9.0%				19	47,065	47,065	378,721
Project life	vr	25				20	49.635	49.635	428,356
	,					21	52,320	52,320	480,676
Project Costs and Savings						22	55,128	55,128	535,803
						23	58,063	58,063	593,866
Initial Costs			Annual Costs and Debt			24	(29,305)	(29,305)	564,561
Feasibility study 0.0%	£	-	O&M	£	880	25	64,340	64,340	628,902
Development 0.0%	£	-	Fuel	£	-				
Engineering 0.0%	£	-	Debt payments - 25 yrs	£	16,726				
Energy equipment 50.0%	£	142,600	Annual Costs and Debt - Total	£	17,606				
Balance of equipment 45.1%	£	128,728							
Miscellaneous 4.9%	£	13,976	Annual Savings or Income						
Initial Costs - Total 100.0%	£	285,303	Energy savings/income	£	17,156				
Incentives/Grants	£	-	RE production credit income - 25 y	£	14,996				
			Annual Savings - Total	£	32,152				
Periodic Costs (Credits)									
Inverter Repair/Replacement	£	50,000	Schedule yr # 12,24						
	£	-							
	£	-							
End of project life -	£	-							
Financial Feasibility									
	0/	10.001	Calculate energy production cost?	yes/no	No				
Pre-tax IRR and ROI	%	18.3%							
After-tax IRR and ROI	%	18.3%							
Simple Payback	yr	9.1		•					
Year-to-positive cash flow	yr	6.1	Project equity	£	114,121				
Net Present Value - NPV	£	125,778	Project debt	£	171,182				
Annual Life Cycle Savings	£	12,805	Debt payments	£/yr	16,726				
Benefit-Cost (B-C) ratio	-	2.10	Debt service coverage	-	1.94				

© Minister of Natural Resources Canada 1997 - 2005.

RETScreen[®] Financial Summary - Photovoltaic Project

© Minister of Natural Resources Canada 1997 - 2005.

NRCan/CETC - Varennes

Solar PV Panel Specifications

_		
l	BP Solar BP 5160 S/L	
	Manufacturer	BP Solar
	Name	BP 5160 S/L
	Technical specifications	
	Nominal output	160 watt
	Max. panel voltage	1000 V
	Length	1596 mm
	Width	790 mm
	Height	0 mm
	Short circuit current	4.7 A
	Max. panel voltage	1000 V
	MPP voltage	36 V
	MPP current	4.44 A
	Temperature coefficent off-load voltage	-160 mV / °C
	Temperature coefficent MPP voltage	-160 mV / °C
		Quality of data 🛪 🛪
	Description	

The Palestra Building London, England

The Palestra Building London, England

APPENDIX F: Wind Energy Data

Technical Information Pack

Contents

Contents1				
Contents2				
1.	SW	IFT Rooftop Wind Energy System™3		
1	.1	Introduction3		
1	.2	Product Description		
2.	Pla	nning Policy5		
2	.1	Policy and legislative context5		
2	.2	Technology Overview5		
2	.3	Visual impact5		
2	.4	Noise6		
2	.5	Reflectivity and Reflection6		
2	.6	Electromagnetic Interference6		
2	.7	Bird Strike		
2	.8	Safety7		
2	.9	Versatility8		
3.	Inst	tallation summary9		
3	.1	Flat Roof Installation		
3	.2	Loadings11		
4.	Ele	ctrical & electronic controller connections12		
5.	Pei	formance		
6.	6. Compliance			
7. Technical Specification15				

1. SWIFT Rooftop Wind Energy System™

1.1 Introduction

This document is intended to provide guidance to engineers, architects and specifiers, when considering the installation of a SWIFT Rooftop Wind Energy System[™]. It is not intended as an Installation Manual and does not contain information suitable for the maintenance, installation or decommissioning of the SWIFT Rooftop Wind Energy System[™].

The system must ONLY be installed by trained and approved installers.

The information contained in this document is subject to periodic review and it is the specifiers' responsibility to ensure that the most recent version is utilised.

1.2 Product Description

As part of its mission to provide accessible renewable technologies, Renewable Devices Swift Turbines Ltd (RDSTL) has produced the world's first feasibly rooftop-mountable wind turbine, capable of providing a cost effective renewable energy source for domestic, community and industrial use. The SWIFT Rooftop Wind Energy System[™] is grid connected for "beyond the meter" generation.

