


## University of Miami Interdisciplinary Laboratory

Benjamin J. Burgoyne Mechanical Option Spring 2007 Faculty Consultant: Jim Freihaut

## University of Miami Interdisciplinary Laboratory

Miami, Florida Ben Burgoyne Mechanical Option http://www.arche.psu.edu/thesis/eportfolio/2007/portfolios/bjb319/

## **Project Information:**

- -Laboratory Building
- -178,000 s.f.
- -10 Floors above grade, including penthouse mechanical space
- -Delivery Method: Negotiated- Guaranteed Maximum Price
- -Building Cost: \$57 million
- -Construction Dates: October 2006-May 2008

## Architecture:

- -Exterior is in keeping with the standard University of Miami style, including a white precast concrete panel facade, with blue-green windows and glass curtain walls throughout, and palm trees in the landscaping.
- -Interior design includes seven floors of laboratory space and two floors of vivarium space, along with office space througout.

## **Electrical/Lighting System:**

- -Service double ended main-tie-main switchboard
- -1250 KW powers all lights and receptacles, as well as the HVAC equipment and emergency power.
- -Vertical bus risers serve lights and receptacles at each floor.
- -Predominantly fluorescent lights used, a third of which are dimmable with daylighting/ambient light sensors.

## Structure:

- -The first floor is slab on grade, with an auger cast pile foundation.
- -Predominantly reinforced concrete: cast-in-place concrete slab separates the floors, supported by precast concrete joists and beams, and cast-inplace concrete columns.
- -Penthouse level is steel supported.

#### **Project Team:**

- -Architect: Karlsberger Architecture Inc., www.karlsberger.com
- -General Contractor: Moss, www.mosscm.com
- -Structural Engineer: Walter P. Moore, www.walterpmoore.com
- -Mechanical Engineer: Newcomb & Boyd www.newcomb-boyd.com
- -Electrical Engineer: Newcomb & Boyd www.newcomb-boyd.com

## **Mechanical System:**

- -100% outdoor air system distributed by five 50,000 cfm AHUs to constant-air-volume terminal units in the laboratory and animal spaces.
- -Variable-air-volume system distributed by one 23,000 cfm AHU to the office spaces.
- -Heating supplied by two 10,043 MBH boilers.
- -Cooling supplied by campus chilled water plant.



## **Table of Contents**

| Executive Summary             | page 3  |
|-------------------------------|---------|
| Introduction                  | page 4  |
| Building                      | page 5  |
| Mechanical System             | page 7  |
| -Office System                | page 7  |
| -Laboratory System            | page 7  |
| -Penthouse System             | page 8  |
| -FCU System                   | page 8  |
| System Enhancement- Depth     | page 9  |
| -CAV-VAV                      | page 9  |
| -Spray Desiccant              | page 12 |
| -Comparison                   | page 16 |
| System Enhancements- Breadths | page 17 |
| -Structure                    | page 18 |
| -Electrical System            | page 21 |
| Economic Analysis             | page 24 |
| Conclusion                    | page 25 |
| Acknowledgements              | page 26 |

#### Figures

| Figure 1page | 5  |
|--------------|----|
| Figure 2page | 11 |
| Figure 3page | 13 |
| Figure 4page | 17 |
| Figure 5page | 19 |
| Figure 6page | 19 |
| Figure 7page | 19 |
| Figure 8page | 20 |

| -Figure 9  | page 20 |
|------------|---------|
| -Figure 10 | page 22 |
| -Figure 11 | page 22 |

#### Schematics

| -S.5 | page A-1 |
|------|----------|
| -S.6 | page A-2 |
| -S.7 | page A-3 |
| -S.8 | page A-4 |
| -S.9 | page A-5 |

#### Tables

| -Table 1pa  | age B-1 |
|-------------|---------|
| -Table 2pa  | age B-2 |
| -Table 3pa  | age 10  |
| -Table 4p   | age B-5 |
| -Table 5pa  | age 14  |
| -Table 6pa  | age B-6 |
| -Table 7p   | age 16  |
| -Table 8pa  | age B-7 |
| -Table 9pa  | age B-8 |
| -Table 10pa | age 19  |
| -Table 11p  | age B-9 |
| -Table 12p  | age 22  |
| -Table 13p  | age 23  |
| -Table 14pa | age 24  |

#### Calculations

| -Calculation 1 p | page C-1 |
|------------------|----------|
| -Calculation 2 I | page C-4 |

## **Executive Summary:**

This report presents the current mechanical design of the University of Miami Interdisciplinary laboratory, then suggests and implements, via calculation, additions and alterations meant to make it more energy efficient. The building is 10 floors high and is 178,000 square feet. Separate mechanical systems serve the laboratory and vivarium section, the office section, the penthouse mechanical floor, and general technical and equipment rooms. The Laboratory System is the focus of enhancements because it is the largest system, and because of the large potential for improvement for the current air distribution and dehumidification processes.

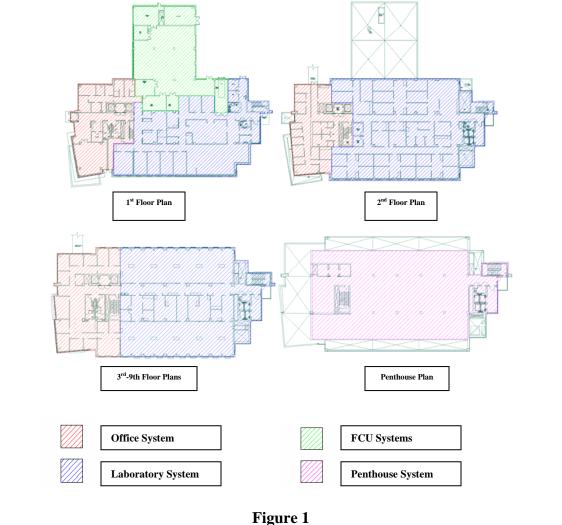
The Laboratory System is controlled air volume (CAV). The change introduced is making it variable air volume (VAV). This is carried out by replacing the constant volume terminal units with variable volume terminal units. The maximum air flow is set at the existing CAV levels, and the minimum flow is set at minimum ventilation requirements according to ASHRAE Standard 62.1-2004. Energy consumption analysis is carried out through simulation. A Percent Load Profile is thereby derived and combined with the peak load, which is the calculated cooling load. The annual energy savings is 14,062 MMBtu, and the associated economic savings is \$16,700 per year. The payback period is 4-5 years.

The existing system dehumidification uses cooling coils to dehumidify. The proposed change is to use a spray desiccant. Kathabar Systems produces equipment to spray a water/lithium chloride solution into the supply air stream, removing the moisture. Cooled solution cools the supply air as well. Peak cooling loads from this process are also combined with the Percent Load Profile, with both the CAV and VAV profiles. CAV Kathabar savings are 27,949 MMBtu and \$33,300 per year with a 12-20 year payback. VAV Kathabar savings are 33,284 MMBtu and \$39,600 per year with a 6-9 year payback. The big difference in payback between CAV Kathabar and VAV Kathabar occurs because the spray desiccant system makes terminal reheat unnecessary. Savings on that material are significant enough to cause that difference.

Structural and electrical studies are also carried out to ensure that the new Kathabar equipment will be adequately supported and receive the necessary power. New precast concrete joists are sized at12RB28, but the other structural elements are sufficient, and new circuits are run off an existing panel board.

Despite the longer payback, significant energy savings with the VAV/spray desiccant dehumidification enhancements cause that system to be the recommended alternative.

## **Introduction**


The focus of this study is the University of Miami Interdisciplinary Laboratory, an office and research laboratory building currently being constructed on the campus of the University of Miami in Florida. Hereafter, the building shall be referred to as the UMIL. The UMIL's being located in a hot, humid climate, and its use requiring strict air conditions, make the effectiveness of the mechanical system an item of interest. Can it supply the necessary conditioning with minimal energy consumption? In this study, the design of the UMIL is analyzed with a focus on the mechanical system. Reviews of the current design strategies, equipment efficiencies, and energy consumption, as well as envelope, electrical system. This report presents the current mechanical design of the UMIL, then suggests and implements, via calculation, additions and alterations meant to improve it. The improvement shall be measured by total energy consumption with accompanying economic impacts. The results will show whether the system changes are worth implementing.



courtesy of Google Maps

## **Building**

The UMIL is a research facility, designed for the keeping and studying of animals. It comprises approximately 10 floors and is 178,000 square feet. The first two floors contain animal vivaria, along with spaces to treat the animals, maintain and clean their confinement equipment, and store their food. Floors three through nine are typical, and they include two large general laboratories, with fume hoods, and several smaller research spaces. On all the floors, the listed science-focused spaces are located on the east side of the building. The west side contains office space. The technical spaces are located on the tenth floor, which is a mechanical penthouse, and on the first floor. The first floor footprint is significantly larger than the upper floors, which retain relatively the same perimeter dimensions. A large extension off the north side of the building is the focus of the first floor technical rooms, including general electrical and telecommunications rooms, a boiler room, and a generator room. Figure 1 shows the locations of the general space systems.



UMIL Systems

The typical architectural style of the University of Miami campus includes a white, concrete façade, blue-green fenestration, and palm tree dotted landscaping. The



UMIL uses the same coloring and architectural elements, thus fitting in with the surrounding structures. This style also includes a large percentage window area. Mechanically speaking, too much window area is unfavorable in the hot Miami climate. Excessive solar heat gain adds to the already high cooling load. The UMIL avoids this issue with the use of aluminum spandrels colored the same as the glass, thereby creating an illusion of windows without the solar gain. The thermal resistance of the spandrel is indeed lower than the

remaining façade's concrete panel assembly. However, the spandrel, in terms of energy efficiency, is still more favorable than glass.

Less window area is acceptable even from an interior-aesthetic perspective, because the presence of windows in many of the spaces is either inappropriate or unnecessary. Those spaces include cage wash rooms, mechanical spaces, and animal holding rooms. The animal rooms, for instance, may require strict lighting and thermal conditions that can be adversely affected by a window.

In other spaces where windows are present, the extra light is used to soften the burden of electrical consumption. Automatic day lighting controls are used with the

perimeter lamps, turning them off when ambient light is sufficient. In addition, perimeter ceilings are angled in such a way as to reflect the outside light more effectively to work spaces. A building-wide 1250 kW capacity electrical system supplies the fluorescent lights as well as all receptacles, equipment, and emergency power.



In addition to its use for the façade, concrete is the primary element in the UMIL structural system. Each floor is a cast-in-place concrete slab,

with the first floor being slab on grade. The upper slabs are supported by a one-way system consisting of specially made 16 inch precast concrete joists. These are mostly spaced 5'6" apart and the longest span is 33'. Supporting the joists are concrete beams and columns. The exception to the concrete norm is the roof assembly, which is held up by steel members.

The mechanical system shall be discussed in detail in the Mechanical System section.

## Mechanical System

Cooling at the UMIL is supplied by a 20,000 ton campus chiller plant, and the heating by two 10,043 MBH steam boilers located in the first floor boiler room. The chilled water is supplied to UMIL at about 3,300 gpm and 44°F. It is returned at 56°F. The boilers create 80 psig steam that is used by glass and cage washing equipment and to create about 500 gpm of 180°F hot water via a heat exchanger. That hot water returns to the heat exchanger at 150°F. These plants supply four mechanical systems in the UMIL: the Office System serving the office spaces located on the first through ninth floors; the Laboratory System serving the laboratory and vivarium spaces on the first through ninth floors; the Penthouse System serving the penthouse mechanical floor; and the FCU system serving the first floor mechanical and other technical spaces. The following is a detailed description of each system.

#### -Office System

One 48,500 cfm air handling unit serves 50,000 square feet of office space. It is a return air system, drawing air from the spaces via ceiling plenums to mix with outside air. The supply air is cooled and dehumidified with chilled water coils, then reheated by hot water, variable volume terminal units. Dedicated exhaust systems serve the restrooms, kitchen areas, and janitor closets. The air schematic of the system is shown in Schematic S-8 and Schematic S-9.

#### -Laboratory System

Four 51,000 cfm air handling units supply 108,000 square feet of laboratory and vivarium space. Like the Office System, supply air is cooled and dehumidified by cooling coils, then reheated by hot water terminal units. However, the Laboratory System differs in that it supplies 100% outside air and the terminal units supply it at constant volume, adjusting the hot water flow through the coils to control the supply air temperature. All the space air is exhausted outside of the building.

There is a series of laboratory exhaust configurations for the system air. Nine risers with accompanying fans serve exclusively seven radioisotope and two necropsy rooms within the system. There is one radioisotope room located on each of the third through ninth floors. The necropsy rooms are found on the first and second floor. Additionally, there are dedicated exhaust systems for the cage wash areas and vivarium spaces on the first and second floors. The remaining laboratory spaces are served by fume hoods and a general exhaust system. The fume hoods are activated by Phoenix controls whenever the hoods are manually opened. They exhaust at constant volume.

An energy saving technique is used with the general exhaust system. It is powered by four 35,000 cfm energy recovery units, with a heat recovery runaround coil connecting these units with the Laboratory System air handling units. In the summer, this coil captures sensible heat in the hot, entering air stream and releases it into the cool, exhaust air stream. At design conditions, the runaround coil lowers entering air 10°F. Entering that temperature difference, along with air handling unit maximum air flow rate of 204,000 cfm, into the sensible heat equation,

 $Qsensible = 1.08 \times q \times dT$ 

where Q*sensible* is sensible heat (Btu/hr), q is air volume flow (cfm), and dT is temperature difference (°F), gives

 $Qsensible = 1.08 \times 204,000 cfm \times 10F$ Qsensible = 2,203,200Btu / hrorQsensible = 183.6tons

in energy saved. Even taking into account the energy required to pump the heat recovery water through the runaround coil, this can amount to significant savings. In another section, actual system flow rates will be used in energy calculation. The air schematics for this system are found in Schematic S-5, Schematic S-6, and Schematic S-7.

#### -Penthouse System

Two 4,000 cfm air handling units serve the12,000 square foot, tenth floor mechanical penthouse. This is a simple system, using only cooling coils and drawing in 100% return air. Because it is a non-occupied space, there are no outside air or exhaust requirements.

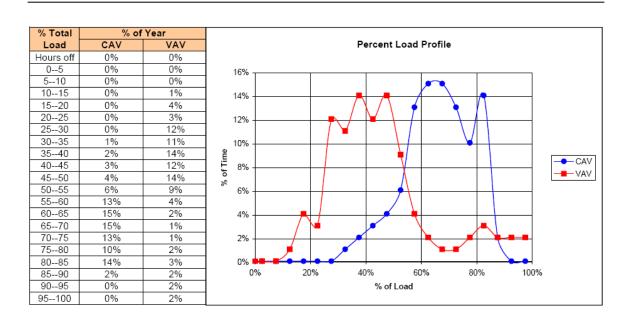
#### -FCU System

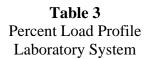
Three 1,200 cfm fan coil units (FCU's) serve the first floor technical spaces, which amount to 8,000 square feet. These are cooling coil only, and, like the Penthouse system, outside air and exhaust are non-issues.

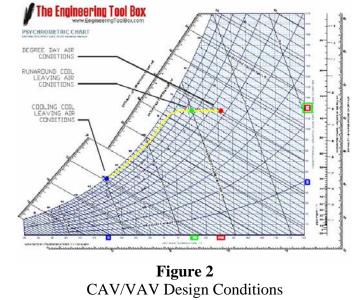
## System Enhancement-Depth

It is my supposition that a significant portion of the total building energy consumption can be saved with two changes to the Laboratory System. First, the controlled air volume (CAV) system should be changed to variable air volume (VAV). Second, a spray desiccant should be used instead of cooling coils to perform dehumidification. It is generally accepted that CAV and cooling coil dehumidification tend to be simpler to design than other air distribution and dehumidification alternatives, and that they carry lower first costs. Assuming these are correct statements, the alternatives need to not just save energy, but save enough energy, and thus money, to make up for the difference within a reasonable amount of time. This information can be determined by assessing the existing system energy consumption, followed by the energy consumed by the new system. Affixing a cost to the energy and comparing to the added first cost of the new system will reveal the time it takes to save an amount equal to the amount spent. The following sections will describe the two changes in detail, and calculate the energy consumption.

#### -CAV-VAV


There was no energy-related motivation to use a CAV system with the laboratory spaces. According to the design engineers, the decision to go with CAV came directly from the owner, who did not want a more complicated VAV system to be faultily designed or maintained. This is understandable; consistently maintaining design conditions is too important, especially in a laboratory setting. Evidently, bad prior experience with VAV had left the owner disinclined to try it again.


In this situation, making the design equipment change to VAV is not difficult. The air handling units and exhaust fans are already equipped to handle variable volume flow. Their fans run on variable frequency drives. Likewise, the air handling unit cooling coil control valves can modulate to control flow. The system maintains constant volume with the terminal units. Based on the preset supply duct air pressure, they are adjusted to allow only the preset air flow rate through. Those set flow rates, per terminal unit, are shown in Table 1. In order to change the system to variable volume, the terminal units need to be exchanged with variable volume counterparts. Aside from the return air, this new system is extremely similar to the Office System, and those same terminal units can be used.


With the new terminal units, ranges of air flow rates, instead of single flow rates, need to be determined. It is assumed that the existing system can adequately meet design conditions. Therefore, the fans and coils shall not be upsized. Also, the maximum set point for the new variable volume terminal units will equal the CAV set points. The fluctuation will occur when the system is at less than peak load. Only minimum flow rates, then, need to be determined. The lowest load a space can possibly have is zero. However, the building code requires a minimum supply of outside air. Therefore, a satisfactory minimum for the terminal units would be the standard ventilation requirement for the spaces they supply. The required rates are calculated based on ASHRAE Standard 62.1-2004. The calculation of the Laboratory System room

ventilation rates is found in Table 2a, Table 2b, and Table 2c. When those flow rates are applied to the rooms' terminal units, the minimum terminal unit flow rates are achieved. These are shown in Table 1.

