Robert Whitaker Structural Technical Report #2 By Robert Whitaker Bloomfield Station Bloomfield, NJ 10-31-05

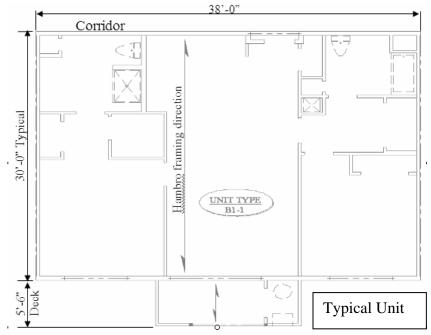
Executive Summary

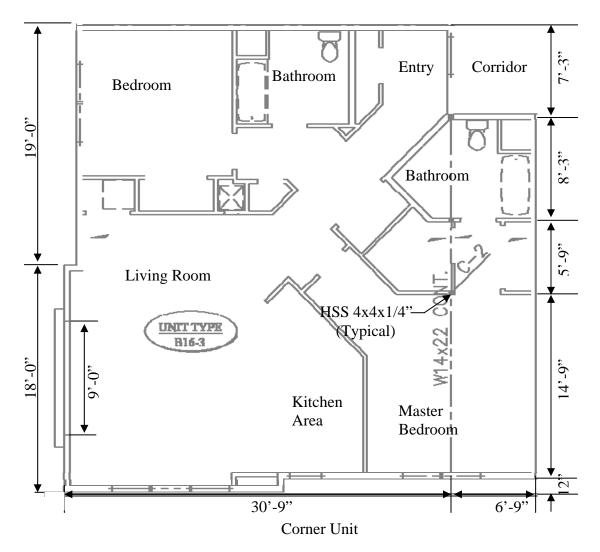
This report covers the comparative redesign of the Hambro® floor system currently used in Parkview at Bloomfield Station, a six story residential apartment in Bloomfield, New Jersey. This comparison encompasses gravity loading analysis for five different floor systems: bar joist with metal decking, hollow core planks, concrete pan joists, waffle flat slab and pre-stress concrete slab. There is a comparison table and an extensive calculation appendix attached at the end of this report.

The typical design bay size in Parkview is $30'-0" \pm 1'-0"$ wide by 38'-0" long. There are no height restrictions for the building but a shorter height is desirable with a current ceiling-to-floor depth of 19". This ceiling-to-floor depth allows for six residential levels and a roof level with a total building height of just less than 89 feet. The Hambro System has a 3 hour fire rating and a low system weight of 40 pounds per square foot. This system also features a quick erection time, creating a lower overall floor system cost.

The best floor redesign to parallel the Hambro system is the hollow core plank floor system. The hollow care plank systems features shorter depths (10" + 3"to 6"), and a fast erection time. The hollow core plank system is also a less complex option overall and reasonably close in cost to the Hambro system. However, a change in supporting structure from lightgage shear walls to a steel or concrete lateral frame will be required, causing some changes to the existing architecture. This system has system weights nearly double the current floor weight, and will require larger foundations. Finally, additional fireproofing will need to be considered for the hollow core plank system which only has a 2 hour fire rating. While this floor system has drawbacks with respect to weight and support system, the hollow core plank system appears to be the most viable alternative to the current floor system.

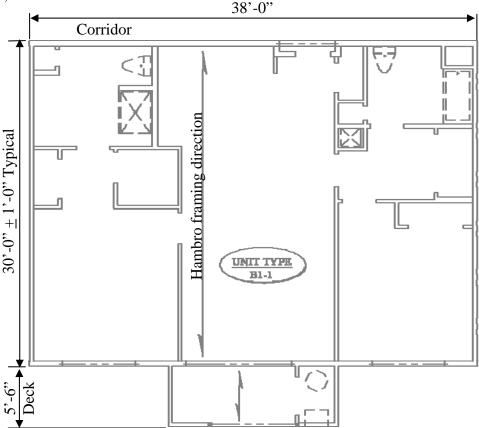
Structural Technical Report #2 By Robert Whitaker


- Robert Whitaker • Structural ~ Parfitt Parkview at •
 - **Bloomfield Station**
- Bloomfield, NJ •
- 10-31-05


Structural Overview

Parkview at Bloomfield Station, a six story residential apartment building located in Bloomfield, New Jersey has a floor system design that consists of 16" Hambro® composite bar joists spaced at 4'-0" on center (oc). The precast parking structurally garage, separate from the main building, is not considered in the floor redesign. All six floors stack vertically, with the exception of the two drive aisle locations and the two entry units. Theses areas have the same basic framing elements but the bearing locations have been changed to accommodate the architectural features. The

floor loading is the same for all six levels and consists of 40 pounds per square foot (psf) live load (LL) in the residential sections, and 100 psf live load for the corridor and public spaces such as the lobby and gym.


The typical unit also has an additional 18 psf of dead load (DL) due to the suspended gypsum wall board ceiling, mechanical units and ductwork feeding the apartment, partition walls, and floor finishes. The floor is finished with carpet in the living room, hallways and bedrooms, and finished with tile and wood in the bathroom and kitchen areas with wood flooring at the main entry.

Existing Floor Framing

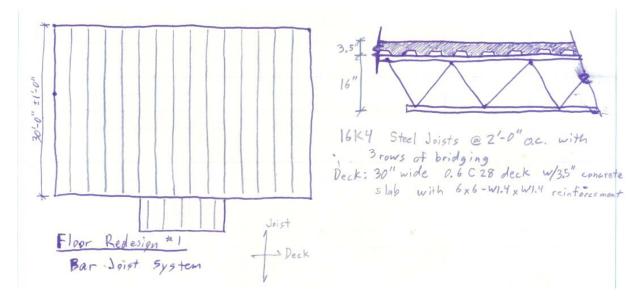
The current floor framing at Parkview at Bloomfield Station spans from the exterior wall to the corridor wall (typically $30'-0" \pm 1'-0"$), and the framing in the corridor spans from the corridor wall to the exterior corridor wall (typically 6'). Sixteen inch Hambro joists at 48" oc with 3" topping compose the main floor framing (depth = 19"). Hambro RTC, top cord only members which are capable of holding a 100 psf live load for spans up to 8'-0", frame out the corridor and deck.

The Hambro floor system has а system weight of 40 psf based on the 3" thick concrete floor and the joist weight over the 4'-0" spacing. Because of the 3" thick concrete flooring, and the noncombustible nature of the steel, this system has a fire rating of 3 hrs based on Underwriter Laboratories (UL) testing. This 3 hour rating was one of the original reasons for the selection of Hambro joists as the flooring system, reducing the number of firewalls in the building.

Furthermore, since the formwork for the slab is built into the joists, the need for labor decreases and the overall cost of the system is greatly reduced. This system is very durable and only has problems, like most steel and concrete structures, when exposed to water or large temperature changes. Since this system is primarily an interior system, it should last as long as the building's life. This system also performs well in vibration and sound transmission; it has an Impact Isolation Class (IIC) of 30 and a Sound Transmission Class (STC) of 57^{1} .

¹ www.hambrosystems.com

IIC is a rating designed to measure the impact sound isolation provided by floor/ceiling construction. The IIC of any assembly is strongly affected by and dependent upon the type of floor finish for its resistance to impact noise transmission.


STC is a rating that assigns a numerical value to the sound insulation provided by a partition separating rooms or areas. The rating is designed to match subjective impressions of the sound insulation provided against the sounds of speech, music, television, office machines and similar sources of airborne noise that are characteristic of offices and dwellings.

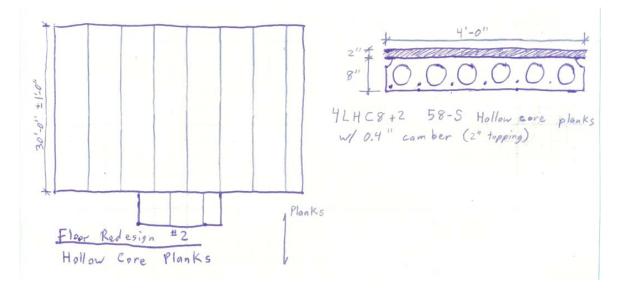
Alternate Floor Framing

The redesign of the flooring system at Parkview at Bloomfield Station encompasses gravity loading analysis for five different floor systems: bar joist with metal decking, hollow core planks, concrete pan joists, waffle flat slab, and pre-stressed concrete slab. These floor assemblies were then compared to determine which one provides the best solution for the building's floor system.

Alternate Floor Framing Option #1

The first floor redesign is looking into the impact of making the flooring system out of non-composite bar joists and metal decking. The 16" inch steel bar joists spaced at 24" oc with a $3\frac{1}{2}$ " concrete and metal deck system provides a comparison to the original floor system with a similar $19\frac{1}{2}$ " depth and a 3 hour fire rating. This system will not require any architectural changes because it is also able to use the same support system, lightgage steel walls, as the original Hambro joist system.

The bar joist system utilizes 16K4 steel joists at 2'-0" oc with 3 rows of bridging² and 30" wide 0.6C28 deck. The bar joist system also employs a 3.5" concrete slab with 6x6-W1.4xW1.4 welded wire fabric as slab reinforcement³. This system has a similar erection time to the Hambro arrangement but is more expensive due to the increased amount of material and time required to install twice as many joists. Moreover, the system weight is 48 psf, which is 8 psf heavier than the original design. Lastly, this new design should have approximately the same vibration and noise coefficient results as the current system. This is because sacrificing the system's rigidity by becoming noncomposite is made up for by using twice as many joists. This system, though it will also last the life of the building, does not have any benefits beyond the existing Hambro system to lead to a more extensive analysis.

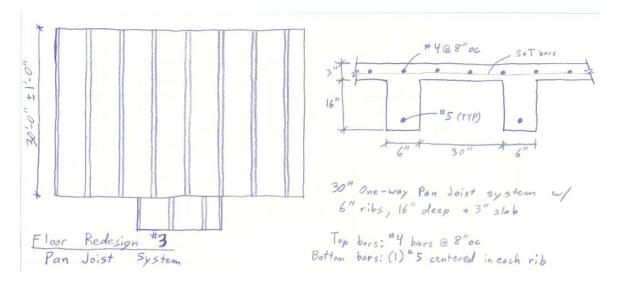

² The New Columbia Joist Company. http://www.njb-united.com/ncj.htm

³ Nucor Corporation: Vulcraft Division. http://www.vulcraft.com/

Alternate Floor Framing Option #2

The second floor redesign is the use of 8" hollow core planks with 2" concrete topping, which is much thinner than the existing 19" system. The mechanical ductwork would need to be attached to the bottom of the panels adding 3"-6" to the system, unlike the current system where the ducts just pass through the web openings.

This system, while thinner overall, has a system weight of 81 psf, double that of the Hambro system. Because of this added weight and the required bearing length, the support system needs to be either a concrete frame or a W-shape steel frame. Both of these support systems affect the architectural layout of the apartment by requiring wall bump-outs at the column locations. This will also increase the required footing sizes and change the lateral resisting elements from shear walls to braced frames with lightgage infill.