The emphasis of the design process has focused on safety, reliability and ease of operation, alongside high performance of this innovative system. The turbine uses unique patented technologies, which allow:

- Wide ranging application
- Vibration-isolated rooftop mounting
- Quiet operation through acoustic suppression aerodynamics
- Safe, efficient & autonomous operation
- Visually appealing design
- Environmentally sustainable "harm neutral" design; allowing the SWIFT™ to become carbon and energy positive within four years.
- Sophisticated electronic control system

The SWIFT[™] turbine is mounted on a bespoke aluminium mast with a minimum blade-roof clearance of 0.5 metres. It is usually optimally mounted at the highest point of a roof in a position that benefits from maximum prevailing wind.

Figure 1 - Installed SWIFT Rooftop Wind Energy System™

To ensure minimal transmission of oscillations from turbine to building, the mounting brackets incorporate damping systems, designed to isolate at a wide range of frequencies. The patented ring diffuser around the rotor blades is designed to minimise turbine noise by preventing the creation of violent vortices at the blade tip. In addition the five-bladed design allows for a slower speed of rotation further reducing noise, making the SWIFT Rooftop Wind Energy System[™] the quietest wind system currently available.

The SWIFT[™] turbine has a unique over-power regulation mechanism to control rotation speed and maintain system integrity/safety in high winds. This consists of an innovative twin-vane progressive mechanical furling mechanism, coupled with a sophisticated electronic control system. This allows the optimum amount of power to be extracted from the turbine under varying wind and loading conditions, representing a step change in the accurate and safe control of small wind turbines.

In environmental terms, each unit of electricity generated from a SWIFT Rooftop Wind Energy SystemTM displaces one unit generated from fossil fuels, with the added benefit that the electricity is consumed on-site, thus negating losses from transmission. This can amount to a displacement of up to 1.4 tonnes of CO_2 per year – a significant environmental contribution.

2. Planning Policy

2.1 Policy and legislative context

The Scottish Executive's policy for renewable energy is described in PAN 45 and is set out in "NPPG6, Renewable Energy Developments". UK policy encourages the uptake of widespread micro generation including rooftop wind turbines such as the SWIFT Rooftop Wind Energy System[™] on domestic, educational and industrial premises. Indeed the Energy Minister Malcolm Wicks expressed his support during a speech at a Green Conference in his constituency in October 2005: "Imagine one day, every school with its own micro wind turbine and/or state of the art solar paneling. Imagine a clear display panel on such a school detailing how much carbon dioxide has been saved. Imagine how the science teacher, or those teaching citizenship responsibilities, could use such technology in their teaching..."

2.2 Technology Overview

The need for increased use of renewable energy is well established. Opportunities to generate 'bulk' electricity from renewable resources are currently being exploited throughout Europe, including the development of wind, hydro and other technologies.

It is recognised however, that in order to both meet objectives for CO_2 reductions and decrease our dependency on fossil fuels, domestic and commercial application of renewable technologies must be increased. Small-scale wind turbines have the potential to contribute towards this, providing electricity or hot water heating in both domestic and commercial applications. The associated CO_2 savings per turbine contribute to the UK's CO_2 emissions reduction targets and longer term cost savings per household or business can be significant. In addition wide deployment of turbines will lead to significant CO_2 savings in the longer term and will increase levels of 'embedded' generation.

2.3 Visual impact

Rooftop-mounted small wind turbines will be installed in a position to take advantage of higher wind speeds on the top of building structures (with the exception of 'building integrated' designs) and will be comparable in height to a large television aerial or chimney stack. The SWIFT[™] has been designed to comply with planning requirements and to complement the aesthetics of a building. As with satellite dishes, rooftop wind turbines are now becoming more widely accepted with increasing familiarity.

Applications should be assessed on a case-by-case basis, taking account of the existing building/structures, relative scale, nature of the setting and benefits of renewable energy generation. Computer generated photo montages of buildings with superimposed in-situ turbines can be used to assist the planning process. The colour and finish of the SWIFT Rooftop Wind Energy System[™] is designed to minimise visual impact and reflection of light.

Due to the fact that SWIFT[™] turbines will be located on or near existing commercial/domestic buildings, they will not add a significant new visual element to the local landscape. Unlike large wind farm installations, a full landscape and visual impact assessment is not required.

Free standing SWIFTs[™] mounted on masts (as opposed to being building mounted) should also be assessed on a case-by-case basis, in accordance with guidance contained in the main planning annex on wind energy and any additional structural/engineering issues.

