Executive summary
This report covers the structural concepts used in designing Parkview at Bloomfield Station, a six story residential apartment and parking garage in Bloomfield, New Jersey. It encompasses gravity and lateral loading analysis checks.

Structural Overview
The structural system for Parkview at Bloomfield Station is a roof composed of light gage roof trusses spaced 2’ on center (oc) spanning front to back, panelized bearing light gage walls 4” and 6” wide continuously capped with a steel tube for load distribution purposes and a 16” deep D500 Hambro® floor system. The main lateral force resisting system for the building is a shear wall system provided by thin cross bracing straps attached to the light gage bearing walls. Finally, a 4” slab-on-grade foundation with 2’-6” continuous footings makes up most of the building’s foundation; however, larger 4’x4’ spread footings are utilized below column point loads. The precast garage is structurally separate, and it will not be considered in the design review.

Code Overview
The design of the structure was in accordance with the International Building Code (IBC) 2000 with New Jersey amendments, the New Jersey Uniform Construction Code, and local county and township requirements (there were no structural changes due to these amendments). The dead, live, and wind loads used in the design were proven to be adequate based on the loadings found in ASCE 7-98 for gravity and lateral load.

Calculation Overview
All spot checks performed on structural components in the building showed that the members were adequately sized for the calculated loads. The structural columns, the Hambro floor joists, the tube steel top plates, and the shear wall assemblies were all determined to be adequately sized for both ASD and LRFD loadings. It was also determined that seismic design controlled over wind in the lateral analysis. A more in depth analysis of the lateral loadings will be conducted in Tech report 3.

Minor discrepancies with design loads were found between code dead load, snow load and live load calculations; yet, it did not appear that this had any effect on any existing member sizes. Furthermore, story drift, while not expected to be a problem, was shown to be well below the allowable limits. Summaries of the load calculations are included in the following appendix.
Structural Overview

The structural system for Parkview at Bloomfield Station, from the top down, is a roof composed of light gage roof trusses spaced 2’ on center (oc) spanning front to back with some hip conditions incorporated, bearing on exterior and corridor walls, and girder trusses at hip roof conditions. The bearing walls are panelized bearing light gage steel stud walls 4” and 6” wide continuously capped with a steel tube, HSS 4x4x5/16” and HSS 6x4x5/16” respectively, for load distribution purposes. Beams and transfer beams also make up bearing points for the floor system, columns, and roof trusses. Interior non-bearing walls are light gage infill walls to be assembled after the main structure is built.

A 16” deep Hambro® D500™ floor system makes up the rigid floor diaphragm and consists of joists spaced at 4’ oc connected to a 3” concrete floor (3000psi). The 16” joists span the short direction of the living units (typically 30’) and Hambro RTC joists (top cord only joists) span the corridor (6’ typical).

The Hambro® D500™ composite floor joist system is an advanced up-to-date answer to elevated floor construction challenges. Combining Hambro steel joists with poured concrete, the system consists of hybrid concrete/steel T-beams running in one direction and an integrated continuous slab in the other. The bottom chord (Fy = 50,000psi min.) acts as a tension member in the concreting stage and during the service life of the floor. The web system tying top and bottom chords consist of bent rods (Fy = 44,000psi min.) and together resist vertical shear in a conventional truss manner. The patented 13 gage top chord (Fy = 50,000psi min.) acts as a compression member during
In the composite stage, the top chord includes an “S” shape that is embedded in the concrete and functions as a continuous shear connector. The concrete slab is supported during the pour by reusable plywood panel forms located between joists and braced by ROLLBARS® that are held in place by holes in the top chord of the joist. The concrete slab is reinforced with 6x6 welded wire mesh. The “S” on the top chord functions as a high chair for this wire mesh, developing the negative moment capacity in the for the composite system which behaves as a continuous one-way reinforced slab over the joists. The 4”-1¼” joist spacing is based on the standard dimensions of a plywood panel. This method of formwork replaces the need for metal form deck or scaffolding and creates a quicker erection time. The time savings and reuse of the plywood forms reduces the overall cost of the system.1

Along with the bearing light gage walls, there are two drive aisles that pass under the building. The upper floors in these sections are supported by a series of one or two story columns as part of a W-shape cross bracing system. All 6 floors have mainly the same floor plans with the exception of 4 locations: an entry/lobby unit, a 2 story drive aisle, a 1 story drive aisle, and a 1st floor exit route. In these areas transfer beams are utilized creating much larger beam sizes. A two story braced frame system is utilized in the 2 story drive aisle, consisting of 18 columns placed along bearing lines. There is a similar system at the one story drive aisle consisting of 12 columns. While this braced frame acts as the lateral force resisting system in these two unique areas, the main lateral force resisting system for the building is a shear wall system provided by thin steel cross bracing straps attached to the light gage shear walls.

The columns in the building are hollow steel shapes and vary in size depending on capacity needed and depth required to fit into the wall systems. The 30 columns in the drive aisles are W-shapes and have a much larger capacity. The

1 http://www.hambro.ws/
majority of the columns are HSS 3x3x1/4” and this size usually enlarges on the lower 3 floors with the exception of the 4 unique areas mentioned.

Finally, continuous 2’-6” wide footings make up most of the building bearing wall support under the 4” slab-on-grade foundation. However, larger spread footings (typically 4’x4’) are utilized below column point loads, and at the garage entrances. The precast garage's footings are separate from that of the main building.

<table>
<thead>
<tr>
<th>Concrete Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type or location of concrete</td>
</tr>
<tr>
<td>Foundations not exposed to weather and interior slabs-on-grade</td>
</tr>
<tr>
<td>Driveways, patios, porches, steps and other flatwork exposed to the weather</td>
</tr>
</tbody>
</table>

The precast garage at the center of the building consists of precast double-T planks spanning a maximum of 60’. These planks bear on 10” precast wall components, load bearing CMU stair walls, or precast spandrel beams. The spandrel beams are picked up by 24”x32” columns located around the perimeter of the parking garage. The vertical elements transfer their load to pile caps encompassing 100 ton H piles, drilled to bedrock (ranging from 42-53 ft below the slab-on-grade surface). The precast garage is structurally separated from the main building by a 4” air gap and by 4” expansion joints at building connection points and will not be considered in this building analysis.