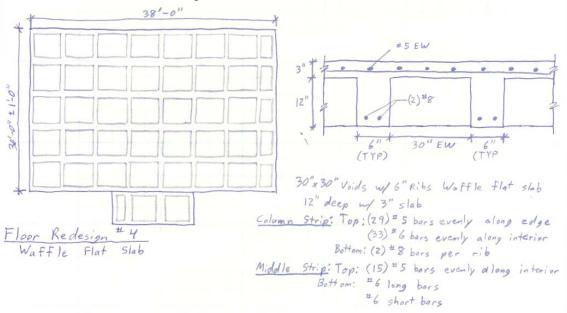


The overall cost of the hollow core plank system is comparative to the Hambro system due to its quick erection time and reduced on site labor requirement due to its precast nature. Having a fire rating of only 2 hours, this system is the lowest rated assembly analyzed and will need to have additional fireproofing added. However, it does have comparable IIC and STC to that in the Hambro system with values of 38 and 58 respectively. The reduction of ceiling-to-floor height will allow the building to have either higher finished ceilings or reduced building height by nearly 2 feet. Like the other designs, this system will last for the life of the building. While this floor system has its drawbacks with respect to weight and fireproofing, it appears to be a very viable alternative to the current floor system.

Alternate Floor Framing Option #3

The third floor redesign is a concrete pan joist system. It utilizes a 30" pan with 6" joists, and an overall depth of 19". This depth equals the depth of the existing Hambro system but has some drawbacks associated with it. First, the Hambro system allows for easy access of ductwork through the system, yet for this system, concrete would need to be removed from certain areas, greatly increasing system costs and creating a weaker overall system. To avoid this complication the duct work could be placed below the system but at the cost of a much deeper system, 22" or more.

Additionally, this system has a system weight of 78 psf, nearly double the existing system, and therefore requires a larger support and foundation system. Since the floor system will be completely concrete, the lightgage bearing walls will not suffice due to material interactions and strength considerations. A concrete beam and column system will need to be introduced as the gravity and lateral load carrying element, affecting the existing architectural layout by requiring bump-outs at column locations. Finally, the cost of the system is greatly increased due to the time needed to place the concrete column forms and for the even placement of the pans along the span.

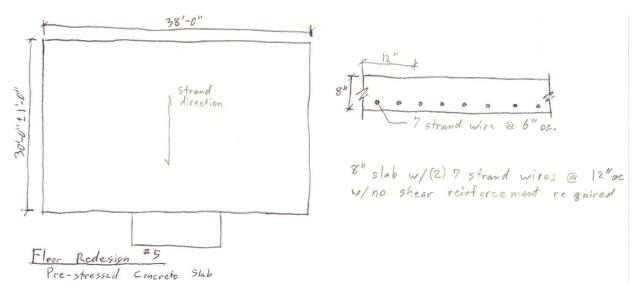

Due to its thickness, the pan joist system provides a 3 hour fire rating and effectively damps out noise and vibrations in the system. Furthermore, with the mechanical equipment having to pass below the joists, there is little chance for water penetration into the concrete, making this a very durable floor.

Strength wise this is a good choice for a floor, yet the excessive weight in addition to its large depth make this a less viable solution for this building. This floor system will not need to be analyzed more extensively due to the nature of the building requirements of Parkview at Bloomfield Station.

<u>Alternate Floor Framing Option #4</u>

The fourth redesign is a 15" deep 2-way concrete waffle flat slab. This floor, like the previous floor option, is composed solely of concrete and will need to be supported by a concrete frame system. Since this is a 2-way system, the column sizes will be slightly smaller due to load sharing, creating slightly less intrusion on the existing architectural layout. In addition, beams along the column line aid in the gravity and lateral load carrying capacity of the frame.

This system will support the mechanical ductwork below the joists, attached just like the ductwork in the concrete joist system. Even with this additional 3"to 6", it will be comparable in depth to the Hambro floor. Furthermore, since the mechanical equipment is located below the joists, water damage to the concrete will be prevented and will allow this floor to outlive the building life.


Since this system is composed of concrete joists in both directions it allows for excellent strength carrying characteristics. However, it is the heaviest of the five designs, having a total weight of 90 psf and requiring a much larger foundation. This floor system is not only the heaviest, but also has the slowest erection time due to the alignment of formwork in both directions. This time consuming procedure has led this floor system to have the highest price tag of all five systems in consideration. However, the heavy floor system does have its advantages as a damping system by not only reducing sound but also greatly reducing floor vibrations. Fire rating is also not a problem due to its mass, easily obtaining a 3 hour fire rating.

Based on serviceability requirements this is a good design, however, it does not appear to be a good solution on many other levels. Its primary downfall is its excessive weight and moderate depth. These 2 factors combined with the time consuming aspect of layout led to the conclusion that this system does not need any further investigation.

Alternate Floor Framing Option #5

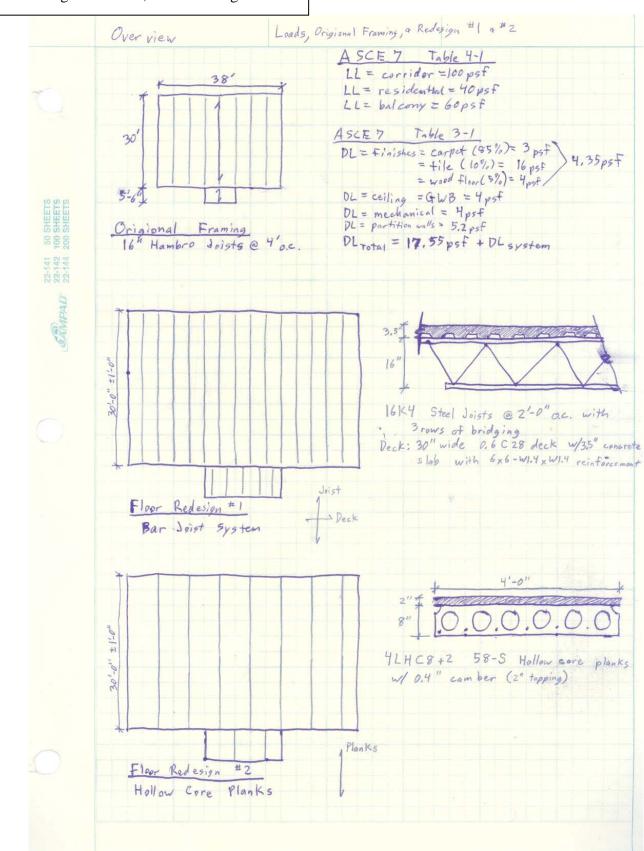
The fifth floor redesign is an 8" deep 1-way pre-stressed concrete slab. The mechanical ductwork would need to be attached to the bottom of the panels adding 3"-6" to the system, making the overall depth 14" at most, a difference of 5" minimum from the Hambro system.

This system, while thinner overall, has a system weight of 100 psf, two and a half times the weight of the Hambro system. This added weight, along with the required end supports means that the support system needs to be a concrete frame. This support system affects the architectural layout of the apartment by requiring wall bump-outs at the column locations. This load difference will also increase the required footing sizes and change the lateral resisting elements from shear walls to braced frames with lightgage infill. It will also reduce the ability to put slab penetrations at certain locations due to the pre-stressed cables.

The overall cost of the pre-stressed system is much higher than the Hambro system due to its complexity and specialization. It would require specialized machines to be onsite for the tensioning and engineering oversight. However, the system does have a fire rating of 3 hours and also has comparable IIC and STC to that in the Hambro system due to its rigidity. The reduction of ceiling-to-floor height will allows the building to have either higher finished ceilings or reduced building height by nearly 3 feet. This system, like the others will last for the life of the building. While this floor system has excellent depth characteristics, its drawbacks with respect to weight and specialization make it a poor alternative to the current floor system. It will not need to be investigated as a potential floor system any further.

Floo	r Redesign	UL Rating	Durability of System Based On	Dead Load of System		Support Sys	tem
(Option	<u>Hr</u>	Replacement Time	<u>psf</u>	<u>Width</u>	-	<i>Type</i>
Exist.	Hambro	3	Building life	40	6"	Steel	Stud Wall
1	Bar Joist	3	Building life	48	6"	Steel	Stud Wall
2	Hollow Core	2	Building life	81	>6"	Steel B	eams & Col.
3	Conc. Joist	3	Building life	78	>8"	Conc. B	eams & Col.
4	Waffle Slab	2	Building life	89	>8"	Conc. B	eams & Col.
5	Pre-Stressed	3	Building life	100	>8"	Conc. B	eams & Col.
Floo	r Redesign	Depth	Floor Requires	System	System	Erection	Viability of
			Architectural Wall Canges	Cost: 1-5	Complexity 1-5	Time 1-5	Floor System? 1-5
<u>(</u>	Option_	inch					•
<u>(</u> Exist.	Detion Hambro	<u>inch</u> 19	Wall Canges	1-5	1-5	1-5	1-5
			Wall Canges <u>Y/N</u>	1-5 <u>5=Cheap</u>	1-5 <u>5=Simple</u>	1-5 <u>5=Fast</u>	1-5 <u>5=Practical</u>
Exist.	Hambro	19	Wall Canges <u>Y/N</u> no changes to wall	1-5 <u>5=Cheap</u> 4	1-5 <u>5=Simple</u> 4	1-5 <u>5=Fast</u> 4	1-5 <u>5=Practical</u> 5
Exist. 1	Hambro Bar Joist	<mark>19</mark> 19.5	Wall Canges <u>Y/N</u> no changes to wall no changes to wall	1-5 5=Cheap 4 3	1-5 <u>5=Simple</u> 4 5	1-5 <u>5=Fast</u> 4 3	1-5 <u>5=Practical</u> 5 4
Exist. 1 2	Hambro Bar Joist Hollow Core	19 19.5 10+	Wall Canges <u>Y/N</u> no changes to wall no changes to wall yes, steel beams	1-5 5=Cheap 4 3 3	1-5 <u>5=Simple</u> 4 5 5	1-5 <u>5=Fast</u> 4 3 4	1-5 <u>5=Practical</u> 5 4 5

Alternate Floor Framing Comparison


While the bar joist and hollow core plank systems both rank high, the best floor redesign to parallel the Hambro system is the hollow core plank floor system. The bar joist system is close in design to the Hambro system yet lacks any extended benefits that would make it a better choice. Since it shows no extended benefits it will not need to be considered further, despite its high viability.

The hollow core plank system features a shorter depth (10" + 3" to 6"), and a fast erection time. This system is also a less complex option overall and reasonably close in cost to the Hambro system. However, a change in supporting structure from lightgage walls to a steel or concrete frame will be required, causing some changes to the existing architecture. It also has a system weight nearly double the current floor weight, and will require larger foundations. Finally, additional fireproofing will need to be considered since the hollow core plank system only has a 2 hour fire rating. Yet despite these slight setbacks to the overall floor system, it appears that this system is a viable solution for Parkview at Bloomfield Station's flooring needs.

