TECHNICAL REPORT 2

EXECUTIVE SUMMARY

This report researches various framing alternatives to the existing composite steel floor system at the Swedish American Hospital – Heart and Vascular Center. This structure consists of 4 patient floors and a mechanical screen wall on the roof with the option of enclosing the roof into a 5^{th} floor and adding an additional two floors on top of it.

A variety of floor systems were considered for this project, but many were ruled out for various reasons at the beginning of conceptual design. From those considered, four were chosen to be analyzed in comparison with the existing composite steel system. Of these four alternative systems, two are steel systems acting compositely with concrete and the other two are concrete systems. One steel system is a composite steel system, like the system already in use at the Heart Hospital, only utilizing a more efficient layout. The other steel system is a relatively new system (Girder-Slab) used predominately in residential and commercial high-rise construction. The first concrete system analyzed for this report was a one way slab with beams and girders. This system was the first attempt at using a structural material other than steel and tried to decrease the overall floor depth without compromising other structural aspects of the building. The final alternative framing plan is a continuation of the first concrete framing plan. The second concrete system is a two way post tensioned slab. This system further minimizes the floor depth and can handle the long spans in the hospital without the need for additional column supports.

These five systems (existing system included) are all compared simultaneously. They are weighed against each other addressing items such as: floor depth, floor weight, slab thickness, span, deflection, fire protection, cost, lead time, constructability, vibration, and structural changes relative to the existing structure. Finally, all the positives and negatives from each system are added up to determine whether a particular floor system is feasible to construct (or worth pursuing further).

After comparing all the framing systems, it was determined that the alternative composite steel system and the two way post tensioned slab were both viable alternatives to the existing composite system. The one way slab was rejected because it was limited by the maximum distance the slab could span and wasn't cost efficient enough compared to the other concrete system. It might have also required additional columns in some areas. The Girder-Slab system was rejected because the prefabricated members currently available by Girder-Slab Technologies are not large enough or stiff enough to carry the required loads. They don't meet the deflection requirements set by code and the concrete can't develop the required compressive stress needed.

The other two systems, two way post tensioned slab and the alternative composite steel system, are both considered potential possibilities and will be studied further to determine which is best suited to be used at the structural framing for the Heart Hospital at Swedish American.

It should be noted that the calculations herein are for schematic design used to develop preliminary sizes of members. This is not to be an exhaustive analysis, so some general assumptions were made and are noted at those locations in the report.

TABLE OF CONTENTS

EXECUTIVE SUMMARY1
EXISTING STRUCTURAL SYSTEM OVERVIEW
TYPICAL FLOOR LOADS
FLOOR FRAMING SYSTEMS6
1. Existing Steel Composite System
2. Alternative Steel Composite System
3. One Way Slab with Beams and Girders
4. Two Way Post Tensioned Slab10
5. Girder Slab System11
FLOOR SYSTEM COMPARISONS13
COMPARISON SUMMARY17
APPENDIX

EXISTING STRUCTURAL SYSTEM OVERVIEW

FLOOR SYSTEM:

The typical building floor framing system is made up of beams and girders acting compositely with a concrete floor slab. Floor sections show 3"-20 gauge LOK Floor galvanized metal deck with 3¹/₄" of lightweight concrete (110 pcf) resting on the steel framing below. Composite action is achieved through 5" long ³/₄" diameter shear studs welded to the steel framing. Concrete is reinforced with 6x6-W5xW5 welded wire fabric. The span of the metal deck varies depending on the bay location. However, the direction is limited to east-west or northeast-southwest. This assembly has a 2 hour fire rating without the use of spray on fireproofing.

There is no "typical" bay in the structural framing system. However, columns located on the wings are spaced approximately $22'-7 \frac{1}{2}$ " on center. Columns in the interior core area are spaced approximately 32'-0" on center with additional columns located around the core perimeter framing into the wings. The most common and longest span is 32'-0". Typical beam sizes range from W12x14's (typically spanning 10' to 12') to W27x146 (spans ranging from 22' to 32') with the larger beams acting as part of the moment framing system.

ROOF SYSTEM:

The roof framing system is very similar to the building floor framing system. Composite design is still used with 3 ¹/₄" of lightweight concrete and 3"-20gauge LOK Floor metal deck on top of steel framing. Deeper steel beams and girders are used to help carry the heavier loads of the mechanical equipment on the roof.

The lobby roof is slightly different from the typical roof framing. It uses composite action but has a $1 \frac{1}{2}$ deep 20 gauge metal deck spanning north-south instead of the 3" metal deck used elsewhere on the building. Lower portions of the roof that see a heavier snow loads due to drift use a 3" deep 20 gauge metal deck.

LATERAL SYSTEM:

The lateral load resisting system consists of steel moment frames. The majority of the moment frames extend around the perimeter of the building with a few added moment frames on the interior to help stiffen the structure. Larger girders are framed into columns with bolted flange plate moment connections. The prefabricated steel pieces were bolted in place rather than welded to eliminate the need of preheating for welds. Shear walls were not part of the original design analysis; therefore, masonry cores such as the elevator and stairwell cores were not assumed to provide lateral support during the structural analysis.