Based on the maximum and minimum flow rates, the associated system range is obtained. According to Table 1, the maximum is 171,710 cfm, and the minimum is 26,919 cfm. This is the extent for the system, but a building simulation needs to be carried out in order to determine how much time the system spends at different points within the that range. That information, comprising an energy load profile, can be applied over a year, and will show the energy consumption. Trace®700, a product of Trane®, is the mechanical simulation program that is used in this study. With Trace®700, an accurate model can be created with the exception of one factor. The program does not allow for 100% outdoor air, it will only simulate a return air system. For this reason, an accurate final energy consumption total is not given. However, some products of the simulation are assumed to be independent of percent outdoor air. One such product is the System Load Summary. The data in this report divides the peak load into five percentile increments. It then lists the percent of the time (per year) that the system was at each load percentile. For example, one could use the report to look up how many hours in the year the system was at 50% load. We will call the percentage part of the System Load Summary the Percent Load Profile. Table 3 shows the Percent Load Profile for the Laboratory System Trace<sup>®</sup>700 simulation. In order to approach the real system, the assumption is made that, with all else equal, the Percent Load Profile for a 100% outdoor air system is the same as for a return air system, even though the peak loads are different. Subsequent energy calculations will be based on this assumption.







Psychrometric Chart

In order apply the Percent Load Profile, the true Laboratory system peak load needs to be determined. Here, another simulation product is used: peak supply air flow rate. For the same building and conditions, the same amount of supply air must be maintained to meet the load, regardless of whether it was partially returned or not. At the outlet stage, in both cases, the air conditions are the same. Therefore it is assumed that the peak supply air flow rate for a return air system is the same as that for a 100% outdoor air system. According to the simulation, the peak flow rate is 100,000 cfm, and it is used in the sensible and latent heat equations to determine the peak cooling load. The latent heat equation used is

$$Qlatent = 0.68 \times q \times dW$$

where Qlatent is sensible heat (Btu/hr), q is air volume flow (cfm), and dW is difference in humidity ratio (grains moisture/pounds dry air). Using the psychrometric chart, shown in Figure 2, initial conditions are determined as 81°F and 120 grains/lbmda. This condition is a cooling degree day, as given by project specifications, minus 10°F (taken care of by the runaround coil). The final condition, also taken from specifications, is 50°F and 50 grains/lbmda. This is the air leaving the cooling coil. Taking the temperature and humidity differences, and inserting them into the equations gives:

```
Sensible

Qsensible = 1.08 \times q \times dT

Qsensible = 1.08 \times 100,000 cfm \times 31F

Qsensible = 3,348,000Btu / hr

or

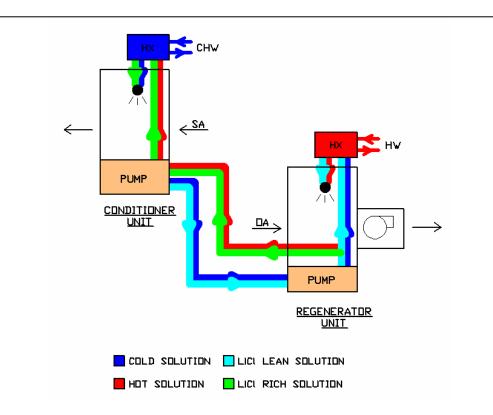
Qsensible = 279tons
```

Latent

```
Qlatent = 0.68 \times q \times dW
Qlatent = 0.68 \times 100,000 cfm \times 66 gr / lbmda
Qlatent = 4,488,000Btu / hr
or
Qlatent = 374 tons
Total
Qtotal = Qsensible + Qlatent
Qtotal = 3,348,000Btu / hr + 4,488,000Btu / hr
Qtotal = 7,836,000Btu / hr
or
Qtotal = 653 tons
```

As shown, the total cooling load is calculated simply by adding the sensible and latent loads.

Now that the peak cooling load is determined, it is inserted into the Percent Load Profile to discover the total yearly energy consumption for each system. This is shown in Table 4, and the resulting consumptions are 45,034 MMBtu and 30,973 MMBtu for the CAV and VAV systems respectively.


As expected, the VAV system consumption is less than the CAV system. In the Economic Analysis section, the difference in resulting cost with be analyzed in detail, and a final judgment regarding system decision can be made. In preparation for that section, it is noted that this assessment only compares energy in terms of actual cooling, not in heating, reheat, fan energy, or other total energy considerations. It is the purpose of this study to determine if the savings on cooling alone would warrant a system change.

#### -Spray Desiccant

As stated in the Introduction, designing an effective mechanical system can be difficult in a hot, humid climate, especially with a demand for 100% outside air. Using a cooling coil for dehumidification requires the incoming air to be cooled below the desired supply set point, then to be reheated. An alternative that doesn't require air to go through the extra cooling and reheating (which is, of course, energy consuming) is worth investigating.

Based on building use, a spray desiccant is the most appropriate alternative to cooling coil dehumidification for the UMIL. With other buildings, an enthalpy wheel would be considered; with one circular motion, the solid desiccant material would absorb heat and moisture from the incoming air stream and deposit it into the outgoing air stream. This process is known to greatly increase the efficiency of a system, and high first cost is the greatest limitation to its use. However, the unfavorable exhaust air quality of the Laboratory System discourages use of the enthalpy wheel. System air can become saturated with dangerous chemicals, biological products, and other contaminants, which necessitates 100% outside air to replace it. An enthalpy wheel exposed to such exhaust can possibly pick up that contamination and return it to the incoming stream, and is thus excluded from consideration.

A spray desiccant system would preserve incoming air quality while still creating energy savings. Such a system is offered by Kathabar® Systems. With Kathabar, a liquid desiccant solution is sprayed into the supply air stream to dehumidify as well as cool it. Figure 3 illustrates the process that the desiccant solution undergoes. The substance is a water/lithium chloride salt solution, called Kathene, which is ton-toxic. Within the conditioner unit, located in the supply air stream, the Kathene is cooled by chilled water in a heat exchanger, and is sprayed into the supply air stream. The solution cools the air



**Figure 3** Kathabar System Schematic

and naturally absorbs the water vapor. It then falls from the air, and is gathered at the bottom of the unit. At this stage, the solution is lithium chloride lean (excess water). A portion is therefore pumped to the regenerator unit, located on the exterior of the building. It is heated with the hot water heat exchanger and sprayed into a forced outdoor air current. Because it is heated, the solution wants to get rid of the moisture it contains, which is taken away via evaporation. The remaining lithium chloride rich solution is gathered at the bottom of the unit and pumped back to the conditioner. In this way, the solution concentration is controlled. That concentration determines the amount of moisture removed from the air stream, and is variable, so it can adjust automatically to meet any sensible or latent load. Supply air quality is preserved because the regenerator can be placed anywhere, well away from the exhaust. Additionally, an eliminator system in the conditioner unit serves as a filter, trapping particulates. The lithium chloride carryover into the building equates to about 2 ppb when the system is adequately maintained.

It is necessary here to note that Kathabar Systems are usually applied to small spaces or special design conditions, such as industrial or refrigeration uses, where extremely cold, dry air is required. Nevertheless, the Kathabar system is analyzed for the UMIL to see if, despite the unorthodox application to a large laboratory building, sufficient energy is saved to warrant the change. The actual application to a building system, including equipment sizing and peak load determining, is shown in Kathabar literature, namely <u>Kathabar Systems Application Manual for Kathapac Dehumidification</u>. These calculations run for the Laboratory System are found in Calculation 1. In addition to the information shown there, special charts are used to obtain some of the given values. These charts are found in the manual, but because of copyright and space purposes, they are not reprinted here. Table 5 summarizes the data required to run the calculation and the ultimate information derived.

One key aspect is the determination of required chilled water temperature. This depends on the difference between the air conditions entering the conditioner unit and leaving it. The existing chilled water temperature for the UMIL is 44°F. Using air coming directly from the runaround coils, assumed at 81°F maximum, the chilled water temperature required by the Kathabar calculation is less than 44°F. This deficiency can be remedied in one of two ways. A small chiller can be designed and installed to lower the

| Input Data               |             | Outcome                  |                  |          |
|--------------------------|-------------|--------------------------|------------------|----------|
| Conditioner Entering DBT | 72F         | Regenerator Unit Size    | 3FP              |          |
| Conditioner Entering W   | 115 gr/lb   | Conditioner Unit Size    | 2 x 4,000FV      |          |
| SA DBT                   | 55F         | Regenerator Heating Load | 193,682 Btu/hr   | 16 tons  |
| SA W                     | 55 gr/lb    | Conditioner Cooling Load | 2,000,988 Btu/hr | 167 tons |
| SA cfm                   | 100,000 cfm | Required CHW T           | 44F              |          |
| Space DBT                | 75F         |                          |                  |          |

## Table 5Calculation Input/OutcomeKathabar System

campus chilled water temperature to the required level, or the supply air can be cooled further before it reaches the conditioner unit. The second option is taken in this study, because the cooling coils are already in place within the existing air handling unit assemblies. It is assumed that making use of those coils would be much simpler and more cost efficient than a whole new chiller or chillers.

Working backwards in the calculations from the desired 44°F CHW, it is determined that the necessary conditioner entering air conditions are 72°F and 115 gr/lb. At design conditions, with

$$dT = 81F - 72F$$
  
and  
$$q = 100,000cfm$$

the extra required cooling becomes

$$dT = 81F - 72F$$

$$q = 100,000 cfm$$

$$Qsensible = 1.08 \times 100,000 \times 9$$

$$Qsensible = 972,000Btu / hr$$
or
$$Qsensible = 81tons$$

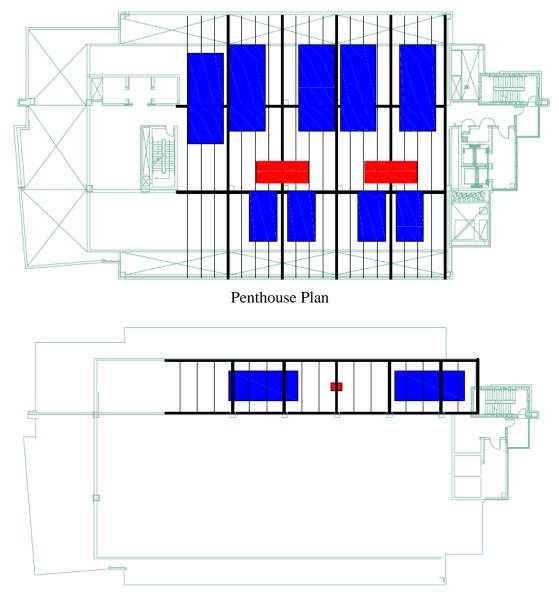
This extra cooling is taken into account, in addition to the given Kathabar System values. Added together, they become the peak cooling load, and can therefore be input into the Percent Load Profile to obtain the energy usage. The yearly cooling energy consumptions are show in Table 6. The same Percent Load Profiles for CAV and VAV are used as before because the same expected flow rates are assumed to pass through the Kathabar system. The Kathabar system energy consumptions are 17,086 MMBtu for CAV application and 11,571 MMBtu for VAV. Again, the CAV requires more energy than the VAV Kathabar configuration.

The Kathabar System creates a significant change in the air distribution system. The air temperature leaving the conditioner unit is 55°F. The terminal units receiving this air are specified to receive 50°F air, heat it, and distribute it at 55°F. This was the reheat stage of the cooling coil dehumidification. With the supply air already at the design temperature, the reheat becomes unnecessary. Also, the original CAV system modulated the reheat water flow in order to control fluctuating space conditions. With the VAV system, the air flow becomes the modulated medium. For these reasons, a number of Laboratory System terminal units do not need heating coils with the use of Kathabar equipment. Perimeter space terminal units will keep theirs because of heating they may need to perform while other spaces are cooled. However, the materials that are saved by decreasing the hot water connections can constitute significant cost savings.

To restate from the CAV-VAV section, cooling energy (in terms of chilled water use) is the exclusive method of analysis for this study. There are heating requirements for

the regenerator unit and differences in fan energy consumption. However, these factors are not addressed here.

#### -Comparison


Enough energy data is now available to compare the various system enhancements. There are four possible system choices, shown with accompanying energy consumptions in Table 7. The original system is constant air volume with cooling coil dehumidification. One possible change is variable air volume with cooling coil dehumidification. Another is constant air volume with spray desiccant dehumidification. Finally, the system can be variable air volume with spray desiccant dehumidification. In terms of lowest energy expenditure, the VAV-spray desiccant system is clearly the favorite. It is followed by CAV-spray desiccant, and then VAV-cooling coil and CAVcooling coil respectively.

|                  |                    | Air    | Flow   |
|------------------|--------------------|--------|--------|
|                  | MMBtu/ yr          | CAV    | VAV    |
| Dehumidification | Cooling<br>Coil    | 45,035 | 30,973 |
| Dehumic          | Spray<br>Desiccant | 17,086 | 11,751 |

Table 7System Energy Comparison

## **System Enhancement-Breadths**

The addition of a Kathabar, spray-desiccant system creates more of an impact on a building than just on the mechanical system. Other elements of the building may need to be altered, upsized, or added onto in order to adjust to new requirements. Two such elements are the structure and the electrical system. The following sections discuss the structural and electrical considerations that have to be taken into account with the addition of a Kathabar system.



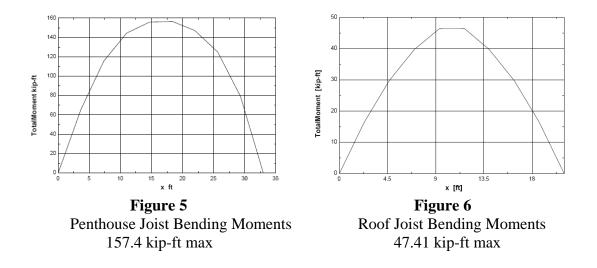
#### Partial Roof Plan

**Figure 4** Kathabar Equipment Placement

#### -Structure

The Kathabar equipment, namely the regenerator unit and especially the conditioner units, are significantly in size. They each contain motors, and, when operating, they hold water. These facts, along with actual manufacturer-supplied weights suggest that this equipment may be heavy enough to require special structural design. For these reasons, an analysis of the structure supporting a UMIL Laboratory Kathabar System is undertaken.

First, the placement of the equipment is ascertained. The two 4000FV conditioner units need to be placed in a location that is down the air stream from the air handling units. The configuration in the Figure 4 Penthouse Plan shows an appropriate option. The blue entities are existing equipment. Those on the plan north are air handling units, and on the plan south are energy recovery units. The red entities are the new conditioner units. They are located apart from the air handling units in order to allow for relatively straight duct run coming in. They are also out of the way of access doors and walkways.


The Partial Roof Plan shows a good location for the regenerator unit (shown in red). The blue entities are existing high induction exhaust fans. Their exhaust streams are designed to rise at least 36 feet before dissipating, so no regenerator contamination will occur there.

Now that the equipment is placed, accurate structural calculations can be carried out. Attention is paid to the joists that the new equipment sits on, the girders supporting those joists, and the columns supporting those girders. Table 8 shows the loads due to the Kathabar equipment, the air handling units, general dead and live loads, and the concrete slab self-weight. These values are taken from product specifications as well as <u>ASCE 7-05</u>, <u>Chapter 4</u>, <u>Table 4-1</u>. Two load cases are calculated, and the higher values for each item are highlighted.

#### Joists

The resulting loads are used to calculate reactions in the supporting joists and to formulate bending moment equations. This is done in Table 9. The equations are taken from the <u>AISC Manual of Steel Construction, Third Edition, Table 5-17, 4. Simple</u> <u>Beam- Uniform Load Partially Distributed</u>. It is assumed that the joists supporting the equipment are simply supported. Combining the moment equations for the different loads on the same joist, total bending moment graphs can be created. The peaks of the graphs will give the maximum bending moment on the joists. These graphs are shown in Figure 5 and Figure 6.

The roof joists are steel members, size W14x22, with a capacity of 124.5 kip-ft over 21 feet. They are sufficient. The penthouse joists are specially made precast concrete, and their capacity is unavailable. However, a sufficiently strong precast rectangular joist spanning 33 feet is a 12RB28, with 336 in.<sup>2</sup> cross section and a strength



of 2525 plf. Referring to Table 8, the maximum plf that occurs at any time along the joist is 1,824. This joist is found in the <u>PCI Design Handbook 6<sup>th</sup> Edition page 2-42</u>. Because the joists are fixed to the slab they are supporting, it is assumed that they are braced along their entire length.

#### Girders

The resulting load on the girders supporting the joists is determined from the end reactions of the joists on those girders. These reactions are given in Table 10. R1 refers to the girder to the building south of the joist, and R2 to the girder to the building north. For the penthouse girders, the reactions double count the air handling units and slab weight to account for the reactions on the girder from the opposite direction.

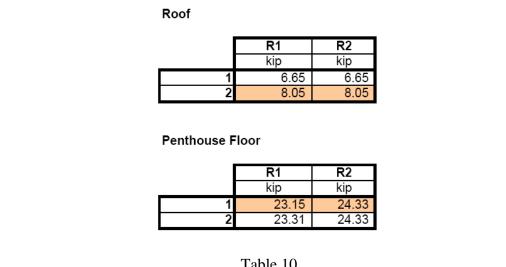
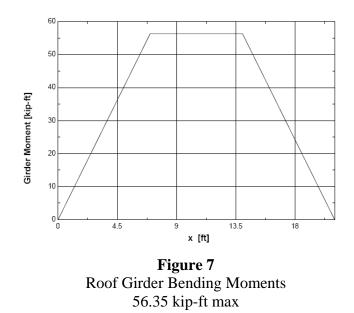




Table 10 Joist End Reactions



As shown in Figure 7, the maximum bending moment on the roof girders is 56.35 kip-ft. These members are also W14x22's, holding up to 124.5 kip-ft. They are sufficient. Penthouse girder R1, Figure 8, is referred to in the beam schedule as SB21 and can hold 290 kip-ft and 150 kips shear. This is enough to handle the 231 kip-ft and 41.5 kips loaded on it with the new Kathabar equipment. It is sufficient. Penthouse girder R2, Figure 9, is named SB20 and can hold 275 kip-ft and 140 kips shear. It is loaded with 240 kip-ft and 41.5 kips shear. Likewise, this member will handle the extra equipment load.