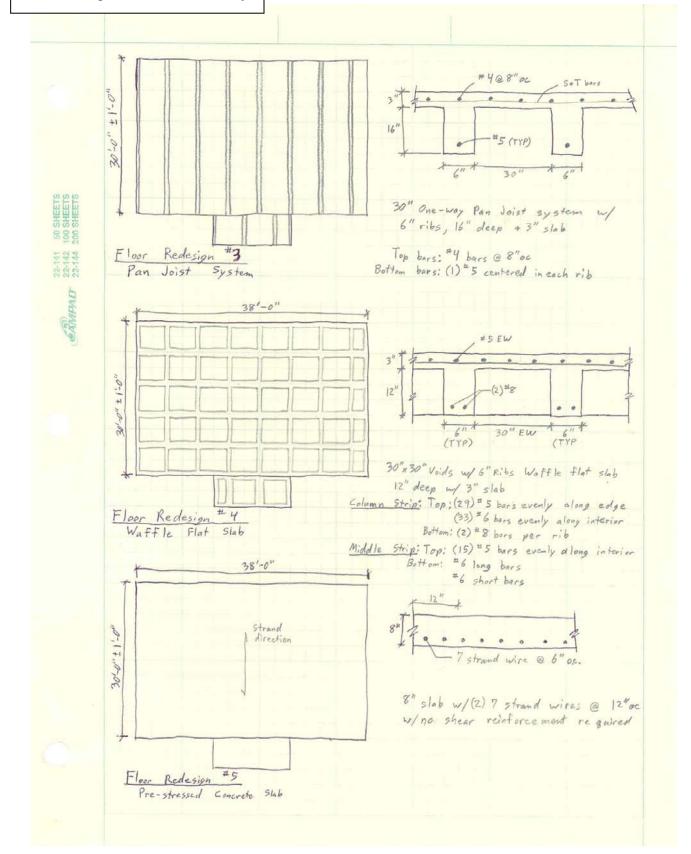

Appendix Tech Report 2

Table of Contents:

1. Design Overviews:	
a. Existing Conditions and Re-Designs 1 & 2	p. A 1
b. Re-Designs 3, 4 & 5	p. A 2
c. Comparative Summary	p. A 3
2. Re-Designed Floor Systems:	
a. #1 – Bar Joist System	p. A 4
1. Bar Joist Chart	p. A 5
2. Deck Chart	p. A 6
b. #2 – Hollow Core Plank System	p. A 7
1. PCI Chart	p. A 8
c. #3 – Concrete Pan Joist System	p. A 9
1. CRSI Chart	p. A 10
d. #4 – Waffle Flat Slab System	p. A 11
1. CRSI Chart	p. A 12
e. #5 – Pre-Stressed Slab System	p. A 13
1. Feasibility Domain	p. A 14
2. Tendon Profile	p. A 15
3. Shear Reinforcement	p. A 16
	r10

1b. Re-Designs 3& 4 and Summary

Floor	Floor Redesign	UL Rating	Durability of System Based On	Dead Load of System		Support System	em
\overline{O}	<u>Option</u>	<u>Hr</u>	<u>Replacement Time</u>	<u>psf</u>	<u>Width</u>	Ī	Type
Exist.	Hambro	3	Building life	40	6"	Steel 3	Steel Stud Wall
1	Bar Joist	3	Building life	48	6"	Steel S	Steel Stud Wall
2	Hollow Core	2	Building life	81	>6"	Steel Be	Steel Beams & Col.
3	Conc. Joist	3	Building life	78	>8"	Conc. Be	Conc. Beams & Col.
4	Waffle Slab	2	Building life	68	>8"	Conc. Be	Conc. Beams & Col.
5	Pre-Stressed	3	Building life	100	>8"	Conc. Be	Conc. Beams & Col.
Floor	Floor Redesign	Depth	Floor Requires	System	System	Erection	Viability of
			Architectural	Cost:	Complexity	Time	Floor System?
			Wall Canges	1-5	1-5	1-5	1-5
\overline{C}	<u>Option</u>	inch	$\overline{N/\overline{A}}$	5=Cheap	<u>5=Simple</u>	$\overline{5=Fast}$	5=Practical
Exist.	Hambro	19	no changes to wall	4	4	4	5
1	Bar Joist	19.5	no changes to wall	3	5	3	4
2	Hollow Core	10 +	yes, steel beams	3	5	4	5
3	Conc. Joist	19 +	yes, concrete frame	2	3	2	2
4	Waffle Slab	15 +	yes, concrete frame	1	2	1	2
5	Pre-Stressed	8+	yes, concrete frame	1	1	1	1

2a. #1 – Bar Joist System ASD Floor Redesign # Bar Joist System span = 31' > 30' typ to cover all cases 30' @ 2'-0" oc w/2" slab LL = 40 psf $DL = 17.55 + 3.5" (150 \text{ pcf}) + 8 \text{ plf}(\frac{1}{2.0c}) = 65.3 \text{ psf} \ TL = 105.3 \text{ psf}$: try 16K5 from New Columbia Joist Company allowable plf @2'00 50 SMEETS 100 SMEETS 200 SMEETS TL= 228 p/F = 105.3 (2')=210.6 p/f ... ok LL= 114 pif ≥ 40(z') = 80p1f :,0k needs Brows of bridging 22-141 22-142 22-144 16K5 steel Joists @ 2'-0" oc w/ 3'rows of bridging CAMPAD' Decking Try Vulcraft 0.6 C, CSV Conform decking, 28 gage, non-composite clear span = 2'-0", 3.5" stotal glab depth., "Is" deep deck (t=1.5" total) Actual Load = (40psf) + (47.6psf) = 87.6psf 3 span @ 2' spacing 0.6 C 28 w/3.5" slab a 6x6-W1.4xW1.4: 400 psf ≥ 92.8 psf :. ok deck only: 186 psf = 240 ≥ 92.8 psf :. no shoring needed Allowable span: 2'-7" ≥ 2'-0" :.ok -W1 = 177 psf > 41 psf slab+deck whight :.ok doesn't meet T 4 5 reg. 30" wide 0.6 (28 w/3.5" slab ~/ 6x6 - W1.4x W1.4 3/2" * A A U D A ON D B Y D A A OP 16" UL 3hr rating G 523

STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES

Based on a Maximum Allowable Tensile Stress of 30 ksi Adopted by the Steel Joist Institute November 4, 1985; Revised to May 1, 2000 – Effective August 1, 2002

The black figures in the following table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of K-Series Steel Joists. The weight of DEAD loads, including the joists, must be deducted to determine the LIVE load-carrying capacities of the joists. Sloped parallel-chord joists shall use span as defined by the length along the slope.

The figures shown in RED in this load table are the LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the figures in RED by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded.

The approximate joist weights per linear foot shown in these tables do not include accessories.

The approximate moment of inertia of the joist, in inches⁴ is; $I_j = 26.767(W_{LL})(L^3)(10^4)$, where $W_{LL} = RED$ figure in the Load Table and L = (Span - .33) in feet.

For the proper handling of concentrated and/or varying loads, see Section 5.5 in the Recommended Code of Standard Practice for Steel Joists and Joist Girders.

Where the joist span exceeds the unshaded area of the load table, the row of bridging nearest the mid-span shall be diagonal bridging with bolted connections at the chords and intersections.

STANDARD LOAD TABLE/OPEN WEB STEEL JOISTS, K-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

Joist Designation	8K1	10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	16K5	16K6	16K7	16K9
Depth (in.)	8	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16
Approx. Wt (lbs./ft.)	5.1	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0
Span (ft.) ∳ 8	550 550															
9	550 550															
10	550 480	550 550														
11	532 377	550 542														
12	444 288	550 455	550 550	550 550	550 550											
13	377 225	479 363	550 510	550 510	550 510											
14	324 179	412 289	500 425	550 463	550 463	550 550	550 550	550 550	550 550							
15	281 145	358 234	434 344	543 428	550 434	511 475	550 507	550 507	550 507	550	550	550	550	550	550	EEO
16	246 119	313 192	380 282	476 351	550 396	448 390	550 467	550 467	550 467	550 550	550 550	550 550 550	550 550 550	550 550 550	550 550 550	550 550
17		277 159	336 234	420 291	550 366	395 324	495 404	550 443	550 443	512 488	550 526 508	550 526 550	526 550	550 526 550	526 550	550 526
18		246 134	299 197	374 245	507 317	352 272 315	441 339 395	530 397 475	550 408 550	456 409 408	456 455	490 547	490 550	490 550	490 550	550 490 550
19		221 113	268 167 241	335 207 302	454 269 409	230 284	287 356	475 336 428	383 525	347 368	386 410	452 493	455 550	455 550	455 550	455
20 21		199 97	241 142 218	177 273	230 370	197	246 322	287 388	347	297 333	330 371	386	426 503	426 548	426 550	426
21			123 199	153 249	198 337	257 170 234	212 293	248 353	299 432	255 303	285 337	333 406	373 458	405 498	406 550	406
22		_	106	132	172 308	147	184 268	215 322	259 395	222	247 308	289	323	351 455	385 507	385
23			93 166	208	150 282	128	160 245	188	226 362	194 254	216	252 340	282	307 418	339 465	363
25			81	101	132	113	141	165 272	199 334	170 234	189 260	221 313	248 353	269 384	298 428	346
26		_			-	100	124 209	145 251	175 308	150 216	167 240	195 289	219 326	238 355	263 395	311
27						88 154	110 193	129 233	156 285	133 200	148 223	173 268	194 302	211 329	233 366	276
28						79 143	98 180	115 216	139 265	119 186	132 207	155 249	173 281	188 306	208 340	246
29						70	88	103	124	106 173	118 193	138 232	155 261	168 285	186 317	380
30										95 161	106 180	124 216	139 244	151 266	167 296	198 355 178
31										86 151	96 168	112 203	126 228	137 249 124	151 277	332
32										78 142 71	87 158 79	101 190 92	114 214 103	124 233 112	137 259 124	311