Design Theory

The design theory used in the analysis of Parkview at Bloomfield Station was Allowable Stress Design (ASD). The beam calculations were designed to American Institute of Steel Construction (AISC) 9th Edition ~ ASD and designed using the Enercalc® program (ASD based). The tube steel columns were also designed based on the column tables in chapter 3 of the AISC 9th Edition ~ ASD.

My spot check of the building is based on Load and Resistance Factor Design (LRFD) and I used design aids from the American Institute of Steel Construction (AISC) 3rd Edition ~ LRFD manual. The difference in design theory (LRFD v. ASD) will change the overall loads calculated as compared to the ASD design calculations, but should yield equal sized members or members that are slightly smaller than those designed. In some unique situations, however, the member sizes might increase due to the use of LRFD design theory. One such area will be in the corridor areas because of the 1.6 LL factor’s contribution on the 100psf live load; the load in this area grows disproportionally with the factor of safety from ASD.
Code References

The design of the structure was in accordance with the International Building Code (IBC) 2000 with New Jersey amendments, the New Jersey Uniform Construction Code, and local county and township requirements. IBC 2000 used design loads specified in ASCE 7 for both gravity and lateral loadings. Furthermore, the New Jersey amendments to IBC 2000 did not create any changes to the structural code requirements of IBC 2000, but focused more on non-structural issues throughout the code. In addition, no changes to the structural design requirements were added by the NJ Uniform Construction Code or any of the local requirements.

Gravity Design loads

<table>
<thead>
<tr>
<th>Location</th>
<th>Live Load</th>
<th>Dead Load</th>
<th>Total Load</th>
<th>Wall Type</th>
<th>Live Load</th>
<th>Dead Load</th>
<th>Wall Height</th>
<th>Total Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>40psf</td>
<td>17psf</td>
<td>57psf</td>
<td>Single Light Gage Wall</td>
<td>-</td>
<td>11psf</td>
<td>9'-6"</td>
<td>105plf</td>
</tr>
<tr>
<td></td>
<td>40psf</td>
<td>45psf</td>
<td>85psf</td>
<td>Double Light Gage Wall</td>
<td>-</td>
<td>15psf</td>
<td>9'-6"</td>
<td>143plf</td>
</tr>
<tr>
<td>Corridor</td>
<td>100psf</td>
<td>45psf</td>
<td>145psf</td>
<td>8" CMU Wall</td>
<td>-</td>
<td>60psf</td>
<td>9'-6"</td>
<td>570plf</td>
</tr>
<tr>
<td>Storage</td>
<td>125psf</td>
<td>45psf</td>
<td>170psf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The live loads used in the spot check were taken from ASCE-7 Table 4-1, and correspond with the design loads. The only exception is the roof loading where my calculations showed that 20psf should have been the design load, but the original designers added 10psf on the top and bottom chord of the roof trusses. The additional 10psf on the top chord was added to account for snow drift and the 10psf added to the bottom chord accounts for any light attic storage.

The design dead loads listed above differed from my dead loads calculated with ASCE-7 Table 3-1. The dead load including superimposed loads from floor finishes, ceiling materials, mechanical equipment, and partition walls in addition to the self weight came out to be 57psf, 12psf greater than that used in the design. It was seen in the spot check calculations that this difference did not lead to any changes from the initial sizes, and that the 65psf dead load used in the Hambro calculation was more than adequate for the design.

Since Bloomfield, NJ is located at the center of an east coast seismic epicenter, seismic has a much larger effect on the lateral analysis. Similarly, Bloomfield is located near the coast line, so it also experiences greater wind speeds (basic wind speed of 110 mph). It was determined that the effects of seismic loading, while close to the loading incurred by wind, created larger forces to be resisted in the shear walls.
The floor framing throughout the building spans from the exterior wall to the corridor wall (typically 30’-0” ± 1’-0”), and then framing in the corridor, Hambro RTC, which is capable of holding the 100psf live load for spans up to 8’-0”, spans from the corridor wall to the exterior corridor wall (Typically 6’). The floor framing acts as simple span beams back to back through the unit and corridor, but the concrete flooring is continuous indefinitely in the direction perpendicular to the joists. This creates composite action and continuity between the units.

Floor Framing Check

As seen in the typical unit B1-1, the 30’-0” spacing falls below the 33’-6” max allowed for 16” Hambro joists with 3” concrete slab thickness calculated on the previous page. At the corner unit B16-3, the span is 9” longer but still fulfills the 33’-6” max requirement. The loads used in Hambro’s design program exceed the actual 57psf DL and 40psf LL, further adding to the confidence of this floor system design.
Column Comparisons

The columns were designed under ASD loading cases; however, this check was performed using the LRFD 3rd Edition design manual.

<table>
<thead>
<tr>
<th>Design Sizes</th>
<th>Tube Steel columns</th>
<th>Fy = 46ksi ~ ASD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Size</td>
<td>Capacity</td>
<td>Column Size</td>
</tr>
<tr>
<td>HSS 3x3x1/4”</td>
<td>35.5 k</td>
<td>HSS 6x3x1/4”</td>
</tr>
<tr>
<td>HSS 4x4x1/4”</td>
<td>67.5 k</td>
<td>HSS 7x3x3/8”</td>
</tr>
<tr>
<td>HSS 5x5x1/4”</td>
<td>98.0 k</td>
<td></td>
</tr>
<tr>
<td>HSS 5x5x1/2”</td>
<td>173.5 k</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>My Sizes</th>
<th>Tube Steel columns</th>
<th>Fy = 46ksi ~ LRFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Size</td>
<td>Capacity</td>
<td>Column Size</td>
</tr>
<tr>
<td>HSS 3x3x1/4”</td>
<td>47.0 k</td>
<td>HSS 6x3x1/4”</td>
</tr>
<tr>
<td>HSS 4x4x1/4”</td>
<td>90.2 k</td>
<td>HSS 7x3x3/8”</td>
</tr>
<tr>
<td>HSS 5x5x1/4”</td>
<td>133.0 k</td>
<td></td>
</tr>
<tr>
<td>HSS 5x5x1/2”</td>
<td>236.5 k</td>
<td></td>
</tr>
</tbody>
</table>