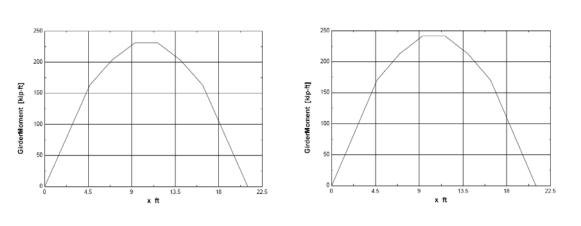



Figure 8 Penthouse Girder R1 Bending Moments 231 kip-ft max

**Figure 9** Penthouse Girder R2 Bending Moments 240 kip-ft max

Ben Burgoyne Mechanical Option University of Miami Interdisciplinary Laboratory

#### Columns

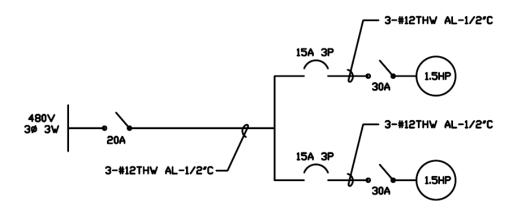
The columns supporting the extra penthouse equipment are designated as C1 in the column schedule. They are 24"x24" and are 4ksi concrete. As shown in Table 8, the collective pressure, including new equipment, of the greatest tributary area to each of these columns is 0.33 ksi, well below the limit. These columns are near the top of the building, so additional weight from higher spaces will not likely be an issue. These columns are acceptable.

The columns supporting the roof where the regenerator unit will be located are steel members, namely HSS 12x8x5/8. According to the <u>AISC Manual of Steel</u> <u>Construction Third Edition, Table 4-13</u>, the axial design strength, at an effective length of 18 feet, is

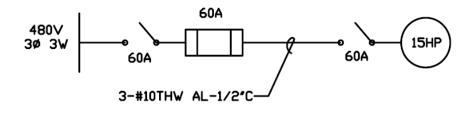
 $DesignStrength = 766kips \times \phi c$  $\phi c = 0.85$ DesignStrength = 651.1kips

The load on each column, as shown in Table 8, is 103 kips. These columns are sufficient.

#### Conclusion


To sum up the structural findings, all existing joists, girders, and columns are strong enough to support the extra Kathabar System equipment. The exception to this is the precast concrete penthouse joists, whose strength is unknown. A satisfactory rectangular joist size, however, has been identified to carry the extra load.

#### -Electrical System


In addition to the structure, the new Kathabar equipment affects the UMIL electrical system. Motors contained in that equipment require sufficient electrical power with an adequate conductor. These motors drive a pump in each conditioner unit and a pump and fan in the regenerator unit. Naturally, these motors were not taken into account during the initial electrical system design, but space was kept on a number of panelboards in lieu of future electrical expansion such as this.

A close panelboard with spare circuits is EHEQPB. It currently serves the high induction and cage wash exhaust fans, which take up only 400 of the 600 amp capacity. The panelboard is located on the penthouse level, on the east end, which is the closest panelboard to where the Kathabar equipment will be placed. Offering eighteen spare poles, it is a suitable possibility.

Table 11 outlines the steps for design of the circuit assemblies that serve the Kathabar equipment. A branch circuit is used for each conditioner pump, and one branch circuit for both the regenerator pump and fan. The designed circuits are shown in Figure 10 and Figure 11. Aluminum conductors are used, as opposed to copper, because of the rising copper prices.



**Figure 10** Regenerator Unit Branch Circuit



**Figure 11** Conditioner Unit Branch Circuit

If there is a significant length between the panelboard and the equipment, voltage drop may become a factor. Voltage drop calculations for the new branch circuits are shown in Table 12. Conductor sizes are determined based on 2% maximum allowable

| Conditioner Unit Pu       | mp         |
|---------------------------|------------|
| Length:                   | 96'        |
| FLC:                      | 34 A       |
| Amp-ft/1,000 ft:          | 3.264      |
|                           | 9.6 V I-n  |
| 2% Voltage Drop of 480 V: | 5.55 V I-I |
| V drop/1,000 Amp-ft:      | 1.7        |
| Conduit:                  | Magnetic   |
| P.F.                      | 90%        |
| Conductor:                | #10        |
| Covered?                  | Yes        |

| Regenerator Unit Pump/Fan |            |  |  |  |  |
|---------------------------|------------|--|--|--|--|
| Length:                   | 62'        |  |  |  |  |
| FLC:                      | 7 A        |  |  |  |  |
| Amp-ft/1,000 ft:          | 0.434      |  |  |  |  |
|                           | 9.6 V I-n  |  |  |  |  |
| 2% Voltage Drop of 480 V: | 5.55 V I-I |  |  |  |  |
| V drop/1,000 Amp-ft:      | 12.8       |  |  |  |  |
| Conduit:                  | Magnetic   |  |  |  |  |
| P.F.                      | 90%        |  |  |  |  |
| Conductor:                | Any        |  |  |  |  |
| Covered?                  | Yes        |  |  |  |  |

Table 12Voltage DropsKathabar Equipment Branch Circuits

voltage drop, then are compared to the already established sizes. In both cases, the sizes are already adequate to limit the voltage drop to 2%. No change is necessary.

These circuits are then inserted into the panelboard. Table 12 shows the updated panelboard, highlighting the added circuits. The extra load comprises 52 amps, which keeps the total of 452 amps well below the 600 amp capacity.

| PANEL:<br>VOLTAGE:<br>PHASE/WIRE: | 480Y | /277  |     | NEU  |      | 600<br>MLO<br>100% | EN    | CLOS  | SURE: | 65,000A<br>NEMA 1<br>SURFACE |
|-----------------------------------|------|-------|-----|------|------|--------------------|-------|-------|-------|------------------------------|
| EQUIPMENT                         | kVA  | СВ    | СКТ | А    | В    | С                  | скт   | СВ    | kVA   | EQUIPMENT                    |
| F-M-1                             | 18.0 | 100/3 | 1   | 32.4 |      |                    | 2     | 90/3  | 14.4  | F-M-4                        |
|                                   | 18.0 |       | 3   |      | 32.4 |                    | 4     |       | 14.4  |                              |
|                                   | 18.0 |       | 5   |      |      | 32.4               | 6     |       | 14.4  |                              |
| F-M-2                             | 18.0 | 100/3 | 7   | 32.4 |      |                    | 8     | 90/3  | 14.4  | F-M-5                        |
|                                   | 18.0 |       | 9   |      | 32.4 |                    | 10    |       | 14.4  |                              |
|                                   | 18.0 |       | 11  |      |      | 32.4               | 12    |       | 14.4  |                              |
| F-M-3                             | 18.0 | 100/3 |     | 32.4 |      |                    | 14    | 90/3  | 14.4  | F-M-6                        |
|                                   | 18.0 |       | 15  |      | 32.4 |                    | 16    |       | 14.4  |                              |
|                                   | 18.0 |       | 17  |      |      | 32.4               | 18    |       | 14.4  |                              |
| F-M-8                             | 5.8  | 50/3  | 19  | 13.1 |      |                    | 20    | 60/3  | 7.3   | CONDITIONER 1 PUMP           |
|                                   | 5.8  |       | 21  |      | 13.1 |                    | 22    |       | 7.3   |                              |
|                                   | 5.8  |       | 23  |      |      | 13.1               | 24    |       | 7.3   |                              |
| F-M-9                             | 5.8  | 50/3  | 25  | 13.1 |      |                    | 26    | 60/3  | 7.3   | CONDITIONER 2 PUMP           |
|                                   | 5.8  |       | 27  |      | 13.1 |                    | 28    |       | 7.3   |                              |
|                                   | 5.8  |       | 29  |      |      | 13.1               | 30    |       | 7.3   |                              |
| REGEN PUMP/FAN                    | 1.9  | 20/3  | 31  | 1.9  |      |                    | 32    |       |       | SPACE                        |
|                                   | 1.9  |       | 33  |      | 1.9  |                    | 34    |       |       | SPACE                        |
|                                   | 1.9  |       | 35  |      |      | 1.9                | 36    |       |       | SPACE                        |
| SPACE                             |      |       | 37  | 0    |      |                    | 38    |       |       | SPACE                        |
| SPACE                             |      |       | 39  |      | 0    |                    | 40    |       |       | SPACE                        |
| SPACE                             |      |       | 41  |      |      | 0                  | 42    |       |       | SPACE                        |
| PHASE TOTALS                      |      |       |     | 125  | 125  | 125                |       |       |       |                              |
| CONNECTED AMPS:                   |      |       | 452 |      |      | CONN               | IECTE | D kV/ | AL:   | 376                          |

Table 13Exhaust Fan/Kathabar Equipment Panelboard

## **Economic Analysis**

All the information that is used to determine the total system costs is found in Calculation 2. Prices of mechanical, structural, and electrical materials added or removed are given. These are used to determine system first costs. The annual energy consumption values, which are cooling loads, are combined with the COP of the campus chilled water plant to give the amount of electricity, in kilowatt-hours, that is expended. That electricity is multiplied by the price per kilowatt hour to determine the annual system operation costs. Florida Power & Light is the UMIL utility company, from which that price is obtained.

Once the system first costs and operation costs are given, pay back periods are determined using two methods: the simple payback method and the net present value method. With both, a system change is compared to the original system. The new operation cost is subtracted from the old to obtain a yearly payback amount. With simple payback, the new system cost is divided by that yearly payback, giving the number of years it will take for the system to pay for itself. The net present value method uses the same numbers, but also incorporates interest. For this study, 5% interest is used. With each succeeding year down the timeline, the present value of that future amount decreases more and more because of the interest factor. This method is more conservative, resulting in a greater payback period than that given by the simple payback method.

The values just discussed are summarized in Table 14. It shows that the VAV, coil dehumidification system has the lowest payback period, followed by the VAV, spray desiccant system and the CAV, spray desiccant system.

| System 1s            | 1st Cost     | Cooling Energy | Electricity      | Operation Cost | Payback - Years |     |  |
|----------------------|--------------|----------------|------------------|----------------|-----------------|-----|--|
| System               | ISI COSI     | Demanded MMBtu | Consumption kWhr | Operation Cost | Simple          | NPV |  |
| Original             |              | 45,035         | 2,251,750        | \$53,636.69    |                 |     |  |
| VAV, Coil            | \$65,815.00  | 30,973         | 1,548,650        | \$36,888.84    | 3.93            | 5   |  |
| CAV, Spray Desiccant | \$409,011.16 | 17,086         | 854,300          | \$20,349.43    | 12.29           | 20  |  |
| VAV, Spray Desiccant | \$260,831.41 | 11,751         | 587,550          | \$13,995.44    | 6.58            | 9   |  |

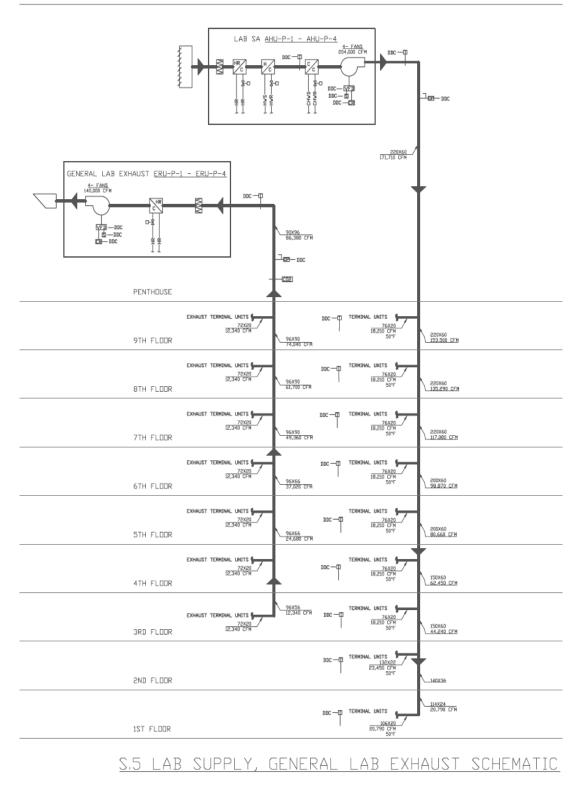
## Table 14Economic Analysis Summary

## **Conclusion**

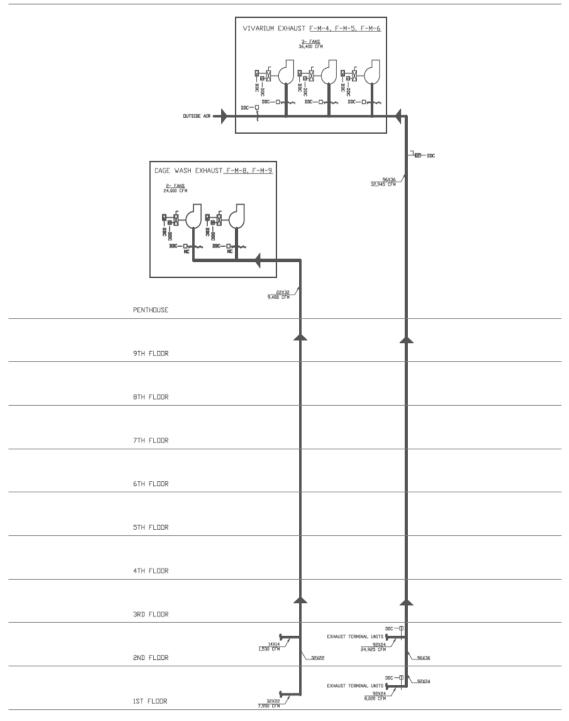
Reviewing the various mechanical systems of the UMIL led to a focus on the Laboratory System for enhancement. The Penthouse and FCU Systems are not large or significant compared to the others, and they are relatively simple in makeup. With those, the logical equipment is used to accomplish basic condition requirements. The Office System is much closer to the Laboratory System in terms of square footage served and complexity. It is actually the difference between those two strategies that inspires the change in the Laboratory System. Contrary to the Laboratory System, the Office System employs return air and variable air volume distribution. It is correctly inferred that the Laboratory System has much higher energy consumption. What can be done to offset that difference?

The procedures carried out to answer that question were changing the Laboratory System from constant air volume to variable volume and using a spray desiccant instead of cooling coils to dehumidify. Three system alternatives to the existing CAV with cooling coil dehumidification were thereby created: VAV with cooling coil dehumidification, CAV with spray desiccant dehumidification, and VAV with spray desiccant dehumidification. These enhancements were carried out, with their perspective cooling loads as the means of quantifying and comparing them. Other types of energy expenditures, such as for hot water, pumps, and fans, could also be factored in to the total, but they were not included, in an effort to minimize variables and assumptions. With the difficulties in these systems' simulations, using more basic results would hopefully be more reliable. Additionally, including those extra elements would increase economic and energy savings, so the present estimates are conservative.

Results show that VAV with spray desiccant dehumidification is the most energy saving, but the VAV with cooling coil dehumidification has the shortest payback period. An owner would probably favor the shorter payback at first. However, the VAV with spray desiccant dehumidification carries such a large energy saving in operation, that it would still be the wiser choice. The drastic first cost pushes back the payback period, but once it is reached, the money saved just keeps adding and adding. That factor is compounded by the outlook of escalating energy costs in the future. Also, the environmental element is satisfied with the lower energy consumption. With these arguments in mind, I recommend the VAV with spray desiccant dehumidification system.


## **Acknowledgements**

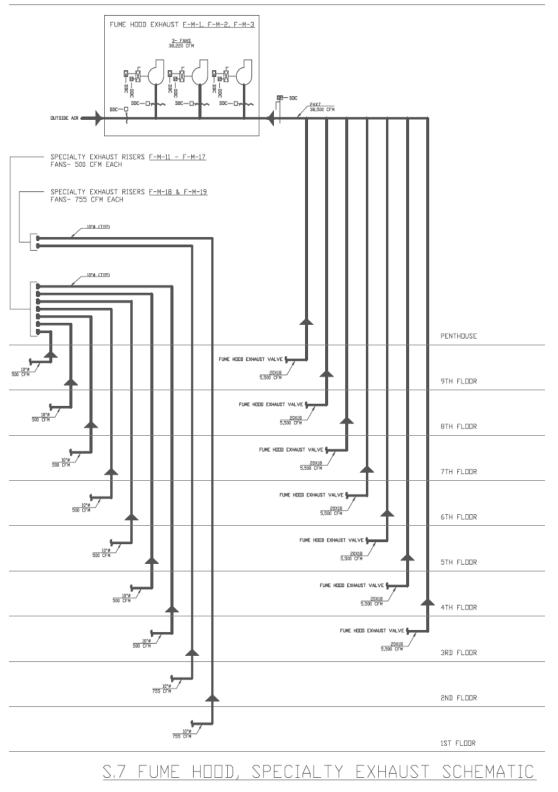
I'd like to thank all those who have helped me in any way with this project. They have taught me that engineering really is a team sport.