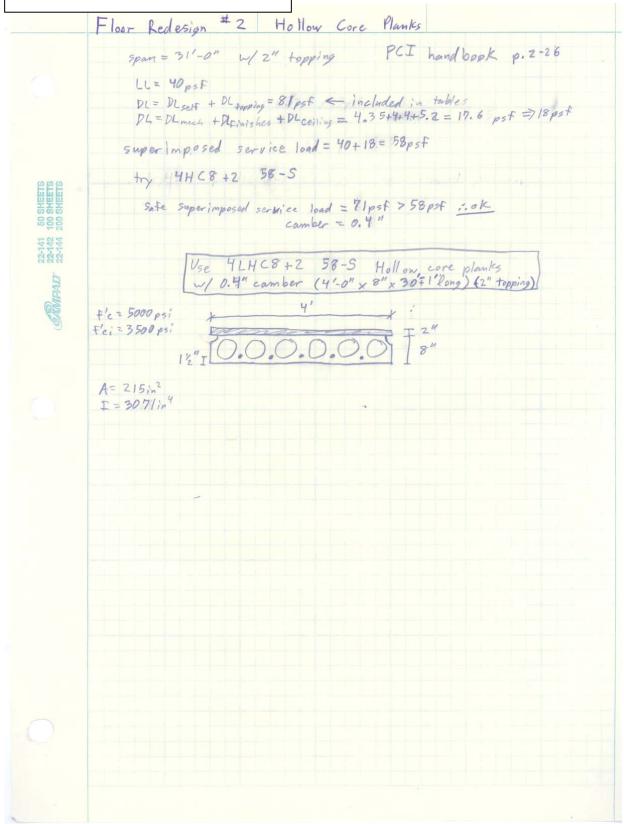
0.6 C, CSV CONFORM

CRAFT

	9",
~~~~~~	16
30" or 35" or 36" *	
* Check availability with plant	

# **MAXIMUM CONSTRUCTION CLEAR SPANS (S.D.I. CRITERIA)**

Tatal				and the second se					
Total Slab	Deck	Maight		NW Concre				LW Concret	
Depth		Weight		N=9 145 P(		Weight	N	I=14 110 F	CF
Deptit	Туре	PSF	1 Span	2 Span	3 Span	PSF	1 Span	2 Span	3 Spar
2"	0.6C28	23	2-3	2-10	2-11	17	2-4	3-0	3-0
	0.6C26	23	2-8	3-5	3-5	18	2-9	3-6	3-7
(t=1 1/2")	0.6C24	23	3-4	4-3	4-4	18	3-6	4-6	4-7
	0.6C22	23	3-10	5-0	5-1	18	4-1	5-4	5-4
0 1 101	0.6C28	29	2-2	2-9	2-10	22	2-3	2-10	2-11
2 1/2"	0.6C26	29	2-6	3-3	3-4	22	2-8	3-5	3-6
(t=2")	0.6C24	29	3-2	4-1	4-2	22	3-4	4-4	4-4
	0.6C22	29	3-8	4-9	4-10	23	3-11	5-1	5-2
	0.6C28	35	2-1	2-8	2-8	27	2-2	2-10	2-10
3"	0.6C26	35	2-5	3-2	3-2	27	2-7	3-4	3-4
(t=2 1/2")	0.6C24	35	3-0	3-11	4-0	27	3-2	4-2	4-2
	0.6C22	36	3-6	4-7	4-7	27	3-9	4-10	4-11
	0.6C28	41	2-0	2-7	2-7	31	2-1	2-9	2-9
3 1/2"	0.6C26	41	2-4	3-0	3-1	31	2-6	3-3	3-3
(t=3")	0.6C24	41	2-10	3-9	3-10	32	3-1	4-0	4-1
	0.6C22	42	3-4	4-5	4-5	32	3-7	4-8	
	0.6C28	47	1-11	2-6	2-7	36	2-1	2-8	4-9
4"	0.6C26	47	2-3	2-11	3-0	36	2-5	3-2	
(t=3 1/2")	0.6C24	47	2-9	3-8	3-8	36	3-0	3-11	3-2
	0.6C22	48	3-2	4-3	4-3	36	3-5	4-6	3-11
	0.6C28	53	1-10	2-5	2-6	40	2-0	2-7	4-7
4 1/2"	0.6C26	53	2-2	2-10	2-11	40	2-4		2-8
(t=4")	0.6C24	53	2-8	3-6	3-7	41	2- 10	3-1	3-1
10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.6C22	54	3-1	4-1	4-2	41	3-4	3-9	3-10
	0.6C28	59	1-10	2-5	2-5	41	1-11	4-5	4-5
5"	0.6C26	59	2-1	2-9	2-10	45	2-3	2-6	2-7
(t=4 1/2")	0.6C24	59	2-7	3-5	3-6	45		3-0	3-0
	0.6C22	60	3-0	3-11	4-0	45	2-10	3-8	3-9
	- Contraction of the second	17.77.0	~ ~	0 11	4-0	40	3-3	4-3	4-4


# REINFORCED CONCRETE SLAB ALLOWABLE LOADS

Total Slab	Reinforceme	ent			Sup	erimposed l		ad (psf) — 3		ition			
Depth	W.W.F.	As	2-0	2-3	2-6	2-9	3- 0	Span (ftin 3-3	3-6	1 0 0	1.0		
	6X6-W1.4XW1.4	0.028*	194	153	124	103	86	74	- 63	3-9	4-0	4-6	5-0
2"	6X6-W2.1XW2.1	0.042	285	225	183	151	127	108	93		1		
(t=1 1/2")	6X6-W2.9XW2.9	0.058	384	304	246	203	171	146	125				
	6X6-W1.4XW1.4	0.028*	268	212	172	142	119	140	88	76	07		
2 1/2"	6X6-W2.1XW2.1	0.042	396	313	254	210	176	150	129		67	53	
(t=2")	6X6-W2.9XW2.9	0.058	400	400	344	284	239	204	176	113 153	99	78	
	6X6-W1.4XW1.4	0.028*	342	271	219	181	152	130	112	97	134	106	
3"	6X6-W2.1XW2.1	0.042*	400	400	325	268	226	192	166	144	86	68	
(t-2 1/2")	SX6 W2.9XW2.9	0.058	400	400	400	366	307	262	226	197	127 173	100	
	6X6-W2.1XW2.1	0.042*	400	400	396	327	275	234	202	176	155	137	
3 1/2"	6X6-W2.9XW2.9	0.058*	400	400	400	400	375	320	276	240	211		
(t=3")	4X4-W2.9XW2.9	0.087	400	400	400	400	400	400	400	353	310		
	6X6-W2.1XW2.1	0.042*	400	400	400	384	322	275	237	206	181		-
4"	6X6-W2.9XW2.9	0.058*	400	400	400	400	400	372	321	280	246		
(t=3 1/2")	4X4-W2.9XW2.9	0.087	400	400	400	400	400	400	400	400	358		
Language 1	6X6-W2.9XW2.9	0.058*	400	400	400	400	400	400	359	313	275		
4 1/2"	4X4-W2.9XW2.9	0.087	400	400	400	400	400	400	400	400	400		
(t=4")	4X4-W4.0XW4.0	0.120	400	400	400	400	400	400	400	400	400		
	6X6-W2.9XW2.9	0.058*	400	400	400	400	400	400	396	345	303		-
5"	4X4-W2.9XW2.9	0.087*	400	400	400	400	400	400	400	400	400	1	
(t=4 1/2")	4X4-W4.0XW4.0	0.120	400	400	400	400	400	400	400	400	400		
			0.60	028	0.60	26		0.6C24		0.6C2			

NOTES:

* As does not meet A.C.I. criterion for temperature and shrinkage.
 Recommended conform types are based upon S.D.I. criteria and normal weight concrete.
 Superimposed loads are based upon three span conditions and A.C.I. moment coefficients.
 Load values for single span and double spans are to be reduced.
 Superimposed load values in bold type require that mesh be draped. See page 19.
 Vulcraft's painted or galvanized form deck can be considered as permanent support in most building applications. See page 19.
 If uncoated form deck is used, deduct the weight of the slab from the allowable superimposed uniform loads.

# 2b. #2 – Hollow Core Plank System



# 2b. #2 - PCI Chart

# Strand Pattern Designation

# HOLLOW-CORE 4'-0" x 8"

Normal Weight Concrete

4'-0"

 $f_{\rm c}^\prime~=$  5,000 psi

f' = 3,500 psi

			Section	Prop	oerties	
			Untopp	bed	Торр	ed
	A	=	215	in ²	_	
	I.	-	1,666	in4	3,071	int
	Vis	=	4.00	in.	5.29	in.
	-	=	4.00	in.	4.71	in,
2"		=	416	ins	580	in
Y		=	416	in ³	652	in
-		=	12.00	in.	12.00	in
8"		=	224	plf	324	pli
Y			56	psf	81	ps
	V/S	=	1.92	in.		
	2" ¥ 8"	I y _b y _t S _b y S _t b _w 8″ wt	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcrcr} A & = & 215 \\ I & = & 1,666 \\ y_b & = & 4.00 \\ y_1 & = & 4.00 \\ y_1 & = & 4.00 \\ y_1 & = & 416 \\ \hline & S_b & = & 416 \\ \hline & S_t & = & 416 \\ \hline & b_w & = & 12.00 \\ 8'' & wt & = & 224 \\ \hline & 56 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccc} A & = & 215 & in^2 & - \\ I & = & 1,666 & in^4 & 3,071 \\ y_b & = & 4.00 & in. & 5.29 \\ y_t & = & 4.00 & in. & 4.71 \\ S_b & = & 416 & in^3 & 580 \\ Y & S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 416 & in^3 & 652 \\ S_t & = & 56 & 56 & 56 \\ S_t & = & 56 & 56 \\ S_t &$

76-S 44 4 S = straightDiameter of strand in 16ths No. of strand (7)

Safe loads shown include dead load of 10 pst for untopped members and 15 psf for topped members. Remainder is live load. 11/2 Long-time cambers include superimposed dead load but do not include live load.

Capacity of sections of other configurations are similar. For precise values, see local hollow-core manufacturer.

- Key 335 Safe superimposed service load, psf
- 0.2 Estimated camber at erection, in. 0.3 Estimated long-time camber, in.

Table of safe superimposed service load (psf) and cambers (in.)

Strand												Span	ı, ft								_	_	-
Designation	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Code			1010-0	040	105	162	141	124	109	96	85	75	66	58	50	44	38	33					
	335	286	246	213	185	1.1.1.1.1.1		0.3	0.3	0.2	0.2	0.2	0.2	0.1	0.0	0.0	-0.1	-0.2					
66-S	0.2	0.2	0.2	0.2	0.2	0.3	0.3		0.5		0.0	0.1		-0.1	-0.2	-0.3	-0.5	-0.7					
	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.1		73	65	58	51	45	39	34			
	375	337	291	252	220	193	170	150	133	118	105	93	83			0.2	0.1	0.0	-	-0.2			
76-S	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2					-0.8			
10-5	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.1	1000	011				55	49	44	3
		0.0	317	296	275	255	225	200	179	160	143	128	115	104	93	84	76	68	61	10.000			-0.
	372	342	517	290	0.5	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.4	0.3	0.2	0.1		-0.9
58-S	0.3	0.3	0.4	0.4	4.4	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.5	0.4	0.3	0.2	0.0	0.1			
	0.4	0.5	0.5	0.6	0,6			236	218	196	176	159	143	130	117	107	97	88	80	72	65	59	54
		351	326	302	284	266	250	230	-	130	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7	0.6	0.5	0.4
68-S		0.4	0.5	0.5	0,6	0.6	0.7	0.7	0.7	0.0	0.0	1.0	1.0	1.0	0.9	0.9	0.8	0.7	0.6	0.4	0.2	0.0	-0.
		0.6	0.6	0.7	0.8	0.8	0.9	0.9	0,9	1.0	1.0	1.0	170	154	141	128	117	106	97	89	81	74	6
	-	360	335	311	290	272	256	242	229	215	205	188	170	154	141	120	4.4	11	11	1.1	1.0	0.9	0.
70.0		0.5	0.6		0.7	0.7	0.8	0.9	0.9	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.0	4.4	1.0	0.9	0.7	0.
78-S		0.7	0.8		0.9	1.0	1.0	1.1	1.2	1.2	1.3	1.3	1.3	1.3	1.3	1.3	1.2	1.2	1.1	1.0	0.0	311	-

# 4HC8+2

**4HC8** 

No Topping

2" Normal Weight Topping

Table of safe superimposed service load (psf) and cambers (in.)

Strand	T											Spar	n, ft							_	_		_
Designation	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
Code		- C.		001	175	153	133	117	102	89	77	67	55	44	33	-							
	309	267	231	201	175			0.2	0.2	0.2	0.2	0.1	0.0	0.0	-0.1								
66-S	0.2	0.2	0.2	0.3	0.3	0,3	0.3		0.2				-0.6	-0.7	-0.9								
C Terror Phil	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.1	-0.2	0.1.9			62	50	40	31				_		
	-	316	275	241	211	185	163	144	127	112	99	87	74	1000	1.2.1.2.1		-0.1						
		0.3	0.3	03	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2	0.1	- 10-0-11/	200 C						
76-S			0.3	0.3	0.3	0.2	0.2	0.2	0.1	0.0	-0.1	-0.2	-0.4	-0.5	-0.7	-0.9	-1.2					-	-
	1	0.3	0.0	0.0	0.0		220	196	174	156	139	124	111	98	84	71	60	50	40	32			
			352	317	279	248		190	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.4	0.3	0.2	0.1	0.0			
58-S			0.5	0.5	0.5	0.5	0.6	0.0	0.6			0.2	0.1		-0.2	-0.4	-0.6	-0.9	-1.2	-1.5			
			0.5	0.5	0,5	0.5	0.5	0.4	0,4	0.3	0.3	0,100		5.4.1	114		87	75	64	54	45	36	
	-			337	316	297	268	239	215	193	173	156	141	127			0.7	0.7	0.6	0.5	0.4	0.2	
				0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1000	- 1770			-0.9		-1.6	
