Building Background

Project Team
Existing Conditions
Mechanical Redesign
Lab Dedicated Outdoor Air System with Parallel Chilled Beams
Office Dedicated Outdoor Air System with Parallel VAV
Energy and Cost Analysis of Proposed Design
Wind Energy Feasibility Study
Lighting Power Density Evaluation Study
Conclusions
Acknowledgements
Questions
Building Background

General Information

- Biomedical Laboratory with mixed office/classroom space
- Location: Buffalo, NY
- Size: 73,000 ft²
- Project Cost: $24,000,000
- Procurement Type: Cost-Plus Fee
- Project Completion: May 2005
Building Background

Project Team

Existing Conditions

Mechanical Redesign

Lab Dedicated Outdoor Air System with Parallel Chilled Beams

Office Dedicated Outdoor Air System with Parallel VAV

Energy and Cost Analysis of Proposed Design

Wind Energy Feasibility Study

Lighting Power Density Evaluation Study

Conclusions

Acknowledgements

Questions
Project Team

Architect:
Merhdad Yazdani,
Yazdani Studio of Cannon Design
(Los Angeles, CA)

Architects and Engineers:
Cannon Design (Buffalo, NY)

Construction Manager:
Ciminelli Development
(Buffalo, NY)

Merhdad Yazdani discussing the building plan design at HWI
Building Background

Project Team

Existing Conditions

Mechanical Redesign

Lab Dedicated Outdoor Air System with Parallel Chilled Beams

Office Dedicated Outdoor Air System with Parallel VAV

Energy and Cost Analysis of Proposed Design

Wind Energy Feasibility Study

Lighting Power Density Evaluation Study

Conclusions

Acknowledgements

Questions
Existing Conditions

Architecture

• Aluminum Curtain Wall with varied casement windows and solar shading

• Laboratory Fritted Glass wall Assembly

• 3 story central atrium unifying building

Justin D. Schultz
Mechanical Option

The Hauptman-Woodward Medical Research Institute

Spring 2007 Senior Thesis
Existing Conditions

Lighting/Electrical Systems
- 480/277V 3phase, 4 Wire Primary
- 120V and 277V Luminaries provide task and accent lighting
- 1.46 W/ft² Lighting Power Density
- 450kW/563kVA Fuel-Fired Emergency Generator

Structural System
- 5” Slab-On-Grade Construction
- 4’ poured concrete footings
- Structural Steel Building Skeleton
- Oversized members to provide rigidity
- King-Post Truss System in atrium provides roof and skylight support
Existing Conditions

Mechanical

- (2) DX Rooftop AHU’s provide 42,000cfm to office
- (2) 100% Outdoor AHU’s provide 58,000cfm to Lab
- (1) 300 Ton Air Cooled Screw Chiller for AHU Cooling Coils
- VAV Reheat for all Systems
- (6) 2,0000 MBH Hot Water Boilers for building heat
- Laboratory Run-Around Heat Recovery Loop

Justin D. Schultz
Mechanical Option

The Hauptman-Woodward Medical Research Institute

Spring 2007 Senior Thesis
Existing Conditions

Mechanical (cont’d)

- Dedicated Laboratory Exhaust System for hood contaminant control
- Atrium Smoke Exhaust System with linked exhaust and makeup air fans

- Design Air Conditions

<table>
<thead>
<tr>
<th>Indoor Design Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Summer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Occupied</td>
</tr>
<tr>
<td>DBT (°F)</td>
</tr>
<tr>
<td>% RH</td>
</tr>
</tbody>
</table>
Building Background

Project Team

Existing Conditions

Mechanical Redesign

- Lab Dedicated Outdoor Air System with Parallel Chilled Beams
- Office Dedicated Outdoor Air System with Parallel VAV

Energy and Cost Analysis of Proposed Design

Wind Energy Feasibility Study

Lighting Power Density Evaluation Study

Conclusions

Acknowledgements

Questions
Proposed Redesign

Dedicated Outdoor Air Systems

- Replace DX Units with DOAS System/Parallel VAV
- Replace 100% Outdoor Air Units with DOAS/Parallel Chilled Beams