It was determined that the column LRFD capacities are all ≈ 1.3 times the ASD values. I then checked to see if the design is the same for both code sources; I checked what the loads change by:

\[
\text{Load Increase Factor} \approx 0.9 \times \frac{(1.2 \times 45 + 1.6 \times 40)}{(45 + 40)} = 1.25 < 1.3
\]

Therefore, the load combinations and phi factors caused increases by about the same amount as the conversion from ASD to LRFD capacity allowances. This means that the column design yields the same sizes or slightly smaller sizes with both ASD and LRFD methods, as should be the case.

Top Plates

Checking the HSS 4”x4”x5/16” distribution top plate using LRFD

Wall opening = 9’-0”
\[V_{allow} = 101.8 \text{ k} > 8.16 \text{ k actual}\]
\[M_{allow} = 19.3 \text{ `k} > 18.33 \text{ `k actual}\]
Actual \(\Delta_{LL} = 0.076” < L/360 = 0.3”\)
Actual \(\Delta_{TL} = 0.166” < L/180 = 0.6”\)

Since all cases check out to be ok, I have concluded that the HSS 4”x4”x5/16” and by inspection the HSS 6”x4”x5/16” top plates are accurately designed for the loads that they will be exposed to.

W14x22 Continuous Beam

The beam was checked using Enercalc software and was shown to pass under all cases including pattern loading. See Appendix sheet 2c.
Snow Load

\[Ps = Cs \times Pf = 0.9 \times 21 \text{psf} = 18.9 \text{psf} \leq 20 \times Is = 20 \text{psf} \]
as compared to a sloped roof design load of 21psf.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Result</th>
<th>Code Reference (ASCE 7 – 98)</th>
<th>Design Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ps = Cs \times Pf = 0.9 \times 21 \text{psf} =)</td>
<td>18.9 \leq 20 \times Is \Rightarrow 20 \text{psf}</td>
<td>ASCE 7.3</td>
<td>21psf</td>
</tr>
<tr>
<td>(Pf = 0.7 \times Ce \times Ct \times Is)</td>
<td>21psf</td>
<td>Eq. 7-1</td>
<td>21psf</td>
</tr>
<tr>
<td>Ce =</td>
<td>1.0</td>
<td>Table 7-2</td>
<td>0.8</td>
</tr>
<tr>
<td>Ct =</td>
<td>1.0</td>
<td>Table 7-3</td>
<td>1.1</td>
</tr>
<tr>
<td>Is =</td>
<td>1.0</td>
<td>Table 7-4</td>
<td>1.0</td>
</tr>
<tr>
<td>Roof slope (8:12)=</td>
<td>37.7°</td>
<td>Category II</td>
<td>37.7°</td>
</tr>
<tr>
<td>Pg =</td>
<td>30psf</td>
<td>Fig. 7-1</td>
<td>30psf</td>
</tr>
<tr>
<td>Cs =</td>
<td>0.9</td>
<td>Fig. 7-2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Design Values

SNOW LOADS:	GROUND SNOW LOAD (Pg) = 30 PSF
ASCE 7-98	EXPOSURE FACTOR (Ce) = 0.8 (TABLE 7-2, TERRAIN D)
	THERMAL FACTOR (Ct) = 1.1 (TABLE 7-3)
	IMPORTANCE FACTOR (I) = 1.00 (TABLE 7-4)
	ROOF SLOPE FACTOR (Is) = 1.0 WITH ROOF PITCH < 8:12 (FIG 7-2)
	FLAT ROOF SNOW LOAD (Pf=0.7 Ce Ct \times Pg) = 21 PSF
	SLOPED ROOF SNOW LOAD (Ps=Cs Pf) = 21 PSF

My calculated load was 20psf as compared to the 21psf the building designed utilized. The difference in calculations were not major differences, but it appeared that the designers used a Ct of 1.1 assuming “structures kept just above freezing and others with cold, ventilated roofs in which thermal resistance between the ventilated space and the heated space exceeds 25 F*h*ft^2/Btu.” I obtained my value of 1.0 for Ct using “all structures except as indicated below.” This difference accounts for the difference in the Cs factor because this value is based on Ct.

The value for Ce that I used in my calculations was based on my selection of a terrain category B, partially exposed site. The design value used was based on terrain category D, fully exposed site. The value used in the actual design appears to be based on the most conservative but still reasonable values found in the code. Even with the use of these values the total design snow load only has a difference of 1psf from the 20psf that I calculated. However, the live load listed for the roof loading was 40psf accounting for 10psf of drift and 10psf for light attic loading.

2 ASCE 7 Ch 7
Wind Analysis

Building information
N-S direction: Shear walls
E-W direction: Shear walls
Locations: Bloomfield, NJ
Exposure: B
Building use: Residential

24.7’

6 stories
@ 10’-8” = 64’-0”

2 units @ 38’ = 76’

Section @ Shear Wall A-A

Wind DIRECTION: NORTH-SOUTH (Y-DIR) # Stories: 6

Wind SPEED: 110.00 MPH
L : 36.000 ft
FREQ n1: 1.9300 Hz
ALPHA= 7
Base h: 0.000 ft
EXP. CAT: B
Mean Roof h : 76.400 ft
Zg (ft)= 1200 ft
ALPHA= 7
G= 0.8
Wind Load to be applied
at Yo: 0.000 ft

IMPORT. FACTOR: 1.00
DIRECT. FACT. Kd: 0.85
Kd = 0.915
Kh = 0.915
Gf= 0.800

TOPOG. FACT Kzt: 1.00
L/B = 0.947
Kh = 0.915

Cp (wind): 0.8
Cp (leew): -0.50

Kzt = 1.00 (see sht. Kzt)