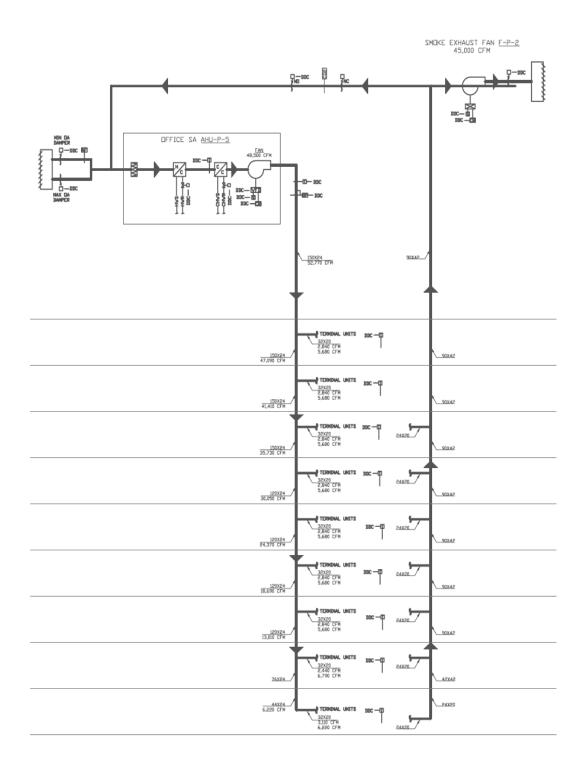

Jim Freihaut- Faculty Consultant Jeff Linde- Newcomb & Boyd John Shaw- Newcomb & Boyd The people at Kathabar Systems Jonathan Williams- Structural Option Jennifer Sanborn- Lighting/Electrical Option

# Appendix A Schematics

MEZZANINE




Ben Burgoyne Mechanical Option MEZZANINE




#### S.6 VIVARIUM, CAGEWASH EXHAUST SCHEMATIC

Ben Burgoyne Mechanical Option

MEZZANINE





#### S.8 OFFICE SUPPLY, RETURN SCHEMATIC

|           | Г                  |                  |                  | ******          |                       |
|-----------|--------------------|------------------|------------------|-----------------|-----------------------|
|           |                    |                  | S EXHAUST E-M-10 |                 |                       |
|           |                    | ¥74              |                  | 10*#<br>750 CFM |                       |
| PENTHOUSE | 4,                 | 123 CFM          |                  | 4'0<br>75 CFM   | 10"#<br>675 CFR       |
| 9TH FLOOR | 26x34<br>3,698 CFM | 18X12<br>425 CFM |                  | 4'6<br>75 CFM   | 10"p<br>600 CFR       |
| 8TH FLOOR | 26x34<br>3,273 CFM | 18X12<br>425 CFM |                  | 75 CFM          | 10'#<br>525 CFR       |
| 7TH FLOOR | 26×34<br>2,848 CFM | 18X12<br>425 CFN |                  | 75 CFM          | 846<br>450 CFM        |
| 6TH FLOOR | 26x34<br>2,423 CFM | 19X12<br>425 CFM |                  | 75 CFM          | 814<br>375 CFR        |
| 5TH FLOOR | 26x34<br>1,998 CFM | 18X12<br>425 CFM |                  | 4'0<br>75 CFM   | 8'4<br>300 CFM        |
| 4TH FLOOR | 24×24<br>1,573 CFM | 18X12<br>425 CFM |                  | 4'0<br>75 CFM   | 6'8<br>225 GFR        |
| 3RD FLOOR | 24×18<br>1,148 CFM | 19X12<br>425 CFH |                  | 75 CFM          | <u>6'ө</u><br>150 сгн |
| 2ND FLOOR | IRVIR_             | 18X12<br>709 CFR |                  | 4'6<br>75 CFM   | _600                  |
| 1ST FLOOR | 18X18<br>439 CFM   | 18X18<br>439 CFM |                  | 410<br>75 CFM   | 4'6<br>75 CFH         |

#### S.9 TOILET, JANITORS EXHAUST SCHEMATIC

## Appendix B Tables

| -                         | 1      |         |        | -                   |        |       |        | _     | _      | _     | _       |       |        |         | _     | _      | _          |       | T       | -      | T           |       | -        |                     | _                 | т      |          |       | 2          | 1        |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |
|---------------------------|--------|---------|--------|---------------------|--------|-------|--------|-------|--------|-------|---------|-------|--------|---------|-------|--------|------------|-------|---------|--------|-------------|-------|----------|---------------------|-------------------|--------|----------|-------|------------|----------|-------|------|------|------|------|-------|------|------|------|------|-------|------|------|----------|-----------|
| 62.1 Required Ventilation |        |         | 10.08  | 65.82               | 65.82  | 65.82 | 65.82  | 93.9  | 45.24  | 35.1  | 23.94   | 36.6  | 13.68  | 115     | 85,8  | 7.92   | 37.125     | 25.74 | 120.67  | 120.67 | 120.67      | 98.56 | 98.56    | 11.73               | 27.36             |        | 1391.625 |       | 26,918.72  |          |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |
| SPACE                     | 1000   |         | 140    | 133                 | 134    | 135   | 136    | 137   | 138    | 119   | 139     | 117   | 116    | 123     | 118   | 125    | 143        | 142   | 131     | 131    | 131         | 129   | 129      | East Elevator Lobby | N.E.Exit Corridor |        |          |       |            |          |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |
| Flow                      | -      |         | CV     | S                   | CV     | CV    | CV     | c     | S      | S     | cv      | CV    | S      | CV      | CV    | cv     | S          | S     | CV      | S      | cv          | S     | CV<br>CV | cv                  | S                 |        |          |       |            |          |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |
| Supply cfm<br>MAX         | C Lati |         | 100    | 750                 | 750    | 750   | 750    | 1,140 | 380    | 1,050 | 270     | 240   | 66     | 1,000   | 800   | 200    | 220        | 230   | 1,990   | 1,980  | 1,980       | 2.000 | 2,000    | 1,360               | 780               |        | 20,790   |       | 171,710    |          |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |
| ZONES                     | FOILO  | 1st     | S112   | S113                | S114   | S115  | S116   | S117  | S118   | S119  | S120    | S121  | S122   | S123    | S124  | S125   | S126       | S127  | S128    | S129   | S130        | S131  | S132     | S133                | S134              |        | Total:   |       | Total:     |          |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |
| 62.1 Required Ventilation |        |         | 178.2  | 11.73               | 25.92  | 25.39 | 21.6   | 94    | 50.07  | 50.07 | 78.015  | 50.07 | 25.39  | 89.25   | 25.39 | 50.07  | 50.07      | 50.07 | 53.94   | 86,55  | 50.97       | 50.97 | 41.01    | 41.01               | 15                | 56.46  | 12.6     | 56.46 | 39.9       | 39.9     | 52.52 | 39.9 | 39.9 | 39.9 | 39.9 | 52.52 | 39.9 | 39.9 | 39.9 | 39.9 | 52.52 | 39.9 | 47.4 | 101 1001 | 1364.135  |
| SPACE                     | 1000   |         | 244    | East Elevator Lobby | 246    | 240   | 238    | 248   | 235    | 236   | 239,243 | 234   | 241    | 230     | 242   | 233    | 232        | 231   | 223     | 219    | 218         | 217   | 225      | 228                 | Electrical        | 226    | Telecom  | 229   | 264        | 265      | 261   | 262  | 263  | 260  | 259  | 256   | 257  | 258  | 253  | 254  | 250   | 252  | 251  |          |           |
| Flow                      |        |         | CV     | CV                  | cv     | CV    | CV     | CV    | S      | S     | M       | cV    | сv     | cv      | cv    | cv     | CV         | CV    | cV      | cv     | cV          | S     | CV       | CV                  | W                 | cv     | N        | cv    | cv         | cV       | CV    | CV   | cV   | S    | S    | cV    | CV   | cv   | cv   | cv   | S     | cv   | cv   |          |           |
| Supply cfm<br>MAX         |        |         | 1840   | 1360                | 420    | 190   | 950    | 550   | 520    | 510   | 2100    | 530   | 190    | 950     | 190   | 530    | 520        | 510   | 570     | 870    | 530         | 510   | 320      | 330                 | 150               | 720    | 450      | 720   | 380        | 390      | 590   | 390  | 380  | 390  | 380  | 590   | 380  | 390  | 380  | 390  | 590   | 380  | 420  | 00120    | 23450     |
| ZONES                     | 1010   | 2nd     | S214   | S215                | S216   | S217  | S218   | S219  | S220   | S221  | S222    | S223  | S224   | S225    | S226  | S227   | S228       | S229  | S230    | S231   | S232        | S233  | S234     | S235                | S236              | S237   | S238     | S239  | S240       | S241     | S242  | S243 | S244 | S245 | S246 | S247  | S248 | S249 | S250 | S251 | S252  | S253 | S254 |          | I O TAI : |
| 62.1 Required Ventilation | 1      |         | 199.07 | 11.73               | 44.425 | 29.9  | 199.07 | 27.1  | 199.07 | 57.1  | 42.3    | 27.1  | 199.07 | 109.615 | 44.3  | 199.07 | 15         | 35.1  | 12.6    | 18     | 45.33       | 56.7  | 995.35   | 199.07              | 199.07            | 199.07 | 199.07   |       | 3363.28    | 23542.96 |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |
| SPACE                     | 104.10 |         | 941    | East Elevator Lobby | 923    | 935   | 941    | 934.1 | 941    | 934   | 933     | 932.1 | 941    | 932     | 931   | 941    | Electrical | 929   | Telecom | 930    | 926,927,928 | 925   | 924      | 924                 | 924               | 924    | 924      |       |            |          |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |
| Flow                      | -      |         | CV     | S                   | cV     | CV    | CV     | c     | S      | S     | cv      | cV    | cv     | cV      | cv    | cv     | ×          | cV    | N       | cv     | cV          | S     | CV       | CV                  | cv                | cV     | S        |       |            |          |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |
| Supply cfm<br>MAX         | V-ai   |         | 006    | 1360                | 470    | 350   | 006    | 850   | 006    | 720   | 470     | 850   | 006    | 720     | 650   | 006    | 150        | 470   | 450     | 200    | 330         | 670   | 1000     | 1000                | 1000              | 1000   | 1000     |       | 18210      | 127470   |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |
| ZONES                     | +      | 3rd-9th | S914   | S915                | S916   | S917  | S918   | S919  | S920   | S921  | S922    | S923  | S924   | S925    | S926  | S927   | S928       | S929  | S930    | S931   | S932        | S933  | S934     | S935                | S936              | S937   | S938     |       | Per Floor: | Total:   |       |      |      |      |      |       |      |      |      |      |       |      |      |          |           |

Table 1Terminal Unit CFM'sCAV/VAV Systems

|           |                                        |                                             |                 |            |           |                                            |           |      |    |         |         | AHU-P-1 thru 4 | 1 thru 4 |
|-----------|----------------------------------------|---------------------------------------------|-----------------|------------|-----------|--------------------------------------------|-----------|------|----|---------|---------|----------------|----------|
| SPACE     |                                        | Type                                        | Length (ft)     | Width (ft) | Area (sf) | Length (ft) Width (ft) Area (sf) Occupancy | Occupancy | Ra   | Rp | Vbz     | Room    | Ez             | Voz      |
|           |                                        |                                             |                 |            |           |                                            |           |      |    |         |         |                |          |
|           | 3rd-9th Floors                         |                                             |                 |            |           |                                            |           |      |    |         | 3rd-9th |                |          |
|           | :                                      | :                                           | ,               |            | 9         |                                            |           | 000  |    | 0       |         |                | 0        |
| 900.1     | Alcove                                 | Corridor                                    | 7               | 9          | 42        | 0                                          | 0         | 0.06 | 0  | 2.52    | 900.1   | 1.0            | 2.52     |
| 925       | Auxiliary                              | Science Laboratory                          | 21              | 15         | 315       | 0                                          | 0         | 0.18 | 10 | 56.7    | 925     | 1.0            | 56.7     |
| 927       | Auxiliary                              | Science Laboratory                          | 10.5            | 10.5       | 110.25    | 0                                          | 0         | 0.18 | 10 | 19.845  | 927     | 1.0            | 19.845   |
| 928       | Auxiliary                              | Science Laboratory                          | 10.5            | 11.5       | 120.75    | 0                                          | 0         | 0.18 | 10 | 21.735  | 928     | 1.0            | 21.735   |
| 930       | Auxiliary                              | Science Laboratory                          | 10              | 10         | 100       | 0                                          | 0         | 0.18 | 10 | 18      | 930     | 1.0            | 18       |
| 936       | Cold Room                              | Science Laboratory                          | 13              | 10         | 130       | 0                                          | 0         | 0.18 | 10 | 23.4    | 936     | 1.0            | 23.4     |
| 901       | Corridor                               | Corridor                                    | 21              | 5          | 105       | 0                                          | 0         | 0.06 | 0  | 6.3     | 901     | 1.0            | 6.3      |
| 911       | Corridor                               | Corridor                                    | 11              | 5          | 55        | 0                                          | 0         | 0.06 | 0  | 3.3     | 911     | 1.0            | 3.3      |
| 926       | Corridor                               | Corridor                                    | 12.5            | 5          | 62.5      | 0                                          | 0         | 0.06 | 0  | 3.75    | 926     | 1.0            | 3.75     |
|           | East Elevator Lobby                    | Lobby                                       | 23              | 8.5        | 195.5     | 0                                          | 0         | 0.06 | 5  | 11.73   |         | 1.0            | 11.73    |
|           | Electrical                             | Storage                                     | 12.5            | 10         | 125       | 0                                          | 0         | 0.12 | 0  | 15      |         | 1.0            | 15       |
| 923       | Equipment                              | Science Laboratory                          | 23.5            | 10.5       | 246.75    | 0                                          | 0         | 0.18 | 10 | 44.415  | 923     | 1.0            | 44.415   |
| 929       | Equipment                              | Science Laboratory                          | 26              | 7.5        | 195       | 0                                          | 0         | 0.18 | 10 | 35.1    | 929     | 1.0            | 35.1     |
| 933       | Equipment                              | Science Laboratory                          | 23.5            | 10         | 235       | 0                                          | 0         | 0.18 | 10 | 42.3    | 933     | 1.0            | 42.3     |
| 931       | Glasswash                              | Science Laboratory                          | 13.5            | 10         | 135       | 2                                          | 2         | 0.18 | 10 | 44.3    | 931     | 1.0            | 44.3     |
|           | Janitor                                | Storage                                     | 11              | 5.5        | 60.5      | 0                                          | 0         | 0.12 | 0  | 7.26    |         | 1.0            | 7.26     |
| 924       | Laboratory                             | Science Laboratory                          | 105             | 31.5       | 3307.5    | 40                                         | 40        | 0.18 | 10 | 995.35  | 924     | 1.0            | 995.35   |
| 941       | Laboratory                             | Science Laboratory                          | 105             | 31.5       | 3307.5    | 40                                         | 40        | 0.18 | 10 | 995.35  | 941     | 1.0            | 995.35   |
| 937       | Linear Equipment Room                  | Science Laboratory                          | 129             | 8          | 1032      | 0                                          | 0         | 0.18 | 10 | 185.76  | 937     | 1.0            | 185.76   |
| 935       | Radioisotope                           | Science Laboratory                          | 10.5            | 10         | 105       | <del></del>                                | -         | 0.18 | 10 | 28.9    | 935     | 1.0            | 28.9     |
|           | Telecom                                | Storage                                     | 10.5            | 10         | 105       | 0                                          | 0         | 0.12 | 0  | 12.6    |         | 1.0            | 12.6     |
| 932       | Tissue Culture                         | Science Laboratory                          | 20.5            | 23.5       | 386.75    | 4                                          | 4         | 0.18 | 10 | 109.615 | 932     | 1.0            | 109.615  |
| 932.1     | Tissue Culture                         | Science Laboratory                          | 10              | 9.5        | 95        | -                                          | -         | 0.18 | 10 | 27.1    | 932.1   | 1.0            | 27.1     |
| 934       | Tissue Culture                         | Science Laboratory                          | 20.5            | 23.5       | 95        | 4                                          | 4         | 0.18 | 10 | 57.1    | 934     | 1.0            | 57.1     |
| 934.1     | Tissue Culture                         | Science Laboratory                          | 10              | 9.5        | 95        | -                                          | 1         | 0.18 | 10 | 27.1    | 934.1   | 1.0            | 27.1     |
|           |                                        |                                             |                 |            |           |                                            | 93        |      |    |         |         | Vot:           | 2794.53  |
| Note: Flo | Note: Floors 3 through 8 (identical to | cal to 9) are accounted for in the totaling | n the totaling. |            |           |                                            | 651       |      |    |         |         | x7 Floors      | 19561.71 |
|           |                                        |                                             |                 |            |           | -                                          |           |      |    |         | •       |                |          |

Table 2aRoom Required Ventilation CFMs- 3<sup>rd</sup>-9<sup>th</sup> FloorsASHRAE Std. 62.1-2004