Foundation

The basement footprint is approximately one half of the square footage of the first floor plan. Hence, there are two slabs on grade: one for the basement and one for part of the first floor. Each slab on grade is 5" thick normal weight concrete (145pcf) with 4x4-W5xW5 welded wire fabric reinforcement.

Interior steel columns rest on spread footings with an allowable soil bearing capacity of 4ksf. Exterior columns and basement walls rest on continuous strip footings. Reinforced concrete pilasters are located where exterior columns rest on the basement wall. Footings below columns

Swedish American Hospital Heart and Vascular Center 1400 Charles St, Rockford, IL

in the interior core area extend approximately 18' deep whereas the perimeter strip footings and footings located beneath the wings extend approximately 8' deep. All footings are required to extend a minimum of 4' deep for frost protection.

Columns:

Columns are laid out on two different intersecting grids: one running east-west and the other running northwest-southeast. All columns are ASTM A992 Grade 50 wide flange steel shapes. Columns are spliced between the 3^{rd} and 4^{th} floor. Columns acting as part of a moment frame are spliced 5'-6" above the 3^{rd} floor elevation. Columns acting only as gravity columns are spliced 4'-6" above the 3^{rd} floor elevation. All interior columns that extend to the basement level are also spliced 5'-6" above the 1^{st} floor elevation. Future columns for the 6^{th} and 7^{th} floors are designed to be spliced with existing columns at the 5^{th} floor elevation (current mechanical floor and roof).

TYPICAL FLOOR LOADS

FLOOR LIVE LOADS

Loaded Area	Building Design Load	ASCE 7-05 Section 4
Typical Floors (2 nd , 3 rd , 4 th , 6 th , 7 th)	80 psf	Table 4-1

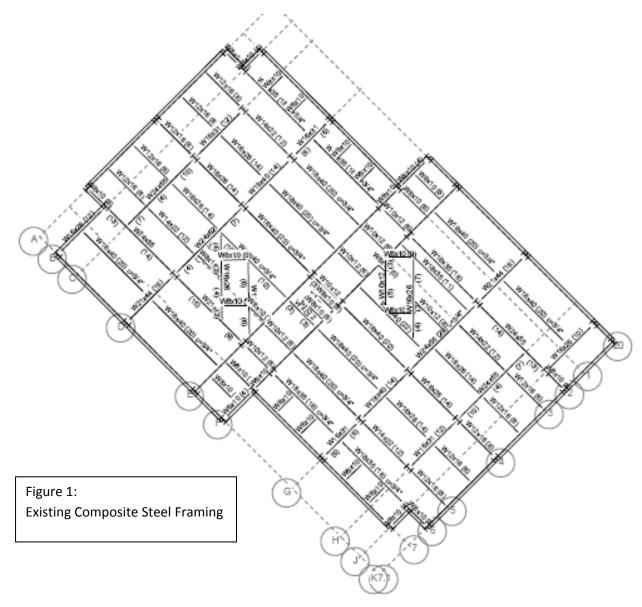
The typical floor live load used for the existing framing analysis was 80 psf (per ASCE 7-05, Table 4-1). The a 20 psf partition load is included in the 80 psf live load as follows: corridors on typical floors have a live load (LL) of 80 psf without partitions, operating rooms and patient rooms have a LL of 60psf + the 20psf partition load = 80psf. This uniform 80psf live load was also used during the analysis of the alternative framing systems.

Existing Floor Dead Loads	
TYPICAL FLOORS 1 THOUGH 4 AND FUTURE FLOORS 6 AND 7	7

Item	Design Load
Steel Deck with LWC Slab	48 psf
Ponding due to Deflection	5 psf
Steel Self Weight	15 psf
MEP, Superimposed, Misc.	12 psf
Total	80 psf

The dead load for each alternative system varies since not all systems incorporate the same materials and amounts of material. A standard superimposed dead load (DL) of 12 psf is used in the analysis of the steel alternative framing plan and Girder-Slab framing plan. This superimposed load was assumed for various MEP systems and ceiling finishes. A superimposed dead load of 17 psf is used in the analysis of the alternative framing system with one-way slab with beams and girders. The extra 5 psf accounts for any concrete ponding due to beam or slab deflections.

LOAD FACTORS


Gravity loads were the only loads accounted for in this report. Each system was checked with the load case 1.2D + 1.6L. By inspection, this load case controlled over the load case 1.4D because of the high live load (80 psf) used for this occupancy. If columns were to be designed and sized for this report, the load case 1.4D might have controlled because of the allowable live load reduction. This situation especially applies to the one-way slab with beams and girders alternative framing system and the existing composite steel system, where the ratio of dead load to live load is higher the other alternative framing systems.

