T.C. Williams High School Structural Redesign

Christopher B. Deker Structural Option AE Senior Thesis Spring 2008

Reduce Building Costs

Stay on Schedule

Increase Number of Rooms Receiving Natural Light

Decrease SF of Corridor Space

Introduction of Topics

Architectural Changes

- Roof System Redesign
- Column Redesign
- Foundation Redesign
- Exterior Wall Redesigns
- Floor System Redesign Lateral Resisting System Redesign
- Cost Analysis
- Scheduling Analysis

Building Summary

Three Stories – 45 Feet
461,000 Sq Ft
\$87,000,000
Alexandria, VA
Summer '04 – Summer '07
2,500 Student High School
1,200 Seat Auditorium
3,000 Seat Gymnasium

Building Summary

LEED Silver Certification

- 450,000 Gallon Cistern MOSELEYARCHITECTS
- Green Roof
- **Owner: City of Alexandria**

Arch/Engineer: Moseley Architects

Construction: Hensel Phelps

Building Summary

Soil Conditions

Introduction

- Summary
- Existing Conditions
- Existing
 Structural
 Systems
- Codes Architectural Breadth Structural Depth Construction Management Breadth Conclusions

Poor Soil Conditions Geopier 'Rammed Aggregate Pier' Soil Reinforcement

- 1) Drill
- 2) Place Aggregate
- 3) Compact Aggregate
- Pre-stresses Surrounding Soil
- 6000 PSF Bearing Capacity

Typical Floor Plan

Introduction

- Summary
- Existing
 Conditions
- Existing
 Structural
 Systems

Codes
 Architectural
 Breadth
 Structural
 Depth
 Construction
 Management
 Breadth
 Conclusions

Structural System

Introductior

- Summary
- Existing
 Conditions
- Existing Structural Systems
- Codes
 Architectural
 Breadth
 Structural
 Depth
 Construction
 Management
 Breadth
 Conclusions

Roof System

- K-Series Steel Joists @ 5' O.C.
- KCS Steel Joists @ 3.5' O.C.
- Steel Roof Deck

Structural System

Introduction

- Summary
- Existing
 Conditions

Existing Structural Systems

Codes Architectural Breadth Structural Depth Construction Management Breadth Conclusions

Floor System

- W18x35 Composite Beams @ 8' O.C.
- W21x50 Girders
- Shear Studs @ 12"

18 Gage Composite Deck

Structural System

Introductior

- Summary
- Existing
 Conditions

Existing Structura Systems

Codes
 Architectural
 Breadth
 Structural
 Depth
 Construction
 Management
 Breadth
 Conclusions

Lateral Force Resisting System
4 Braced Frames – Each Direction

Introduction

- Summary
- Existing Conditions

• Existing Structural Systems

Architectural Breadth Structural Depth Construction Management Breadth Conclusions

Existing

• ASCE 7-99

- IBC 2000
- ASD

Codes

Redesign

- ASCE 7-05
- IBC 2006
- LRFD

Deflections

- L/360-Live
- L / 240 Total
- L / 600 Live Masonry Walls
- H / 400 Drift

Typical Floor Plan

Introduction Architectural Breadth

Floor Plans

Roof Layout
 Structural
 Depth
 Construction
 Management
 Breadth
 Conclusions

Building Section

KCS STEEL STEEL TRUSS K-SERIES STEEL JUIST MECHANICAL SYSTEMS K-SERIES 6' RIGID П ADDITIONAL STEEL н П T

Introduction Architectural Breadth

• Floor Plans

Root Layout
 Structural Depth
 Construction
 Management
 Breadth
 Conclusions

Roof Section

Goals

Introduction Architectural Breadth Structural Depth

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls
- Footings

Summary Construction Management Breadth Conclusions

Reduce Building Costs

Stay on Schedule

Increase Number of Rooms Receiving Natural Light

Decrease SF of Corridor Space

Proposal

Introduction Architectural Breadth Structural Dept

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls
- Footings

Summary Construction Management Breadth Conclusions

Change Building Height

- 3 Floors (45')
- 5 Floors (75')
- Constant Square Footage (108,000 SF)
 - Smaller Building Footprint
 - Less Geopiers

Proposal

Introduction Architectural Breadth

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls
- Footings

Summary Construction Management Breadth Conclusions New Floor System
Switch to Composite Steel Joists

New Lateral Resisting System

 Switch to Masonry Shear Walls

Proposal

Introduction Architectural Breadth Structural Depth

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls
- Footings

Summary
 Construction
 Management
 Breadth
 Conclusions

Due to Change in Height :

- Required Change in Roof System
- Required Exterior Wall Redesign
- Required Column Redesign
- Required Change in Footing Sizes