68-S				0.6	0.6	0.7	07	0.7	0.6	0.6	0.6	0.5	0.4	0.3	0.2	0.0	-0.2	-0.4	-0.6				1.
							286	071	252	227	205	186	168	152	138	124	111	98	86	76	66	56	4
				346			200	2/1	202	10	11	1 1	1.1	1.1	1.1	1.1	1.1	1.1	1.0	0.9	0.9	0.7	.0.8
78-S				0.7	0.8	0.9	0.9	1.0	1.0	1.0	0.0	0.8	0.8	0.7	0.6	0.5	0.3	0.1	-0.1	-0.3	-0.6	-0.9	-1.
100				0.8	0.8	0.8	0.9	0.9	0.9	0.9	0.9	0.0	0.0	0.7	0.0	0.0							

Strength based on strain compatibility; bottom tension limited to  $6\sqrt{f_c}$ ; see pages 2-2-2-6 for explanation.

2c. #3 – C	oncrete Pan Joist System
	Floor Redesign # 3 Skip Joist System
	span = 31'-0 > 30'+1'-0" CRS1 Handbook 2002
	superimposed DL= DLmech + DLFir + DLcig = 18 psf
	factored superimpred load=1.2 (18 psf) + 1.6 (40psf) = 85.6 ps f
LEETS LEETS EETS	try 30° Form up 6° rib, c/c is 36°, 16° deep + 3° slab f'e = 4000 ps." # 4 bars @ 8° 00 top # 5 bars bottom
50 SF 200 SF	ext. span weight of bars = 1.04 pst above bars only @ 31' allowable 115pst > 85.6pst :.014
22-141 22-142 22-142	deflection coefficient : 11.119
CAMPAD"	$\Delta_{L} = \frac{Coeff.(w_{LL})}{I_{g}(\frac{T_{ca}}{I_{GR}})} = \frac{11.119(40 \text{ psf})}{7127(.199)} = 0.314 \le \frac{2}{480} = \frac{31.12}{480} = 0.775 \text{ i.ok}$
	$\omega_{LL} = 40 \text{ psf}$ $\omega_{conc} = 78 \text{ psf}$
	$\frac{l_{m}}{h} = \frac{31'}{19'' \cdot \frac{1}{h'}} = 19.58 > 18.5$ ; approx method
	$D_{LL} = \frac{40psf}{\binom{85.6}{1.6}} \left( \frac{31'.12}{480} \right) = 0.5796'' + \frac{P_n}{750} = \frac{31.12}{750} = 0.496'' \cdot fails @ \frac{1}{750}$
	$\frac{l}{x} = \frac{31 \cdot 12}{x} = 0.5796" \implies 0.5796" = \frac{l}{641} \le \frac{l}{480} :: 0k$
	31' span 30" One-way Pan Joist w/6" ribs, 16" deep + 3" slab
	Top bars: #4 bars @ 8" oc
	Bottom bars: (1) # 5 centered in each rib

ONE-WAY JOISTS	ISIOL	_	FACTORED USABLE SUPERIMPOSED LOAD (PSF)(2)	D USAE	SLE SUI	PERIME	OSED	TOAD	- in	Iy =	isd ono'no	SINGLE SPAN	LE SPAN	-									
SINGLE	NIVILIO			16" Det	16" Deep Rib + 3.0" Top SI	to" Top SI	ab = 19.0"	D" Total Depti	pth							16" Dec	16" Deep Rib + 3	3.0" Top Slab	$b = 19.0^{-1}$	Total Depth	t)		
# WOLLOW	# 4	# 12 1	# 2	9#	9 # ¹	L #	۲ 4 4	8 # 8 #	8 0 #	6 #	Deflec- tion	BOTTOM BARS	# 4 # 5	# 2 # 2	# # 9	# 9 #	# 6	L #	# ۲ # ۵	8 #	# 8 # 0	0 #	Deflec- tion
				1.00	1.18	1.36		1.78	10		Coeff.	Steel (psf)	-			.97	1.15	1.33	1.53	1.73			Coeff.
CLEAR SPAN			FACT	FACTORED USABLE	SABLE SL	SUPERIMPO	XI	SED LOAD (PSF)			(0)	CLEAR SPAN	Z		FAC	TORED US	SABLE SU	FACTORED USABLE SUPERIMPOSED LOAD (PSF)	SED LOAL	D (PSF)			(3)
21'-0" 1	134	186 0	246 0	307	380	454 0					3.602	21'-0"	120	171 0	230	289	360	432 0					3.702
22'-0"	112	160	215	270	337	404	482	540*	181		4.339	22'-0"	66	146	199	253	318	383	459	536			4.460
10 100	0 0	0 10+	101	0000	0 00	0 000	0	561			0011		0	0	0	0	0	0	0	0			
	0	0	0	0	0	000	104	40c			5.183	23-0	50	123	172	222	281	341	410	480			5.327
24'-0"	77	117	163	209	265	322	387	454			6.145	24'-0"	65	104	149	194	248	304	367	432			6.316
_	0 0	0 0	0	0	0 000	0 000	0 0	0 0		1011			0	0	0	0	0	0	0	0		- Constanting	
	70	50	0	184	236	0	348	409	465*	479* 489*	7.235	25'-0"	51	86	128	170	220	271	329	389	452	513*	7.436
26'-0"	49	83	123	162	210	258	314	370	430	453*	8.464	26'-0"		11	109	148	194	241	295	351	409	469	8.700
27'-0"	0	0 69	0 106	142	187	031	083	335	301	460*	0 844	10.120		E 0	0 0	0	0	0 1	0 000	0	0	0	
		0	0	0	0	0	0	0	0	433*	_	0.17		0	000	0	0	0	007	20	1/2	124	10.11/
28'-0"		57	91	125	166	207	255	304	356	409	11.385	28'-0"		45	78	112	151	192	239	286	337	388	11.701
10,00		0 4	0 1	0 00	0	0	0.00	0	0.00	0		10 100		0	0	0	0	0	0	0	0	0	and the second
0- 64		20	. 0	0	- - - 0	001	0	0/7	324	3/4 0	13.101	.062			69	90	133	171	215	259	306	354	13.465
30'-0"			65	95	130	167	208	251	296	342	15.004	30'-0"			23	82	117	152	193	234	278	323	15.420
1011.01	1		0	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0	
			40 C	70	0	54- 	000	977	0/2	314	1 /.106	31-0			42	69	102	135	173	212	253	295	17.581
32'-0"			44	70	101	133	170	207	247	287	19.423	32'-0"			þ	280	0 68	120	155	192	230	0220	19 962
10100			0	0	0	0	0	0	0	0						0	0	0	0	0	0	0	200
33-0				60	68	119	153	188	226	264	21.967	33'-0"				48	76	106	139	173	210	247	22.577
34'-0"				49	LL	105	138	171	206	242	24.753	34'-0"				0	02 02	0 00	124	157	191	226	25 440
				0	0	0	0	0	0	0							0	0	0	0	0	0	
<ol> <li>For gross section propertial</li> <li>First load is for standard s</li> <li>Computation of deflection</li> <li>Exclusive of bridging joist</li> <li>Controlled by shear capacity</li> </ol>	id is for ation of e of brid by shea	on prope standar deflecti dging jot r capaci	For gross section properties, see Table 8.1. First load is for standard square joist ends:: Computation of deflection is not required at Exclusive of bridging joist and tapered ends introlled by shear capacity.	e Table 5 joist end required	93 O	cond load is f ve horizonal li +Capacity at	i for spe line (thi at elastic	for special tapered joist ine (thickness $\geq \ell_n/16$ ) ine (thickness $\geq \ell_n/16$ ) is elastic deflection $= \ell_n$	or special tapered joist ends. ne (thickness $\geq \ell_n/16),$ elastic deflection = $\ell_n/360.$	ads. 360.		<ol> <li>For great</li> <li>First loc</li> <li>Comput</li> <li>Comput</li> <li>Exclusive</li> <li>Controlled</li> </ol>	For gross section properties, see Table 8-1. First load is for special tapered joist ends. Computation of deflection is not required above horizonal line (thickness $\geq \ell_n/16$ ). Exclusive of bridging joist and tapered ends. +Capacity at elastic deflection = $\ell_n/360$ .	ss section properti ad is for standard s tation of deflection re of bridging joist by shear capacity.	d square d square ion is no ist and tu ty.	e Table 8 Joist ent t required ipered er	-1. ds; secon 1 above 1 rds, +C,	cond load is for special tapered joist ends ve horizonal line (thickness $\geq \ell_n/16$ ). +Capacity at elastic deflection = $\ell_n/360$	for speci line (thick t elastic t	ial tapere kness ≥ deflectior	d joist en $\ell_n/16$ ). n = $\ell_n/30$	ds. 50	
	а.	ROPE	ATIES I	FOR DI	PROPERTIES FOR DESIGN (CONCRETE	(CONC	RETE	.52 CF	CF/SF) ⁽⁴⁾					PROPE	RTIES	FOR DE	SIGN	PROPERTIES FOR DESIGN (CONCRETE		.55 CF/	CF/SF) ⁽⁴⁾		
POSITIVE MOMENT STEEL (SQ. N) AREEL STEEL	51	.62	.75	,88 24	1.04	1.20		-		2		POSITIVE MOMENT STEEL (SQ N) STEEL		.62	.75	88.	1.04	1.20	1.39	1.58	1.79	2.00	
4		17.69	17.63	17.63	17.56	17.56	17.50	17.50	17.44	17.44		DEPTH, DIN.	17.69	17.69	.12	17.63	.16	,18	.21	17.50	.28	.31	
+ICB/ICB	1000																						

8-45

A 10

# 2c. #3 – CRSI Chart

2d. #4 – Waffle Flat Slab System Floor Redesign #4 Waffle Flat Slab Zway span = 381-0" CRSI Handbook 2002 LL = 40 psf super imposed DL = 18pst Factored: 1.2 (18pst) + 1.6 (40pst) = 85.6pst Try Waffle Flat Slab System 30"x 30" Voids: 6" ribs @36" F'= 4000ps) d=15" 39'-0" span 100pst > 85.6 pst :.0k steel (pst)= 3.46pst edge col. 24" square w/ shear rein forcement col. strip . top: (29)# 5 bars spaced evenly along edge ERNPAD' · bottom; (2) #8 per rib · top interior: (33) # 6 bars spaced evenly middle strip *Bottom: #6 long bars #6 short bars • Top interior: (15) #5 bars Moments edge: M== 412'K Midspan: M+= 825 'k interior : M= 1110 'K WpL = 90pst 30"x 30" voids: 6" ribs @ 36" Waffle Flat slab 12" deep w/ 3" slab

# 2d. #4 – CRSI Chart

WAFFLE FLA SQUA		Factored	(1)	$ \begin{array}{c c} \ell_1 = \ell_2 & \mbox{Load} & \mbox{Steel} & \mbox{c}_1 = \sigma_2 \\ (ft) & (ft) & (psf) & (psf) & (n_1) \end{array} $	Total Depth = 15 in. Rib Depth = 12	21 ⁺ .0*         50         1.84         12           29.500         100         1.84         12           RB NOT ON         100         1.84         12           RB NOT ON         100         1.84         12           COLUMN LINE         200         2.01         12           0.720 Gr/SF         300         2.47         12           601         3.29         12         12	24: 0*         50         1.87         12           24: 0*         500         100         1.87         12           RB NOT ON         100         1.92         12         12           COLUMN LINE         200         2.32         12         12           0.692 CF/SF         400         2.94         12         12           0.692 CF/SF         400         2.43         15         12	27'- 0"         50         1;96         13           27'- 0"         50         1;96         13           28         100         2.06         13           28         07         00         2.06         13           0.653         0.673         0.75         13         13           0.653         0.675         5.06         2.1         13           0.663         0.75         400         3.54         13           500         3.56         13         206         2.1	30:-0*         50         196         15           D=12:500         100         2:24         15           D=12:500         100         2:24         15           D=10         2:00         2:01         15         15           COLUMN INF         2:00         2:03         19         19           0.705 CF/SF         300         4:36         19         23	33: 0°         50         2.25         16           b=17.500         100         2.46         16         16           RB 00         150         3.76         18         16         16           Column Line         200         3.76         18         18         16           0.687 CF/SF         300         4.96         24         24         18	36'- 0"         50         2.34         18           D=12.500         100         2.89         18           RIB ON         150         3.60         19           COLUMN LINE         200         4.36         23	39'-0* 50 2.72 19.4 0.877 D=15.500 100 3.46 20* 0.916 RIB NOT ON 150* 4.03 29* 0.824 COLUMN LINE 0.897 CNFF