Justification

- Reduced Required Mechanical Space
- Reduced First Cost
- Reduced Annual Utility Costs
- Improved Indoor Air Quality compared to DX Units
- Desiccant Wheels proven reliable in Laboratory Applications

Justin D. Schultz
Mechanical Option
The Hauptman-Woodward Medical Research Institute
Spring 2007 Senior Thesis
Proposed Redesign

Parallel Systems
- VAV on Office Side
- Chilled Beams on Lab Side

Laboratory DOAS AHU
- 25 Ton Cooling Coil
- Desiccant Wheel Only
- 6500 cfm ventilation requirement

Office DOAS AHU
- 30 Ton Cooling Coil
- Enthalpy Wheel and Sensible Wheel
- 10,500 cfm ventilation requirement
Laboratory System

- Exposed Ceilings in lab can easily accommodate chilled beams

DOAS Cooling Capacity:
\[Q_{SA} = 1.08 \times 6500 \text{ cfm} \times (72^\circ\text{F} - 62^\circ\text{F}) \]
\[Q_{SA} = 70,200 \text{ Btu/hr} \]

Parallel System Cooling Capacity
\[Q_{\text{PARALLEL}} = Q_{\text{SENSIBLE}} - Q_{SA} \]
\[Q_{\text{SENSIBLE}} = 643,000 \text{ Btu/hr} \]
\[Q_{\text{PARALLEL}} = 643,000 - 70,200 \text{ Btu/hr} = 572,800 \text{ Btuh} \]
\[572,800 \text{ Btuh} \times 1\text{W/3.4112 Btuh} = 167,878\text{W} \]

Total Beam Length: \(167,878 \text{ W} / 510 \text{ W/m} = 329.2 \text{ m} \)

\# of Beams \[= \text{Total Length} / \text{Spec Beam Length} \]
\[= 329.2 \text{ m} / 1.21 \text{ m} \]
\[= 272 \text{ Chilled Beams required} \]
Laboratory System

• Drastic reduction in supply air as compared to 100% outdoor air system

<table>
<thead>
<tr>
<th>System</th>
<th>Existing SA (cfm)</th>
<th>Redesign SA (cfm)</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHU-1,2</td>
<td>58,000</td>
<td>9,400</td>
<td>83.8%</td>
</tr>
</tbody>
</table>

Contamination Issues?

• Wheel Purge section
• 3Å Molecular Sieve Desiccant provides “selective absorption”

• Johns Hopkins Ross Research Laboratory Case Study
Building Background
Project Team
Existing Conditions
Mechanical Redesign
Lab Dedicated Outdoor Air System with Parallel Chilled Beams
Office Dedicated Outdoor Air System with Parallel VAV
Energy and Cost Analysis of Proposed Design
Wind Energy Feasibility Study
Lighting Power Density Evaluation Study
Conclusions
Acknowledgements
Questions
Office System

DOAS with Parallel VAV

- Convert Existing DX Systems to DOAS with Parallel VAV?

Required Supply air by Parallel VAV System based on Load

\[
\text{CFM}_s = \frac{Q_s}{1.08 \times (T_{RA} - T_{SA})} = \frac{690,530 \text{ btu/hr}}{1.08 \times (72^\circ F - 55^\circ F)} = 37,528 \text{ cfm}
\]

Reduction of Parallel Systems

- 12% reduction in supply air with DOAS/Parallel VAV compared to DX Rooftop Units

<table>
<thead>
<tr>
<th>System</th>
<th>Existing SA (cfm)</th>
<th>Redesign SA (cfm)</th>
<th>Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTU-1</td>
<td>14,175</td>
<td>12,500</td>
<td>11.8%</td>
</tr>
<tr>
<td>RTU-2</td>
<td>28,300</td>
<td>25,000</td>
<td>11.7%</td>
</tr>
<tr>
<td>Total</td>
<td>42,475</td>
<td>37,528</td>
<td>11.6%</td>
</tr>
</tbody>
</table>
Annual Energy Reduction

- Trane TRACE-700 Energy Analysis

<table>
<thead>
<tr>
<th></th>
<th>Original Design</th>
<th>Proposed Design</th>
<th>Savings</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost ($/yr)</td>
<td>75,166</td>
<td>55,069</td>
<td>20,097</td>
<td>26.74%</td>
</tr>
<tr>
<td>Consumption (kWh/yr)</td>
<td>2,116,058</td>
<td>1,581,585</td>
<td>534,473</td>
<td>25.26%</td>
</tr>
</tbody>
</table>

- Dedicated Outdoor Air Systems Reduce Load by approximately 25%.

