Dedicated Outdoor Air Applications at the Hauptman-Woodward Medical Research Institute

HAUPTMAN - WOODWARD Medical Research Institute, Inc.

CANNONDES

Justin Daniel Schultz The Pennsylvania State University Department of Architectural Engineering Mechanical Systems Option Spring 2007 Senior Thesis

Building Background

Project Team Existing Conditions

Mechanical Redesign

Lab Dedicated Outdoor Air System with Parallel Chilled Beams

Office Dedicated Outdoor Air System with Parallel VAV

Energy and Cost Analysis of Proposed Design

Wind Energy Feasibility Study

Lighting Power Density Evaluation Study

Conclusions

Acknowledgements

Questions

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

Building Background

General Information

- Biomedical Laboratory with
 mixed office/classroom space
- Location: Buffalo, NY
- Size: 73,000 ft²
- Project Cost: \$24,000,000
- Procurement Type: Cost-Plus Fee
- Project Completion: May 2005

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

The Hauptman-Woodward Medical Research Institute

Project Team

Architect:

Merhdad Yazdani, Yazdani Studio of Cannon Design (Los Angeles, CA)

Architects and Engineers:

Cannon Design (Buffalo, NY)

Construction Manager:

Ciminelli Development (Buffalo, NY)

Merhdad Yazdani discussing the building plan design at HWI

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

The Hauptman-Woodward Medical Research Institute

Architecture

- Aluminum Curtain Wall with varied casement windows and solar shading
- Laboratory Fritted Glass wall Assembly

• 3 story central atrium unifying building

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

Lighting/Electrical Systems

- 480/277V 3phase, 4 Wire Primary
- 120V and 277V Luminaries provide task and accent lighting
- 1.46 W/ft² Lighting Power Density
- 450kW/563kVA Fuel-Fired Emergency Generator

Structural System

- 5" Slab-On-Grade Construction
- 4' poured concrete footings
- Structural Steel Building Skeleton
- Oversized members to provide rigidity
- King-Post Truss System in atrium provides roof and skylight support

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

Mechanical

- (2) DX Rooftop AHU's provide 42,000cfm to office
- (2) 100% Outdoor AHU's provide 58,000cfm to Lab
- (1) 300 Ton Air Cooled Screw Chiller for AHU Cooling Coils
- VAV Reheat for all Systems
- (6) 2,0000 MBH Hot Water Boilers for building heat
- Laboratory Run-Around Heat Recovery Loop

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

Mechanical (cont'd)

- Dedicated Laboratory Exhaust System for hood contaminant control
- Atrium Smoke Exhaust System with linked exhaust and makeup air fans

• Design Air Conditions

	Indoor Design Conditions				
	Sun	nmer	Wi	nter	
	Occupied	Unoccupied	Occupied	Unoccupied	
DBT (^O F)	72	82	70	65	
% RH	50	50	50	50	

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

The Hauptman-Woodward Medical Research Institute

Proposed Redesign

Dedicated Outdoor Air Systems

- Replace DX Units with DOAS System/Parallel VAV
- Replace 100% Outdoor Air Units
 with DOAS/Parallel Chilled Beams

Justification

- Reduced Required Mechanical Space
- Reduced First Cost
- Reduced Annual Utility Costs
- Improved Indoor Air Quality compared to DX Units
- Desiccant Wheels proven reliable in Laboratory Applications

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

Proposed Redesign

Parallel Systems

- VAV on Office Side
- Chilled Beams on Lab Side

Laboratory DOAS AHU

- 25 Ton Cooling Coil
- Desiccant Wheel Only
- 6500 cfm ventilation requirement

Office DOAS AHU

- 30 Ton Cooling Coil
- Enthalpy Wheel and Sensible Wheel
- 10,500 cfm ventilation requirement

SEMCO Dedicated Outdoor Air Handling Unit with Enthalpy and Sensible Wheels

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

The Hauptman-Woodward Medical Research Institute

Laboratory System

• Exposed Ceilings in lab can easily accommodate chilled beams

DOAS Cooling Capacity: $Q_{SA} = 1.08 \times 6500 \text{ cfm x} (72 \text{ }^{\circ}\text{F} - 62 \text{ }^{\circ}\text{F})$ $Q_{SA} = 70,200 \text{ Btu/hr}$

Parallel System Cooling Capacity $\mathbf{O}_{PARALLEL} = \mathbf{O}_{SENSIBLE} - \mathbf{O}_{SA}$ $\mathbf{O}_{SENSIBLE} = 643,000 \text{ Btu/hr}$ $\mathbf{O}_{PARALLEL} = 643,000 - 70,200 \text{ Btu/hr} = 572,800 \text{ Btuh}$ 572,800 Btuh x 1W/3.4112 Btuh = 167,878W

Total Beam Length: 167,878 W / 510 W/m = 329.2 m # of Beams = Total Length / Spec Beam Length = 329.2 m / 1.21 m

= 272 Chilled Beams required

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

Brand	Halton
Model	CPA-130/100-615
Cooling Capacity	510 [W/m]
Room Temp	72°F (22°C)
EWT	62ºF (17ºC)
ΔΤ	5°C
Length	1122 [mm]
Width	615 [mm]
Height	80 [mm]

Laboratory System

 Drastic reduction in supply air as compared to 100% outdoor air system

System	Existing	Redesign	Reduction
	SA (cfm)	SA (cfm)	(%)
AHU-1,2	58,000	9,400	83.8%

Contamination Issues?

- Wheel Purge section
- 3Å Molecular Sieve
 Desiccant provides
 "selective absorption"
- Johns Hopkins Ross Research Laboratory Case Study

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

The Hauptman-Woodward Medical Research Institute

Office System

DOAS with Parallel VAV

 Convert Existing DX Systems to DOAS with Parallel VAV?