Swedish American Hospital Heart and Vascular Center 1400 Charles St, Rockford, IL

FLOOR FRAMING SYSTEMS

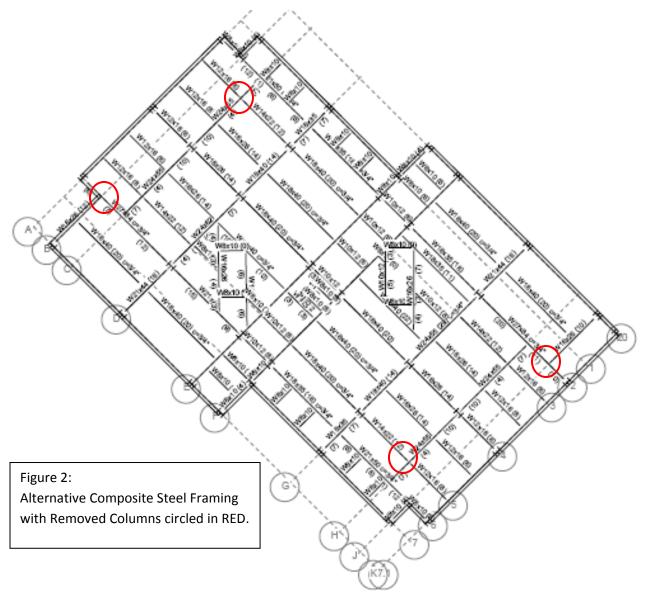
STEEL COMPOSITE FLOOR (EXISTING)

The existing structural system carrying the gravity loads at the Heart Hospital is a $6\frac{1}{4}$ " composite concrete slab on 3" metal deck supported by a system of steel beams and girders. Five inch long (3/4" dia.) shear studs transfer the forces between the concrete and steel shapes. Lightweight concrete (110psf) with an f'_c = 4ksi is used for the concrete slabs. A slab depth with a total of 6.25 inches (with 3.25 inches of concrete above the flutes of the metal deck) has a total weight of 48 psf.

From the drawings, many of the beams and girders on a typical floor range from W14s to W24s. W14s, W16s and W18s are typically used as beams carrying a distributed load with spans

ranging from 8' to 32' with the deeper beams running the longer spans (See Figure 1 above). W21s and W24s compose most of the girders and span either 22'7" or 32'. The largest gravity beam on a typical floor is a W24x62 and is the controlling member for framing depth. A W24x62 with 3" metal deck and 6 ¼" concrete has a maximum framing depth of 29.95 inches.

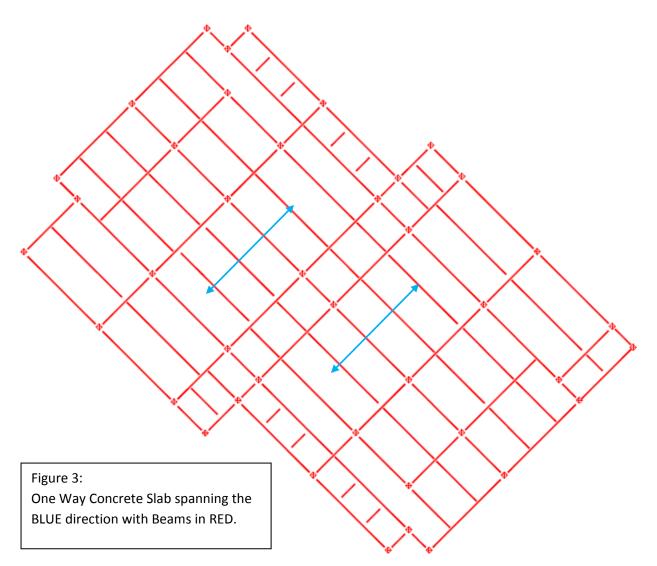
To check the existing floor framing, I created a RAM model of my structure using RAM Structural System. Analyzing only the gravity framing on a typical floor, RAM was able to replicate many of the member sizes seen on the structural drawings, including the W24x62. Using the RAM model, I found a maximum deflection of 1.03" on a typical 32' span gravity member. This value is less than the L/360 requirement for live loads and L/240 for total load deflections. (See Appendix A for RAM printouts on existing framing system)


STEEL COMPOSITE FLOOR (ALTERNATIVE)

The design of an alternative steel composite floor framing system included the removal of 4 columns. Columns B6, C3, H5, and J2 on the existing plans were removed and beams spanning NW-SE into those columns were made continuous to the exterior support for a total span of 40.5' (See Figure 2 below). This alternative framing system was also modeled in RAM Structural System using the same criteria as the existing framing system.

