

hub on Chestnut

PHILADELPHIA, PA

Andrew Simone STRUCTURAL

Architectural Engineering Senior Thesis 2007

- o Project Description
 - o Existing Structural System
 - o Proposal

- o Structural Redesign
 - o Green Roof Study
 - o Construction Breadth
 - o Recommendation

Project Overview

- University City Section of Philadelphia
- Nine Levels (Above-Grade)
- 110 Apartment Units
- 3 Levels of Retail
- 68,000 SF (Residential)
- 30,000 SF (Commercial)
- \$22.3 Project Cost
- Design-Build Delivery

Architecture

- *Height* 100'
- Width68' (Chestnut Street)
- Length 148' (40th Street)
- *Footprint* 11,000 SF

- Mixed-Use Occupancy
- Studio/Multi-Room Style Units
- Double Height Retail Areas
- Exposed Concrete Finishes
- Aluminum Rainscreen System with Corrugated Metal and Wood Veneer Panels
- EPDM Roof System

Project Team

- Owner
 Teres Holdings, LLC
- Architect
 Piatt Associates (Design)
 Brawer & Hauptman (Project)
- Structural Engineer
 O'Donnell & Naccarato
- CM/General Contractor
 Domus, Inc
- Civil EngineerBarton & Martin Engineers
- Mechanical EngineerAKF Engineers

- ✓ Project Description
 - o Existing Structural System
 - o Proposal

- o Structural Redesign
 - o Green Roof Study
 - o Construction Breadth
 - o Recommendation

Existing Structural System

Codes

International Building Code 2003

ASCE 7 - 02

ACI 318 - 02

Floor System

Two-Way Flat Slab (Retail)

Post-Tensioning (Residential)

Lateral System

Ordinary Concrete Moment Frame

Foundation

Reinforced Concrete Caissons

Gravity System

Two-Way Flat Slab (Retail)

- 5,000 PSI Compressive Strength
- 12" Depth
- 25' x 25' (Typical Bay)
- #6 Bars 16" on-center (Typical)

Post-Tensioning (Residential)

- 5,000 PSI Compressive Strength
- 9" Depth
- Span in Both Directions
- ½ Ø, 270 KSI, Low Relation Tendons

Caissons

- 5,000 PSI Compressive Strength
- 3'-6" to 4'-6" Ø
- (10) #10 Bars 18" Spiral Tie
- 45' (Typical Depth to Bedrock)

PHILADELPHIA, PA Lateral System Ordinary Concrete Moment Frame Column Geometry and Slab Reinforcement Columns • 5,000 PSI Compressive Strength • 20" x 30" (Upper Levels) ■ 30" x 30" (Lower Levels) 22 per Floor • #7 - #10 Bars

Andrew Simone

Structural

- ✓ Project Description
 - ✓ Existing Structural System
 - o Proposal

- o Structural Redesign
 - o Green Roof Study
 - o Construction Breadth
 - o Recommendation

Proposal

- Precast Hollow-Core Slab and Composite Steel Girder System with Concentrically Braced Steel Frames
- Incorporate Green Roof and Construction Study to Enhance Design

Goals

- Maintain Architectural Exterior/Interior Design
- Meet Needs of Owner and Architect
- Increase Daily Production
- Steel vs. Concrete Frame System

Design Criteria

Codes

➤ International Building Code 2006

ASCE 7 - 05 AISC LRFD 3rd Edition

ACI 318 - 05

PCI Handbook 6rd Edition

Floor System

Depth Limit of 14"

Live/360

Total/240

Plank Orientation

Lateral System

Simple Connections

Connection Geometry

Common Member Sizes

H/400

Foundation

Reinforced Concrete Caissons (Reduce Existing)

- ✓ Project Description
 - ✓ Existing Structural System
 - ✓ Proposal

- o Structural Redesign
 - o Green Roof Study
 - o Construction Breadth
 - o Recommendation

PHILADELPHIA, PA Floor System Span Deck® Hollow-Core Slabs 8" x 96" with 2" Topping $\frac{1}{2}$ Ø, 7-wire, 270KSI Class U Member 5,000 PSI 29'-6" (Typical Span) **Topping** 3,000 PSI Grout 4,000 PSI Connections 4" ½ Ø Shear Studs Field Weld to Plate Simple Shear for Girders

