Howard County General Hospital

Patient Tower Addition Columbia, MD

Kelly M. Dooley
Penn State Architectural Engineering
Structural Option

Project Location

Located in Columbia, Maryland

Intersection of Little
Patuxent Pkwy and
Cedar Ln

Part of HCGH's Campus
Development Plan

Adjacent to the south side of the existing hospital

Photo taken from: http://www.HCGH.org

Building Statistics

Size: Approximately 115,000 SF

Owner: John Hopkins Medicine

Height: 88.5' from 1st floor to penthouse roof

Delivery: CM @ Risk

Cost: GMP of almost \$40 million

Envelope: Precast, Aluminum Panels, Glass

Function: Hospital

Project Team

CM: Whiting-Turner

Architects/Planners: Wilmot/Sanz Inc.

Structural Engineer: Rathgeber/Goss Associates

MEP Engineer: Leach Wallace Associates, Inc.

Civil Engineer: Joyce Engineering Corp.

Existing Structural System

Composite steel with

concrete on metal deck

3 ¼" LW concrete

2" 18 gage metal deck

34" diameter shear studs

Existing Structural System

Composite steel with concrete on metal deck

3 ¼" LW concrete

2" 18 gage metal deck

34" diameter shear studs

Framing in two different directions

Existing Structural System

29' by 29' typical bays

3 typical infill beam sizes

W12x19

W14x22

W16x26

Wide range of girder sizes

Existing Lateral System

19 moment frames per floor
8 along the perimeter
11 interior

Wide range of cross sections
W12s to W24s

Symmetrical about building's diagonal axis

Design Issues/Concerns

Structural:

100 psf live load

Wind drift

Floor plan flexibility

(30) 2" slab depressions at each typical floor

Concrete Redesign

Construction Management:

Building cost
Inefficiency of construction

Cost/Schedule Analysis

Acoustics:

Sound transmission for patient privacy

Reverberation time

Recommendation Criteria

Structural:

Adequately perform under 100 psf live load Resolve drift issue Maintain floor plan flexibility

Recommendation Criteria

Structural:

Adequately perform under 100 psf live load Resolve drift issue Maintain floor plan flexibility

Construction Management:

Reduce building cost
Improve construction efficiency
Maintain/Shorten construction schedule

Proposed Concrete System

Two-Way Flat Slab

10" NW concrete slab

Typical 9'-8" by 9'-8" by 6" thick drop panels

f'c = 5000 psi

Square Concrete Columns

24" by 24"

f'c = 5000 psi

Kelly M. Dooley

Typical Column Strip Top Reinforcing

(14) #7 interior

(12) #7 exterior

Typical Column Strip Top Reinforcing

(14) #7 interior

(12) #7 exterior

Typical Middle Strip Top Reinforcing
(10) #7 for 14.5 ft width

Typical Column Strip Top Reinforcing

(14) #7 interior

(12) #7 exterior

Typical Middle Strip Top Reinforcing
(10) #7 for 14.5 ft width

Typical Bottom Reinforcing #6@10" oc EW

Additional top steel @ select interior columns

Additional top steel @ all exterior columns for unbalanced moment transfer at end span

Continuous top steel at short spans adjacent to long spans

Additional bottom steel @ long spans

30.5' spans critical for deflection

$$max = 0.923$$
" $< 1/360 = 1.02$ "

Kelly M. Dooley

Concrete Column Design

24" by 24" columns with(8) #8 reinforcing

Columns @ base controlled by gravity load

$$1.2D + 1.6L$$

Columns @ upper levels controlled by wind load

Concrete Beam Design

Transfer Beams @ Main Roof

TB1 – TB5

Beams @ Slab Opening EB1

Beam	В	Н	Flex. Reinf.	Stirrups
TB1	24	32	(10) #9	#4
TB2	24	32	(10) #9	#4
TB3	24	32	(6) #9	#3
TB4	24	32	(8) #9	#3
TB5	24	32	(6) #7	#3
EB1	24	16	(4) #7	#3

Cantilevered Slab/Beam Design

One-way quarter-circular slab at waiting room/lobby

8" slab - maximum deflection of 0.21"

top bars - #6@12" oc

bottom bars - #6@18" oc

Supported by 24" by 32" deep beam with (8) #9 bars

Foundation Design

Increased footing sizes due to increased building weight

4 columns @ north tied into existing retaining wall footing

Ftg #	L (ft)	W (ft)	t (ft)	Reinf
F1	7	7	1.5	#6@12" EW
F2	8	8	2	#6@10" EW
F3	9	9	2	#6@10" EW
F4	10	10	2	#6@8" EW
F5	11	11	2.5	#7@10" EW
F6	12	12	2.5	#7@8" EW
F7	13	13	3	#7@8" EW
F8	15	15	3.5	#8@10" EW

