

1050 K STREET

Mechanical Systems Redesign

Malory J. Faust • Mechanical Option • Senior Thesis 2007

Topics of Discussion

- Building Introduction
- Chilled Beam Analysis
- Solar Shading Analysis
- Daylighting Analysis
- Conclusions

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

Project Team

- Owners: The Lenkin Company The Tower Companies
- Contractor: The Lenkin Company
- Architect: Hickok Cole Architects
 - Structural Engineer: Tadjer Cohen Edelson Associates
 - MEP Engineer: Vanderweil Engineers
- Civil Engineer: Timmons Group
- Curtain Wall Consultant: CDC

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis Conclusions

Building Site

- Located on the corner of 11th & K Streets
- Streets on the North & West facades
- Alleys on East & South facades

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis Conclusions Architectural Background

- 11 story office building
- 4 levels below ground for parking
- Retail on the first level
- Curtain Wall North & West facades
- Green Roof

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

System Summary

- Energy Recovery Unit (ERU)
 30,000 CFM Enthalpy Wheel
 - Cooling Coil
- AHU with cooling on each level
- VAV System with terminal reheatChiller Plant
 - (3) 115 ton rotary screw chillers
 - (2) Cell, Induced draft open cell cooling tower
 - Waterside free cooling HX
- All heating done by enthalpy wheel and electric reheat

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

System Summary

Energy Consumption

Energy Simulation Summaries					
Enduse	KWh				
Space Cooling	124400				
Heat Rejection	7000				
Space Heating	154200				
Hot Water	44500				
Vent Fans	242700				
Pumps & Auxillary	243200				
Misc Equipment	277700				
Lighting	482700				
Total	1576400				

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

System Summary

Initial Cost

VAV System Initial Cost Data									
		Materials Total							
Component Description		Cost	Unit	Units	Cost				
VAV Box 300-600 CFM W/RH	\$	358.00	Ea	80	\$	28,640.00			
VAV Box 500-1000 CFM W/RH	\$	368.00	Ea	11	\$	4,048.00			
VAV Box 800-1600 CFM W/RH	\$	383.00	Ea	1	\$	383.00			
VAV Box 500-1000 CFM W/o RH	\$	345.00	Ea	22	\$	7,590.00			
Air Handling Unit 8000 CFM	\$	13,353.00	Ea	1	\$	13,353.00			
Air Handling Unit 12500 CFM	\$	18,470.00	Ea	1	\$	18,470.00			
Air Handling Unit 13500	\$	19,850.00	Ea	9	\$	178,650.00			
					\$	251,134.00			

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

Alternate Mechanical System

- Design Goals
 - Lessen annual energy consumption
 - Flexible system layouts & capacities
 - Aesthetically responsive

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis Conclusions Chilled Beam Background

 Air Conditioning system providing cooling & heating
 Uses principles of induction and free convection
 Can significantly reduce

energy costsAesthetic benefits

Building Introduction Chilled Beam Analysis

Solar Shading Analysis

Daylighting Analysis

Conclusions

Chilled Beam Background

Active

- Integrated with outdoor air supply
 - Utilizes air flow to induce room air
- Can provide heating when requirements are low

111

Passive

- Typically used parallel to another system
- Do not supply outdoor air
- Rely on natural convection for cooling
- May be provided in addition to active beams in high cooling spaces

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

Calculation Procedure

eQuest

- Core & Shell design did not require room by room analysis
 Zoning
 - 4 perimeter zones (15')

• 1 core zone

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

Calculation Procedure

eQuest

- Modeled as one large chilled beam per zone
- Each beam modeled as a fan coil unit, removing the fan
- Utilized "OA–From–System"
 - command to provide ventilation to units
- Attached all latent load to ERU dummy zone to decouple the space cooling loads

Simulation Results

Energy Consumption

1050 K Street

Building Introduction

Chilled Beam Analysis

Solar Shading Analysis

Daylighting Analysis

Conclusions

Energy Simulation	on Summaries
Enduse	KWh
Space Cooling	166400
Heat Rejection	7500
Space Heating	84600
Hot Water	44500
Vent Fans	39400
Pumps & Auxillary	316400
Misc Equipment	277700
Lighting	482700
Total	1419200

- 10 % reduction in energy consumption
- Overall savings of 157200 KWh/year

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

System Design Summary

Chilled Beam Sizing

- Used Halton Hit Design Program
- Maintained ventilation requirements
- Uphold aesthetic appeal of office spaces