Wind Load

FLOOR FL TO FL TRIB. Exp Area FLOOR Exposed FLOOR FLOOR FLOOR FLOOR Case 1 Case 2
LEVEL I.D. HEIGHT WIDTH Yo ELEV ELEV PRESS. FORCE SHEAR MOMENT Mz Mz
Σ WIND WIND WIND SHEAR SHEAR SHEAR Moment Moment
(psf) (Kips) (Kips) (Kips) (Kip-ft) (Kip-ft)

1 1 10.667 38.000 0.000 10.67 10.67 0.575 19.32 7.6 48.5 1,757.3 0.0 9.3 -9.3
2 2 10.667 38.000 0.000 21.33 21.33 0.636 20.35 6.2 40.7 1,239.7 0.0 9.8 -9.8
3 3 10.667 38.000 0.000 32.00 32.00 0.714 21.66 8.8 32.5 605.5 0.0 10.4 -10.4
4 4 10.667 38.000 0.000 42.67 42.67 0.775 22.99 9.2 23.7 459.4 0.0 11.3 -11.3
5 5 10.667 38.000 0.000 53.34 53.34 0.826 23.55 9.5 14.5 206.9 0.0 11.3 -11.3
6 6 10.667 38.000 0.000 64.00 64.00 0.870 24.30 4.9 4.9 52.5 0.0 5.8 -5.8

3 I have not yet learned all the aspects of this code; see Tech 3 for a more complete analysis of the building’s wind and dynamic seismic loading.

The loading on the diagram (right) represents the loading on a single shear wall in the building. These loads are compared with those calculated in the following seismic section, and the overall larger of the 2 loading sets will be used in the design of the shear wall system. This was initially how the design of the system was carried out. The design specified exposure class D which is conservative, and does not correspond with the recommendations of the Geo-tech report for exposure B. This makes the design values more conservative and is the only area of difference.
Seismic Analysis

There are 18 shear walls in the N-S direction and 20 shear walls in the E-W direction (see next page for shear wall locations). Therefore, the critical direction is the N-S direction, and an individual shear wall needs to have 1/18th the capacity of the total floor shear, resulting in the loading shown on the diagram of section A-A. In reality there may be some walls that carry more than 1/18th of the total floor shear due to distribution, but this will be ignored until Tech 3. With the individual shear wall loads computed, it is evident that seismic loading will control the design of the shear walls (60.4 k seismic > 48.5 k wind).

Design loads

<table>
<thead>
<tr>
<th>Floor</th>
<th>W_{h,b} \cdot 1.039</th>
<th>Cvx</th>
<th>Fx=Cvx \cdot Vb</th>
<th>Fx/18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>63,339.6</td>
<td>0.110</td>
<td>119.7 k</td>
<td>6.7 k</td>
</tr>
<tr>
<td>5</td>
<td>172,697.4</td>
<td>0.301</td>
<td>327.5 k</td>
<td>18.2 k</td>
</tr>
<tr>
<td>4</td>
<td>136,960.8</td>
<td>0.239</td>
<td>260.0 k</td>
<td>14.4 k</td>
</tr>
<tr>
<td>3</td>
<td>101,574.6</td>
<td>0.177</td>
<td>192.6 k</td>
<td>10.7 k</td>
</tr>
<tr>
<td>2</td>
<td>66,654.0</td>
<td>0.116</td>
<td>126.2 k</td>
<td>7.0 k</td>
</tr>
<tr>
<td>1</td>
<td>32,438.1</td>
<td>0.057</td>
<td>62.0 k</td>
<td>3.4 k</td>
</tr>
<tr>
<td>sum</td>
<td>573,664.5</td>
<td>1.000</td>
<td>1088.0 k</td>
<td>60.4 k</td>
</tr>
</tbody>
</table>

V_b=1088 kips

Building Dimensions

Total Shear on Building Section

Section @ Shear Wall A-A

Lateral Load Overview

WIND LOAD: WIND LOADS ARE EVALUATED IN ACCORDANCE WITH PROVISIONS OF SECTION 1609 OF THE 2000 INTERNATIONAL BUILDING CODE BASED ON THE FOLLOWING PARAMETERS:
- BASIC WIND SPEED 110 MPH (5-SECOND GUST WIND SPEED)
- WIND LOAD IMPORTANCE FACTOR: 1.0
- WIND EXPOSURE CATEGORY: EXPOSURE D

EARTHQUAKE LOADS: EARTHQUAKE LOADS ARE EVALUATED IN ACCORDANCE WITH PROVISIONS OF SECTION 1615 OF THE 2000 INTERNATIONAL BUILDING CODE BASED ON THE FOLLOWING PARAMETERS:
- MAX. EARTHQUAKE SPECTRAL RESPONSE ACCELERATION AT SHORT PERIODS, S_{s} = 0.43g
- MAX. EARTHQUAKE SPECTRAL RESPONSE ACCELERATION AT 1 SECOND, S_{1} = 0.095g
- SITE CLASS = F
- EARTHQUAKE LOAD IMPORTANCE FACTOR: 1.00
- MAX. CONSIDERED EARTHQUAKE SPECTRAL RESPONSE ACCELERATION AT SHORT PERIODS, S_{ms} = 0.77g
- MAX. CONSIDERED EARTHQUAKE SPECTRAL RESPONSE ACCELERATION AT 1 SECOND, S_{M1} = 0.20g
A converted tensile capacity based on the allowable axial tension of a 12 Gage 12” wide shear cross bracing strap raised at a 17° angle from the floor is used to check the shear straps at the lowest level. The strap allows a tensile load of $P_{allow} = As*F_y*\cos \theta = (12”*0.1017)*50\text{ksi} * \cos 17^\circ = 58.3\text{ k} < 60.4\text{ k}$ therefore it is not ok for the lowest floor but ok for the 2nd floor. An additional 4” strap will need to be added at the lowest floor making $P_{allow} = [(12”+4’’)*0.1017]*50\text{ksi} * \cos 17^\circ = 68.1\text{ k} \geq 60.4\text{ k}$ which is now ok.

