

Jonathon Gridley Senior Thesis – Spring 2007 Mechanical Option

PENNSTATE PRESENTATION OUTLINE

- BUILDING BACKGROUND
- EXISTING SYSTEMS
- DESIGN OBJECTIVES
- MECHANICAL SYSTEM REDESIGNS
 - VAV System with Chilled Water Plant
 - Ground Source Heat Pump
 - Air-to-Air Heat Recovery and Humidity Control
 - Energy and Cost Analysis
 - Emissions
- BREADTH TOPICS
 - Lighting
 - Construction Management
- CONCLUSIONS AND RECOMMENDATIONS
- ACKNOWLEDGMENTS
- QUESTIONS

PENNSTATE BUILDING BACKGROUND

BUILDING LAYOUT AND USES:

- □ Academic Wings and Administration Area
 - Learning Resource Center and Science and Technology
 - Dining
 - Kitchen/Servery
 - Physical Education
 - Creative Arts
 - Library

Building Zone Designations

EXISTING SYSTEMS

MECHANICAL SYSTEM:

- AIR SIDE
 - 14 Packaged Roof Top Units ranging from 6,000 to 25,500 CFM
 - (6) VAV System with Fan Powered Boxes and VFD
 - (8) Constant Volume Air Handlers
- WATER SIDE
 - Two 4,717 MBH Electric Boilers

- Primary-Secondary Variable Volume Pumping

Air Side Schematic

Jonathon Gridley-Mechanical Option

S

UTH EFFERSON

HIGH

SCHOOJ

PENNSTATE

DESIGN OBJECTIVES

Green Design Initiative:

- Reduce energy consumption and emission
- Low Operating and Maintenance Costs
- Short life cycle payback
- Improve indoor air quality

Alternative Mechanical Systems:

- -VAV System with Chilled Water Plant
- Ground Source Heat Pump System

VAV with Chilled Water Plant Diagram

Advantages:

PENNSTATE

- Lower Noise Levels
- Local Control of Temperature
- Better Dehumidification
- Longest Service Life
- Good Energy
 Conservation
- Energy Reclaim

Disadvantages:

- Higher First Cost
- Filter Maintenance
- Requires More Space
 Above Ceiling
- Air Cooled Chiller On-Site

VAV System with Chilled Water Plant

- Two 300 ton air-cooled chillers replace DX condensing units
- 4-pipe system adds chilled water piping to building
- External site for plant by kitchen loading docks surrounded by screen wall to reduce noise
- Enthalpy Wheels added to Roof Top Units

York Air-Cooled Screw Chiller

"Green" Concept

- No Cooling Tower or Chiller
- Good Dehumidification
- Low Maintenance Cost
- Better Indoor Air Quality
- Longer Life

Disadvantages:

- Higher First Cost
- On-Site Area Required to Bury Piping
- Dependant on the Quality of Electricity

Jonathon Gridley-Mechanical Option

Ground Source Heat Pump Diagram

SOUTH EFFERSON

HIGH

SCHOC

Ground Source Heat Pump

- Independent 2-Pipe Ground Source Heat Pump System
- High Efficiency Heat Pumps
- 240 Boreholes, 475 ft deep, located under the future football and soccer practice fields
- Dedicated Outdoor Air Units replace multiple space RTU's

Florida Ground Source Heat Pumps

Jonathon Gridley-Mechanical Option

American Standard Inc. Packaged DOAS

Air-to-Air Heat Recovery and Humidity Control

ENTHALPY WHEELS:

- Transfer heat and moisture between EA and OA stream
- Incorporated in RTU's and DOAS units

HUMIDITY CONTROL:

- Densely Populated Spaces Require Humidity Control
- Maintain RH Levels Between 30% and 50%

SOUTH **JEFFERSON HIGH SCHOOL**

Energy and Cost Analysis

VAV with CWP: Cost More in 1st Cost and Maintenance Cost

GSHP: Saves \$38,278 in Life Cycle Cost

Alternative	Installed Cost	1st Year Utility Cost	20th Year Utility Cost	1st Year Maint. Cost	20th Year Maint. Cost	Life Cycle Cost
VAV with DX	\$4,222,200	\$215,145	\$455,386	\$55,003	\$96,448	\$7,226,134
VAV with Chiller	\$4,532,793	\$202,850	\$427,374	\$80,826	\$141,729	\$7,657,171
Ground Source HP	\$5,234,266	\$142,594	\$300,424	\$33,593	\$58,906	\$7,187,856