		Square Ec	(1) Y		în.	0.674 0.720 0.726 0.752 0.752 0.6537	0.7550 0.775 0.835 0.835 0.835 0.633 * 0.633	0.776 0.803 0.843 0.876 0.835 0.630 0.630	0.782 0.829 • 0.882 • 0.924 • 0.628	0.624	0.825	0.8
SQ		Square Edge Column	(2) Stirrups		Total S	26 26 37 37 37	33/32 82 220	4 S	4 S	4 S	4 S	77 18 24
SQUARE		E	Top Edge No		Total Slab Depth =	154 154 154 154 154 154 154 154 154 154	18-#5+ 18-#5+ 18-#5+ 18-#5+ 18-#5+ 18-#5+ 18-#5+	20-#5+ 20-#5+ 20-#5+ 20-#5+ 20-#5+ 20-#5+ 20-#5+ 6-1 20-#5+	22-#5+ 22-#5+ 22-#5+ 22-#5+ 222-#5+ 6 1 222-#5+	25-#5+ ( 25-#5+ ( 25-#5+ ( 25-#5+ ( 25-#5+ (	27-#6+ 27-#6+ 27-#6+ 57-#6+	28 # 29 # 28 #
EDGE				+	3 in.	15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0 15-#5+ 0	0000000	00000	0+++200		- 10 m +	29 #6+ 8 29-#5+11 ( 29-#5+7
E PANELS	Reinfo	Column Strip	Bottom	No. Bars per R Ribs		4         2-#4           4         2-#4           4         1-#4 and 1-           4         1-#6 and 1-           4         1-#6 and 1-	4 1-#4 and 1- 4 1-#4 and 1- 4 1-#5 and 1- 4 1-#7 and 1- 2-#6 4 2-#9	2-#5 1-#5 and 1-#6 1-#6 and 1-#7 1-#7 and 1-#7 1-#7 and 1-#9 1-#9 and 1-#10 4 1-#9 and 1-#10 4 2-#10	5 2-#5 5 2-#6 6 1-#7 and 1-#8 5 1-#7 and 1-#8 2-#9 and 1-#10	5 2-#6 5 1-#6 and 1-#7 2-#8 5 1-#8 and 1-#9 5 2-#10	5 1-#6 and 1- 1-#7 and 1- 5 1-#9 and 1-#	6 2-#8 5 1-#8 and 1-#9
S	Reinforcing Bars		Top	Rib No size		145 15-45 15-45 15-45 15-45 15-45 15-45 15-45 16-45 14-46	1-#5 1-#5 1-#6 18.#5 18.#5 18.#5 18.#5 17.#6 20.#6 20.#6	#6 20-#5 #7 20-#5 #8 21-#5 #9 20-#6 20-#6 20-#6 29-#6	22.45 22.45 25.45 25.46 21.46 28.46 28.46 234.46	#7 25-#5 28-#5 24-#6 #9 28-#6 37-#6	1-#7 28-#5 1-#8 26-#6 1-#9 31-#6 1-#10 37-#6	36-#5 33-#6 1-#9 40-#6
	Bars—Each Direction			No. Ribs			4444444		מי מי מי מי מי מי	ත ත ත ත ත	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***
	Direct	Midd	Bottom	Long Bars		#4 #4 #5 #5 #7	######################################	## 89 74 74 74	24 24 24 24 24 24 24 24 24 24 24 24 24 2	#4 #5 #6 #7	44 85 86 85	考 場
	ion	Middle Strip		Short Bars		#4 #5 #7 #7	#4 #5 #7 #8	27年 19年 19年 19年 19年 19年 19年 19年 19年 19年 19	444 400 400 800 800 800 800 800 800 800	おお 10 11 11 11 11 11 11 11 11 11	\$9 \$4 \$9 \$4	9# 9#
			Top	No size		84-0 84-0 84-0 84-0 84-0 84-0 84-0 84-0	7-#5 7-#5 7-#5 7-#5 7-#5 7-#5 7-#5	8-#5 8-#5 8-#5 9-#5 9-#6 9-#6	9-#5 9-#5 10-#5 10-#6 11-#6	10-#5 10-#5 11-#5 13-#5 12-#6	11-#5 12-#6 10-#6 12-#6	12-#5 15-#5 13-#6
		V	-M Edge (ft-k)			51 54 54 57 78 78 78 119 119 173	75 117 137 137 258 258	106 136 254 309 356 309	148 188 229 345 414	196 249 303 355 451	251 321 359 454	325 412 496
		Moments	+M Bot. (ft-k)			101 134 311 395 395 477	150 271 337 593 709	213 277 277 380 474 858 827 921	296 377 512 640 881 1010	391 499 662 827 1066	502 642 798 1003	<del>64</del> 9 825 992
		~	$\begin{array}{c c} -M & (1) \\ Int. & Steel & c_1 = c_2 \\ (ft-k) & (psf) & (in.) \end{array}$			136 173 247 247 320 394 467	203 258 314 369 591 591 695	286 366 524 524 831 831 958	399 507 516 724 930 1114	526 671 816 956 1213	676 864 1049 1223	874 1110 1336
					Total D	1.82 1.82 2.35 2.35 2.35 2.35 2.35 2.35 2.35 2.3	1,86 1,86 1,86 2,05 2,49 2,97 2,97 2,97 3,76	1.86 2.13 2.33 2.33 2.33 2.33 2.33 2.33 2.33	1.85 2.03 2.28 3.86 4.53	2.16 2.16 3.35 4.39	2.14 2.64 3.24 3.99	2.37 3.13 3.73
	0	Interic			Depth =	2222222	88888888 		សសសស • ស • ស • ស • ស • ស • ស • ស • ស • ស	8999 * * * *	80 80 80 * * * *	5 <u>5</u> 5
SQUAR	Courses	Interior Column	1.61	Sd	15 in.	4 S 6 1 4 S 6 1	4 4 8 8 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 4 8 6 1 5 5 6 1 5 5 6 1 5 6 2 2 5 6 2 2 5 6 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4561 4561 4562	4561 4561 4561 4562	4561 4561 4562	4 S 6 1 4 S 6 1
шl	R	Colu	Bottom	No. Bars per Ribs		4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 2-#4 4 2-#4 4 1-#4 and 4 2-#5 4 2-#5 4 1-#6 and 4 1-#6 and	4 2-#4 4 1-#4 and 4 1-#5 and 4 2-#6 4 2-#8 4 1-#8 and	1-#5 1-#5 1-#7	5 2-#5 5 1-#5 and 5 1-#6 and 5 2-#7 5 2-#8	5 1-#5 and 5 1-#6 and 5 2-#7 5 2-#8	6 1-#5 and 6 1-#6 and 6 2-#7
INTERIOR	Reinforcing	Column Strip		Rib	Depth = 12 in.	2-#4 2-#4 2-#5 2-#5 2-#6 and 1-#6 2-#6 2-#6	#4 #4 1=================================	9#- 9#-	2-#4 2-#5 and 1-#6 and 1-#7 2-#8 2-#8	1-#6 1-#7	1-#5	9#-1
100	Bars-Each Direction		Top	No size	P	$15 \pm 5$ $15 \pm 5$	18-#5 18-#5 18-#5 18-#5 18-#5 16-#6 16-#6	20-#5 20-#5 20-#5 20-#5 20-#5 23-#6 27-#6	22-#5 22-#5 23-#5 28-#5 31-#6 31-#6	25-#5 25-#5 31-#5 26-#6 35-#6	27-#5 33-#5 29-#6 35-#6	33-#5 31-#6 38-#6
PANEL	Each D		8	Ribs B	Total Sla		য য য য য য য	ى ما ما ما ما ما ما ما ما ما ما ما ما		00000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N= N= N-
S	irection	Middle Strip	Bottom	Long S Bars B	Slab Depth =	*****	## ## 99 #99 #99	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	### ### 8:5:5:8 ###	222268	분분분분	## # #
		Strip	Top	Short No Bars size	1 = 3 in.	#4 6-#5 #4 6-#5 #4 6-#5 #5 6-#5 #5 6-#5 845 845 6-#5 845 845 845	#4 7-#5 #4 7-#5 #4 7-#5 #4 7-#5 #5 7-#5 #6 7-#5 #5 8-#5	#4 8-#5 #5 8-#5 8-#5 8-#5 8-#5 8-#5 8-#5 8	#4 9-#5 #4 9-#5 #5 9-#5 #6 12-#5 #7 10-#6	#4 10-#5 #4 10-#5 #6 10-#5 #6 12-#5 #6 11-#6	#4 11-#5 #5 11-#5 #6 11-#6	#5 12-#5 #6 14-#5 #6 12-#6

11-21

. . .

2e. #5 – Pre-Stress Slab # 5 Floor Redesign Prestressed Slab 12" Unit strip method. 84 1 = 31'TL=0.838  $I = \frac{1}{12} (8)^{2} (12) = 512 in^{4}$ A = 96 in² 0 WLL= 40 plf  $w_{W} = 100 + 18 p/F = 118 p/F$ F'c= 4000 psi Fes Sto f'e:= 3500 pel TT: Fti = - 3 Jfi = - 3 J3500 = -177.5 psi 50 SMEETS 100 SMEETS 200 SMEETS 
$$\begin{split} \vec{\sigma}_{ci} &= 0.6 \ f'c_i = 0.6 \ (3500) = 2100 \ psi \\ \vec{\sigma}_{cs} &= 0.6 \ f'c_i = 0.6 \ (3500) = 2100 \ psi \\ \vec{\sigma}_{cs} &= 0.6 \ f'c_i = 0.6 \ (4000) = 2.400 \ psi \\ \vec{\sigma}_{cs} &= 0.45 \ f'c_i = 0.45 \ (4000) = 1800 \ psi \\ \vec{\sigma}_{\taus} &= -7.5 \ fc_i = -7.5 \ 4000 = -474.3 \ psi \end{split}$$
Ers Fei demin = cover = 1,5"  $y_t = y_b = 4''$ Calinpan. 8" slab w/ (2)7-strand wire (As=0.153in2) per 12" and no shear rein Forcement. !

2e.	#5 – Fe	asibility	/ Doma	iin				
Robe	rt Whitak	er	k₅(in)	1.78	σ _{ti} (ksi)	-0.178		Feasibility Diagram
CE 54	13		k _t (in)	-1.07	$\sigma_{ol}$ (ksi)	2.1		Midspan
	L (ft)	31	Z _b (in^3)	102.4	σ _{ts} (ksi)	-0.474	-2 •	
	WLL (plf)	40	Z _t (in^3)	170.667	$\sigma_{os}$ (ksi)	2.4		
	w _{oL} (plf)	118			σ _{es sus} (ksi)	1.8	8	10E-02
	w _{sol} (plf)		l (in^4)	512		3	0	
end(*)	M _{min} (" k)	0	M _{min} ("k)			5	0.	· · · · · · · · · · · · · · · · · · ·
	M _{max} (" k)	0	M _{max} ("k)		(d _o ) _{min} (in)	1.5	ê	
	M _{sus} (" k)	0	M _{sus} (" k		(ec) _{MP} (in)			
			A。(in²)		f _{pu} (ksi)	270		
	section of		f' _o (psi)		f _{pl} (ksi)	216	2 •	
IV	and	V	f' _{ol} (psi)		f _{py} (ksi)	243		
			Fi _{min} (k)	46.8239	f _{pe} (ksi)	181.01		
M(+)	1		Calculated		midspan			
	e _o <k<sub>b+(1/F</k<sub>	)*/M σ	°Z.) =	1.78	+ (1/Fi) *	200.39	4 •	
	e _o <k<sub>t+(1/F₁</k<sub>					385.14		Fasaibility Disavery
	e _o >k _b +(1/F							Feasibility Diagram
				N 1			-4 •	End
	e _o >k _b +(1/F				N 1			
	e _o >k _t +(1/Fi	)*(M _{max} +σ _{ts}	*Ζ _b )/η =	-1.07 + (1/Fi) * 213.83				
V	e _o <(e _o ) _{mp}		-	3.5			-2 •	
Mids	pan M(+)							10E-03 20E-03 20E-03 50E-03 50E-04 50E-03 50E-03 10E-02 11E-02 11E-02 11E-02 15E-02 15E-02 15E-02 15E-02 15E-02
1/Fi	I	п	ш	IIIs	IV	V	<b>ဥ</b> , .	2 N N + 6 0 N 0 0 2 2 2 2 2 2 2 4 1/F
-0.01	-0.2	-4.91804	3.94774	3.41385	-3.20	3.50	Ĩ	