Using the same approach, the shear cross bracing strap sizes for the other floors is determined and is listed on the chart above. These sizes are similar to the design sizes for the shear walls, but generally smaller. The difference is accounted for in the fact that more walls were used as shear walls in the design and also a dynamic analysis was conducted for the seismic design rather than the simplified procedure I used.

Story Drift (deflection at the base floor):

$$h/L=9.5’/30’= 0.316$$

$$K = (Et) /[4(h/L)^3+2.78(h/L)] = 129890 \text{ k/in}$$

$$I = t*L^3/12 = [4.5” * (30’*12)^3]/12 = 17496000 \text{ in}^4$$

$$\Delta = Ph^3 + 2.78Ph = 60.4k * (9.5’*12)^3 + 2.78 * 60.4k*9.5’*12 = 0.00046''$$

$$3EI \quad A_sE \quad 3*290000ksi*I \quad 4.5’’*30’*12*29000ksi$$

$$H/400 = 9.5’*12/400 = 0.285” > 0.00046” \text{ therefore ok}$$

4 I have not yet learned all the aspects of this code; see Tech 3 for a more complete analysis of the building’s wind and dynamic seismic loading.
Spot Check Overview

All spot checks performed on structural components in the building showed that the members were adequately sized for the calculated loads. The structural columns, the Hambro floor joists, the tube steel top plates, and the shear wall assemblies were all determined to be adequately sized for both ASD and LRFD loadings. It was also determined that seismic design controlled over wind in the lateral analysis. A more in depth analysis of the lateral loadings will be conducted in Tech report 3.

While minor discrepancies with the design loads were found between my dead load, snow load and live load calculations, it did not appear that this had any effect on any existing member size. Furthermore, story drift, while not expected to be a problem, was shown to be well below the allowable limits. Summaries of the load calculations are included in the following appendix.
Appendix

Table of Contents:

1. Drawing Details:
 a. Foundation Details p. A 1
 b. Exterior Wall Details p. A 2
 c. Unit Separation Wall Details p. A 3
 d. Misc. Exterior Wall Details p. A 4
 e. Unique Wall Details p. A 5

2. Gravity Load Calculation:
 a. Gravity Load Calculation p. A 6
 b. Hand Calculation ~ Top Plate HSS p. A 7
 c. Hambro® Output p. A 8
 d. Enercalc® Calculation p. A 9

3. Snow Load Calculation:

4. Wind Load Calculations:
 b. Excel Spreadsheet p. A 12

5. Seismic Load Calculations:
 b. Hand Calculation ~Seismic (cont.) & Story Drift p. A 14
1a. Foundation Details

ATTACHMENT OPTION 1

ACCESSION TO AGGREGATE LANDING FRAME (Typ.) (12) 6"x6" PLY W/ PLY AND 6"x6" BRIDGE BARS IN 3 SOLID CELLS AT CORNERS. PROVIDE HORIZONTAL JOINT (GUN) EVERY OTHER COURSE.

ATTACHMENT OPTION 2

FIGURE 8-1/2" TONGUE & GROOVE AT ALL STAIR LANDING LOCATIONS. COORDINATE LANDING ELEVATIONS W/ ARCH PLAN.

NOTE 5

5. ALL IMAGES SHOWN ARE REPRESENTATIVE. ONLY REFER TO ARCHITECTURAL DRAWINGS FOR DIMENSIONS. STAIR CONFIGURATION TO PROVIDE SITE SPECIFIC AND IN-DEPTH DETAILS OF STAIRS FOR STRUCTURAL ENGINEERS APPROVAL. PROVIDE CALCULATIONS SIGNED AND SEALED BY A REGISTERED ENGINEER.

NOTE 6

6. ALL STAIRS TO HAVE FULL FRAMING CONNECTION AT ALL FLOODS AND BENDS.

NOTE 6

7. STAIR TOWER RAILED SHALL BE CMU W/ 3/8" STUCCO CONTENTS (12") HEAT PWISE AND 2 1/2" BARS IN 3 SOLID CELLS AT CORNERS. PROVIDE HORIZONTAL JOINT (GUN) EVERY OTHER COURSE.

TYPICAL CMU STAIR TOWER

SCALE 3/4" = 1'-0"

W/ INTERMEDIATE LANDING

SECTION AT LIGHT GAGE WALL

SCALE 3/4" = 1'-0"

ATTACH 12 1" GALVANIZED SHOES TO CONCRETE WITH 2" COMPOUND AT 6" ON CENTER.

ATTACH 1" GAGE TRACKS TO SOLID WALL WITH 1" 2X6s.

ATTACH 12" X 2" W/ 12" CONCRETE WALL.

ATTACH 1" WALL WITH 12" X 2" GAGE TRACKS.

ATTACH 1" WALL WITH 12" X 2" GAGE TRACKS.

ATTACH 1" WALL WITH 12" X 2" GAGE TRACKS.

ATTACH 1" WALL WITH 12" X 2" GAGE TRACKS.

2" 1/2" CONCRETE SLAB W/ 6" B, 1 1/2" 4x4 W/ 6 MS POLY VAPOR.

4" CONCRETE SLAB W/ 6" B, 1 1/2" 4x4 W/ 6 MS POLY VAPOR BARRIER ON 6" DRAPE.