Roof System Redesign

Introduction Architectural Breadth

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls
- Footings

Summary Construction Management Breadth Conclusions 24KCS3 Joists (Span w/ Mechanical Systems)

18K3 Joists (Span w/o Mechanical Systems)

10K1 Joists (Sloped Roof)

Floor System Redesign

Introduction Architectural Breadth

Structural Depth

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls
- Footings

Summary Construction Management Breadth Conclusions

Composite Steel Joists

- 22VC1600
- Cementious Spray-on Fireproofing
- Spaced 8' O.C.
- 34' Span
- 2"Deck w/ 2.5" Topping
- W21x50 Girders 23' Span
- Paper Office Vibration Criteria

- $\beta = 0.03$
- $A_p / g < 0.5\% g$
- $f_n = 4.9 \text{ Hz}$

Columns

Introduction Architectural Breadth

Structural Depth

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls
- Footings

Summary Construction Management Breadth Conclusions Existing – Un-spliced Redesigned – Splice Required • Splice 5' Above Third Floor

Lateral Force Resisting System Redesign

Introduction Architectural Breadth

Structural Depth

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls
- Footings
- Summary Construction Management Breadth Conclusions

Existing – Braced Frames Redesign – Masonry Shear Walls

- Torsion
- Shear
- Overturning Moment
- Drift

Lateral Force Resisting System Redesign

Introduction Architectural Breadth

Structural Depth

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls
- Footings

Summary Construction Management Breadth Conclusions

Wall Properties

- L = 34' or 23'
- 8" Fully Grouted CMU
- Vert Reinf #5's @ 8" O.C.
- Horiz Reinf #4's @ 8" O.C.

Foundations

Introduction Architectural Breadth

Structural Depth

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls

• Footings

Summary Construction Management Breadth Conclusions Redesigned Footings – For Additional Loads
 Geopier System
 6" Slab on Grade

Introduction Architectural Breadth

Structural Depth

- Proposal
- Roof System
- Floor System
- Columns
- Shear Walls
- Footings

• Summary

Construction Management Breadth Conclusions

Structural Summary

Redesigned Floor System

- Composite Steel Joist System
- Redesigned Lateral Force Resisting System
 - Reinforced Masonry Shear Walls
- Redesigned Structural Elements to Account for Change in Building Shape
 - Roof System
 - Exterior Curtain Walls
 - Columns
 - Strip and Spread Footings

Cost Analysis

Introduction Architectural Breadth Structural Depth Construction Management Breadth

- Cost Analysis
- Schedule Analysis Conclusions

Existing SF Costs

- Roof \$13.25
- Floor \$21.37
- Foundations \$12.57

Redesign SF Costs

- Roof \$14.50
- Floor \$16.72
- Foundations \$13.22

SF Costs Roof : +\$1.25 Floor: -\$4.65 Found: +\$0.65

Introduction Architectural Breadth Structural Depth Construction Management Breadth

> Cost Analysis

 Schedule Analysis
 Conclusions

Existing Costs

- Roof \$465,000
- Floor \$1,500,000
- Lateral Sys \$268,000
- Columns \$308,000
- Foundations \$484,000
- Curtain Wall \$1,040,000
- Partitions \$556,000

Cost Analysis

Existing \$4,616,000

Redesign Costs

- Roof \$313,000
- Floor \$1,445,000
- Lateral Sys \$140,000
- Columns \$329,000
- Foundations \$285,000
- Curtain Wall \$1,500,000
- Partitions \$556,000

Redesign \$4,606,000

Schedule Analysis

Introduction Architectural Breadth Structural Depth Construction Management Breadth

- Cost Analysis
- Schedule Analysis Conclusions

Schedule Start Date: July 2, 2004

Existing Structural End Date: Nov 8, 2005 Redesign Structural Finish Date: Nov 25, 2005

+17 Days

+12 Working Days

Introduction Architectural Breadth Structural Depth Construction Management Breadth

Cost Analysis

Schedule Analysis

Conclusions

Schedule Analysis

What if ... No Change of Lateral Resisting System?

Existing Structural End Date: Nov 8, 2005 Redesign Structural Finish Date: Sept 19, 2005

-50 Days

-36 Working Days

Introduction Architectural Breadth Structural Depth Construction Management Breadth Conclusions

Conclusions

Savings of \$20,000

Increase of 24% of Rooms in Classroom Wing Receiving Natural Light

Increase of 10,000 SF Usable Floor Area

Conclusions

Introduction Architectural Breadth Structural Depth Construction Management Breadth Conclusions

Owner Option: Remove Extra 10,000 SF of Usable Area • \$150 / SF for Classroom Wings

Total Savings: \$1.5 Million

T.C. Williams High School Home of the Titans

Questions???

Christopher B. Deker Structural Option AE Senior Thesis Spring 2008