0.05	11.8	18.19018	-9.072	-6.4026	9.62	3.50		
End	M(+)						2.	K
1/Fi	I	П	Ш	IIIs	IV	V		
-0.01		-3.21707	6.66561	5.44365	-0.49	3.50		
0.05	3.3	9.685333	-22.661	-16.552	-3.96	3.50		

Robert W	hitaker		W _{min} plf	118	w _{LL} plf	40	L (ft)	31	Fi _{min} (k)	46.824	strandmin	2		
Distributed	Load		W _{max} plf	158	w _{et} plf	118	e ₁ (in)	2	Fi (ksi)	66.096	# strand	2		
M(x)=wx(l	-x)/2		w _{sus} plf	118	w _{sou} plf	0	e2 (in)	3	As ₁ (in ² )	0.153	Aps (in ² )	0.306		
								,	-					
M _{min}	M _{max}	M _{sus}	Dist	I	п	Ш	III-sust	IV	Min	Max		Steel		
(" k)	(" k)	(" K)	(ft)	eo<	eo<	eo>	eo>	eo>	eoL	eou	(eo) _{mp}	Profile		
0	0	0.0	0	2.24	2.19	-5.62	-3.77	-1.94	2.19	-1.94	3.50	2.00		
52.0	69.6	52.0	2.6	3.02	2.97	-4.36	-2.83	-0.69	2.97	-0.69	3.50	2.17		
94.5	126.5	94.5 5.2		3.67	3.62	-3.33	-2.06	0.34	3.62	0.34	3.50	2.33		
127.6	170.8	127.6	127.6 7.8		4.12	-2.53	-1.47	1.14	4.12	1.14	3.50	2.50		
151.2	202.5	151.2 10		4.52	4.47	-1.96	-1.04	1.71	4.47	1.71	3.50	2.67		
165.4	221.4	165.4	13	4.74	4.69	-1.62	-0.78	2.05	4.69	2.05	3.50	2.83		
170.1	227.8	170.1	16	4.81	4.76	-1.51	-0.70	2.17	4.76	2.17	3.50	3.00		
165.4	221.4	165.4	18	4.74	4.69	-1.62	-0.78	2.05	4.69	2.05		2.83		
151.2	202.5	151.2	21	4.52	4.47	-1.96	-1.04	1.71	4.47	1.71	3.50	2.67		
127.6	170.8	127.6	23	4.17	4.12	-2.53	-1.47	1.14	4.12	1.14	3.50	2.50		
94.5	126.5	94.5	26	3.67	3.62	-3.33	-2.06	0.34	3.62	0.34	3.50	2.33		
52.0	69.6	52.0	28	3.02	2.97	-4.36	-2.83	-0.69	2.97	-0.69	3.50	2.17		
0.0	0.0	0.0	31	2.24	2.19	-5.62	-3.77	-1.94	2.19	-1.94	3.50	2.00		
				-5										
M(+)				.3 . Length (ft)										
I	e _o <k<sub>b+(1/F</k<sub>	$)^*(M_{min}-\sigma_{ti})$	*Z _t )					*						
П	e _o <k<sub>t+(1/F₁</k<sub>	)*(M _{min} + $\sigma_{ci}$	*Z _b )	l -1 a 🔪 🛛	, e	50 12	-ର 🏑	32	<del>6</del> <del>6</del>	8 8	3 \$	– Max eou		
III	e _o >k _b +(1/F	)*(M _{max} - $\sigma_{cr}$	, *Ζ _t )/η											
IIIs	e _o >k _b +(1/F	)*(M _{sus} -o _{cs}	, _{sus} *Ζ _t )/η											
	e _o >k,+(1/Fi			3										
	e_<(e_)mp			╢╵┝╼╸	<b>→</b>	– (eo) mp								
,	-0 \\+0/mp			5-								- Steel		
											-*	– Steel Profile		
				┫ ァ ┶━━━										

Witz (piff)       40 (other section properties on FD sheet)       Robert Whitaker         Witz (piff)       0       witz (piff)       0       Estimation       CE 543         Witz (piff)       0       0       0       0       Estimation       CE 543         Witz (piff)       0       0       0       0       Estimation       Estimation <th>2e. #</th> <th>5 – 5</th> <th>Shea</th> <th>ır Rei</th> <th>nforce</th> <th>ement</th> <th></th>	2e. #	5 – 5	Shea	ır Rei	nforce	ement													
$ \begin{array}{c} \hline w_{a,c}(p f) & 118 \\ \hline w_{a,c}(p f) & 0 \\ L(ft) & 31 h (in) & 8 \\ \hline fc (psi) & 4000 \\ \hline e_{1}(in) & 2 \\ e_{2}(in) & 31 \\ \hline w_{1,c}(p f) & 12 \\ \hline h & 12 \\ \hline h & 10 \\ \hline 0 & 0.75 \\ \hline \\ h & 1 \\ \hline 0 & 0.75 \\ \hline \\ h \\ h$	WLL (plf)	40		(other :	section p	roperties	on FD sh	eet)		Robert Whitaker									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1		W⊤∟(plf):	158	· ·											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	w(plf)	0													-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			h (in)		1/		. 2	/			max( my	221.10	on (deg)	0.000	J				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			n (in)	0	]	X>		I		Prostro	ee Strande				Stirru	ne			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			e _s (in)	3	l v														
A       1       Φ       0.75       M       A       A       I       Φ       0.75       0.298       54.82       8.26       30.59       8.3       n/a       n/a       n/a       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>r</td> <td>2</td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td>						•					<u> </u>	r	2			<u> </u>			
e.g (in)       x (ft)       d.y. (k)       V (k)       ΔV (k)       V (k) <th< td=""><td></td><td></td><td colspan="7"></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></th<>														1					
2.02       ####       6.4       1.79       0.6       0.00       0.97       3.12       0.298       54.82       8.26       30.59       30.6       n/a       n/a       n/a       0.00       0         2.20       3.1       6.4       1.46       0.5       0.00       0.79       2.55       0.298       8.17       8.26       30.59       8.3       n/a       n/a       n/a       0.00       0         2.40       6.2       6.4       1.10       0.4       0.00       0.60       1.91       0.298       5.24       8.26       30.59       8.3       n/a       n/a       n/a       0.00       0         2.60       9.3       6.4       0.73       0.2       0.00       0.40       1.27       0.298       3.48       8.26       30.59       8.3       n/a       n/a       n/a       0.00       0       0.00       0       0.00       0.00       0.298       3.48       8.26       30.59       8.3       n/a       n/a       n/a       0.00       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td></td> <td></td> <td>Ψ</td> <td>0.75</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Alps(III.)</td> <td>0.155</td> <td>Aps(III )</td> <td>0.500</td> <td>J</td> <td>Av(111.)</td> <td>0.22</td> <td></td> <td></td>			Ψ	0.75						Alps(III.)	0.155	Aps(III )	0.500	J	Av(111.)	0.22			
2.02       ####       6.4       1.79       0.6       0.00       0.97       3.12       0.298       54.82       8.26       30.59       30.6       n/a       n/a       n/a       0.00       0         2.20       3.1       6.4       1.46       0.5       0.00       0.79       2.55       0.298       8.17       8.26       30.59       8.3       n/a       n/a       n/a       0.00       0         2.40       6.2       6.4       1.10       0.4       0.00       0.60       1.91       0.298       5.24       8.26       30.59       8.3       n/a       n/a       n/a       0.00       0       0.00       0       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0	e. (in)	x (ff)	d.	$V_{a}(\mathbf{k})$	V., (k)	V (k)	$\Delta V_{-}(\mathbf{k})$	V- (k)	V. (k)	V. (k)	Verene (k)	V(k)	V. (k)	A _w (in ² )	A. (in²)	A., (in²)	Asome (ip ² )	A.	
2.20       3.1       6.4       1.46       0.5       0.00       0.79       2.55       0.298       8.17       8.26       30.59       8.3       n/a																			
2.40       6.2       6.4       1.10       0.4       0.00       0.60       1.91       0.298       5.24       8.26       30.59       8.3       n/a																			
2.80       12.4       6.4       0.37       0.1       0.00       0.20       0.64       0.298       3.48       8.26       30.59       8.3       n/a       n/a       n/a       0.00       0         3.00       15.5       6.4       0.00       0.0       0.00       0.00       0.00       0.298       2.91       8.26       30.59       8.3       n/a       n/a       n/a       0.00       0         * dp of prestress steel       Mod("k)       Mst("K)       Camposition       Vst(K)		6.2		1.10										n/a	n/a				
3.00       15.5       6.4       0.00       0.00       0.00       0.00       0.298       2.91       8.26       30.59       8.3       n/a       n/a       n/a       n/a       0.00       0         * dp of prestress steel         x (ft)       S _{MX, no} M _M ("k)       ΔM _u ("k)       ΔM _u ("k)       ΔM _u ("k)       V _s (k)       V _s (k)       V _s S (in)       V _{s2} (k)       if 'e^*, 5bc       S _{MAC} #####       6       3       9.7       202.7       3.9253       38.86       -26.43       ok       no V reinf       N/A       n/a       19429       3         3       n/a       n/a       n/a       82.0       158.6       33.212       38.86       -26.43       ok       no V reinf       N/A       n/a       19429       n/a         6       n/a       n/a       145.8       122.0       59.044       38.86       -5.71       ok       no V reinf       N/A       n/a       19429       n/a         9       n/a       n/a       191.3       99.1       77.495       38.86       -5.66       ok       no V reinf       N/A       n/a       19429       n/a         12       n/a	2.60	9.3	6.4	0.73	0.2	0.00	0.40	1.27	0.298	4.15	8.26	30.59	8.3	n/a	n/a	n/a	0.00	ok	