- Reduced Life Cycle Cost of approximately 16% over 20 years with 5% inflation.
Emissions Reduction

- New York State Requires that 25% of generated power come from renewable sources by 2013.

<table>
<thead>
<tr>
<th></th>
<th>kWh</th>
<th>lbm Particulates</th>
<th>lbm SO₂</th>
<th>lbm NOₓ</th>
<th>lbm CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>2,107,705</td>
<td>13,658</td>
<td>104,818</td>
<td>188,640</td>
<td>86,368,271</td>
</tr>
<tr>
<td>Redesign</td>
<td>1,859,199</td>
<td>12,048</td>
<td>92,460</td>
<td>166,399</td>
<td>76,185,141</td>
</tr>
<tr>
<td>% Reduction</td>
<td>11.79%</td>
<td>11.79%</td>
<td>11.79%</td>
<td>11.79%</td>
<td>11.79%</td>
</tr>
</tbody>
</table>

- Proposed redesign reduces emissions by approximately 12%.
First Cost Reduction

- R.S. Means Analysis
- The proposed system provided a reduced cost of $248,173 as compared to the existing system

<table>
<thead>
<tr>
<th></th>
<th>Existing System</th>
<th>Proposed DOAS Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiller [tons]</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>Boilers [mbh]</td>
<td>10,200</td>
<td>5100</td>
</tr>
<tr>
<td>AHU's</td>
<td>$154,500</td>
<td>$72,025</td>
</tr>
<tr>
<td>Chiller</td>
<td>$163,500</td>
<td>$97,500</td>
</tr>
<tr>
<td>Pumps (Primary)</td>
<td>$10,850</td>
<td>$5,150</td>
</tr>
<tr>
<td>Boilers</td>
<td>$21,000</td>
<td>$10,500</td>
</tr>
<tr>
<td>Pumps (Boiler)</td>
<td>$30,900</td>
<td>$15,450</td>
</tr>
<tr>
<td>Parallel Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAV</td>
<td>$137,770</td>
<td>$98,070</td>
</tr>
<tr>
<td>Chilled Beams</td>
<td></td>
<td>$187,000</td>
</tr>
<tr>
<td>Pumps (Parallel)</td>
<td></td>
<td>$6,150</td>
</tr>
<tr>
<td>Piping (Parallel)</td>
<td></td>
<td>$7,500</td>
</tr>
<tr>
<td>Ductwork</td>
<td>$304,000</td>
<td>$76,000</td>
</tr>
<tr>
<td>Totals:</td>
<td>$822,520</td>
<td>$574,345</td>
</tr>
</tbody>
</table>

Justin D. Schultz
Mechanical Option

The Hauptman-Woodward Medical Research Institute

Spring 2007 Senior Thesis
Building Background

Project Team

Existing Conditions

Mechanical Redesign

Lab Dedicated Outdoor Air System with Parallel Chilled Beams

Office Dedicated Outdoor Air System with Parallel VAV

Energy and Cost Analysis of Proposed Design

Wind Energy Feasibility Study

Lighting Power Density Evaluation Study

Conclusions

Acknowledgements

Questions
Wind Energy Feasibility

- 70% of total funding eligible to be subsidized by NYSERDA

- Area known for high winds, could be justifiable with state funding

- Wind Map
Wind Energy Feasibility

- PROVEN 6kW Turbine Output

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Proven Energy, Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Output @ 12.5 m/s</td>
<td>6 kW</td>
</tr>
<tr>
<td>Rated Output @ 5.5 m/s (Buffalo, NY)</td>
<td>1 kW</td>
</tr>
<tr>
<td>Rotor Diameter</td>
<td>5.5 m</td>
</tr>
<tr>
<td>Total Weight</td>
<td>860 kg</td>
</tr>
</tbody>
</table>
Wind Energy Feasibility