Beams and girders in this system remained relatively the same compared to the existing composite system. The only exceptions were the new beams and girders that previously had framed into the now removed columns. The increase in length and load on those new members increased the member depth to the next size (for example: W18s now became W21s, W21 became W24s and the W24s are now W27s). This increase in member size simultaneously increases the overall maximum depth of the floor framing from 29.95 inches to 32.95 inches. (See Appendix B for RAM printouts on the alternative steel framing system)

Larger deflections were also calculated as a result of the framing change. The larger girders (W24s and W27s) had controlling total load deflections of 1.0" to 1.2". However, these deflections still met the requirements L/240 and L/360 for total loads and live loads respectively. The increased depth of this system should not pose a problem since it is only at those localized areas where the 4 columns used to be. Therefore, if the increased floor depth does not cause an issue with the MEP systems, this system is a feasible alternative to the existing composite system already in place.


Swedish American Hospital Heart and Vascular Center 1400 Charles St, Rockford, IL

ONE WAY CONCRETE SLAB WITH BEAMS AND GIRDERS

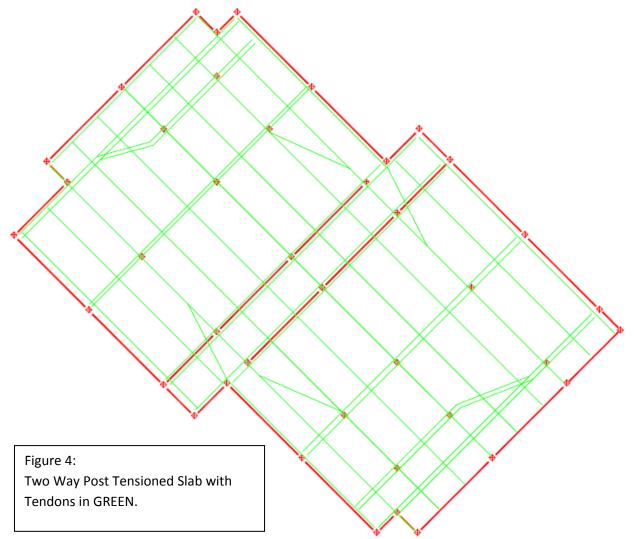
For this system, I assumed the floor framing layout would not differ from the existing system, only the material would change. Concrete beams and girders would replace the existing steel beams and girders at their current locations (See Figure 3 below). Therefore, no additional columns or framing would be necessary for the alternative design. Typical spans are similar to those in the existing system (typically 22'-7" and 32'). For spans of 32', a 16" wide by 19" deep reinforced concrete beam is necessary. For 22'-7" beams carrying a distributed load, a 12" wide by 16" deep beam is necessary. For 22'-7" girders carrying a point load(s), a 16" x 16" beam is necessary. (See Appendix C for detailed calculations)

Swedish American Hospital Heart and Vascular Center 1400 Charles St, Rockford, IL

From ACI 318-05 Table 9.5(a), beam deflections in a one way slab design can be neglected if the depth of the beam (h) is > L/21 (assuming an interior span continuous on both ends). For spans of 32' and 22'-7", beam depths of 19" and 13" are required respectively and are less than or equal to the proposed beam and girder depths (19" and 16" respectively). For a one way slab (continuous on both ends) the slab deflection can be neglected if (h) > L/28. Maximum slab spans of 11'-4" yield a slab depth requirement of 4.86" which is less than the provided 5" slab.

The elements controlling the maximum framing depth are the beams and girders spanning 32'. They all have a depth of 19" which includes the 5" slab. Columns designs were not part of this assignment; however, it was assumed that 16"x16" columns would take the place of existing steel columns for calculation purposes. This is acceptable considering the maximum beam width is also 16". This system is a potential alternative; however, the poured concrete would require

more framing for the various beam sizes. Also, if erection time is an issue, a steel structure is able to be erected quicker than a concrete structure.

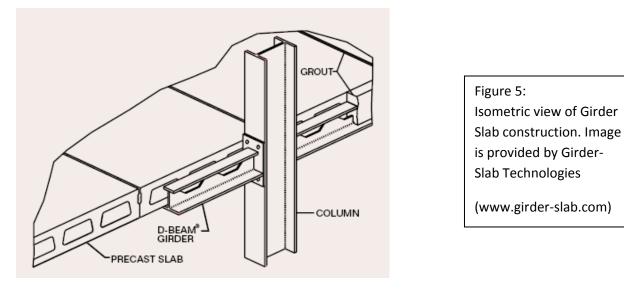

TWO WAY POST-TENSIONED SLAB

The 6th Edition Post-Tensioning Manual published by PTI (Post Tensioning Institute) was a valuable asset in the design of a two way post tensioned flat plate. Referencing ACI 318-05 Table 9.5(c), slab deflections in a two way flat plate can be neglected if the slab depth (h) is > $l_n/33$. Conservatively assuming $l_n = 32$ ' yields a slab depth of 11.5". This is a conservative assumption to adjust for potentially large deflections. A more detailed analysis may require column capitals and/or spandrel beams in various locations to help carry the load over longer spans and resist punching shear over columns. These areas were not considered during this preliminary analysis. For the current design, the maximum framing depth is governed by the 11½' slab.