Required Supply air by Parallel VAV System based on Load

Qs 1.08 x (Tra – Tsa) 690, 530 btu/hr 1.08 x (72°F-55°F) = 37,528 cfm

Reduction of Parallel Systems

 12% reduction in supply air with DOAS/Parallel VAV compared to DX Rooftop Units

Suntam	Existing	Redesign	Reduction
System	SA (cfm)	SA (cfm)	(%)
RTU-1	14,175	12,500	11.8%
RTU-2	28,300	25,000	11.7%
Total	42,475	37,528	11.6%

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

The Hauptman-Woodward Medical Research Institute

Annual Energy Reduction

• Trane TRACE-700 Energy Analysis

	Original Design	Proposed Design	Savings	%
Cost (\$/yr)	75,166	55,069	20,097	26.74%
Consumption (kWh/yr)	2,116,058	1,581,585	534,473	25.26%

- Dedicated Outdoor Air Systems Reduce Load by approximately 25%.
- Reduced Life Cycle Cost of approximately 16% over 20 years with 5% inflation.

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

Emissions Reduction

 New York State Requires that 25% of generated power come from renewable sources by 2013.

	kWh	Ibm Particulates	Ibm SO ₂	lbm Nox	Ibm CO ₂
Base	2,107,705	13,658	104,818	188,640	86,368,271
Redesign	1,859,199	12,048	92,460	166,399	76,185,141
%					
Reduction	11.79%	11.79%	11.79%	11.79%	11.79%

 Proposed redesign reduces emissions by approximately 12%.

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

First Cost Reduction

 R.S. Means Analysis

 The proposed system provided a reduced cost of \$248,173 as compared to the existing system

	Existing System	Proposed DOAS Systems
Chiller [tons}	300	150
Boilers [mbh]	10,200	5100
AHU's	\$154,500	\$72,025
Chiller	\$163,500	\$97,500
Pumps (Primary)	\$10,850	\$5,150
Boilers	\$21,000	\$10,500
Pumps (Boiler)	\$30,900	\$15,450
Parallel Systems		
VAV	\$137,770	\$98,070
Chilled Beams		\$187,000
Pumps (Parallel)		\$5,150
Piping (Parallel)		\$7,500
Ductwork	\$304,000	\$76,000
Totals:	\$822,520	\$574,345

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

The Hauptman-Woodward Medical Research Institute

Wind Energy Feasibility

- 70% of total funding eligible to be subsidized by NYSERDA
- Area known for high winds, could be justifiable with state funding
- Wind Map

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

Wind Energy Feasibility

Manufacturer	Proven Energy, Ltd.
Rated Output @ 12.5 m/s	6 kW
Rated Output @ 5.5 m/s (Buffalo , NY) –	1 kW
Rotor Diameter	5.5m
Total VVeight	860 kg

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

Wind Energy Feasibility

Proven 6kW Wind Turbine w/Grid Connect	\$18,160
Isolation and Rectification Controller	\$1,090
Tilt-up self-supporting mast (9m)	\$6,860
Total Cost per Turbine	\$26,110
Total Installed Cost	\$52,220
Total Cost with 70% NYSERDA discount	\$15,666

Payback Period (years) = Initial Cost Annual Savings

Assume Annual Savings at Peak Electric Rate: Annual Savings = 12,000 kWh * \$0.0095/kWh = \$1,140

Payback Period = <u>\$15,700</u> = **14 years = POSSIBLE** \$1,140

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

The Hauptman-Woodward Medical Research Institute

Lighting Concerns

Proposed Scope

- Evaluate typical office lighting
- Retrofit Fixtures without Negative Impact
- 50 Private offices plus general office space

	Lamp	Watts	Length	Lumens (25°C)	2 lamp Fixture
Origional	39YY T5	39W	45.2"	3100	78W
Retrofit	28W 75	2BW	45.2"	2900	58W

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

Lighting Concerns

- Redesign implemented while preserving integrity of original design
- Higher initial bulb cost

	W	LPD	Btu/hr
Original	108,040	1.46	368,653
Redesign	97,680	1.32	333,302
Difference			35,351
			2.95 ton

• Reduction in Cooling Load by 2.95 tons

 Reduction in overall LPD from 1.48 W/ft² to 1.33 W/ft²

- Cost Reduction
 - Phillips F39T5/841/HO \$9.99
 - Phillips F28W/T5/830 \$8.50
- Savings \$1.49 x 200bulbs = \$298 initial savings

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

The Hauptman-Woodward Medical Research Institute

Conclusions and Thoughts

Summary

- Dedicated Outdoor Air Systems to replace DX and 100% OA VAV Units
- Reduced Electrical Load by 26% annually
- Reduced annual utility Costs by approx \$20,000/yr
- **Reduced Initial cost** of mechanical system by \$248,173
- Wind Power possible, with funding
- Reduced Lighting Power Density with reduced-watt bulbs saves energy and first costs

Recommendations

Redesign considerations a viable
 alternative to existing design

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute

The Hauptman-Woodward Medical Research Institute

Acknowledgements

ST. JAMESS

HAUPTMAN - WOODWARD Medical Research Institute, Inc.

GATE BREWERY, DUBLIN

- Eric Lindstrom and the rest of the Cannon Design Team
- Walt Pangborn at the Hauptman-Woodward Institute
- All of the AE Faculty, especially Dr. Freihaut
- Friends and Family
- Finally, the AE class of 2007 ... we did it!!

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute Spring 2007 Senior Thesis

CANNONDES

The Hauptman-Woodward Medical Research Institute

Questions?

Justin D. Schultz Mechanical Option The Hauptman-Woodward Medical Research Institute