2.4 Noise

The need to control noise emissions from a small-scale wind turbine is critical in domestic settings. In commercial/light industrial settings, where there are no residential properties in the immediate vicinity, the control of noise is important, but less critical. Detailed discussion of noise from wind turbines is contained in the main wind energy appendix to "PAN 45 (revised 2002): Renewable Energy Technologies", and wider discussion of planning and noise can be found in PAN 56.

In the absence of specific guidance on noise for small-scale wind turbines, they should meet the criteria identified by the DTI/ETSU report: 'The Assessment and Rating of noise from wind farms.' ¹. As a general rule, noise emitted from the turbine should not exceed 5dB(a) above background noise, with a fixed limit of 43dB(A) recommended for night time. Both day and night time noise limits can be increased to 45dB(A) where the owner of the property benefits directly from the operation of the turbine. The SWIFT Rooftop Wind Energy System[™] always emits less than 35dB(A,) across all wind speeds and therefore meets all legislative criteria.

The SWIFT[™] has been designed to comply with these regulations and there is no evidence to suggest that SWIFT Rooftop Wind Energy Systems[™] have any detrimental effect on wildlife.

2.5 Reflectivity and Reflection

To minimise the occurrence of 'flash' the SWIFT's[™] rotor is comprised of moulded carbon fibre, with a matt black surface. Matt is specifically chosen to avoid highlights or bright reflections from rotor surfaces during rotation, in either natural or artificial light. The black colour allows for minimal reflectivity (the ratio of the total amount of white light diffusely reflected by the surface to the amount falling on the surface) as it is extremely absorptive over a wide range of wavelengths.

In addition, the small diameter and likely location of the turbine ensures that reflection and reflectivity are not considered to be issues for the SWIFT Rooftop Wind Energy System[™].

2.6 Electromagnetic Interference

Aircraft, Military Low Flying, Aerodromes and technical sites:

Unlike large wind turbines and wind farms, small SWIFT[™] rooftop wind turbines are extremely unlikely to cause any detrimental effects on aviation and associated radar/navigation systems. They have been successfully installed near major airports without any negative effects on aviation.

Television / radio reception:

The SWIFT Rooftop Wind Energy System[™] meets all of the mandatory UK and EU Electro-Magnetic Compatibility (EMC) standards and does not affect television or radio reception.

Effect on mobile phone and telecommunications links:

The SWIFT Rooftop Wind Energy System[™] meets all of the requisite UK and EU Electro-Magnetic Compatibility (EMC) standards and does not effect mobile phone reception or fixed radio/microwave communications links.

¹ ETSU (1996) 'The Assessment and Rating of noise from wind farms.' DTI Noise Working Group, Energy Technology Support Unit.

Emission of electromagnetic radiation:

The SWIFT Rooftop Wind Energy System[™] has been fully EMC tested for electro-magnetic compatibility and exceeds all of the relevant UK and European standards (BS EN 61000-6-3: 2001 EMC Emissions and BS EN 61000-6-1: 2001 EMC Immunity, both of which are relevant for residential, commercial and light industry).

2.7 Bird Strike

The transparency of the SWIFT's[™] five rotating blades is much less than that of a window and this combined with the solid diffuser ensures that the turbine remains a clearly defined unit at all times. The small diameter of the SWIFT[™] rotor (~2m) makes it comparable as an obstacle to a rooftop television aerial, satellite dish or chimney stack. It is extremely unlikely therefore, that the location of a rooftop turbine will cause a significant increase in bird strike, beyond the rates already caused by existing buildings, windows and other such obstacles. During a twelve month in situ testing program on a single storey structure, not a single bird collision was recorded, neither have any been reported from turbines installed throughout the UK to date.

All accredited installers are advised to enquire as to the location of localised nesting areas and carry out subsequent installations with the minimum of disturbance, in line with regulations of the Wildlife and Countryside Act 1981 (WCA) and Countryside and Rights of Way Act 2000 (CROW Act - specifically in England and Wales).

The sixteen species of bats in the United Kingdom are virtually all classified as rare, vulnerable or endangered and as such both bats and their roosts are also protected by the afore mentioned WCA 1981 and CROW Act 2000; the regulations of which SWIFT™ installations strictly adhere to.

The RSPB views climate change as the most serious long-term threat to wildlife, both globally and in the UK. They subsequently support the deployment of wind turbines, both large and small, provided they are positioned sensitively with care and consideration shown for the local flora, fauna and wildlife.