A flat plate was chosen over other post tension systems to take advantage of the required thickness of the concrete slab. Flat plate systems have optimum spans of 20'-30' and are useful in 'light' to 'medium' loading conditions (100psf – 200psf). Flat plates commonly have thicker slabs which result in more material and increased material cost. However, flat plates require less formwork that generates a cost savings in labor and formwork and assists in speeding up the construction process.

Following the procedure provided in the PTI Manual, 23 tendons are needed to provide adequate strength in the slab (See calculations in Appendix D). Of these 23, 6 are assumed to be banded together over the column supports. The remaining tendons are distributed evenly over the width of the bay (approximately 1'-6" o/c or about 2x the slab thickness). A mesh of rebar is required in areas of positive and negative moments to help carry and distribute the load. To minimize the number of tendons needed per slab, tendons spanning the long dimension of the building are evenly distributed over the width of each bay with a fraction of them banded together over the column supports. The tendons that span the short direction of the building (perpendicular to the designed tendons) should be placed in narrow bands over the columns supports. (See Figure 4 below for framing details)

Swedish American Hospital Heart and Vascular Center 1400 Charles St, Rockford, IL



This system is considered a feasible solution, but future analyses should investigate using a thinner slab with column capitals or drop panels to resist punching shear, which usually governs the slab thickness. A reduction in slab thickness and the addition of drop panels would maximize the cost efficiency of the design and create a lighter floor system. The lighter floor system would also help decrease the high seismic base shear that will have an impact on the lateral framing system.

GIRDER-SLAB

The Girder-Slab system is a precast steel and concrete hybrid system. Precast concrete planks are supported by the bottom flange of special steel beams called D-Beams. D-Beams are available in two prefabricated depths: 8 inches and 9 inches with the largest size being a DB9x46. The two materials are assembled in place and connected together with a cementitious grout to achieve composite action (See Figure 5 below for more details). From their website (www.girder-slab.com), a design spreadsheet is an available download to aide in the preliminary design of the system.

The Girder-Slab system provides ideal performance in mid to high rise construction for residential structures. The D-Beams and precast planks work well with spans of $20^{\circ} - 25^{\circ}$ for lower residential live loads (40-50psf). To design the Girder-Slab system for the Heart Hospital, many adjustments must be made to the structure. By code, the live load of the hospital is 80psf, which is two times the optimum live load recommended by Girder-Slab Technologies. Therefore, additional columns must be installed to reduce the span lengths allow the system to handle the larger live load. The extra columns will also create a more symmetrical grid. However, additional columns would limit the flexibility of the spaces and interrupt the long open spans found in the hospital. In place of additional columns, additional wide flange beams could be installed in such a way to decrease the spans of the planks and D-Beams.

The additional beams would keep the flexible integrity of the open spans, but would still add additional cost and construction time to the project. If this system was chosen as a viable option, the largest D-Beam available (DB9x46) is needed to carry the large live loads. Once the D-Beams are in place and the precast planks are set, a 2" topping slab is poured on top of the planks and beams to create a smooth finish floor. This system has a maximum floor depth of 10" (not including the additional wide flange beams). To complete the design using additional beams, 4 additional columns are still needed. A total of 42 D-Beams are required with maximum spans of 22'-7". Not including wide flange beams acting as part of the lateral system, a total of 10 wide flange beams are need to transfer the gravity loads from the planks and D-Beams to the columns. (See Appendix E, Page 40 for a sketch of the Girder-Slab system layout)

This system is not a feasible option. The DB9x46 is not stiff enough to handle the heavy dead and live loads acting on the floor framing. First, the compressive stress in the concrete isn't able to handle the imposed stresses from the dead and live loads (see D-Beam Spreadsheet in Appendix F). Second, the live load deflection exceeds the acceptable value of L/360. Even if these two requirements were met, this system still requires 4 additional columns to minimize the span length of the D-Beams. These columns would increase the cost of the project and potentially decrease the flexibility of the open space on each floor.

FLOOR SYSTEM COMPARISONS

FLOOR DEPTH

The city of Rockford, Illinois building code is such that minimizing the floor to floor height in the building was not an issue. The number of floors within the hospital was based on a "Certificate of Need". A Certificate of Need specifies the number of occupants a new medical facility must design for and is based on the surrounding population and expected growth.

The existing floor to floor height between typical floors is 13'-3". The total floor depth of an existing typical floor is 30.25" and is controlled by the deeper W24x62 members spanning 32'. The 3" LOK deck and 3 ¼" of concrete rest on top of the wide flange shapes and complete the 30.25" floor depth. The alternate steel framing system has a maximum floor depth of 33.25". It is identical to the existing system except the controlling member is W27x84.

The one way slab and beam system has a governing depth of 19". By code, 19" beams are needed to span 32' to meet deflection requirements without completing the deflection calculations. The smaller beams spanning 22'-7" have a maximum depth of 16". The maximum width for the concrete beams is 16" and is controlled by the assumed width of the columns (16"x16" concrete columns assumed for the one way slab with beams system).