| Mode         Type         Jop         Jop </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>I</th> <th></th> <th></th> <th></th> <th></th> <th>┞</th>                                                                                                                                                                                                  |            |                     |                    |             |                |               |                |                | I      |            |        |            |            | ┞      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|--------------------|-------------|----------------|---------------|----------------|----------------|--------|------------|--------|------------|------------|--------|
| Joid Elect         Joid El                                                                                                                           | SPACE      |                     | Type               | Length (ft) |                |               |                | Occupancy      | Ra     | Rp         | Vbz    | Room       | Ez         | Voz    |
| Affercom         Serrere laboratory         16         7.5         7.20         0         0.19         10         2.16         2.86           Clain Class Sugges         Serrere laboratory         13         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 2nd Floor           |                    |             |                |               |                |                |        |            |        | 2nd        |            |        |
| Cape Signe         Same allocatory         3         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5 <td>238</td> <td>Anternom</td> <td>Science Laboratory</td> <td>16</td> <td>7.6</td> <td>120</td> <td>C</td> <td>C</td> <td>0 1 R</td> <td>0</td> <td>21 G</td> <td>238</td> <td>0</td> <td>21 G</td>                                                                                                                                                                                                                                   | 238        | Anternom            | Science Laboratory | 16          | 7.6            | 120           | C              | C              | 0 1 R  | 0          | 21 G   | 238        | 0          | 21 G   |
| Canino Cape Storage<br>Control         Service Laboratory         33         30         900         0         011         178.2         244           Control         Control         21         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5 <td>245</td> <td>Cage Stage</td> <td>Science Laboratory</td> <td>9 9</td> <td>0</td> <td>162</td> <td>0</td> <td>00</td> <td>0.18</td> <td>6 6</td> <td>29.16</td> <td>245</td> <td>0.1</td> <td>29.16</td>                                                                                                                              | 245        | Cage Stage          | Science Laboratory | 9 9         | 0              | 162           | 0              | 00             | 0.18   | 6 6        | 29.16  | 245        | 0.1        | 29.16  |
| Candior         Candior <t< td=""><td>244</td><td>Clean Cage Storage</td><td>Science Laboratory</td><td>ŝ</td><td>30</td><td>066</td><td>0</td><td>0</td><td>0.18</td><td>0</td><td>178.2</td><td>244</td><td>1.0</td><td>178.2</td></t<> | 244        | Clean Cage Storage  | Science Laboratory | ŝ           | 30             | 066           | 0              | 0              | 0.18   | 0          | 178.2  | 244        | 1.0        | 178.2  |
| Cardior         Cardior <t< td=""><td>201</td><td>Corridor</td><td>Corridor</td><td>8.5</td><td>£</td><td>42.5</td><td>0</td><td>0</td><td>0.06</td><td>0</td><td>2.55</td><td>201</td><td>1.0</td><td>2.55</td></t<>                     | 201        | Corridor            | Corridor           | 8.5         | £              | 42.5          | 0              | 0              | 0.06   | 0          | 2.55   | 201        | 1.0        | 2.55   |
| Condior         Condior <t< td=""><td>214</td><td>Corridor</td><td>Corridor</td><td>21</td><td>4.5</td><td>94.5</td><td>0</td><td>0</td><td>0.06</td><td>0</td><td>5.67</td><td>214</td><td>1.0</td><td>5.67</td></t<>                    | 214        | Corridor            | Corridor           | 21          | 4.5            | 94.5          | 0              | 0              | 0.06   | 0          | 5.67   | 214        | 1.0        | 5.67   |
| Control         25         7         367         0         0         0         0         0         0         0         0         0         205         27         27           Control         Control         13         7         721         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 224        | Corridor            | Corridor           | 22          | œ              | 176           | 0              | 0              | 0.06   | 0          | 10.56  | 224        | 1.0        | 10.56  |
| Conduct         34         7         238         0         0         0         0         1         1         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         237         <                                                                                                                                                                                                                                                                                                                                                        | 227        | Corridor            | Corridor           | 52.5        | 7              | 367.5         | 0              | 0              | 0.06   | 0          | 22.05  | 227        | 1.0        | 22.05  |
| Cardior         Conduct         13         7         721         0         0         0         0         13         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         23         <                                                                                                                                                                                                                                                                                                                                                                                            | 237        | Corridor            | Corridor           | 34          | 7              | 238           | 0              | 0              | 0.06   | 0          | 14.28  | 237        | 1.0        | 14.28  |
| East Elevator (LOby         Loby         23         85         155         0         0         0.0         0.1         1.7         3           Helrinal         Sterres Laboratory         21         115         2415         1         1         23         23         3         23         3         23         3         23         3         4         23         3         4         23         3         4         23         3         4         23         3         4         23         3         4         23         3         4         23         3         4         23         3         4         23         3         4         23         3         4         23         3         4         23         3         4         23         3         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4         23         4                                                                                                                                                                                                                                                                                                                                                                                                               | 255        | Corridor            | Corridor           | 103         | 7              | 721           | 0              | 0              | 0.06   | 0          | 43.26  | 255        | 1.0        | 43.26  |
| Electrical         Storage<br>Serves Laborationy         215         10         725         50.97         721           Holding         Serves Laborationy         21         115         2415         1         272         2917         2917           Holding         Serves Laborationy         21         115         2415         1         272         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917         2917<                                                                                                                                                                                                                                                                                                          |            | East Elevator Lobby | Lobby              | 23          | 8.5            | 195.5         | 0              | 0              | 0.06   | 0          | 11.73  |            | 1.0        | 11.73  |
| Holding         Searrise Laborationy         21         11.5         241.5         1         15         241.5         1         15         50.97         217           Holding         Searres Laborationy         21         11.5         241.5         11         223.2         50.97         221           Holding         Searres Laborationy         21.5         11         226.5         11         226.5         50.97         223           Holding         Searres Laborationy         21.5         11         226.5         11         226.5         50.07         228           Holding         Searres Laborationy         21.5         11         226.5         11         226.5         50.07         228           Holding         Searres Laborationy         21.5         11         226.5         11         266.5         50.07         228           Holding         Searres Laborationy         15         12         180         1         266.4         229.5           Holding         Searres Laborationy         15         12         286.5         10.08         7.5         50.07         228           Holding         Searres Laborationy         15         12         180         11 </td <td></td> <td>Electrical</td> <td>Storage</td> <td>12.5</td> <td>10</td> <td>125</td> <td>0</td> <td>0</td> <td>0.12</td> <td>0</td> <td>15</td> <td></td> <td>1.0</td> <td>15</td>                                                                                                                                           |            | Electrical          | Storage            | 12.5        | 10             | 125           | 0              | 0              | 0.12   | 0          | 15     |            | 1.0        | 15     |
| Holding         Seinere laboration $21$ $115$ $2415$ $11$ $018$ $75$ $5091$ $210$ Holding         Seinere laboration $21$ $115$ $222$ $211$ $116$ $75$ $5001$ $222$ Holding         Seinere laboration $21$ $11$ $2265$ $11$ $018$ $75$ $5001$ $222$ Holding         Seinere laboration $215$ $111$ $2265$ $11$ $2265$ $110$ $216$ $222$ Holding         Seinere laboration $215$ $111$ $2265$ $111$ $2265$ $111$ $2265$ $222$ Holding         Seinere laboration $215$ $111$ $2265$ $111$ $2265$ $222$ $226$ Holding         Seinere laboration $15$ $12$ $1016$ $75$ $3001$ $226$ Holding         Seinere laboration $15$ $12$ $1016$ $75$ $3001$ $226$ Holding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 217        | Holding             | Science Laboratory | 21          | 11.5           | 241.5         | -              | -              | 0.18   | 7.5        | 50.97  | 217        | 1.0        | 50.97  |
| Holding         Spience Laboratory         215         12         286         1         1         018         7.5         53.94         222           Holding         Spience Laboratory         17         16         272         1         10.18         7.5         56.46         222           Holding         Spience Laboratory         17         16         272         1         10.18         7.5         50.07         223           Holding         Spience Laboratory         21.5         11         286.5         1         1         0.18         7.5         50.07         223           Holding         Spience Laboratory         21.5         11         286.5         1         1         0.18         7.5         50.07         233           Holding         Spience Laboratory         15         12         180         1         161.6         7.5         50.07         233           Holding         Spience Laboratory         15         12         180         1         161.7         339         255           Holding         Spience Laboratory         15         12         180         1         101.8         7.5         399         257           Ho                                                                                                                                                                                                                                                                                                                                                             | 218        | Holding             | Science Laboratory | 21          | 11.5           | 241.5         | -              | -              | 0.18   | 7.5        | 50.97  | 218        | 1.0        | 50.97  |
| Holing         Seince laboratory         17         16         272         1         10         75         56.45         273           Holing         Seince laboratory         215         11         2865         1         1         018         75         50.07         233           Holing         Seince laboratory         215         11         2865         1         1         018         75         50.07         233           Holing         Seince laboratory         215         11         2865         1         0.18         75         50.07         233           Holing         Seince laboratory         215         11         2865         1         1         1         0.18         75         50.07         233           Holing         Seince laboratory         15         11         2865         1         1         1         0.18         75         50.07         233           Holing         Seince laboratory         15         12         180         1         1018         75         50.07         233           Holing         Seince laboratory         15         12         180         1         161         75         399                                                                                                                                                                                                                                                                                                                                                                           | 223        | Holding             | Science Laboratory | 21.5        | 12             | 258           | -              | -              | 0.18   | 7.5        | 53.94  | 223        | 1.0        | 53.94  |
| Holding         Spanne Laboratory         17         16         272         1         1018         75         56.45         223           Holding         Spanne Laboratory         215         11         2265         1         1         018         7.5         50.07         223           Holding         Spanne Laboratory         215         11         2265         1         1         018         7.5         50.07         223           Holding         Spanne Laboratory         215         11         2265         1         1         018         7.5         50.07         223           Holding         Spanne Laboratory         215         11         2265         1         1         018         7.5         50.07         223           Holding         Spanne Laboratory         15         12         180         1         1018         7.5         50.07         233           Holding         Spanne Laboratory         15         12         180         1         1018         7.5         50.07         233           Holding         Spanne Laboratory         15         12         180         1         1018         7.5         50.07         233 <td>226</td> <td>Holding</td> <td>Science Laboratory</td> <td>17</td> <td>16</td> <td>272</td> <td>-</td> <td>-</td> <td>0.18</td> <td>7.5</td> <td>56.46</td> <td>226</td> <td>1.0</td> <td>56.46</td>                                                                                                                                                          | 226        | Holding             | Science Laboratory | 17          | 16             | 272           | -              | -              | 0.18   | 7.5        | 56.46  | 226        | 1.0        | 56.46  |
| Holding         Science Laboratory         215         11         2265         1         1         018         7.5         50.07         233           Holding         Science Laboratory         215         11         2865         1         1         018         7.5         50.07         233           Holding         Science Laboratory         215         11         2865         1         1         018         7.5         50.07         233           Holding         Science Laboratory         215         11         2865         1         1         018         7.5         50.07         233           Holding         Science Laboratory         15         12         180         1         1018         7.5         393         255           Holding         Science Laboratory         15         12         180         1         1018         7.5         393         256           Holding         Science Laboratory         15         12         180         1         1018         7.5         393         256           Holding         Science Laboratory         15         12         180         1         1018         7.5         393         240 </td <td>229</td> <td>Holding</td> <td>Science Laboratory</td> <td>17</td> <td>16</td> <td>272</td> <td>-</td> <td>· -</td> <td>0.18</td> <td>7.5</td> <td>56.46</td> <td>229</td> <td>10</td> <td>56.46</td>                                                                                                                                                   | 229        | Holding             | Science Laboratory | 17          | 16             | 272           | -              | · -            | 0.18   | 7.5        | 56.46  | 229        | 10         | 56.46  |
| Holding         Science Laboration         215         11         2365         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th< td=""><td>231</td><td>Holding</td><td>Science Laboratory</td><td>21.5</td><td>; ;</td><td>236.5</td><td>- <del>-</del></td><td></td><td>0.18</td><td>2.5</td><td>50.07</td><td>231</td><td>0</td><td>50.07</td></th<>                                                                                                                                                                                                                 | 231        | Holding             | Science Laboratory | 21.5        | ; ;            | 236.5         | - <del>-</del> |                | 0.18   | 2.5        | 50.07  | 231        | 0          | 50.07  |
| Holdrig         Searce Laboratory $215$ $11$ $2365$ $1$ $10$ $75$ $50.07$ $236$ Holdrig         Searce Laboratory $215$ $11$ $2365$ $1$ $1018$ $75$ $50.07$ $2364$ Holdrig         Searce Laboratory $215$ $11$ $2365$ $11$ $216$ $11$ $2365$ $393$ $255$ $50.07$ $236$ Holdrig         Searce Laboratory $15$ $12$ $100$ $11$ $216$ $393$ $255$ $393$ $255$ Holdrig         Searce Laboratory $15$ $12$ $100$ $17$ $393$ $256$ Holdrig         Searce Laboratory $15$ $12$ $100$ $17$ $393$ $256$ Holdrig         Searce Laboratory $15$ $12$ $100$ $17$ $393$ $256$ Holdrig         Searce Laboratory $15$ $12$ $100$ $75$ $393$ $256$ Holdrig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 232        | Holding             | Science Laboratory | 215         | ÷              | 236.5         | • •            | • •            | 0.18   | 7.5        | 50.07  | 232        | 0          | 50.07  |
| Holding         Science Laboratory         21.6         11         236.5         1         1         236.5         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th="">         1</th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                  | 233        | Holding             | Science Laboratory | 21 FC       | - <del>-</del> | 236.5         |                |                | a10    | 5.4        | 50.07  | 233        | 0.0        | 50.07  |
| Holding         Science Laboratory $21.5$ $11$ $236.5$ $1$ $10.18$ $7.5$ $50.07$ $236$ Holding         Science Laboratory $21.5$ $11$ $286.5$ $11$ $10.18$ $7.5$ $50.07$ $236$ Holding         Science Laboratory $51$ $12$ $100$ $11$ $118$ $7.5$ $50.07$ $236$ Holding         Science Laboratory $51$ $12$ $100$ $11$ $118$ $7.5$ $50.07$ $236$ Holding         Science Laboratory $51$ $12$ $100$ $11$ $118$ $7.5$ $309$ $226$ Holding         Science Laboratory $55$ $12$ $100$ $11$ $11$ $118$ $7.5$ $399$ $226$ Holding         Science Laboratory $55$ $12$ $100$ $17$ $399$ $226$ Holding         Science Laboratory $55$ $12$ $100$ $7.5$ $399$ $226$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 234        | Holding             | Science Laboratory | 215         | ÷              | 236.5         | • •            |                | 0.18   | 2.5        | 50.07  | 234        | 0          | 50.07  |
| Holding         Science Laboratory         215         11         2365         1         1         0.18         7.5         50.07         236           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         30.9         224           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         30.9         224           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         30.9         224           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         30.9         224           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         30.9         224           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         30.9         224           Holding         Science Laboratory         15         12         100         1         1         0.18<                                                                                                                                                                                                                                                                                                                                                              | 235        | Holding             | Science Laboratory | 21.5        | 1              | 236.5         | -              | - <del>-</del> | 0.18   | 7.5        | 50.07  | 235        | 1.0        | 50.07  |
| Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         39.9         223           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         39.9         233           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         39.9         233           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         39.9         233           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         39.9         233           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         39.9         233           Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         39.9         233           Holding         Science Laboratory         15         12         100         1         1         0.18 <td>236</td> <td>Holding</td> <td>Science Laboratory</td> <td>21.5</td> <td>1</td> <td>236.5</td> <td>-</td> <td>÷</td> <td>0.18</td> <td>7.5</td> <td>50.07</td> <td>236</td> <td>1.0</td> <td>50.07</td>                                                                                                                                                       | 236        | Holding             | Science Laboratory | 21.5        | 1              | 236.5         | -              | ÷              | 0.18   | 7.5        | 50.07  | 236        | 1.0        | 50.07  |
| Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39:3         254           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39:3         254           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39:3         254           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39:3         256           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39:3         256           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39:3         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39:3         263           Holding         Science Laboratory         15         12         180         1         10         11                                                                                                                                                                                                                                                                                                                                                                   | 252        | Holding             | Science Laboratory | 15          | 12             | 180           | -              | -              | 0.18   | 7.5        | 39.9   | 252        | 1.0        | 39.9   |
| Holding         Science Laboratory         15         12         100         1         1         0.18         7.5         39.9         254           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         259           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         259           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         258           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         258           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18 <td>253</td> <td>Holding</td> <td>Science Laboratory</td> <td>15</td> <td>1</td> <td>180</td> <td>~</td> <td>-</td> <td>0.18</td> <td>7.5</td> <td>39.9</td> <td>253</td> <td>1.0</td> <td>39.9</td>                                                                                                                                                             | 253        | Holding             | Science Laboratory | 15          | 1              | 180           | ~              | -              | 0.18   | 7.5        | 39.9   | 253        | 1.0        | 39.9   |
| Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         257           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         258           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         258           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         258           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         258           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         268           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         268           Holding         Science Laboratory         15         12         180         1         1         0.18 <td>254</td> <td>Holding</td> <td>Science Laboratory</td> <td>15</td> <td>12</td> <td>180</td> <td>-</td> <td>-</td> <td>0.18</td> <td>7.5</td> <td>39.9</td> <td>254</td> <td>1.0</td> <td>39.9</td>                                                                                                                                                            | 254        | Holding             | Science Laboratory | 15          | 12             | 180           | -              | -              | 0.18   | 7.5        | 39.9   | 254        | 1.0        | 39.9   |
| Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         389         258           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         389         258           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         389         268           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         389         268           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         389         268           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         389         268           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         389         268           Seince Laboratory         15         5         5         5         5         5         5         38 <td>257</td> <td>Holding</td> <td>Science Laboratory</td> <td>15</td> <td>12</td> <td>180</td> <td>-</td> <td>-</td> <td>0.18</td> <td>7.5</td> <td>39.9</td> <td>257</td> <td>1.0</td> <td>39.9</td>                                                                                                                                                                     | 257        | Holding             | Science Laboratory | 15          | 12             | 180           | -              | -              | 0.18   | 7.5        | 39.9   | 257        | 1.0        | 39.9   |
| Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         259           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         253           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Iso No. 2         Science Laboratory         16         10.5         18         0.18         7.5         39.9         263         241           Iso No. 2         Science Laboratory         16         10.5         16         10         10         26         <                                                                                                                                                                                                                                                                                                                                                          | 258        | Holding             | Science Laboratory | 15          | 12             | 180           | -              | -              | 0.18   | 7.5        | 39.9   | 258        | 1.0        | 39.9   |
| Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         260           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         264           Holding         Science Laboratory         9.5         9.5.5         1         1         0.18         7.5         39.9         264           Iso. No. 3         Science Laboratory         16.5         6.5         107.25         1         1         0.18         7.5         39.9         264           Iso. No. 3         Science Laboratory         16.5         6.5         107.25         1         0.18         10 </td <td>259</td> <td>Holding</td> <td>Science Laboratory</td> <td>15</td> <td>12</td> <td>180</td> <td>-</td> <td>-</td> <td>0.18</td> <td>7.5</td> <td>39.9</td> <td>259</td> <td>1.0</td> <td>39.9</td>                                                                                                                                            | 259        | Holding             | Science Laboratory | 15          | 12             | 180           | -              | -              | 0.18   | 7.5        | 39.9   | 259        | 1.0        | 39.9   |
| Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         262           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Iso. No. 3         Science Laboratory         9.5         9         85.5         1         1         0.18         7.5         39.9         263           Iso. No. 3         Science Laboratory         9.5         9         85.5         1         1         0.18         10         25.39         241           Isolation         Science Laboratory         16.5         107.25         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                          | 260        | Holding             | Science Laboratory | 15          | 12             | 180           | -              | -              | 0.18   | 7.5        | 39.9   | 260        | 1.0        | 39.9   |
| Holding         Science Laboratory         15         12         190         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         263           No. 1         Science Laboratory         9.5         9         85.5         1         1         0.18         7.5         39.9         263           Iso. No. 2         Science Laboratory         9.5         9         85.5         1         1         0.18         7.5         39.9         263           Iso. No. 2         Science Laboratory         16.5         107.25         1         1         0.18         10         25.39         241           Iso No. 1         Science Laboratory         16.5         107.25         1         1         0.18         10         25.39         243           Janifor         Loby         V         9         8.5         1         1         0.18         10         24.2                                                                                                                                                                                                                                                                                                                                                              | 262        | Holding             | Science Laboratory | 15          | 12             | 180           | -              | -              | 0.18   | 7.5        | 39.9   | 262        | 1.0        | 39.9   |
| Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         264           Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         39.9         264           Iso. No. 1         Science Laboratory         9.5         9         85.5         1         1         0.18         7.5         39.9         265           Iso. No. 3         Science Laboratory         9.5         9         85.5         1         1         0.18         7.5         39.9         265           Iso. No. 3         Science Laboratory         9.5         9         85.5         1         1         0.18         10         25.39         241           Iso. No. 3         Science Laboratory         16.5         6.5         107.25         1         1         0.18         10         25.39         241           Janitor         Lobby         Lobby         1         5         60.5         0         0.16         10.2         26.53         247           Janitor         Lobby         Lobby         1         10.5         5.6         5         107                                                                                                                                                                                                                                                                                                                                                              | 263        | Holding             | Science Laboratory | 15          | 12             | 180           | -              | -              | 0.18   | 7.5        | 39.9   | 263        | 1.0        | 39.9   |
| Holding         Science Laboratory         15         12         180         1         1         0.18         7.5         399         265           Iso. No. 1         Science Laboratory         9.5         9         85.5         1         1         0.18         7.5         399         265           Iso. No. 2         Science Laboratory         9.5         9         85.5         1         1         0.18         10         25.39         241           Iso. No. 3         Science Laboratory         9.5         5.5         107.25         1         1         0.18         10         25.39         241           Janitor         Science Laboratory         16.5         6.5         107.25         1         1         0.18         10         25.39         247           Janitor         Science Laboratory         16.5         107.25         1         1         0.18         10         25.39         247           Janitor         Science Laboratory         16.5         107.25         1         1         10.18         10         25.30         247           Procedure         Science Laboratory         15         16.45         1         1         10.18         16.48                                                                                                                                                                                                                                                                                                                                                 | 264        | Holding             | Science Laboratory | 15          | 12             | 180           | -              | ~              | 0.18   | 7.5        | 39.9   | 264        | 1.0        | 39.9   |
| Sience Laboratory         95.5         1         1         0.18         10         25.39         242           Iso. No. 2         Science Laboratory         9.5         9         85.5         1         1         0.18         10         25.39         241           Iso. No. 2         Science Laboratory         9.5         5         5         107.25         1         1         0.18         10         25.39         241           Iso. No. 2         Science Laboratory         9.5         5.5         107.25         1         1         0.18         10         25.39         241           Isolation         Science Laboratory         16.5         9.8.5.5         1         1         0.18         10         25.39         241           Lobby         Lobby         Lobby         24         14.5         1         1         0.18         10         25.39         247           Necropsy         Science Laboratory         16         10.5         168         1         1         10.18         16         15         241         248           Procedure         Science Laboratory         15         144.5         1         1         1         10.18         15                                                                                                                                                                                                                                                                                                                                                              | 265        | Holding             | Science Laboratory | 15          | 12             | 180           | -              | -              | 0.18   | 7.5        | 39.9   | 265        | 1.0        | 39.9   |
| Senore Laboratory         9.5         1         1         0.18         10         25.39         241           Iso No. 3         Science Laboratory         9.5         9         85.5         1         1         0.18         10         25.39         241           Janifor         Science Laboratory         9.5         6.5         107.25         1         1         0.18         10         25.39         241           Janifor         Science Laboratory         9.5         5.5         6.0.5         0         0         0.12         0         7.26           Janifor         Lobby         Lobby         19         5.5         60.5         0         0         0.12         0         7.26           Necropsi         Science Laboratory         3.4         5         10.5         168         1         1         1         0.18         16         241           Procedure         Science Laboratory         3.4         5         144.5         1         1         1         1         255         256           Procedure         Science Laboratory         3.4         12.5         412.5         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                            | 242        | Iso. No. 1          | Science Laboratory | 9.5         | σ              | 85.5          | -              | -              | 0.18   | 6          | 25.39  | 242        | 1.0        | 25.39  |
| Second boratory         9.5         1         1         0.18         10         25.39         240           Jamilor         Science Laboratory         9.5         5.5         107.25         1         1         0.18         10         25.39         240           Jamilor         Science Laboratory         16.5         5.5         107.25         1         1         0.18         10         23.65         23.95         23.9           Jamilor         Science Laboratory         16.5         5.5         07.25         2         2         0.06         5         26.53         247           Necorpsy         Science Laboratory         16         10.5         168         1         1         0.18         10         23.65         23.9         246           Procedure         Science Laboratory         17         8.5         144.5         1         1         0.18         15         41.01         225           Procedure         Science Laboratory         17         8.5         144.5         1         1         0.18         15         41.01         225         256           Procedure         Science Laboratory         24         11         264         1 <t< td=""><td>241</td><td>Iso. No. 2</td><td>Science Laboratory</td><td>9.5</td><td>თ</td><td>85.5</td><td>-</td><td>-</td><td>0.18</td><td>9</td><td>25.39</td><td>241</td><td>1.0</td><td>25.39</td></t<>                                                                                                                                                | 241        | Iso. No. 2          | Science Laboratory | 9.5         | თ              | 85.5          | -              | -              | 0.18   | 9          | 25.39  | 241        | 1.0        | 25.39  |
| Solation         Selence Laboratory         16.5         107.25         1         1         0.18         10         29.305         239           Jainior         Steance Laboratory         16.5         6.5         107.25         1         1         0.18         10         29.305         239           Jainior         Steance Laboratory         16.5         6.5         107.25         2         2         0.06         5         26.53         247           Necropsy         Science Laboratory         16         10.5         168         1         1         0.18         10         29.305         219           Procedure         Science Laboratory         16         19.5         144.5         1         1         0.18         15         41.01         228           Procedure         Science Laboratory         31         12.5         144.5         1         1         1         0.18         15         41.01         228           Procedure         Science Laboratory         24         11         264         1         1         1         10.18         15         41.01         228           Procedure         Science Laboratory         24         11         264                                                                                                                                                                                                                                                                                                                                                  | 240        | Iso. No. 3          | Science Laboratory | 9.5         | თ              | 85.5          | -              | <del>.</del> . | 0.18   | 9          | 25.39  | 240        | 1.0        | 25.39  |
| Jamor         Storage         11         5.5         6.0.5         0         0.12         0         7.26           Lobby         Lobby         Science Laboratory         16         10.5         5.60.5         0         0         0.12         0         7.26           Nacropsy         Science Laboratory         16         10.5         168         1         1         0.18         15         86.55         219           Procedure         Science Laboratory         34.5         144.5         1         1         0.18         15         86.55         219           Procedure         Science Laboratory         34.5         144.5         1         1         0.18         15         41.01         226           Procedure         Science Laboratory         33         12.5         412.5         1         1         0.18         15         89.25         230           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         24         11         264         1         1         1         1         1         16                                                                                                                                                                                                                                                                                                                                                                  | 239        | Isolation           | Science Laboratory | 16.5        | 6.5            | 107.25        | - 1            | - 1            | 0.18   | 6          | 29.305 | 239        | 1.0        | 29.30  |
| Lobby         Lobby <thlobby< th="">         Lobby         <thl< td=""><td>ļ</td><td>Janitor</td><td>storage</td><td>11</td><td>0.0</td><td>60.5<br/>027 z</td><td>0 (</td><td>0 (</td><td>0.12</td><td>5 1</td><td>97.1</td><td>ļ,</td><td>0.1</td><td>97.1</td></thl<></thlobby<>                                               | ļ          | Janitor             | storage            | 11          | 0.0            | 60.5<br>027 z | 0 (            | 0 (            | 0.12   | 5 1        | 97.1   | ļ,         | 0.1        | 97.1   |
| Mecopsy         Science Laboratory         10         10.5         10         94         248           Procedure         Science Laboratory         15         10.5         10         94         248           Procedure         Science Laboratory         15         14.5         1         1         0.18         15         41.01         225           Procedure         Science Laboratory         17         8.5         144.5         1         1         0.18         15         41.01         225           Procedure         Science Laboratory         17         8.5         144.5         1         1         0.18         15         41.01         228           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         16         13.5         216         0         0         16         17.4         251           Procedure         Science Laboratory         16         13.5                                                                                                                                                                                                                                                                                                                                                    | 247        | Lobby               | Lobby              | 29          | 9.5            | 275.5         | N 1            | 2              | 0.06   | ۍ<br>۲     | 26.53  | 247        | 0.1        | 26.53  |
| Procedure         Science Laboratory         3-0         5         144.5         1         1         0.10         15         40.01         2.15           Procedure         Science Laboratory         17         8.5         144.5         1         1         0.10         15         40.01         2.28           Procedure         Science Laboratory         17         8.5         144.5         1         1         0.18         15         40.01         2.28           Procedure         Science Laboratory         24         11         284         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         24         11         284         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         24         11         284         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         16         13.5         216         0         0.18         15         62.52         256           Procedure         Science Laboratory         16         13.5         216         0         0.18                                                                                                                                                                                                                                                                                                                                                       | 240        | Necropsy            | Science Laboratory | ol a        | 0.0L           | 207 6         |                |                | 0.0    | 01         | 90 55  | 248        | 0.7        | 99     |
| Trocedure         Science Laboratory         17         8.5         144.5         1         1         0.18         15         41.01         223           Procedure         Science Laboratory         17         8.5         144.5         1         1         0.18         15         41.01         223           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         41.01         223           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         250           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         250           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         15         12         180         1         1         0.18         15         62.52         256           Quarantine         Science Laboratory         15         12         180         1         1 <td>212</td> <td>Procedule</td> <td>Science Laboratory</td> <td>0.40</td> <td>2 u</td> <td>0.100</td> <td>- •</td> <td>- •</td> <td>0 0</td> <td><u>n</u> 4</td> <td>00.00</td> <td>218</td> <td>- <b>-</b></td> <td>00.00</td>                                                                                                                        | 212        | Procedule           | Science Laboratory | 0.40        | 2 u            | 0.100         | - •            | - •            | 0 0    | <u>n</u> 4 | 00.00  | 218        | - <b>-</b> | 00.00  |
| Procedure         Science Laboratory         31         1.5         41.2.5         1         1         0.18         15         91.25         230           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         91.25         230           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         250           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         250           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         250           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         251           Quarantine         Science Laboratory         16         12         12         16         1         1         1         1         251         251           Storage         Science Laboratory         16         13.5         216         0                                                                                                                                                                                                                                                                                                                                                                | 077<br>800 | Procedure           | Science Laboratory |             | οα             | 144.5         | - +            |                | ο<br>α | ΞĘ         | 41.01  | 278<br>278 | <br>       | 41 01  |
| Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         250           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         256           Norage         Science Laboratory         15         12         180         1         1         0.18         15         67.52         256           Storage         Science Laboratory         16         13.5         216         0         0         0.12         0         25.92         246           Telecom         Storage         10.5         10         105         0         126         0         56.65         246           Verk Area         Science Laboratory         14.5         1         159.5         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                   | 230        | Procedure           | Science Laboratory | : 8         | 12.5           | 412.5         |                |                | 0.18   | 5          | 89.25  | 230        | 0          | 32, 68 |
| Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         256           Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         256           Quaratine         Science Laboratory         15         12         12         11         16         15         47         251           Storage         Science Laboratory         16         13.5         216         0         0         0.12         0         25.92         246           Storage         0         10         105         0         0         0         12.6         26.62         26.62         26.62         246         266           Vettloom         37         7         10         105         0         0         0.12         0         25.92         246         266           Vettloom         0         0.0         0         0         0.0         0.66         166                                                                                                                                                                                                                                                                                                                                                                                | 250        | Procedure           | Science Laboratory | 24          | 1              | 264           | - <del>-</del> |                | 0.18   | 15         | 62.52  | 250        | 1.0        | 62.52  |
| Procedure         Science Laboratory         24         11         264         1         1         0.18         15         62.52         261           Quarantine         Science Laboratory         15         12         180         1         1         0.18         15         62.52         261           Quarantine         Science Laboratory         15         12         180         1         1         0.18         15         47.4         251           Storage         0.16         0         0         0.12         0         25.92         246           Telecom         Storage         10.5         10         105         0         0.12         0         25.92         246           Vestibule         Control         13         7         91         0         0.06         0         5.46         286           Vork Area         Science Laboratory         14.5         11         159.5         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <t< td=""><td>256</td><td>Procedure</td><td>Science Laboratory</td><td>24</td><td>1</td><td>264</td><td>~</td><td>-</td><td>0.18</td><td>15</td><td>62.52</td><td>256</td><td>1.0</td><td>62.52</td></t<>                                                                                                                                                                                       | 256        | Procedure           | Science Laboratory | 24          | 1              | 264           | ~              | -              | 0.18   | 15         | 62.52  | 256        | 1.0        | 62.52  |
| Quarantine         Science Laboratory         15         12         180         1         1         0.18         15         47.4         251           Storage         16         13.5         216         0         0.12         0         25.92         246           Telecom         Storage         10.5         10         10.5         0         0.12         0         25.92         246           Vestbulk         0         0.0         0         0         0.12         0         5.46         266           Vestbulk         0         0         0         0         0.66         0         5.46         266           Work Area         Science Laboratory         14.5         11         159.5         2         0.18         10         48.71         243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 261        | Procedure           | Science Laboratory | 24          | 11             | 264           | -              | -              | 0.18   | 15         | 62.52  | 261        | 1.0        | 62.52  |
| Storage/Food         Storage         16         13.5         216         0         0.12         0         25.92         246           Telecom         Storage         10.5         10         105         0         0.12         0         12.6         266           Vetable         Contrage         13.7         7         91         0         0.12         0         146         266         266           Vetable         Contrage         13         7         91         0         0         0.66         0         126         266           Work Area         Science Laboratory         14.5         11         159.5         2         0.18         10         48.71         243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 251        | Quarantine          | Science Laboratory | 15          | 12             | 180           | -              | -              | 0.18   | 15         | 47.4   | 251        | 1.0        | 47.4   |
| Telecom         Storage         10.5         10         105         0         0         0.12         0         12.6           Vestibule         Corridor         13         7         91         0         0         0.06         0         5.46         266           Work Area         Science Laboratory         14.5         11         159.5         2         2         0.18         10         48.71         243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 246        | Storage/Food        | Storage            | 16          | 13.5           | 216           | 0              | 0              | 0.12   | 0          | 25.92  | 246        | 1.0        | 25.92  |
| Vestibule Corridor 13 7 91 0 0 0.06 0 5.46 266<br>Work Area Science Laboratory 14,5 11 159,5 2 2 0.18 10 48,71 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Telecom             | Storage            | 10.5        | 10             | 105           | 0              | 0              | 0.12   | 0          | 12.6   |            | 1.0        | 12.6   |
| Work Area Science Laboratory 14.5 11 159.5 2 2 0.18 10 48.71 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 266        | Vestibule           | Corridor           | 13          | 2              | 91            | 0              | 0              | 0.06   | 0          | 5.46   | 266        | 1.0        | 5.46   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 243        | Work Area           | Science Laboratory | 14.5        | 11             | 159.5         | 2              | 2              | 0.18   | 10         | 48.71  | 243        | 1.0        | 48.71  |