2.8 Safety

Structural safety:

The SWIFT[™] has been designed and independently tested to ensure compliance with all mandatory product standards of the IEC 61400 and in particular, BS EN 61400-2: 1995 "Wind turbine generator systems - safety requirements".

The SWIFT Rooftop Wind Energy System[™] is designed to withstand extremely high winds and will typically shut down or 'furl out' in high wind speeds to protect the turbine from damage. The SWIFT[™] is designed (and has been independently verified) to meet and exceed all of the structural and safety constraints required by BS EN 61400-2 and all other UK safety standards for machines of this type. Electrical connections and/or an associated hot water system should be installed in accordance with appropriate building standards.

Electro-magnetic compatibility:

The SWIFT™ complies with BS EN 61000-6-3: 2001 and BS EN 61000-6-1: 2001 for domestic, commercial & industrial premises (power quality) effects including flicker and harmonic distortion.

Electrical safety:

The SWIFT Rooftop Wind Energy System[™] meets all of the electrical safety criteria set out in EN 50178 and the 16th Edition of the UK Wiring Regulations.

Grid monitoring:

The SWIFT Rooftop Wind Energy System[™] meets all of the grid-monitoring criteria set out in VDE 126, including Anti-Islanding Protection.

G83 compliance

The SWIFT Rooftop Wind Energy System[™] has been independently verified to ensure that it meets the G83 standard for the grid-connection of small-scale generators.

CE Marking

The SWIFT[™] Rooftop Wind Energy System[™] meets all appropriate European Directive legislation and is certified as CE compliant.

2.9 Versatility

The SWIFT Rooftop Wind Energy System[™] can be installed safely and simply into almost any building design. Single or multiple installations are both equally possible, as are installations on both residential and commercial properties.

Figure 2 – SWIFT™ installations

3. Installation summary

For information only, below are the steps required to achieve a safe and effective installation of the SWIFT Rooftop Wind Energy System™:

The system must ONLY be installed by trained and approved installers.

- Transportation and receipt of SWIFT Rooftop Wind Energy System[™].
- Preparation of walls and installation of mounting brackets.
- Installation of turbine mounting mast.
- Installation of electronic control system and grid-tie inverter.
- Installation of SWIFT™ turbine.
- Electrical connection of system.
- Testing.
- Commissioning.
- Completion of test certificates and commissioning documentation.

The SWIFT™ turbine is typically wall-mounted at the gable end of a building using the bespoke brackets supplied (figure 3). For information, the bracket spacing is as shown in figure 4, below.

Figure 3 - Correctly assembled & installed mast mounting brackets

The pitch of the holes required to mount there brackets to the wall or any reinforcing structure is 254.0mm.

In some circumstances it may be necessary to mount the SWIFT[™] wind turbine mounting mast onto the exterior, and through the overhanging eaves of a building. In this instance, sealing roof glands will be required. The mounting mast is located by sliding it up through these rubber glands.

Figure 5 - Typical installation of rubber roof gland seal.

3.1 Flat Roof Installation

The SWIFT Rooftop Wind Energy System[™] can also be installed on a flat roof. In this type of installation, the mounting mast described above is replaced with a bespoke mounting stand. The installation of this stand is site-specific and may require additional engineering work to be carried out in order to assess/ensure the structural suitability of the building.

The most common type of flat roof installation uses a bespoke stand, as shown in Figure 6.

Figure 6 - A typical flat roof installation configuration

The height of the flat roof mounting mast will vary as some sites may have a parapet. The flat roof mounting mast will be between 1.5m and 3.5m in height (from the base plate to the turbine hub height) and will typically be 2.0m.

For reference, the approximate mass of the SWIFT™ turbine components are as follows:

Mass of SWIFT™ turbine:	50 kg
Mass of mounting mast:	40 kg

3.2 Loadings

In all installation configurations, the wall mounting anchors or the flat roof stand will transmit the aerodynamic thrust from the rotor to the mounting structure. The amount of mechanical stress imposed on the anchors will depend on the height of the mounting mast – each installation is different. As a guide, when designing the mounting structure, the stress at the anchor points should be considered to be induced by an axial thrust (acting horizontally at the rotor hub height) of 7kN, plus the loads due to the mass of the turbine and mounting masts.

4. Electrical & electronic controller connections

The SWIFT Rooftop Wind Energy System[™] will be supplied with two electronic components: an electronic control system and a grid-tie inverter.