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proven 6kW Wind Turbine w/Grid Connect</td>
<td>$18,160</td>
</tr>
<tr>
<td>Isolation and Rectification Controller</td>
<td>$1,090</td>
</tr>
<tr>
<td>Tilt-up self-supporting mast (9m)</td>
<td>$6,860</td>
</tr>
<tr>
<td>Total Cost per Turbine</td>
<td>$26,110</td>
</tr>
<tr>
<td>Total Installed Cost</td>
<td>$52,220</td>
</tr>
<tr>
<td>Total Cost with 70% NYSERDA discount</td>
<td>$15,666</td>
</tr>
</tbody>
</table>

Payback Period (years) = \(\frac{\text{Initial Cost}}{\text{Annual Savings}} \)

Assume Annual Savings at Peak Electric Rate:
Annual Savings = 12,000 kWh * $0.0095/kWh = $1,140

Payback Period = \(\frac{$15,700}{\$1,140} \) = **14 years = POSSIBLE**
Lighting Concerns

Proposed Scope

• Evaluate typical office lighting
• Retrofit Fixtures without Negative Impact
• 50 Private offices plus general office space

<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>Watts</th>
<th>Length</th>
<th>Lumens (25°C)</th>
<th>2 lamp fixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>39W T5</td>
<td>45.2"</td>
<td>3100</td>
<td>78W</td>
</tr>
<tr>
<td>Retrofit</td>
<td>28W 75</td>
<td>45.2"</td>
<td>2900</td>
<td>58W</td>
</tr>
</tbody>
</table>

Justin D. Schultz
Mechanical Option

The Hauptman-Woodward Medical Research Institute

Spring 2007 Senior Thesis
Lighting Concerns

- Redesign implemented while preserving integrity of original design
- Higher initial bulb cost
- Reduction in Cooling Load by 2.95 tons
- Reduction in overall LPD from 1.48 W/ft² to 1.33 W/ft²

- Cost Reduction
 - Phillips F28W/T5/830 - $8.50

- Savings $1.49 x 200 bulbs = $298 initial savings
Building Background
Project Team
Existing Conditions
Mechanical Redesign
Lab Dedicated Outdoor Air System with Parallel Chilled Beams
Office Dedicated Outdoor Air System with Parallel VAV
Energy and Cost Analysis of Proposed Design
Wind Energy Feasibility Study
Lighting Power Density Evaluation Study
Conclusions
Acknowledgements
Questions
Conclusions and Thoughts

Summary
• Dedicated Outdoor Air Systems to replace DX and 100% OA VAV Units
• **Reduced Electrical Load** by 26% annually
• **Reduced annual utility Costs** by approx $20,000/yr
• **Reduced Initial cost** of mechanical system by $248,173
• **Wind Power** possible, with funding
• **Reduced Lighting Power Density** with reduced-watt bulbs saves energy and first costs

Recommendations
• Redesign considerations a viable alternative to existing design

Justin D. Schultz
Mechanical Option
The Hauptman-Woodward Medical Research Institute
Spring 2007 Senior Thesis
Building Background

Project Team

Existing Conditions

Mechanical Redesign

Lab Dedicated Outdoor Air System with Parallel Chilled Beams

Office Dedicated Outdoor Air System with Parallel VAV

Energy and Cost Analysis of Proposed Design

Wind Energy Feasibility Study

Lighting Power Density Evaluation Study

Conclusions

Acknowledgements

Questions
Acknowledgements

• Eric Lindstrom and the rest of the Cannon Design Team

• Walt Pangborn at the Hauptman-Woodward Institute

• All of the AE Faculty, especially Dr. Freihaut

• Friends and Family

• Finally, the AE class of 2007 ... we did it!!

Justin D. Schultz
Mechanical Option

The Hauptman-Woodward Medical Research Institute

Spring 2007 Senior Thesis
Building Background

Project Team

Existing Conditions

Mechanical Redesign

Lab Dedicated Outdoor Air System with Parallel Chilled Beams

Office Dedicated Outdoor Air System with Parallel VAV

Energy and Cost Analysis of Proposed Design

Wind Energy Feasibility Study

Lighting Power Density Evaluation Study

Conclusions

Acknowledgements

Questions
Questions?