S5.2

S2.1
1c. Unit Separation Wall Details

[Diagram of Unit Separation Wall Details]

- Shear walls by light-gage design
- Continuous concrete through air space
- Hammered floor system, see manufacturer's plans & details
- Continuous horizontal load distribution note
- Top track of stud wall

[Section @ Unit Separation Wall]

- Contractor to submit light-gage engineer design for attachment of wall track to hammerd concrete deck (Trip)
- Hammered floor system, see plans

[Section @ Unit Separation Wall]

- Contractor to submit light-gage engineer design for attachment of wall track to hammerd concrete deck (Trip)
- Hammered floor system, see plans

[Section @ Interior Wall & Corridors]

- Contractor to submit light-gage engineer design for attachment of wall track to hammerd concrete deck (Trip)
- Hammered floor system, see plans

[Section @ Interior Wall & Corridors]

- Contractor to submit light-gage engineer design for attachment of wall track to hammerd concrete deck (Trip)
- Hammered floor system, see plans

[Section @ Steel Beam]

- Steel beam, see plan for size

[Section @ Steel Beam]

- Steel beam, see plan for size
2a. Gravity Load Calculation

ASCE 7, Table 4-1

LL = corridor	100 psf
LL = residential	40 psf
LL = balcony	60 psf

ASCE 7-98, Table 3-1

\[DL = \text{Conc. floor} = 3'' \left(\frac{\text{in}}{12''} \right) (150 \text{pcf}) = 37.5 \text{psf} \]

\[DL = \text{finishes: carpet (85%)} = 3 \text{psf} \]
\[DL = \text{finishes: ceramic tile (10%)} = 16 \text{psf} \]
\[DL = \text{finishes: wood floor (5%)} = 4 \text{psf} \]

\[DL = \text{mechanical} = 4 \text{psf} \]

\[DL = \text{joist weight} = 8 \text{psf} \cdot \frac{1}{12} = 2 \text{psf} \]

\[DL = \text{partition wall load = } 7 \text{psf} \cdot \text{ht} = 11.9' = 99 \text{psf} \text{ along wall} \Rightarrow \text{99 psf/4'} = 5.2 \text{psf} \]

\[DL_{\text{total}} = 37.5 + 4.35 + 4 + 4 + 2.52 = 57.5 \text{psf} = 45 \text{psf} \]
2b. Hand Calculation ~ Top Plate HSS

HSS 4x4 x 1/8" with 9.0" opening

\[W_n = \left(1.2 \times 45 + 1.6 \times 40 \right) \left(\frac{20 \times 25}{2} \right) = 1.81 \text{ kif} \]

\[V = \frac{1.81 \text{ kif} \times 9'}{2} = 8.16 \text{ k} \]

\[M = \frac{1.81 \text{ kif} \times 9'}{8} = 18.53 \text{ k} \]

\[\Delta_{LL} = \frac{22.5 \left(W_n \right)}{E} = \frac{22.5 \left(1.81 \times 9 \times 10^3 \right)}{29000 \times 9.14 \times 10^{-6}} = 0.55'' \]

\[\Delta_{TL} = \frac{118}{3.4} \times \left(0.12'' \right) = 1.2'' \]

Fixed-Fixed

\[V = \frac{118}{8} = 8.16 \text{ k} \]

\[M = \frac{w \times d^2}{12} = 18.33 \text{ k} \]

\[\Delta_{LL} = \frac{1}{3} \left(22.5 \times \frac{w}{E} \right) = \frac{1}{3} \left(0.076'' \right) = 0.025'' \leq \frac{d}{8} = 0.6'' \]

\[\Delta_{TL} = \frac{1}{3} \left(0.076'' \right) = 0.025'' \leq \frac{d}{12} = 0.6'' \]

\[\delta V_n = \delta \frac{0.6 \times F_y \times A}{12} \times (48 \times (48 \times 10^3) \times (4.10 \times 10^3)) = 101.8 \text{ k} > 8.16 \text{ k} \]

\[\delta M_n = \delta F_y \times A = 0.9 \times (48 \times 10^3) \times (5.59 \times 10^3) = 231'' \times 19.3'' = 18.33'' > 12.22'' \]

\[\text{HSS 4x4 x 1/8'' ok for load dist top plate.} \]

\[\text{HSS 4x4 x 1/8'' > HSS 4x4 x 1/8'' it's also ok} \]
General Information

Calculations are designed to AISC 9th Edition ASD and 1997 UBC Requirements

<table>
<thead>
<tr>
<th>Fy - Yield Stress</th>
<th>Load Duration Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.00 ksi</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Spans Considered: Continuous Over Supports

Span Information

<table>
<thead>
<tr>
<th>Description</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span</td>
<td>8.25</td>
</tr>
<tr>
<td>Steel Section</td>
<td>W14X22</td>
</tr>
<tr>
<td>End Fixity</td>
<td>Pin-Pin</td>
</tr>
<tr>
<td>Unbraced Length</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Loads

<table>
<thead>
<tr>
<th>Live Load Used This Span?</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead Load k/ft</td>
<td>0.788</td>
<td>0.788</td>
<td>0.788</td>
</tr>
<tr>
<td>Live Load k/ft</td>
<td>0.700</td>
<td>0.700</td>
<td>0.700</td>
</tr>
<tr>
<td>Dead Load k/ft</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td>Live Load k/ft</td>
<td>0.040</td>
<td>0.040</td>
<td>0.040</td>
</tr>
<tr>
<td>Start ft</td>
<td>4.250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End ft</td>
<td>8.250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Mmax @ Cntr</th>
<th>k-ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ X =</td>
<td>10.89</td>
</tr>
<tr>
<td>Max @ Left End</td>
<td>3.85</td>
</tr>
<tr>
<td>Max @ Right End</td>
<td>0.00</td>
</tr>
<tr>
<td>fb : Actual</td>
<td>psi</td>
</tr>
<tr>
<td>Fb : Allowable</td>
<td>4,511.7</td>
</tr>
<tr>
<td>fv : Actual</td>
<td>psi</td>
</tr>
<tr>
<td>Fv : Allowable</td>
<td>2,083.1</td>
</tr>
</tbody>
</table>