* dp of prestress steel x (ft) S _{UX,*o} S _{UX,*e} M _{.vv} (*k) $\Delta M_*(*k) \nabla_**(k) \nabla_*(k) \nabla_**(k) \nabla_**V_*m} \nabla_* \nabla_* S (in) \nabla_{*2} (k) 4^*e^5b SUAX,##### 6 3 9.7 202.7 3.9253 38.86 -26.43 ok no V reinf N/A n/a 19429 33 n/a n/a 82.0 158.6 33.212 38.86 -4.86 ok no V reinf N/A n/a 19429 n/a6 n/a n/a 145.8 122.0 59.044 38.86 -5.71 ok no V reinf N/A n/a 19429 n/a9 n/a n/a 191.3 99.1 77.495 38.86 -6.56 ok no V reinf N/A n/a 19429 n/a12 n/a n/a 218.6 89.7 88.566 38.86 -7.41 ok no V reinf N/A n/a 19429 n/a16 n/a n/a 227.8 94.0 92.256 38.86 -8.26 ok no V reinf N/A n/a 19429 n/a16 n/a n/a 227.8 94.0 92.256 38.86 -8.26 ok no V reinf N/A n/a 19429 n/ax (ft) *stirrup: per Spacing (in)0.333 0 per 33.1 0 per 06.2 0 per 09.3 0 per 012.4 0 per 012.4 0 per 0$	2.80	12.4	6.4	0.37	0.1	0.00	0.20	0.64	0.298	3.48	8.26	30.59	8.3	n/a	n/a	n/a	0.00	ok	
x (ft)       Subset       Muo("k)       AM _{st} ("k)       AM _{st} ("k)       V _s (k)       V _s (k)       V _s S (in)       V _{s2} (k)       St°e [*] .5bc       Subset         #####       6       3       9.7       202.7       3.9253       38.86       -26.43       ok       no V reinf       N/A       n/a       19429       3         3       n/a       n/a       82.0       158.6       33.212       38.86       -4.86       ok       no V reinf       N/A       n/a       19429       3         6       n/a       n/a       145.8       122.0       59.044       38.86       -5.71       ok       no V reinf       N/A       n/a       19429       n/a         9       n/a       n/a       191.3       99.1       77.495       38.86       -6.56       ok       no V reinf       N/A       n/a       19429       n/a         12       n/a       n/a       218.66       38.86       -7.41       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429	3.00	15.5	6.4	0.00	0.0	0.00	0.00	0.00	0.298	2.91	8.26	30.59	8.3	n/a	n/a	n/a	0.00	ok	
####       6       3       9.7       202.7       3.9253       38.86       -26.43       ok       no V reinf       N/A       n/a       19429       3         3       n/a       n/a       82.0       158.6       33.212       38.86       -4.86       ok       no V reinf       N/A       n/a       19429       3         6       n/a       n/a       145.8       122.0       59.044       38.86       -5.71       ok       no V reinf       N/A       n/a       19429       n/a         9       n/a       n/a       191.3       99.1       77.495       38.86       -6.56       ok       no V reinf       N/A       n/a       19429       n/a         12       n/a       n/a       218.66       38.86       -7.41       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429 <td></td> <td></td> <td>* dp o</td> <td>of prestr</td> <td>ress steel</td> <td> </td> <td></td>			* dp o	of prestr	ress steel														
####       6       3       9.7       202.7       3.9253       38.86       -26.43       ok       no V reinf       N/A       n/a       19429       3         3       n/a       n/a       82.0       158.6       33.212       38.86       -4.86       ok       no V reinf       N/A       n/a       19429       3         6       n/a       n/a       145.8       122.0       59.044       38.86       -5.71       ok       no V reinf       N/A       n/a       19429       n/a         9       n/a       n/a       191.3       99.1       77.495       38.86       -6.56       ok       no V reinf       N/A       n/a       19429       n/a         12       n/a       n/a       218.66       38.86       -7.41       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										_									
3       n/a       n/a       82.0       158.6       33.212       38.86       -4.86       ok       no V reinf       N/A       n/a       19429       n/a         6       n/a       n/a       145.8       122.0       59.044       38.86       -5.71       ok       no V reinf       N/A       n/a       19429       n/a         9       n/a       n/a       191.3       99.1       77.495       38.86       -6.56       ok       no V reinf       N/A       n/a       19429       n/a         12       n/a       n/a       218.6       89.7       88.566       38.86       -7.41       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         0.333       0       per       0       0       per       0       0       0       0       0       0		x (ft)	S _{MX no}	S _{MX yes}	M _(x) ("k)	∆M _{or} ("k)	∆M _e ("k)	V _{s max} (k)	V, (k)	Vs <vsm< td=""><td>V_u&lt;.5ΦV_o</td><td>S (in)</td><td>V_{s2} (k)</td><td>ff'c*.5bc</td><td>S_{MAX}</td><td></td><td></td><td></td></vsm<>	V _u <.5ΦV _o	S (in)	V _{s2} (k)	ff'c*.5bc	S _{MAX}				
6       n/a       145.8       122.0       59.044       38.86       -5.71       ok       no V reinf       N/A       n/a       19429       n/a         9       n/a       n/a       191.3       99.1       77.495       38.86       -6.56       ok       no V reinf       N/A       n/a       19429       n/a         12       n/a       n/a       218.6       89.7       88.566       38.86       -7.41       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         0.333       0       per       3       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         8.26       0       per       0       per       0       0       R/       0.333       3.1       6.2       9.3       12.4       15.5 <t< td=""><td></td><td></td><td>6</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>n/a</td><td></td><td></td><td></td><td></td><td></td></t<>			6	3									n/a						
9       n/a       191.3       99.1       77.495       38.86       -6.56       ok       no V reinf       N/A       n/a       19429       n/a         12       n/a       n/a       218.6       89.7       88.566       38.86       -7.41       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         x (ft)       *stirrup: per Spacing (in)       0       per       0       0       per       0         9.3       0       per       0       per       0       R'       0.333       3.1       6.2       9.3       12.4       15.5		-																	
12       n/a       n/a       218.6       89.7       88.566       38.86       -7.41       ok       no V reinf       N/A       n/a       19429       n/a         16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         x       ftl       *stirrup: per Spacing (in)       0.333       0       per       3       3.1       0       per       0         6.2       0       per       0       per       0       R       0.333       3.1       6.2       9.3       12.4       15.5																			
16       n/a       n/a       227.8       94.0       92.256       38.86       -8.26       ok       no V reinf       N/A       n/a       19429       n/a         x       ft;       *stirrup: per Spacing (in)       oper       3       oper       oper       oper       oper       oper       oper       oper       oper       oper       n/a       19429       n/a         x       ft;       *stirrup: per Spacing (in)       oper       n/a       19429       n/a         x       ft;       *stirrup: per Spacing (in)       oper       n/a       n/a       19429       n/a         9.3       0       per       0       per       0       R'       0.333       3.1       6.2       9.3       12.4       15.5         12.4       0       per       0       oper       oper       oper       oper       oper       oper       oper       oper       oper		_																	
x (ft)       *stirrup: per Spacing (in)         0.333       0       per       3         3.1       0       per       0         6.2       0       per       0         9.3       0       per       0         12.4       0       per       0																			
0.333       0       per       3         3.1       0       per       0         6.2       0       per       0         9.3       0       per       0         12.4       0       per       0		10	174	10/0	221.0	04.0	02.200	30.00	-0.20	UN	no v roim	1970	10/4	10420	10/4				
0.333       0       per       3         3.1       0       per       0         6.2       0       per       0         9.3       0       per       0         12.4       0       per       0				× (f+)	[#] stirrup	ner Sna	cing (in)								:				
3.1         0         per         0           6.2         0         per         0           9.3         0         per         0           12.4         0         per         0						· · · ·		Г							1				
6.2         0         per         0           9.3         0         per         0         R ² 0.333         3.1         6.2         9.3         12.4         15.5           12.4         0         per         0         0         0         0         12.4         15.5					-		-								i				
9.3         0         per         0         R'         0.333         3.1         6.2         9.3         12.4         15.5           12.4         0         per         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0<					•	P	-								i .				
12.4 0 per 0					0		-	R/	0.333	3.1	6.2	9.3	12.4	15.5	1				
					-		-								-				
					0		-												