The two way post tensioned slab has a maximum floor depth of 11¹/₂". This dimension is controlled by Table 9.5(c) in ACI 318-05. Further analysis of this system could reduce the slab dimension to create a lighter floor and minimize the slab depth even more. However, drop panels necessary around the columns would still control the maximum floor to floor depth.

The Girder-Slab system has the smallest floor depth of all 5 framing systems. The maximum floor depth of 10" is controlled by the 8" precast plank and 2" topping slab. However, this system is too small and doesn't provide the strength needed to satisfy the required loads. If this system was to be designed to handle the imposed loads, deeper members (D-Beams) would be needed to provide more stiffness. For now, the deepest D-Beam member provided by Girder-Slab Technologies is a DB9x46. Deeper members could provide the stiffness needed to satisfy the loading conditions, but it would also increase the floor depth of the system.

Maximum Floor Depth								
Max Defl. Max Depth Slab Width								
Floor Type	Max Size	(d)	Camber	(in)	(in)			
Existing	W24x62	1.03	0.75	30.25	3.25			
Steel Alternative	W27x84	1.20	0.75	33.25	3.25			
One Way Slab	19" Beam	0.72		19.00	5.00			
Two Way PT	11.5" Slab			11.50	11.50			
Girder Slab	10"	1.46	0.35	10.00	2.00			

Cambers are used on the steel shapes in 3 of the 5 systems. A maximum camber of 0.75" is applied to a few beams and girders in the composite steel systems. In the Girder-Slab system, using their preliminary design spreadsheet available on their website (<u>www.girder-slab.com</u>) the

maximum camber in a D-Beam is only allowed to be enough to equal the maximum deflection due to dead load. There won't be any noticeable camber in either of the concrete systems; however, tendons in the post tensioned slab will be draped within the slab in such a way that it will act as if the slab was cambered. Both of the concrete systems would require shoring until the forms are stripped and after the forms are pulled, re-shoring may be required.

FLOOR WEIGHT

Assuming only the weight of the framing materials included in each floor system, the two composite steel systems have the lightest framing systems. Each assume a metal deck (with 3¹/₄" lightweight concrete) to have a dead weight of 48psf acting over a 25,000sf floor plate. RAM Structural System provided a detailed takeoff for all beams and columns in each steel framing system. For shear studs, I assumed an equivalent weight of 10 lbs of steel for each stud.

Existing Framing: (48psf)x(25000sf) + (57kips) + (1043)x(10 lbs)/1000 = 1267kAlternative Framing: (48psf)x(25000sf) + (63kips) + (1079)x(10 lbs)/1000 = 1274k

For the one way slab with beams and the two way post tension systems, only the self weight of the slab was taken into account. For the Girder-Slab system, only the 2" topping slab and the concrete planks were taken into account for floor weight (D-Beam steel was neglected). All slabs are assumed to be normal weight concrete (150pcf).

One Way Slab: (5/12)x(150pcf)x(25000) = 1563k Two Way P-T: (11.5/12)x(150pcf)x(25000) = 3600k Girder-Slab: [(2/12)x(150pcf) + (60 psf plank)]x25000sf = 2125k

All loads only take into account the floor weight (column weight was not considered). However, column take-offs in RAM for each steel system show 87.2k for the existing system and 70k for the alternative system. This difference is great enough to make the alternative system the lighter of the two systems and the lightest system overall.

Floor Weight								
Floor TypeSlabSteelOtherTotalTotal (k)K)K)K)K)V/Columns								
Existing	25000	-	57	48	1257	1344		
Steel Alternative	25000	-	63.3	48	1263	1333		
One Way Slab	25000	5	-	-	1563	-		
Two Way PT	25000	11.5	-	-	3594	-		
Girder Slab	25000	2	-	60	2125	-		

FIRE PROTECTION

By code, a 2 hour fire rating is required between all typical floors at the Swedish American Hospital Heart and Vascular Center. For the proposed concrete systems (one way slab with beams and two way post tensioned) a minimum concrete slab depth of 5" will provide the necessary 2 hour fire rating. The two composite steel systems both have 3 ¹/₄" of concrete above

the flutes of the metal deck. For composite steel and concrete with metal deck, this depth of concrete will provide a 2 hour fire rating for the floor system. The exposed steel and metal deck must be encased in some type of fire protection to maintain the required fire rating. In this case, spray on fire proofing is acceptable because solid steel shapes are being used for the floor framing, as compared to an open web steel joist system. For the Girder-Slab system, Girder-Slab Technologies maintains that their floor systems provide a minimum 2 hour fire rating with 8" concrete planks. However, all exposed steel D-Beams must be coated in a cementitious fire resistive material or otherwise enclosed in a fire rated assembly.