Table 2bRoom Required Ventilation CFMs- 2nd FloorASHRAE Std. 62.1-2004

| AHU-P-1 thru 4 | Ez Voz                 |           |                    | 1.0 23.94          |         |                     | 0.1       | 0.1         | 0.1      | 0.0      | 10 22.32 |          |          |          | 1.0 20.925 |                    |                     |                     | 1.0             |                                         | 1.0 37.125             |              | 1.0        |                |                    |                    |                    | 1.0 93.9           |         |         |            |              |                               |                    |                    |                    |                    |                    | 1.0 1.2 |                    |
|----------------|------------------------|-----------|--------------------|--------------------|---------|---------------------|-----------|-------------|----------|----------|----------|----------|----------|----------|------------|--------------------|---------------------|---------------------|-----------------|-----------------------------------------|------------------------|--------------|------------|----------------|--------------------|--------------------|--------------------|--------------------|---------|---------|------------|--------------|-------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------|--------------------|
|                | Room                   | 1st       | 127                | 139                | 142     | 129                 | 107       | 100         | C100     | 100      | 115      | 124      | 128      | 130      | 132        |                    | 131                 |                     |                 | 0110                                    | 143                    | 140          |            |                | 133                | 134                | 135                | 137                |         | 125     |            |              | 001                           | 118                | 138                | 117                | 116                | 119                | 101.1   |                    |
|                | Vbz                    |           | 32.13              | 23.94              | 25.74   | 197.12              | 12        | 41.04       | 70.41    | 0.67     | 22.32    | 13.65    | 18.06    | 23.04    | 20.925     | 560.64             | 362                 | 11.73               | 0 0             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 37.125                 | 10.08        | 0          | 0              | 65.82              | 65.82<br>or oo     | 65.82<br>65 82     | 93.9               | 7.26    | 7.92    | 0 0        | 0 20 20      | 21.30                         | 85.8               | 45.24              | 36.6               | 13.68              | 35.1               | 1.2     | 51                 |
|                | Rp                     |           | 10                 | 10                 | 0       | 9                   | 0 0       |             |          |          | 0 0      | 0        | 0        | 0        | 0          | 0                  | 9 -                 | Q                   |                 | ç                                       | 2 0                    | 2 0          |            |                | 7.5                | 7.5                | с. /<br>ч          | 7.5                | 0       | 0       |            | ¢            | ⊃ ç                           | 30                 | 15                 | 15                 | 10                 | 10                 | 0       | 0                  |
|                | Ra                     |           | 0.18               | 0.18               | 0.12    | 0.18                | 0.12      | 90.0        | 00.0     | 00.0     | 0.06     | 0.06     | 0.06     | 0.06     | 0.06       | 0.12               | 0.18                | 0.06                |                 | 010                                     | 0.10                   | 0.12         |            |                | 0.18               | 0.18               | 0.18               | 0.18               | 0.12    | 0.12    |            | 000          | 00.0<br>1                     | 0.0                | 0.18               | 0.18               | 0.18               | 0.18               | 0.12    | 0.12               |
|                | Occupancy              |           | 0                  | 0                  | 0       | 0                   | 0 0       | -           |          |          | 00       | 0        | 0        | 0        | 0          | 0                  | 0                   | 0 (                 | 0 0             | - 0                                     |                        | 0            | 0          | 0              | -                  | <del>,</del> ,     |                    |                    | 0       | 0       | 0 0        | 0 0          | ⊃ 7                           |                    |                    | +                  | 0                  | 0                  | 0       | 0                  |
|                | Occupancy              |           | 0                  | 0                  | 0       | 010                 | 0 0       | - 0         |          | 0 0      | 00       | 0        | 0        | 0        | 0          | 0                  | 0                   | 0 (                 | 0 0             |                                         |                        | 00           | 0          | 0              | <del>,</del> -     | <del>,</del> ,     |                    |                    | 0       | 0       | 0 0        | 0 0          | ⊃ <del>,</del>                |                    | . –                | -                  | 0                  | 0                  | 0       | 0                  |
|                | Area (sf)              |           | 178.5              | 133                | 214.5   | 984                 | 100       | 8<br>8<br>7 | 767      | 160 5    | 372      | 227.5    | 301      | 384      | 348.75     | 4672               | 1900                | 195.5               | 320             | 240                                     | 1125                   | 2 78         | 608        | 608            | 324                | 324                | 324                | 480                | 60.5    | 99      | 348        | 1/4          | 400                           | 310                | 168                | 120                | 76                 | 195                | ę ;     | 425                |
|                | Length (ft) Width (ft) |           | 10.5               | 9.5                | 13      | 55                  | 2 0       | 20 1        | 0.0      | 0 U      |          | 7        | 7        | 12       | 7.5        | 8                  | 32                  | 8.5                 | 16              | 10                                      | 0.7L                   | ~ ~          | 19         | 19             | 13.5               | 13.5               | 13.5<br>13.5       | 20.2               | 5.5     | 9       | 14.5       | 2 0          | 0 1<br>1 0                    | 15.5               | 0<br>0<br>0<br>0   | 10                 | 80                 | 13                 | 2.5     | 12.5               |
|                | Length (ft)            |           | 17                 | 14                 | 17      | 42                  | e :       | 8           | 48       | 0 00     | 46.5     | 32.5     | 43       | 32       | 46.5       | 73                 | 65                  | 8                   | 8               | 9<br>1                                  | 17<br>17 E             | 12           | 32 1       | 32             | 24                 | 24                 | 54                 | 54                 | 5       | 1       | 24         | 14.5<br>C    | 5                             | 2 00               | 2 2                | 12                 | 10                 | 15                 | 4       | 34                 |
|                | Type                   |           | Science Laboratory | Science Laboratory | Storage | Science Laboratory  | Storage   | Cornaor     | Corridor   | Shipping/Receiving | Science Laboratory  | Lobby               |                 | Colonee   observation                   | Science Laboratory     | Storage      | -          |                | Science Laboratory | Science Laboratory | Science Laboratory | Science Laboratory | Storage | Storage |            | Contractor   | Cornaor<br>Seisnee Laboratory | Science Laboratory | Storage | Shipping/Receiving |
|                |                        | 1st Floor | Animal Cold Room   | Animal Prep        | Bedding | Clean Cagewash Area | Copy/Work | Comidar     | Corridor   | Delivery           | Dirty Cagewash Area | East Elevator Lobby | Emergency Elec. | Fire Fump Koom                          | Food<br>Food Cold Room | Food Storage | FP&L Vault | Generator Room | Holding            | Holding            | Holding            | Holding            | Janitor | Laundry | Main Elec. | Main Telecom | N.E.EXIT COITIGOL             | Onerating Room     | Procedure          | Recovery           | Scrub              | Sterile            | Storage | Vivarium Receiving |
|                | SPACE                  |           | 127                | 139                | 142     | 129                 | 10/       | 100         | 0.100    | 001      | 115      | 124      | 128      | 130      | 132        |                    | 131                 |                     |                 | 644                                     | 143                    | 140          |            |                | 133                | 134                | 135                | 137                |         | 125     |            |              | 100                           | 118                | 138                | 117                | 116                | 119                | 101.1   |                    |