Andrew Simone

Structural

Composite System

Rigid Diaphragm

Horizontal Forces → 2" Topping/Studs → Lateral Elements

W14 x 26 (non-composite) \rightarrow W10 x 12 (composite)

* Depth Gain of 4"

Lateral System

Six - Ordinary Concentrically Braced Frames

Wind

Analytical Procedure
Exposure B
Non-Hurricane
Flexible Structure

Case $1 \rightarrow V = 258^{K}$ East/West

Seismic

Equivalent Lateral Force
Site Classification D
Seismic Design Category B 1/T = 0.965 < 1.00 Hz

Base Shear $\rightarrow V = 350^{K}$ Both Directions

System Controlled by Seismic Loading

	•		
North/South		East/West	

Frames

Six Braced Frames

- (3) North/South
- (3) East/West

Chevron (Inverted-V)

X Diagonals

Members Sizes

HSS 4x4x¹/₂ (Upper Levels)

HSS $6x6x^{1/2}$

HSS 8x8x¹/₂ (Lower Levels)

Design Selection

Stiffness of Frames

Tension Forces

Aesthetics in Retail Area

Combined Loading

Axial Compression and Flexure Members

Beam

Gravity Analysis
W8 x 10 (22)

Lateral Analysis

W8 x 21

Column

Gravity Analysis

 $W12 \times 45$

Lateral Analysis

W12 x 106

East/West		
Eddy W CSt		

Initial Displacement

 $H/400 \rightarrow 3.00$ "

Final Displacement

 $H/265 \to 4.59$ "

*Acceptable by Seismic

Drift Limit

[Strength Design Governs]

- ✓ Project Description
 - ✓ Existing Structural System
 - ✓ Proposal
 - ✓ Structural Redesign
 - o Green Roof Study
 - o Construction Breadth
 - o Recommendation

Water Usage per Da $$21.14/1000 \text{ ft}^3 \rightarrow$		\rightarrow	\$10.30
Water Usage per year \$10.30/Day →		\rightarrow	\$3,757.74
Wihtout Rain Supply $$21.14/1000 \text{ ft}^3 \rightarrow$		\rightarrow	\$3.30
Water Usage per year \$3.30/Day →	ır	\rightarrow	\$1,203.71

Savings \$2,554.03 per year

Green Roof		\$118,835
5000 Gal tank	\$0.50 per gal	\$2,500
2500 Gal tank	\$0.50 per gal	\$1,250
Filtration System		\$9,000
		\$12,750

* Payoff Filtration System in 5 years

- ✓ Project Description
 - ✓ Existing Structural System
 - ✓ Proposal

- √ Structural Redesign
 - ✓ Green Roof Study
 - o Construction Breadth
 - o Recommendation

Superstructure Cost

Steel Frame with Hollow-Core	Slabs
-------------------------------------	-------

\$869,055.39
\$148,586.14
\$164,168.20
\$96,239.73

\$1,278,049.46

Flat Plate wih Post-Tensioning

Flate Plate	\$1,263,529.70
Post-Tensioning	add 2%
CIP Columns	\$412,695.00

\$1,701,495.29

Cost per S.F.

\$14.10

\$18.78

Difference in Cost

\$423,445.83

Design Goals

- Onsite Delivery
- Coordination Among Trades
- Lifting Sequence
- Critical Path Delivery

* Project Delivery 8 Weeks Ahead

- ✓ Project Description
 - ✓ Existing Structural System
 - ✓ Proposal

- ✓ Structural Redesign
 - ✓ Green Roof Study
 - ✓ Construction Breadth
 - o Recommendation

Conclusions

- Satisfied Initial Goals
- Strength Design over Serviceability
- Successfully Transformed Superstructure
- Reduced Seismic Base Shear by 5.5%
- Cost Effective Project

Recommendation

- Flat Plate Post-Tensioning for Architecture
- Implement Moment Connections for Dual System
- Coordination of Trades is Critical
- Add Gray Water & Green Roof System

Acknowledgments

- The Department of Architectural Engineering
 Dr. Memari
 Faculty and Staff
 Structural Mentors
- The Department of Agricultural Engineering
- Project Team
 O'Donnell & Naccarato
 Domus, Inc.
- 5th Year AE Thesis Peers

Andrew Simone

Structural