Alternative to Alternative	1st Cost Difference	Simple Payback	Net Present Value	Life Cycle Payback	Internal Rate of Return
Chiller to DX	\$310,593	No pay back	-\$431,038	No pay back	No pay back
GSHP to DX	\$1,012,066	10.7 years	\$38,278	18.7 years	10.5%
GSHP to Chiller	\$701,473	6.5 years	\$469,316	9 years	17.7%

VAV with CWP: Does Not Payback in 20 years

GSHP: Pays back in 18.7 years.

Emissions

lbm Pollutant _j / kWh U.S.									
Fuel	% Mix U.S.	Particulates/k Wh	SO ₂ /kWh	NO _x /kWh	CO ₂ /kWh				
Coal	55.7	6.13E-04	7.12E-03	4.13E-03	1.20E+00				

VAV with CWP: Reduces Emissions 7%

Variable Air Volume with Direct Expansion Roof Top Units								
Fuel	kWh	Particulates	SO ₂	Nox	CO ₂			
Coal	3,448,083	2.11E+03	2.45E+04	1.42E+04	4.13E+06			

-	D .
$(\neg SH)$	\mathbf{P}^{\cdot}

Reduces Emissions 30%

Variable Air Volume with Chiller Water Plant								
Fuel	kWh	Particulates	SO ₂	Nox	CO ₂			
Coal	3,219,302	1.97E+03	2.29E+04	1.33E+04	3.86E+06			

Ground Source Heat Pump								
Fuel	kWh	Particulates	SO ₂	Nox	CO_2			
Coal	2,409,015	1.48E+03	1.71E+04	9.94E+03	2.88E+06			

No direct view

of lamp.

Efficiency: 819

environment without

causing unwanted

glare.

BREADTH TOPICS:

Lighting

- Replace existing fixtures in Classrooms and Corridors with High Efficiency fixture, lamp, and ballast combination
- Maintain proper task lighting
- Reduced lighting fixture power density from:
 - 1.07 to 0.97 W/S.F.
 - Saves \$133,000 Annual

BREADTH TOPICS:

Construction Management

EFFERSC HIGH SCHOO

S

HTU

8 5

BREADTH TOPICS:

Construction Management

Act ID	Description	Orig Dur	Rem Dur	Early Start	Early Finish	Total Float	%	2006 2007 2008 MAMJJASONDJEMAMJJASONDJEMAMJJA
Base Bui	ilding Systems w/out Geothermal System							
0000	Project Start/Issue NTP	0	0	06MAR06 *		0	0	Project Start/Issue NTP
1000	Mobilization/Field Office	5d	5d	06MAR06	10MAR06	0	0	Mobilization/Field Office
1040	Earthwork	135d	135d	06MAR06	11SEP06	0	0	Earthwork
1020	Clearing and Grubbing/E&SC Work	30d	30d	06MAR06	14APR06	15d	0	Clearing and Grubbing/E&SC Work
1110	Foundations Systems Installation	97d	97d	13MAR06	26JUL06	0	0	Foundations Systems Installation
1100	HVAC Equipment Shop Drawings	195d	195d	20MAR06	18DEC06	5d	0	HVAC Equipment Shop Drawings
1130	Storm and Sanitary Site System Installation	24d	24d	12JUN06	14JUL06	31d	0	Storm and Sanitary Site System Installation
1120	Superstructure Systems Installation	60d	60d	19JUN06	11SEP06	0	0	Superstructure Systems Installation
1140	Electrical Systems Installation	280d	280d	27JUL06	27AUG07	23d	0	Electrical Systems Installation
1160	Plumbing/Sprinkler Systems Installation	280d	280d	27JUL06	27AUG07	23d	0	Plumbing/Sprinkler Systems Installatio
1150	HVAC Systems Installation	270d	270d	15AUG06	30AUG07	20d	0	HVAC Systems Installation
1170	Roofing and Exterior Systems Installation	115d	115d	12SEP06	21FEB07	0	0	Roofing and Exterior Systems Installation
1180	Interior Finishes Systems Installation	210d	210d	05DEC06	27SEP07	0	0	Interior Finishes Systems Installation
1230	Install/Connect/Test HVAC Equipment	120d	120d	08FEB07	26JUL07	45d	0	Install/Connect/Test HVAC Equipment
1250	Final Sitework/Parking/Dri∨es/Fields	150d	150d	22FEB07	20SEP07	5d	0	Final Sitework/Parking/Drives/Field
1200	Punch List Work	40d	40d	28SEP07	22NOV07	0	0	Punch List Work
1190	Clean-Up	21d	21d	23NOV07	21DEC07	0	0	Clean-Up
1220	Project Completion	0	0		21DEC07 *	0	0	Project Completion
Geothern	nal System Work (Integrated Schedule)							
1050	Geothermal Well Field - Bore Drilling	125d	125d	17APR06	09OCT06	15d	0	Geothermal Well Field - Bore Drilling
1060	Geothermal Well Field - U Bend Pipe Assm.	60d	60d	12JUN06	04SEP06	15d	0	Geothermal Well Field - U Bend Pipe Assm.
1070	Geothermal Well Field - U Bend Pipe Install.	80d	80d	05SEP06	26DEC06	15d	0	Geothermal Well Field - U Bend Pipe Install.
1080	Geothermal Well Field - Bore Grouting	80d	80d	19SEP06	10JAN07	15d	0	Geothermal Well Field - Bore Grouting
1090	Geothermal Well Field - Cleaning/Testing	20d	20d	11JAN07	07FEB07	15d	0	Geothermal Well Field - Cleaning/Testing
1210	Commissioning (Suggested/Winter)	60d	60d	28SEP07	20DEC07	0	0	Commissioning (Suggest
1240	Commissioning (Suggested/Summer)	40d	40d	13MAY08	08JUL08	0	0	Cor