Tabulating the work required for each assembly, the two concrete systems take no additional work to achieve the required fire rating. The Girder-Slab system includes a two inch topping slab and only the exposed steel D-Beams would need to be coated with a spray on fire protective layer. The two steel composite systems would take the most work and extra material because both the exposed steel shapes and the metal deck would need to be coated with spray on fire protection.

Cost

The cost of a floor system is one of the most important criteria for selecting a floor type. For high rise structures, or structure with repeating typical floors, lowering the cost of a typical floor system will save a large sum of money over the entire building. For the Heart Hospital, Swedish American was willing to pay a larger amount up front for a building that wanted and fit the needs for their current and future plans.

In the October issue of Modern Steel Construction (MSC), Swedish American Heart Hospital project engineers Michael Bolduc and John Thomsen say "to keep up with the constantly evolving 'state-of-the-art' modern medicine and clinical practices" private hospitals are willing to pay a little extra to get "as much future flexibility as possible."

Cost Analysis								
		Cost p	per ft ²					
	Area Mat. Lab				Total			
Floor Type	(sf)	\$/sf	\$/sf	Total/Floor	\$/sf			
Composite Steel	25000	\$15.35	\$6.30	\$541,250.00	\$21.65			
One Way Slab	25000	\$5.75	\$10.35	\$402,500.00	\$16.10			
Two Way PT	25000	\$6.90	\$7.90	\$370,000.00	\$14.80			

The values used for the cost analysis were obtained from the 2007 R.S. Means Assemblies manual. All values assume a concrete compressive stress (f'_c) of 3000psi. The typical compressive stress used for this project is 4000psi. This difference could increase the overall cost of each systems based on the ratio of concrete used.

The cost of the Girder-Slab system was not listed in the R.S. Means Assemblies Manual. The cost could be estimated by pricing each individual item included in the system: precast planks, D-Beams, and concrete topping slab. However, a more precise way would be to contact Girder-Slab Technologies and request an approximate cost per square foot for their floor system.

Swedish American Hospital Heart and Vascular Center 1400 Charles St, Rockford, IL

This cost would also depend on location. Girder-Slab Technologies is based out of New Jersey and additional efforts would be need to find a prefabricator in the Chicago, Illinois area capable of completing their design.

LEAD TIME

Lead time was not a driving factor for this project. This project was phase 2 in a 3 phase construction plan, so the design was already completed and able to be sent to a steel fabricator when Swedish American decided to go forward with phase 2. Also, Swedish American Health System already had a functioning facility before the completion of the new Heart Hospital, so there wouldn't have been any profit loss due to slow construction. However, if lead time was crucial, steel fabrication could have taken 3 to 4 times the duration of concrete. It should be noted that concrete has a very short lead time and can be prepared by numerous companies, whereas, detailed steel fabrication many only be able to be completed by a select few companies nearby.

Constructability

Composite steel systems are typical framing systems used in steel construction and should not pose a major problem for any experienced contractor. Steel erection may require more skill than pouring concrete, but the erection process is much faster compared to concrete structures. Concrete systems can be difficult when workers are laying out rebar. In areas where the concrete is thin, rebar must be arranged and checked carefully to make sure it is at the correct depth and has enough cover. Post Tensioned systems can be problematic even for experienced contractors. Workers must make sure tendons are draped in the proper orientation before the concrete is poured and the tendons are stressed. It can take only one tendon in the wrong orientation to "blow out" the concrete on the outside of the slab. There is also the possibility of a tendon snapping and tearing up a section of concrete. Following the instructions on their website, the Girder-Slab system sounds like a quick and simple construction process. This is believable because of the precast members and cast in place topping slab.

It should be noted, spray on fireproofing necessary for all exposed steel members should not be applied until the concrete slabs have hardened above the beams. This is so the deflection due to the wet concrete weight does not crack the fireproofing on the beams.

VIBRATION

The vibration of a floor system is proportional to its overall stiffness. Therefore, it's understandable that both the concrete systems would have the smallest vibrations. The Girder-Slab system would experience vibration amplitudes between the concrete systems and the steel composite systems because it has a lower relative stiffness but is heavier than the steel systems. The steel systems would have the highest vibrations of all the systems. This is because they are the lightest and have a smaller stiffness than the concrete systems. To accurately compare the vibrations of each system, detailed calculations and computer models would need to be constructed to analyze each framing system.