Reactions & Deflections

<table>
<thead>
<tr>
<th>Shear @ Left</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear @ Right</td>
<td>5.69</td>
</tr>
<tr>
<td>Reactions...</td>
<td>k</td>
</tr>
<tr>
<td>DL @ Left</td>
<td>3.01</td>
</tr>
<tr>
<td>LL @ Left</td>
<td>2.68</td>
</tr>
<tr>
<td>Total @ Left</td>
<td>5.69</td>
</tr>
<tr>
<td>DL @ Right</td>
<td>3.26</td>
</tr>
<tr>
<td>LL @ Right</td>
<td>2.89</td>
</tr>
<tr>
<td>Total @ Right</td>
<td>6.15</td>
</tr>
<tr>
<td>Max. Deflection</td>
<td>-0.022</td>
</tr>
<tr>
<td>@ X =</td>
<td>in</td>
</tr>
<tr>
<td>Span/Deflection Ratio</td>
<td>4,455.4</td>
</tr>
</tbody>
</table>

Query Values

<table>
<thead>
<tr>
<th>Location</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear</td>
<td>k</td>
</tr>
<tr>
<td>Moment</td>
<td>k-ft</td>
</tr>
<tr>
<td>Max. Deflection</td>
<td>in</td>
</tr>
</tbody>
</table>
3a. Hand Calculation ~ Snow Design Load

Snow Load

\[P_s = C_s, \quad P_f = 0.9(21\text{ psf}) = 18.9 \text{ psf} \]

\[P_t = 0.7 C_c C_e \]

\[P_g = 0.7(1.0)(1.0)(1.0)(30\text{ psf}) = 21 \text{ psf} \]

\[C_e = 1.0 \quad \text{Table 7-2} \]

\[C_c = 1.0 \quad \text{Table 7-3} \]

\[\theta = 1.0 \quad \text{Table 7-4} \]

\[\text{terrain category } B, \text{ partially exposed} \]

\[\text{thermal condition } A \]

\[\text{category II} \]

\[\text{roof slope } = \tan^{-1}(\frac{2}{3}) = 37.7^\circ \]

\[P_g = 30 \text{ psf} \quad \text{Fig 7-1} \]

\[C_s = 0.9 \quad \text{Fig 7-2} \]

\[C_e = 1.0, \text{ All other surface} \]
4a. Hand Calculation ~ Wind Coefficients

Wind analysis (ASCE 7-98)

N-S & E-W direction: Shear walls
Location: Bloomfield, NJ
Exposure: B
Building use: Residential

\[P = g \times C_p \]
\[g = 0.00236 \times k \times k_a \times V^2 \times I \]
\[k_a = 1.0 \text{ area assumed flat (Fig. 6.2)} \]
\[k_d = 0.85 \text{ Table 6-6} \]
\[V = 110 \text{ mph fig 6-7} \]

Use group = II

\[I = 1.0 \text{ Table 6-1} \]

\[r(h) \]

<table>
<thead>
<tr>
<th>h (ft)</th>
<th>(K_a) (Table 6-5) - exposure B case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>0.57</td>
</tr>
<tr>
<td>20</td>
<td>0.62</td>
</tr>
<tr>
<td>25</td>
<td>0.66</td>
</tr>
<tr>
<td>30</td>
<td>0.70</td>
</tr>
<tr>
<td>40</td>
<td>0.76</td>
</tr>
<tr>
<td>50</td>
<td>0.81</td>
</tr>
<tr>
<td>60</td>
<td>0.85</td>
</tr>
<tr>
<td>70</td>
<td>0.89</td>
</tr>
<tr>
<td>80</td>
<td>0.93</td>
</tr>
<tr>
<td>90</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Spread sheet

<table>
<thead>
<tr>
<th>Floor</th>
<th>Wind force</th>
<th>Wind shear (k)</th>
<th>Floor moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>24.30</td>
<td>4.9</td>
<td>52.5</td>
</tr>
<tr>
<td>5</td>
<td>23.58</td>
<td>4.5</td>
<td>50.9</td>
</tr>
<tr>
<td>4</td>
<td>22.94</td>
<td>2.7</td>
<td>43.9</td>
</tr>
<tr>
<td>3</td>
<td>21.66</td>
<td>2.0</td>
<td>40.5</td>
</tr>
<tr>
<td>2</td>
<td>20.35</td>
<td>1.7</td>
<td>39.9</td>
</tr>
<tr>
<td>1</td>
<td>19.32</td>
<td>1.8</td>
<td>39.2</td>
</tr>
</tbody>
</table>

\[h = \frac{64' + 24.5'}{2} = 76.4' \]

Mean roof height.
WIND DIRECTION: NORTH-SOUTH (Y-DIR) # Stories: 6

<table>
<thead>
<tr>
<th>EXP. CAT:</th>
<th>B</th>
<th>B: 38.000 ft</th>
<th>ALPHA= 7</th>
<th>Base h: 0.000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPORT. FACTOR:</td>
<td>1.00</td>
<td>Mean Roof h : 76.40 ft</td>
<td>Zg (ft) = 1200 ft</td>
<td></td>
</tr>
<tr>
<td>DIREC. FACT. Kd:</td>
<td>0.85</td>
<td>Kh = 0.915</td>
<td>G= 0.8</td>
<td></td>
</tr>
<tr>
<td>TOPOG. FACT Kzt:</td>
<td>1.00 (see sh. Kzt)</td>
<td>L/B = 0.947</td>
<td>Gf= 0.800</td>
<td></td>
</tr>
<tr>
<td>0.00256 Kz Kzt V^2 I =</td>
<td>26.33 psf</td>
<td>Cp (wind): 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cp (leew): -0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wind Load