South Jefferson High School Charlestown, West Virginia Base Building System Schedule with Integration of Geothermal Well System Early bar Progress bar Critical bar Summary bar Start milestone point Finish milestone point

1 8 5 5									JTI
Criteria	we	ohing of PC	of top Units	TOP Recover	Heat Neat Plant Pl	unip Air Puni utdoor Heat Puni urce Heat Outd urce and Heat Pow Ean Pow Fan Pow	Poor Air poor air ecovery VAV ecovery VAV ecovery VAV ecovery VAV ecovery VAV ecovery VAV ecovery VAV	with BOX VAN with ery	H JEFFERSON
Thermal Comfort	4	2	2	3	3	4	4		
Maintainability	3	3	3	4	4	2	2		
Indoor Air Quality	5	4	4	5	5	4	4		
Energy Usage	5	2	3	4	5	3	4		Ħ
Space Noise	4	3	3	3	3	4	4		
Site Imact	3	4	4	2	2	3	3		
Site Noise	3	3	3	5	5	3	3		
Equipment Life	3	2	2	3	3	4	4		H
Refrigerant	2	2	2	3	3	4	4		
First Cost	3	5	4	3	2	4	3		PE
Overall Score		105	107	126	128	123	125		

PENNSTATE CONCLUSIONS AND RECOMMENDATIONS

5 = Excellent

4 = Above Average

3 = Below Average

2 = Below Average 1 = Poor

So

<u>ACKNOWLEDGEMENTS</u>

MECHANICAL PROFESSORS:

Dr. Bahnfleth, Dr. Friehaut, J.J., Dr. Mumma, and Dr. Srebric

PROFESSIONALS:

Ryan Buff, John Weiland, Damion Spahr, and Paul Patrelli

FRIENDS AND FAMILY:

Parents, Dave, Rod, Kevin, Justin, Eric, Krista, Amy

<u>Questions</u>

VAV with Chilled Water Plant Ground Source Heat Pump

-Two 300 ton screw air-cooled chillers replace the existing DX condensing units.

-External site for plant by kitchen loading docks, surrounded by screen wall to reduce noise

-Initial cost higher by \$310,500

-Maintenance cost increases because a 4-pipe system

-Improves efficiency 0.26 kW/ton

-Saves only 6% in total building energy consumption -Independant 2-pipe GSHP system

-Dedicated outdoor air units with energy recovery replace multiple space RTU's

-240 boreholes, 475 deep, located under the future football and soccer practice fields

-\$1,012,044 increase in first cost

-Saves over \$20,000 dollars in maintenance

-Reduces total energy consumption by 25%

-Life cycle payback of 18.7 year