Table 2cRoom Required Ventilation CFMs- 1st Floor and TotalASHRAE Std. 62.1-2004

Ben Burgoyne Mechanical Option University of Miami Interdisciplinary Laboratory

|           |         | CAV       |     |         | VAV                 |     | Tot        | als        |
|-----------|---------|-----------|-----|---------|---------------------|-----|------------|------------|
| % Total   |         | Cooling L | oad |         | <b>Cooling Load</b> |     | CAV        | VAV        |
| Load      | tons    | hours     | %   | tons    | hours               | %   | Cooling    | Cooling    |
| 05        | 16.325  | 0         | 0%  | 16.325  | 0                   | 0%  | 0          | 0          |
| 510       | 48.975  | 0         | 0%  | 48.975  | 0                   | 0%  | 0          | 0          |
| 1015      | 81.625  | 0         | 0%  | 81.625  | 115                 | 0%  | 0          | 9386.875   |
| 1520      | 114.275 | 0         | 0%  | 114.275 | 360                 | 1%  | 0          | 41139      |
| 2025      | 146.925 | 0         | 0%  | 146.925 | 296                 | 4%  | 0          | 43489.8    |
| 2530      | 179.575 | 6         | 0%  | 179.575 | 1036                | 3%  | 1077.45    | 186039.7   |
| 3035      | 212.225 | 65        | 0%  | 212.225 | 934                 | 12% | 13794.625  | 198218.15  |
| 3540      | 244.875 | 214       | 1%  | 244.875 | 1192                | 11% | 52403.25   | 291891     |
| 4045      | 277.525 | 285       | 2%  | 277.525 | 1078                | 14% | 79094.625  | 299171.95  |
| 4550      | 310.175 | 386       | 3%  | 310.175 | 1197                | 12% | 119727.55  | 371279.475 |
| 5055      | 342.825 | 548       | 4%  | 342.825 | 828                 | 14% | 187868.1   | 283859.1   |
| 5560      | 363.721 | 1174      | 6%  | 363.721 | 367                 | 9%  | 427008.454 | 133485.607 |
| 6065      | 408.125 | 1325      | 13% | 408.125 | 180                 | 4%  | 540765.625 | 73462.5    |
| 6570      | 440.775 | 1327      | 15% | 440.775 | 83                  | 2%  | 584908.425 | 36584.325  |
| 7075      | 473.425 | 1174      | 15% | 473.425 | 122                 | 1%  | 555800.95  | 57757.85   |
| 7580      | 506.075 | 898       | 13% | 506.075 | 170                 | 1%  | 454455.35  | 86032.75   |
| 8085      | 538.725 | 1223      | 10% | 538.725 | 270                 | 2%  | 658860.675 | 145455.75  |
| 8590      | 571.375 | 135       | 14% | 571.375 | 187                 | 3%  | 77135.625  | 106847.125 |
| 9095      | 604.025 | 0         | 2%  | 604.025 | 170                 | 2%  | 0          | 102684.25  |
| 95100     | 653.00  | 0         | 0%  | 653.00  | 175                 | 2%  | 0          | 114275     |
| Hours off | 0       | 0         | 0%  | 0       | 0                   | 2%  | 0          | 0          |
|           |         | 8760      |     |         | 8760                |     |            |            |

Yearly Load Btu: 45,034,808,448 30,972,722,484

Table 4Yearly Energy Consumption<br/>CAV/VAV Systems

|           |          | CAV       |     |          | VAV       |     | Tota        | als         |
|-----------|----------|-----------|-----|----------|-----------|-----|-------------|-------------|
| % Total   |          | Cooling L | oad |          | Cooling L | oad | CAV         | VAV         |
| Load      | tons     | hours     | %   | tons     | hours     | %   | Cooling     | Cooling     |
| 05        | 6.19375  | 0         | 0%  | 6.19375  | 0         | 0%  | 0           | 0           |
| 510       | 18.58125 | 0         | 0%  | 18.58125 | 0         | 0%  | 0           | 0           |
| 1015      | 30.96875 | 0         | 0%  | 30.96875 | 115       | 0%  | 0           | 3561.40625  |
| 1520      | 43.35625 | 0         | 0%  | 43.35625 | 360       | 1%  | 0           | 15608.25    |
| 2025      | 55.74375 | 0         | 0%  | 55.74375 | 296       | 4%  | 0           | 16500.15    |
| 2530      | 68.13125 | 6         | 0%  | 68.13125 | 1036      | 3%  | 408.7875    | 70583.975   |
| 3035      | 80.51875 | 65        | 0%  | 80.51875 | 934       | 12% | 5233.71875  | 75204.5125  |
| 3540      | 92.90625 | 214       | 1%  | 92.90625 | 1192      | 11% | 19881.9375  | 110744.25   |
| 4045      | 105.2938 | 285       | 2%  | 105.2938 | 1078      | 14% | 30008.71875 | 113506.6625 |
| 4550      | 117.6813 | 386       | 3%  | 117.6813 | 1197      | 12% | 45424.9625  | 140864.4563 |
| 5055      | 130.0688 | 548       | 4%  | 130.0688 | 828       | 14% | 71277.675   | 107696.925  |
| 5560      | 137.9968 | 1174      | 6%  | 137.9968 | 367       | 9%  | 162008.1845 | 50644.80725 |
| 6065      | 154.8438 | 1325      | 13% | 154.8438 | 180       | 4%  | 205167.9688 | 27871.875   |
| 6570      | 167.2313 | 1327      | 15% | 167.2313 | 83        | 2%  | 221915.8688 | 13880.19375 |
| 7075      | 179.6188 | 1174      | 15% | 179.6188 | 122       | 1%  | 210872.4125 | 21913.4875  |
| 7580      | 192.0063 | 898       | 13% | 192.0063 | 170       | 1%  | 172421.6125 | 32641.0625  |
| 8085      | 204.3938 | 1223      | 10% | 204.3938 | 270       | 2%  | 249973.5563 | 55186.3125  |
| 8590      | 216.7813 | 135       | 14% | 216.7813 | 187       | 3%  | 29265.46875 | 40538.09375 |
| 9095      | 229.1688 | 0         | 2%  | 229.1688 | 170       | 2%  | 0           | 38958.6875  |
| 95100     | 247.75   | 0         | 0%  | 247.75   | 175       | 2%  | 0           | 43356.25    |
| Hours off | 0        | 0         | 0%  | 0        | 0         | 2%  | 0           | 0           |
|           |          | 8760      |     |          | 8760      |     |             |             |

| Yearly Load Btu: | 17,086,330,464 | 11,751,136,287 |
|------------------|----------------|----------------|
|------------------|----------------|----------------|

Table 6Yearly Energy ConsumptionKathabar CAV/VAV Systems

|                 |        |          |        |          |       |             |          | Mu             | Vu                      | n            | Columns                                  | mns        | PLF      | ц          |
|-----------------|--------|----------|--------|----------|-------|-------------|----------|----------------|-------------------------|--------------|------------------------------------------|------------|----------|------------|
|                 |        |          |        |          |       |             |          |                |                         | Load Factors |                                          |            |          |            |
| Penthouse Floor | loor   |          |        |          |       | -           | ÷        | 2              | 1                       | 2            | Ļ                                        | 2          | Ļ        | 2          |
|                 |        |          |        |          |       |             |          | 1.2 Dead + 1.6 |                         | 1.2 Dead     |                                          | 1.2 Dead   |          | 1.2 Dead   |
|                 | Weight | Area     | Weight | Load     | Width | Linear Load | 1.4 dead | live           | 1.4 dead                | + 1.6 live   | 1.4 dead                                 | + 1.6 live | 1.4 dead | + 1.6 live |
|                 | qI     | sf       | pcf    | psf      | ft    | PLF         | PLF      | PLF            | kip                     | kip          | kip                                      | kip        | kip      | kip        |
|                 |        |          |        |          |       |             |          |                |                         |              |                                          |            |          |            |
| AHU's           | 80000  | 462      |        | 173.1602 | 5.25  | 60'606      | 1272.727 | 1090.909091    | 12.09091                | 10.36364     | 70.64242                                 | 60.55065   | 1272.727 | 1090.909   |
| Conditioners    | 22500  | 210      |        | 107.1429 | 5.25  | 562.50      | 787.5    | 675            | 6.559875                | 5.62275      | 26.25                                    | 22.5       | 787.5    | 675        |
|                 |        |          |        |          |       |             |          |                |                         |              |                                          |            |          |            |
| Dead            |        |          | 150    | 75       | 5.25  | 393.75      | 551.25   | 472.5          | 18.19125                | 15.5925      | 74.41875                                 | 63.7875    | 551.25   | 472.5      |
| Live            |        |          |        | 20       | 5.25  | 105.00      | 0        | 168            | 0                       | 5.544        | 0                                        | 22.68      | 0        | 168        |
| Joists          |        |          | 150    |          |       | 100.00      | 140      | 120            | 4.62                    | 3.96         | 16.94                                    | 14.52      |          |            |
|                 |        |          |        |          |       | Total       | 691.25   | 760.5          | 41.46203                | 41.08289     | 188.2512                                 | 184.0381   | 2,611.48 | 2,406.41   |
|                 |        |          |        |          |       |             |          |                |                         |              |                                          |            |          |            |
|                 |        |          |        |          |       |             |          | Co             | Column Pressure (ksi) : | sure (ksi) : | 0.326825                                 | 0.319511   | 1823.977 | 1731.409   |
| Roof            |        |          |        |          |       | I           | •        |                |                         |              |                                          |            | 1338.75  | 1315.5     |
|                 |        |          |        |          |       | -           |          | 1.2 Dead + 1.6 |                         | 1.2 Dead     |                                          | 1.2 Dead   |          |            |
|                 | Weight | Area     | Weight | Load     | Width | Linear Load | 1.4 dead | live           | 1.4 dead                | + 1.6 live   | 1.4 dead                                 | + 1.6 live |          |            |
|                 | qI     | sf       | pcf    | psf      | ft    | PLF         | PLF      | PLF            | kip                     | kip          | kip                                      | kip        |          |            |
| Darananatar     | 1600   | 14 38880 |        | 111 1960 |       | 77 3.8      | 1080.73  | 034 DEADEA1    | 3 378460                | ) ROFFER     | 15 36380                                 | 15588.85   |          |            |
|                 |        | 0000     |        | 2000     |       | 0000        |          |                | 101010-0                | 0000         | 000000                                   |            |          |            |
| Dead            |        |          | 150    | 45       | 7     | 315.00      | 441      | 378            | 9.261                   | 7.938        | 44.65125                                 | 38.2725    |          |            |
| Live            |        |          |        | 20       | 7     | 140.00      | 0        | 224            | 0                       |              | 0                                        | 22.68      |          |            |
| Joists          |        |          |        |          |       | 22.00       | 30.8     | 26.4           | 0.6468                  | 0.5544       | 3.7268                                   | 3.1944     |          |            |
|                 |        |          |        |          |       | Total       | 471.8    | 628.4          | 13.28596                | 16.09197     | 93.74194                                 | 103.0302   |          |            |
|                 |        |          |        |          |       |             |          |                | c                       |              | 10100                                    |            |          |            |
|                 |        |          |        |          |       |             |          | CO             | lumn Press              | sure (ksi) : | Column Pressure (ksi): 0.195296 0.214646 | 0.214646   |          |            |
|                 |        |          |        |          |       |             | •        |                |                         |              |                                          |            |          |            |

Table 8Structural Loads

#### Uniformly Distributed Loads

Penthouse Floor

|   | w       |    | х    | M-max (center) | Mx       | R        |
|---|---------|----|------|----------------|----------|----------|
|   | kips/ft | ft | ft   | kip-ft         | kip-ft   | kip      |
| 1 | 0.69125 | 33 | 16.5 | 94.10          | 94.09641 | 11.40563 |
| 2 | 0.7605  | 33 | 16.5 | 103.52         | 103.5231 | 12.54825 |

Roof

|   | w       |    | х    | M-max (center) | Mx       | R      |
|---|---------|----|------|----------------|----------|--------|
|   | kips/ft | ft | ft   | kip-ft         | kip-ft   | kip    |
| 1 | 0.4718  | 21 | 10.5 | 26.01          | 26.00798 | 4.9539 |
| 2 | 0.6284  | 21 | 10.5 | 34.64          | 34.64055 | 6.5982 |

#### Uniform Loads Partially Distributed

Conditioner

|   | w       |    | а   | b    | с     | х  | R1         | R2       |
|---|---------|----|-----|------|-------|----|------------|----------|
|   | kips/ft | ft | ft  | ft   | ft    | ft | kips       | kips     |
| 1 | 0.7875  | 33 | 3.5 | 8.33 | 21.17 |    | 5.03619494 | 1.52368  |
| 2 | 0.675   | 33 | 3.5 | 8.33 | 21.17 |    | 4.31673852 | 1.306011 |

AHU

|   | w          |    | а    | b   | с  | х  | R1         | R2       |
|---|------------|----|------|-----|----|----|------------|----------|
|   | kips/ft    | ft | ft   | ft  | ft | ft | kips       | kips     |
| 1 | 1.27272727 | 33 | 23.5 | 9.5 | 0  |    | 1.74035813 | 10.35055 |
| 2 | 1.09090909 | 33 | 23.5 | 9.5 | 0  |    | 1.49173554 | 8.871901 |

Regenerator

|   | w          |    | а  | b   | с  | х  | R1         | R2       |
|---|------------|----|----|-----|----|----|------------|----------|
|   | kips/ft    | ft | ft | ft  | ft | ft | kips       | kips     |
| 1 | 1.08972973 | 21 | 9  | 3.1 | 9  |    | 1.69712432 | 1.697124 |
| 2 | 0.93405405 | 21 | 9  | 3.1 | 9  |    | 1.45467799 | 1.454678 |

# Table 9Moment/Reaction CalculationsJoists

#### Conditioner Unit Pump **15 HP Motor** 480V 3ph 3W

| Reference         | Factors                     | Outcome               |
|-------------------|-----------------------------|-----------------------|
| NEC Table 430-150 | 15 HP                       | 21 Amp FLC            |
|                   | 480 V                       | 2174110120            |
| NEC Table 430-152 | Non-time delay fuse         | 250% FLC              |
|                   | Reduced Voltage Starting    | 230 /01 20            |
|                   |                             | = 52.5 Amp FLC        |
| NEC Table 7-1     | 52.5 Amp FLC                | 60 A Fuse             |
| NEC Table 250-95  | 52.5 Amp FLC                | 60 A Ckt Bkr          |
|                   | 480 V                       |                       |
| NEC Table 13.4    | Non-time delay fuse         | 60 A/30 A Switch Size |
|                   | 15 HP                       |                       |
| NEC 310-16        | FLC = 21 A x 1.25 = 26.25 A | #10 THW AL            |
| Conduit Table     | #10 THW AL                  | 1/2" Conduit          |
| Conduit Table     | 3 W                         |                       |

#### Regenerator Unit Pump/Fan 2 x 1.5 HP Motors 480V 3ph 3W

| Reference          | Factors                      | Outcome       |
|--------------------|------------------------------|---------------|
| NEC Table 430-150  | 1.5 HP                       | 3 Amp FLC     |
| 11EC Table 430-150 | 480 V                        | 5 Amp 1 EG    |
| NEC Table 430-152  | Non-time delay fuse          | 250% FLC      |
|                    | Reduced Voltage Starting     | 200701 20     |
|                    |                              | = 7.5 Amp FLC |
| NEC Table 7-1      | 7.5 Amp FLC                  | 20 A Fuse     |
| NEC Table 250-95   | 7.5 Amp FLC                  | 20 A Ckt Bkr  |
|                    | 480 V                        |               |
| NEC Table 13.4     | Non-time delay fuse          |               |
|                    | 1.5 HP                       |               |
| NEC 310-16         | FLC = (3 A x 1.25) + 3 = 7 A | #12 THW AL    |
| NEC 310-10         | FLC                          |               |
| Conduit Table      | #12 THW AL                   | 1/2" Conduit  |
|                    | 3 W                          |               |