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

System Design Summary

Halton HIT Design - Unit sel	ection des	ign data	
DESIGN DATA			LOCATION
Total air flow rate:	180	I/s	
AQ opening:	-		
Nozzle airflow rate:	180	I/s	
AQ diffuser airflow rate:	-	I/s	
Supply air temperature:	18.0	°C	
Inlet water temperature:	14.0	°C	
Outlet water temperature:			
C Water mass flow rate:	15.5	°C	
Room			
- SPACE RESULTS			
Air flow:	180	I/s	
Room temperature:	22.0	°C	l l [₩]
Supply air temperature:	18.0	°C	
Inlet water temperature:	14.0	°C	Installation bright 2.00 m. Columns: 15 -
Heat gain:	0	W	
Primary air capacity:	866	W	Location: 2 Rows: 2
Coil capacity:	6786	W	
Total capacity:	7652	W	
Water mass flow rate:	1.080	kg/s	
			Side: 3 V Middle: 3 V
Air flow:	6	I/s	_ VIEW
Primary air capacity:	29	w	● 3D C Side vlim: 0.20 m/s 💌
Coil capacity:	226	W	,
Total capacity:	255	W	DESIGN STATUS
Total pressure drop:	111	Pa	^x UK ^x
Water pressure drop:	0.6	kPa	Perforated ceiling Ontimise
Water mass flow rate:	0.036	kg/s	· · · · · · · · · · · · · · · · · · ·
Sound pressure level:	14	LpA	Update results Ok Cancel

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

System Design Summary

Chilled Beam Layout

- Perimeter zones
 - East & West (2) rows of 15
 - South & North (2) rows of 9
 - All additional cooling by passive
- Internal
 - 11 rows to line up with perimeter active beams

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

System Design Summary

Chilled Beam System Cost

 Cost of Beams: \$200/ LF
 1985 Beams total
 735 MBH Electric Boiler

Chilled Beam Initial Cost								
Component Description	Cost							
Chilled Beam	\$ 200.00	LF	7940	\$ 1,588,000.00				
Boiler	\$ 10,300.00	Ea	1	\$ 10,300.00				
				\$ 1,598,300.00				

Building Introduction Chilled Beam Analysis

Solar Shading Analysis

Daylighting Analysis

Conclusions

Solar Shading Background

- Blocks 75% of incoming radiation
- Absorbs up to 15 % of incoming radiation
- Prevents 25% of internal heat from escaping in heating conditions
 - **Transparent**
- Reduces glare

Building Introduction Chilled Beam Analysis Solar Shading Analysis

Daylighting Analysis

Conclusions

Design Summary

- Apply shades to 100% of curtain wall
- North and West facades
- 8'-9" floor to ceiling height
- 235 LF of shades

• (517) 5x8.75 shades

Chilled Beam Initial Cost								
Component Description	Materials Cost	Unit	Total Units		Cost			
Chilled Beam	\$ 200.00	LF	7160	\$	1,432,000.00			
Solar Shades	\$164	43.75 SF	514.8	\$	84,427.20			
Boiler	\$ 10,300.00	Ea	1	\$	10,300.00			
				\$	1,526,727.20			

Building Introduction Chilled Beam Analysis

Solar Shading Analysis

Daylighting Analysis

Conclusions

Design Summary

Energy Consumption

Energy Simulation Summaries						
Enduse	KWh					
Space Cooling	157400					
Heat Rejection	7100					
Space Heating	89800					
Hot Water	44500					
Vent Fans	39300					
Pumps & Auxillary	294800					
Misc Equipment	277700					
Lighting	482700					
Total	1393300					

6% reduction in cooling energy 7% reduction in pump energy

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

Daylighting Background

- Daylight sensors installed in perimeter zones
- Utilize sunlight when sufficient
- Decrease lighting energy
 consumption
- Sophisticated, dynamic controls
- Require calibration

Design Summary

Energy Consumption

1050 K Street

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

Lifer gy Siniulation Summaries						
Enduse	VAV	Daylighting				
Space Cooling	124400	116100				
Heat Rejection	7000	6500				
Space Heating	154200	155900				
Hot Water	44500	44500				
Vent Fans	242700	230500				
Pumps & Auxillary	243200	236200				
Misc Equipment	277700	277700				
Lighting	482700	364200				
Total	1576400	1431600				

Energy Simulation Summaries

• 25% reduction in lighting energy consumption

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

Conclusions

Simple Payback Summary								
VAV Chilled Beam Shading Daylighting								
Initial Cost	\$	251,134.00	\$	1,598,300.00	\$	1,526,727.00	n/a	
Annual Energy Cost	\$	189,010.36	\$	170,174.07	\$	167,056.67	\$	171,648.84
Annual Savings	\$	-	\$	18,836.29	\$	21,953.69	\$	17,361.52
Simple Payback	0		71.5		58.1		n/a	

 Regardless of energy savings the chilled beam system is not more economical solution than the VAV system due to drastic initial cost differences

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

Thank You

- All AE Faculty and Staff
- My classmates, especially Erin & Patrick
- My family and friends
- Professionals at Vanderweil Engineers, especially Brandon Harwick and Sam Bohsali

Building Introduction Chilled Beam Analysis Solar Shading Analysis Daylighting Analysis

Conclusions

Questions