Kelly M. Dooley

Drift Check

Wind Drift

	Story	Total	Allowable	Floor to Floor	or to Floor Story	
	Height (ft)	Drift (in)	H/400 (in)	Height (ft)	Drift (in)	H _{story} /400 (in)
PH Roof	88.5	1.02	2.66	18	0.1	0.54
Main Roof	70.5	0.92	2.12	16.5	0.14	0.50
4th Floor	54	0.78	1.62	18	0.23	0.54
3rd Floor	36	0.55	1.08	18	0.3	0.54
2nd Floor	18	0.25	0.54	18	0.25	0.54

Drift Check

Wind Drift

	Story	Total	Allowable	Floor to Floor	Story	Allowable
	Height (ft)	Drift (in)	H/400 (in)	Height (ft)	Drift (in)	H _{story} /400 (in)
PH Roof	88.5	1.02	2.66	18	0.1	0.54
Main Roof	70.5	0.92	2.12	16.5	0.14	0.50
4th Floor	54	0.78	1.62	18	0.23	0.54
3rd Floor	36	0.55	1.08	18	0.3	0.54
2nd Floor	18	0.25	0.54	18	0.25	0.54

Seismic Drift

	Story	Floor to Floor	Total	Story	Actual	Allowable
	Height (ft)	Height (ft)	Drift (in)	Drift (in)	Drift Ratio	Drift Ratio
PH Roof	88.5	18	1.23	0.17	0.0008	0.0075
Main Roof	70.5	16.5	1.06	0.19	0.0010	0.0075
4th Floor	54	18	0.87	0.29	0.0013	0.0075
3rd Floor	36	18	0.58	0.33	0.0015	0.0075
2nd Floor	18	18	0.25	0.25	0.0012	0.0075

Cost Comparison

Composite Steel System:

Structural Steel \$1,369,783

Concrete Slab on Metal Deck \$676,710

Foundations \$101,702

Fireproofing \$203,500

Moment Connections \$66,600

Total Cost \$2,418,295

Cost Comparison

Composite Steel System:

Concrete System:

Structural Steel	\$1,369,783
Structural Steel	71,000,70

Two-Way Flat Slab

\$1,418,373

Concrete Slab on Metal Deck \$676,710

Concrete Columns

\$321,179

Foundations

\$61.580

Concrete Reams

\$94, 523

Fireproofing

Concrete System Saves

\$101,702

\$1,935,777

Moment Connection

Almost \$500,000!!!

Total Cost

Schedule Comparison

Existing Steel Schedule:

Divided floors into four quads

Structural "skeleton" completed in approximately 16 weeks

Schedule Comparison

AREA 1

AREA 2

AREA 3

Proposed Concrete Schedule:

Divided floors into three areas

Concrete fram approximately

No Schedule Advantage for Either Design

ID	Task Name	Duration	Start	Finish	January
4	F/R/P Flat Slab 1st Floor, 1	3 days	Thu 12/27/07	Mon 12/31/07	- Common
5	Strip Flat Slab 1st Floor, 1	1 day	Mon 1/7/08	Mon 1/7/08	0
6	F/R/P Flat Slab 1st Floor, 2	3 days	Mon 12/31/07	Wed 1/2/08	
7	Strip Flat Slab 1st Floor, 2	1 day	Wed 1/9/08	Wed 1/9/08	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8	F/R/P Flat Slab 1st Floor, 3	3 days	Wed 1/2/08	Fri 1/4/08	
9	Strip Flat Slab 1st Floor, 3	1 day	Fri 1/11/08	Fri 1/11/08	
10	F/R/P Columns 1st Floor, 1	2 days	Tue 1/8/08	Wed 1/9/08	50 00 00 00 00 00 00 00 00 00 00 00 00 0
11	F/R/P Columns 1st Floor, 2	2 days	Thu 1/10/08	Fri 1/11/08	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12	F/R/P Columns 1st Floor, 3	2 days	Mon 1/14/08	Tue 1/15/08	8 N N N N N N N N N N N N N N N N N N N

Recommendation Criteria

Structural:

Adequately perform under 100 psf live load Resolve drift issue Maintain floor plan flexibility

Construction Management:

Reduce building cost
Improve construction efficiency
Maintain/Shorten construction schedule

Recommendation Criteria

Structural:

Adequately perform under 100 psf live load

Resolve drift issue

Maintain floor

Recommend Proposed

Concrete System

Construction Management:

Reduce building cost

Improve construction efficiency

Maintain/Shorten construction schedule

Questions?