Ground to EXP. CAT: B

FLOOR FL TO FL TRIB. Exp Area FLOOR EXPOSED Kz WIND WIND FLOOR FLOOR Case 1 Case 2

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>FLOOR I.D. FL TO FL HEIGHT (ft)</th>
<th>TRIB. WIDTH (ft)</th>
<th>Exp Area Yo (ft)</th>
<th>FLOOR ELEV (ft)</th>
<th>EXPOSED ELEV (ft)</th>
<th>Kz</th>
<th>WIND PRESS. (psf)</th>
<th>WIND FORCE (Kips)</th>
<th>FLOOR SHEAR (Kips)</th>
<th>FLOOR MOMENT (Kip-ft)</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6 10.667 38.000 0.000 64.00 64.00 0.870 24.30 4.9 4.9 52.5 0.0 5.8 -5.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5 10.667 38.000 0.000 53.34 53.34 0.820 23.55 9.5 14.5 206.9 0.0 11.3 -11.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4 10.667 38.000 0.000 42.67 42.67 0.775 22.69 9.2 23.7 459.4 0.0 10.9 -10.9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3 10.667 38.000 0.000 32.00 32.00 0.714 21.66 8.8 32.5 805.5 0.0 10.4 -10.4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 10.667 38.000 0.000 21.33 21.33 0.636 20.35 8.2 40.7 1,239.7 0.0 9.8 -9.8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 10.667 38.000 0.000 10.67 10.67 0.575 19.32 7.8 48.5 1,757.3 0.0 9.3 -9.3</td>
<td></td>
</tr>
</tbody>
</table>
5a. Hand Calculation – Seismic Coefficients

Seismic use group I (Table 9.1.3)

g, tech report Site Class C

\[S_0 = 0.420 \quad S_{ms} = 5 \times 0.06 \quad \frac{S_m}{g} = 16.0 \% \]

\[S_{05} = \frac{3}{2} S_{ms} = \frac{3}{2} \times 50.4 \quad \frac{S_m}{g} = 3.36 \%
\]

\[S_{01} = \frac{3}{2} S_{m1} = \frac{3}{2} \times 16.0 \quad \frac{S_m}{g} = 10.7 \%
\]

\[I_e = 1.0 \quad \text{(Table 9.1.4)}
\]

\[V_b = c_s W = 0.074 \times (14702 \text{ k}) = 1087.99 \text{ k}
\]

\[R = 2.5 \quad \text{Building Frame System}
\]

\[T = c_T h_n / h_n = 0.02 \times (88.7) = 1.78
\]

\[c_T = 0.2
\]

\[h_n = 6.4 + 2.5 \times 1.78 = 8.87
\]

\[c_s = 1.344 \quad 0.044 S_{05} \quad I_e = 0.044 (1.344) (1.0) = 0.14789 \quad \text{k}
\]

\[\frac{S_{01}}{c_s} \frac{R}{I_e} = \frac{1079}{(2.5) (1.78)} = 0.74
\]

\[\frac{0.74}{0.74} = 1.344 \quad 0.14789 \quad \therefore \quad c_s = 0.074
\]

\[W = DL + \text{Partition load} = 45 \text{ psf} + 11 \text{ psf} = 56 \text{ psf}
\]

\[DL = 45 \text{ psf}
\]

\[\text{Partition load} = \frac{105-3.5}{3.5} = 11 \text{ psf} \geq 10 \text{ psf}
\]

\[W = A_{tot} / \text{ Floor} \quad V_{tot} = 49500 \times 0.56 \times 56 \text{ psf} + 49500 \times (1 \text{ psf}) (17 \text{ psf}) = 1470.2 \text{ k}
\]

\[A_{tot} = 49500 \times 0.56
\]

\[\text{Floors} = 5 \quad \text{(5 above grade)}
\]

\[F = c_v \times V_b \quad (9.5.3.4)
\]

\[c_v = \frac{V_b}{V_b} \times \frac{1.4}{1.5} = \frac{4.75}{1.5} = 2.5
\]

\[c_v = \frac{V_b}{V_b} \times \frac{1.4}{1.5} = \frac{6375}{58364} = 0.110
\]

\[T = 1.039
\]

\[k = 1 + \left(\frac{0.78 - 0.5}{2.5 - 0.5} \right) = 1.039
\]

\[\omega_2 = 4.950 \times (36 \text{ psf}) (10.17 + 21.34 + 32.01 + 42.68 + 53.55) + 4.950 \times (64 \text{ psf}) (17 \text{ psf}) = 57364 \text{ k}
\]
5b. Hand Calculation ~ Seismic (cont.) & Story Drift

\[V_b = 1087.95 \text{kN} \]

<table>
<thead>
<tr>
<th>Location</th>
<th>(w_hh_v)</th>
<th>(C_v)</th>
<th>(F_x = C_v \cdot V_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>roof</td>
<td>63359.6 (\times 10^3)</td>
<td>1.110</td>
<td>119.7 (k)</td>
</tr>
<tr>
<td>5</td>
<td>136,980.8</td>
<td>1.301</td>
<td>327.5 (k)</td>
</tr>
<tr>
<td>4</td>
<td>16,010,574.6</td>
<td>0.230</td>
<td>260.0 (k)</td>
</tr>
<tr>
<td>3</td>
<td>66,654.0</td>
<td>0.177</td>
<td>126.2 (k)</td>
</tr>
<tr>
<td>2</td>
<td>32,438.1</td>
<td>0.057</td>
<td>62.0 (k)</td>
</tr>
<tr>
<td>1</td>
<td>57,3664.5</td>
<td>1.000</td>
<td>1088 (k)</td>
</tr>
</tbody>
</table>

Story deflection

\[
\begin{align*}
\kappa &= \frac{5t}{4(\frac{2}{3})^2 + 2.7(\frac{2}{3})} = \frac{29000 \times 4.5^4}{9(3.16)^2 + 2.78(3.16)} = 129890 \frac{\text{k}}{\text{in}} \\
\Gamma &= \frac{\kappa}{12} = 4.5 \times \left(\frac{391.5 \times 12^2}{324} \right)^2 = 1799,000 \text{ in} \\
\rho &= \frac{\rho_t}{324} + 2.78 \frac{1}{\kappa} = \frac{60.4k (9.5 \times 10^3)}{3(2900)(1397000)} + \frac{2.78 (60.4)(9.5 \times 10^3)}{4.5 \times 391.5 \times 12^2} = 0.0046 \\
\delta &= \frac{1}{\kappa} = 0.00007199 \\
\Delta &= 60.4 \left(\frac{1}{\kappa} \right) = 0.0046 \text{ in} \\
\frac{h}{w} &= 9.5 \left(\frac{1}{\kappa} \right) = 0.285 \text{ in}
\end{align*}
\]