The electronic control system provides sophisticated electronic control of the turbine and includes a manual brake to allow for safe access near the installation etc. The grid-tie inverter is used to synchronise the power output to that of the consumers' electricity supply.

Figure 7 - Installed SWIFT™ Electronic Control System

5. Performance

The power curve for the SWIFT Rooftop Wind Energy System™ is shown in figure 9, below.

Figure 9 - SWIFT™ power curve

6. Compliance

The SWIFT Rooftop Wind Energy System[™] has been independently tested and certified to comply with the following standards and directives:

EN 61400-2: 1996

This standard relates to the safety of wind turbine generator systems and is applied as the SWIFT Rooftop Wind Energy System[™] has a swept rotor area of less than 40m² and generates at a voltage below 1,000 V, a.c. or 1,500 V, d.c. Mechanical components are designed and specified to meet this standard. Apart from EMC, described below, the specific electrical standard applied to satisfy EN 61400-2 is EN 60950.

EN 61400-24: 1996

Lightening protection of wind turbines.

EN 60950: 2000

The SWIFT™ turbine operates at safety extra low voltage (SELV), below the threshold voltage at which the low-voltage directive is normally applicable. However, EN 60950 is applied as a standard for safety aspects other than the risk of electric shock. These include flammability of component parts, temperature rise of user-accessible components, labelling and accompanying documents.

BS 5760-0:1986

Although BS 7671 deals with electrical installations, component parts of the SWIFT Rooftop Wind Energy System[™] are designed to facilitate its installation in accordance with this standard.

BS EN 61000-3-2 and BS EN 61000-3-3

Electro-magnetic compatibility limits for harmonic distortion & voltage fluctuation.

EN 50081-1

Electro-magnetic compatibility - domestic, commercial and light industrial premises.

EN 50081-2

Electro-magnetic compatibility - industrial premises.

EN 61000

Mains frequency (power quality) effects including flicker and harmonic distortion.

VDE 126

For the safety of Grid Monitoring (Including Anti-Islanding Protection).

IEE 16th Edition Wiring Regulations BS7671

For the safety of domestic electrical installations.

Electricity Association, Engineering Recommendation G59

Electricity Association (since 1 October 2003 superseded by Energy Networks Association). Grid connection of embedded generators at <5MW and <20kV.

Electricity Association, Engineering Recommendation G83/1

Electricity Association (since 1 October 2003 superseded by Energy Networks Association). Grid connection of embedded generators up to 16A per phase (supersedes G77).

BS 5080-1: 1993

The structural fixings used to attach the SWIFT™ system to a concrete substrate are tested in compliance with BS 5080-1: 1993.

7. Technical Specification

Rated power output: 1.5kW *	5-blade HAWT wind turbine
Approx. annual power supplied: 2000-3000kWh **	Rotor diameter 2.12m (6.5 feet)
1.4 Tonnes of CO ₂ reduction/annum ***	Product Life: 20 years
Planning Compliant Design	Mounting mast (BS1387, ISO65)
Acoustic emission < 35dB(A)	EMC directive compliant
Moulded carbon-fibre rotor (fail safe)	LVD directive complaint
EMI suppression technology	CE marked
Embedded electrical connection	Low maintenance
Direct Water Heating	Single or multiple installation

Compact design

Safety systems comply with International Standard IEC 1400-1 & BS EN 61400-2

Electricity Association Requirement G59, G77and G83 compliant

BS 7671 :16th Edition of the IEE Wiring Regulations

BS 5760-7: Reliability of Systems, Equipment and Components

The SWIFT Rooftop Wind Energy System[™] is mounted on a bespoke mast with a minimum bladeroof clearance of approximately 0.5 metres. It has a novel over-power regulation mechanism, which is totally passive and maintains its tip speed ratio across its entire operating envelope. The turbine has a novel twin-vane progressive furling mechanism which maintains the systems integrity and safety in high winds. It will operate automatically around the clock.

- * Rated wind speed: 12.5m/s
- ** Dependant on siting of turbine

*** Substituting end-user electricity with a single 1.5kW rooftop turbine at 30% utilization by CEDRL RETScreen® International).

Renewable Device: Swift Turbine: Itd Bush Estate Edinburgh EH26 0PH Tel: 44 (0) 131 535 3301 Fax: 44 (0) 131 535 3303 info@renewabledevices.com www.renewabledevices.com Private Limited Company No. 231922