# Table 11Circuit Design StepsRegenerator and Conditioner Units

# **Appendix C** Calculations

### Kathabar Equipment Performance and Utilities Requirements

|                                               |                            | 0.0514          |        |           |      |          |  |    |       |
|-----------------------------------------------|----------------------------|-----------------|--------|-----------|------|----------|--|----|-------|
| Outside air requirements                      | 26,891.00<br>91            | -               |        | 77        |      |          |  |    |       |
| Outside air summer design Post economizer air | 81                         | DB<br>DB        | _      | 77        |      | WB<br>WB |  |    |       |
| Space maintained conditions                   | 75                         | F               | _      | 50%       |      | R.H.     |  | 64 | Gr.Lb |
| · · _                                         |                            | <u> </u>        |        | 50%       |      | к.п.     |  | 04 | GILD  |
| Internal Sensible Load Internal Latent Load   | 2,160,000.00<br>210,960.00 |                 |        |           |      |          |  |    |       |
| Maximum diffusion temperature                 | 210,900.00                 | - BTU/H         |        |           |      |          |  |    |       |
| difference                                    | 20                         | F               |        |           |      |          |  |    |       |
| Available Coolant                             | 44                         | - F<br>F chille | dwat   | or        |      |          |  |    |       |
| Available Heat source                         | 180                        | F hot w         |        | ei.       |      |          |  |    |       |
|                                               | 100                        |                 | ator   |           |      |          |  |    |       |
| A.<br>Determine conditioner leaving air ter   | nperature and flow         |                 |        |           |      |          |  |    |       |
| -                                             |                            |                 |        |           |      |          |  |    |       |
| Leaving temperature =                         | 75                         | -               |        | 20        |      |          |  |    |       |
| =                                             | 55                         | F               |        |           |      |          |  |    |       |
| Airflow =                                     | 2,160,000.00               | / 1.08          | х      |           | 20   | F        |  |    |       |
| =                                             | 100,000.00                 | SCFM            |        |           |      |          |  |    |       |
| B.<br>Select conditioner size from engineer   | ring data table, Pag       | je 10           |        |           |      |          |  |    |       |
| 2 )                                           | c unit size 4000's v       | vill hand       | lle 96 | ,000 SCFM | L    |          |  |    |       |
| С.                                            |                            |                 |        |           |      |          |  |    |       |
| Determine maximum diffusion humic             | lity difference            |                 |        |           |      |          |  |    |       |
| Difference =                                  | 210,960.00                 | / 0.68          | х      | 100,000   | 0.00 |          |  |    |       |
| =                                             | 3.10                       | Gr/Lb           |        |           |      |          |  |    |       |
| D.                                            |                            |                 |        |           |      |          |  |    |       |
| Determine conditioner leaving air hu          | midity                     |                 |        |           |      |          |  |    |       |
| Leaving air humidity =                        | 64                         | -               |        | 3         | 3.10 | Gr/Lb    |  |    |       |
| =                                             | 55.00                      | Gr/Lb           |        |           |      |          |  |    |       |
| Ε.                                            |                            |                 |        |           |      |          |  |    |       |
| Check conditioner leaving air tempe           | rature and humidity        |                 |        |           |      |          |  |    |       |
|                                               | 55F DBT and 55 G           |                 |        |           |      |          |  |    |       |

At 55F DBT and 55 Gr/Lb W, the condition falls just within the range of the Kathabar System.

#### Calculation 1 Kathabar System

F.

Determine air temperature and humidity entering conditioner.

100% OA situation

|                                           | 100% OA      | situation                |         |           |            |                    |     |       |
|-------------------------------------------|--------------|--------------------------|---------|-----------|------------|--------------------|-----|-------|
| Post economizer conditions                | :            | 72                       | F DB    |           | 71         | FWB                | 115 | Gr/Lb |
| <b>G.</b><br>Determine maximum coolant su | oply tempera | ature                    |         |           |            |                    |     |       |
| Air temperature depression =              | = 7          | 72                       | -       |           | 55         | F                  |     |       |
| =                                         | - 1          | 17                       | F       |           |            |                    |     |       |
| Air humidity depression =                 | = 1          | 15                       | -       |           | 55.00      | Gr/Lb              |     |       |
| =                                         |              | 60.00                    | Gr/Lb   |           |            |                    |     |       |
| FV Approach:                              |              | 11                       | F       |           |            |                    |     |       |
| Coolant temperature =                     | - 5          | 55                       | -       |           | 11         | F                  |     |       |
| =                                         |              | 44                       | F       |           |            |                    |     |       |
| FH Approach:                              |              | 15                       | F       |           |            |                    |     |       |
| Coolant temperature =                     | - 5          | 55                       | -       |           | 15         | F                  |     |       |
| =                                         |              | 40                       | F       |           |            |                    |     |       |
|                                           |              | oproach wo<br>campus pla |         | use of th | e availabl | e 44F chilled wate | r   |       |
| H.<br>Determine the design moisture r     | emoval (MF   | R) load                  |         |           |            |                    |     |       |
| MR =                                      | -            | 60.00                    | x 0.643 | x         | 3.72       |                    |     |       |
| =                                         | -            | 143.47                   | Lbs/Hr  |           |            |                    |     |       |
|                                           | *used SA/    | requiredOA               |         |           |            |                    |     |       |
| I.<br>Deteremine regenerator capacity     | /            |                          |         |           |            |                    |     |       |
| Air leaving conditioner                   | : (          | 55                       | F       |           | 55.00      | Gr/Lb              |     |       |

| MR =                                     | 60.00             | x 0.643 x | 3.72        |
|------------------------------------------|-------------------|-----------|-------------|
| =                                        | 143.47            | Lbs/Hr    |             |
| *us                                      | sed SA/requiredOA |           |             |
| I.<br>Deteremine regenerator capacity    |                   |           |             |
| Air leaving conditioner:                 | 55                | F         | 55.00 Gr/Lb |
|                                          | 80%               | RH        |             |
| Regenerator capacity =                   | 77                | Lbs/Hr/sf |             |
| J.<br>Calculate minimum regenerator face | area              |           |             |
| Min. Face area =                         | 143.47            | 1         | 77          |
| =                                        | 1.86              | sf        |             |

## **Calculation 1** Kathabar System (continued)

Κ.

Select regenerator with sufficient face area

#### 3 FP Regenerator with 3 sf face area

#### L.

Determine regenerator load

| Regenerator load =                            | 143.47 | /         | 3 |
|-----------------------------------------------|--------|-----------|---|
| =                                             | 47.82  | Lbs/Hr/sf |   |
| M.<br>Determine regenerator heat requirements |        |           |   |

| Regenerator load =                 | 47.82                  | Lbs/Hr/sf |                   |
|------------------------------------|------------------------|-----------|-------------------|
| Conditioner leaving humidity =     | 80%                    | RH        |                   |
| Conditioner leaving temp. =        | 55                     | F         |                   |
| Regenerator heat input =           | 1,350.00               | x         | 143.47            |
| =<br>=<br>N.                       | 193,681.90<br>16.14    |           |                   |
| Determine conditioner cooling load |                        |           |                   |
| Sensible cooling load =            | 100,000.00             | x 1.08 x  | 17                |
| =                                  | 1,836,000.00           | BTU/hr    |                   |
| Latent cooling load:               |                        |           |                   |
| Regenerator load =                 | 47.82                  | Lbs/Hr/sf |                   |
| Conditioner leaving humidity =     | 80%                    | RH        |                   |
| Conditioner leaving temp. =        | 55                     | F         |                   |
| L Factor =                         | 1150                   | BTU/LB MR |                   |
| Latent cooling load =              | 143.47                 | x         | 1150              |
| =                                  | 164,988.29             | BTU/hr    |                   |
| Total Cooling Load =               | 1,836,000.00           | +         | 164,988.29 BTU/Hr |
| =<br>=                             | 2,000,988.29<br>166.75 |           |                   |

#### **Calculation 1** Kathabar System (continued)

|            | Total | 31.00       | 50.46       | 424.70     | 1,070.00     | 1,300.00     | 1,155.00     | 1,980.00     | 6,011.16 |  |  |
|------------|-------|-------------|-------------|------------|--------------|--------------|--------------|--------------|----------|--|--|
|            | Cost  | \$ 20.00 \$ | \$ 58.00 \$ | \$ 6.85 \$ | \$ 535.00 \$ | \$ 650.00 \$ | \$ 385.00 \$ | \$ 495.00 \$ | Total \$ |  |  |
|            | #     | 0.62        | 0.87        | 62         | 2            | 2            | е            | 4            |          |  |  |
|            | Unit  | CFL         | CFL         | Ч          | each         | each         | each         | each         |          |  |  |
|            | ltem  | #12 THW AL  | #10 THW AL  | 1/2" AL    | 15 HP Motor  | 60 A         | 30 A         | 60 A         |          |  |  |
| Electrical |       | Conductore  |             | Conduit    | Cht Dhre     | CMI DMIS     | Cwitchee     | OWIGIES      |          |  |  |

|                                                                                                      | # Cost   | t Iotal            |
|------------------------------------------------------------------------------------------------------|----------|--------------------|
| Penthouse Joists         12RB28         336         33         77         each         11         \$ | 11 S 1,0 | 00.00 \$ 11,000.00 |

#### **Calculation 2** Economic Analysis

| Mechanical                    |       |                                                                |         |           |                |               |
|-------------------------------|-------|----------------------------------------------------------------|---------|-----------|----------------|---------------|
| VAV System                    |       |                                                                |         |           |                |               |
|                               | #     | Part                                                           | Unit    | Cost      | VAV/Kathabar   | VAV Only      |
|                               | -2005 | Pipe, copper, tubing, solder, 1-1/2", coupling & clevis hanger | LF \$   | 16.95     | (\$33,984.75)  | '<br>S        |
| (Existing) HW Piping          | -1434 | Elbow, 90 Deg., copper, wrought, copper x copper, 1-1/2"       | each \$ | 44.00     | (\$63,096.00)  | ۔<br>۲        |
|                               | -422  | Tee, copper, wrought, copper x copper, 1-1/2"                  | each \$ |           | (\$31,439.00)  | - \$          |
|                               | 76    | 300-600 cfm                                                    | each \$ | 390.00    | \$29,640.00    | - \$          |
| VAV Boxes                     | 54    | 500-1000 cfm                                                   | each \$ | 425.00    | \$22,950.00    | ۔<br>۲        |
|                               | 1     | 1100-2000 cfm                                                  | each \$ | 460.00    | \$460.00       | -<br>-        |
|                               |       |                                                                |         |           | (\$75,469.75)  | '             |
|                               | -22   | 200 cfm                                                        | each \$ | 730.00    | (\$16,060.00)  | (\$16,060.00) |
| 1                             | -31   | 400 cfm                                                        | each \$ | 745.00    | (\$23,095.00)  | (\$23,095.00) |
|                               | -44   | 600 cfm                                                        | each \$ | 745.00    | (\$32,780.00)  | (\$32,780.00) |
| (Evisting) CAV Terminal Unite | -36   | 800 cfm                                                        | each \$ | 785.00    | (\$28,260.00)  | (\$28,260.00) |
|                               | 68-   | 1000 cfm                                                       | each \$ | 785.00    | (\$69,865.00)  | (\$69,865.00) |
| 1                             | -     | 1250 cfm                                                       | each \$ |           | (\$885.00)     | (\$885.00)    |
|                               | 6-    | 1500 cfm                                                       | each \$ |           | (\$7,965.00)   | (\$7,965.00)  |
|                               | -7    | 2000 cfm                                                       | each \$ | 1         | (\$7,175.00)   | (\$7,175.00)  |
|                               | 23    | 200 cfm                                                        | each \$ | 975.00    | \$22,425.00    | \$22,425.00   |
|                               | 15    | 400 cfm                                                        | each \$ | 1,025.00  | \$15,375.00    | \$15,375.00   |
| VAV Terminal Units with       | 24    | 600 cfm                                                        | each \$ | 1,025.00  | \$24,600.00    | \$102,500.00  |
| Reheat                        | 12    | 800 cfm                                                        | each \$ | 1,100.00  | \$13,200.00    | \$72,600.00   |
|                               | 31    | 1000 cfm                                                       | each \$ | 1,100.00  | \$34,100.00    | \$34,100.00   |
|                               | 3     | 1250 cfm                                                       | each \$ | 1,225.00  | \$3,675.00     | \$4,900.00    |
|                               |       |                                                                |         |           | (\$72,710.00)  |               |
|                               |       |                                                                |         | Total     | (\$148,179.75) | \$65,815.00   |
|                               |       |                                                                |         |           |                |               |
| Kathabar System               |       |                                                                |         |           |                |               |
|                               | #     | Part                                                           | Unit    | Cost      | Total          |               |
| Conditioner Unit              |       | 2 4000FV Unit size, 48,000 cfm                                 | each \$ | ,         | \$312,000.00   |               |
| Regenerator Unit              |       | 1 3FP Unit size, 1,200 acfm                                    | each \$ | 80,000.00 | \$80,000.00    |               |
| +                             |       |                                                                |         | Total     | \$ 392,000.00  |               |
|                               |       |                                                                |         |           |                |               |

#### Calculation 2 Economic Analysis (continued)

#### Economic

#### CAV-VAV

| System Enhancement 1st Cost         | \$65,815.00 | ]                       |                 |              |                   |
|-------------------------------------|-------------|-------------------------|-----------------|--------------|-------------------|
|                                     |             | Cooling Load<br>(MMBtu) | COP<br>(kW/ton) | kWhr         | Cost<br>(\$/kWhr) |
| Existing Yearly Operational<br>Cost | \$53,636.69 | 45,035                  | 0.6             | 2,251,750.00 | \$0.02            |
| Enhanced System Operational<br>Cost | \$36,888.84 | 30,973                  | 0.0             | 1,548,650.00 | φ <b>0.0</b> 2    |

|                 | Simple | NPV |
|-----------------|--------|-----|
| Pay-Back Period | 3.93   | 5   |

#### CAV-Kathabar CAV

| System Enhancement 1st Cost |
|-----------------------------|
|-----------------------------|

|                                     |             | Cooling Load | COP      |              | Cost           |
|-------------------------------------|-------------|--------------|----------|--------------|----------------|
|                                     |             | (MMBtu)      | (kW/ton) | kWhr         | (\$/kWhr)      |
| Existing Yearly Operational<br>Cost | \$53,636.69 | 45,035       | 0.6      | 2,251,750.00 | \$0.02         |
| Enhanced System Operational<br>Cost | \$20,349.43 | 17,086       | 0.0      | 854,300.00   | φ <b>0.</b> 02 |

|                 | Simple | NPV |
|-----------------|--------|-----|
| Pay-Back Period | 12.29  | 20  |

#### CAV-Kathabar VAV

Pay-Back Period

| System Enhancement 1st Cost | \$260,831.41 |
|-----------------------------|--------------|
|-----------------------------|--------------|

6.58

|                                     |             |      | Cooling Load<br>(MMBtu) | COP<br>(kW/ton) | kWhr         | Cost<br>(\$/kWhr) |
|-------------------------------------|-------------|------|-------------------------|-----------------|--------------|-------------------|
| Existing Yearly Operational<br>Cost | \$53,636    | 5.69 | 45,035                  | 0.6             | 2,251,750.00 | \$0.02            |
| Enhanced System Operational<br>Cost | \$13,995.44 |      | 11,751                  | 0.0             | 587,550.00   | \$0.02            |
|                                     | Simple      | NPV  | Ι                       |                 |              |                   |

| Calculation | 2 |
|-------------|---|
| Calculation |   |

Economic Analysis (continued)

#### CAV-VAV

| Interest Rate | NPV        | Costa         | Years |
|---------------|------------|---------------|-------|
| 5%            | \$6,375.61 | (\$65,815.00) | -     |
|               |            | \$16,747.84   | 1     |
|               |            | \$16,747.84   | 2     |
|               |            | \$16,747.84   | 3     |
|               |            | \$16,747.84   | 4     |
|               |            | \$16,747.84   | 5     |

#### CAV-Kathabar CAV

| Interest Rate | NPV        | Costs                      | Years |                            |    |             |    |
|---------------|------------|----------------------------|-------|----------------------------|----|-------------|----|
| 5%            | \$5,544.44 | (\$409,011.16)             |       |                            |    |             |    |
|               |            | \$33,287.26                | 1     | \$33,287.26                | 9  | \$33,287.26 | 17 |
|               |            | \$33,287.26                | 2     | \$33,287.26                | 10 | \$33,287.26 | 18 |
|               |            | \$33,287.26                | 3     | \$33,287.26                | 11 | \$33,287.26 | 19 |
|               |            | \$33,287.26<br>\$33,287.26 | 4     | \$33,287.26<br>\$33,287.26 | 12 | \$33,287.26 | 20 |
|               |            | \$33,287.26                | 6     | \$33,287.26                | 14 | 1           |    |
|               |            | \$33,287.26                | 7     | \$33,287.26                | 15 | 1           |    |
|               |            | \$33,287.26                | 8     | \$33,287.26                | 16 | ]           |    |

#### CAV-Kathabar VAV

| Interest Rate | NPV         | Costs          | Years |             |   |
|---------------|-------------|----------------|-------|-------------|---|
| 5%            | \$19,934.75 | (\$260,831.41) |       |             |   |
|               |             | \$39,641.24    | 1     | \$39,641.24 | 9 |
|               |             | \$39,641.24    | 2     | ļ           |   |
|               |             |                |       |             |   |
|               |             | \$39,641.24    | 3     | ļ           |   |
|               |             | \$39,641.24    | 4     | 1           |   |
|               |             | \$39,641.24    | 5     |             |   |
|               |             | \$39,641.24    | 6     | T           |   |
|               |             | \$39,641.24    | 7     | I           |   |
|               |             | \$39,641.24    | 8     | İ           |   |

#### Calculation 2 Economic Analysis (continued)