COMPARISON SUMMARY

	Floor System Comparison Spreadsheet								
	Existing Composite	Alternative Composite	One Way Slab w/ Beams	Two Way PT Slab	Girder Slab				
Total Depth	30.25"	33.25"	19"	11.5"	10"				
Slab Thickness	6.25"	6.25"	5"	11.5"	2"				
Weight (Materials)	48 psf	48 psf	62.5 psf	144 psf	85 psf				
Max Span	32'	40.5'	11.5' (Slab)	32'	22.625'				
Deflection	1.03"	1.2"	0.72"	N/A	1.05"				
Cost per Floor	\$541,250	\$541,250.00	\$402,500	\$370,000	Contact Company				
Fireproofing	Spray On	Spray On	None	None	Spray On				
Lead Time	Long	Long	Short	Short	Contact Company				
Constructability	Easy	Easy	Medium	Medium	Easy				
Vibration	Average	Average	Above Average	Above Average	Average				
Column Changes	None	Remove Columns	May Need Columns	None	Add Columns				
Lateral Effects	None	None	Shear Walls	Shear Walls	None				
Feasible Solution	Yes	Yes	No	Yes	No				

APPENDIX A

• RAM Printouts for Existing Composite Steel Framing System

RAM Steel v11.0 DataBase: Ram Mode Building Code: IBC	el - Existing		Page 2/ 10/23/07 14:04:4 Steel Code: AISC LRFI
Steel Grade: 50			
Floor Type: Typical			1 A A
Story Levels 1 to 3			
Steel Grade: 50			
SIZE	#	LENGTH (ft)	WEIGHT (lbs)
W8X10	32	301.52	3037
W10X12	9	127.04	1530
W12X16	10	178.75	2865
W14X22	5	116.11	2564
W16X26	10	238.32	6228
W16X31	4	81.00	2516
W18X35	6	192.00	6729
W18X40	14	429.25	17236
W21X44	3	77.00	3406
W24X55	5	160.00	8874
W24X62	1	32.00	1993
			56979

Total Number of Studs = 1043

Gravity Column Design TakeOff

RAM Steel v11.0 DataBase: Ram Model - Existing Building Code: IBC 10/23/07 14:44:56 Steel Code: AISC LRFD

Steel Grade: 50

I section

Size	#	Length (ft)	Weight (lbs)	
		101 6	01076	
W14X43	17	491.6	21076	
W14X48	3	93.3	4477	
W14X61	8	278.3	16951	
W14X68	1	39.2	2665	
W14X74	1	39.2	2905	
W14X82	7	256.6	20958	
W14X90	3	111.7	10068	
W14X99	1	39.2	3878	
W14X109	1	39.2	4264	
	42		87242	

the set of the	RAM Steel							103	
	DataBase: F Building Co		el - Existin	g					/23/07 14:23:1 de: AISC LRFI
Floor Typ	e: Typical		Beam N	umber = 9	2	-			
	ORMATI	ON (ft):	I-End (-2	0.73.81.80)	J-End	(1.90,59.18	0		
Beam	Size (Optin Beam Lengt	num)	=	W18X40 32.00		(1		50.0 ksi	
COMPOS	ITE PROP	ERTIES	(Not Sho	red):					
					Left		Right		
Concr	ete thicknes	s (in)			3.25		3.25		
Unit w	eight concr	ete (pcf)			110.00		110.00		
fc (ks					4.00		4.00		
Deckin	ng Orientati	on			endicular		erpendicular		
	ng type			and the second second second second	.ok-Floor	USD 3	3" Lok-Floor		
beff (i		=	96.00	Y bar		=	18.28		
Mnf (l		-	702.90		kip-ft)	=	493.03		
C (kip		=	159.16	PNA		=	14.00		
leff (ir	straight and shares the	=	1399.80	Itr (in	Contraction of the second	=	2128.79		
	ength (in)	=	5.00	Stud	diam (in)	=	0.75		
	apacity (kip								
# of st		x = 64			Actual = 2				
Numb	er of Stud R	lows = 1	Percent	of Full Cor	nposite Ad	ction = 26.9	8		
LINE LO.	ADS (k/ft):								
Load	Dist	DL	CDL	LL	Red%	Туре	CLL		
1	0.000	0.905	0.735	0.905	19.3%	Red	0.453		
	32.000	0.905	0.735	0.905			0.453		
2	0.000	0.040	0.040	0.000		NonR	0.000		
	32.000	0.040	0.040	0.000			0.000		
SHEAR (I	Itimate):	Max Vu ((1.2DL+1.	6LL) = 36.	85 kips 0	0.90Vn = 15	52.24 kips		
MOMENT	S (Ultimat	te):							
Span	Cond		dCombo	Mu	(a)	Lb	Cb	Phi	Phi*Mn
				kip-ft	-				kip-ft
Center	PreCmp	+ 1.21	DL+1.6LL	211.8		0.0	1.00	0.90	294.00
	Init DL	1.4I	DL	139.0	16.0				
	Max +	1.2I	DL+1.6LL	294.8	16.0			0.85	419.07
Controlling	;	1.21	DL+1.6LL	211.8	16.0	0.0	1.00	0.90	294.00
REACTIO	NS (kips):								
uncinc	rus (mps).			Left	Right				
Initial	reaction			19.65	19.65				
DL rea				15.12	15.12				
	LL reaction			11.69	11.69				
010000000000000000000000000000000000000	total reaction		cd)	36.85	36.85				
			-	OBATAN EI	1970.201 FL				
	TONS: (C	amber =	and the second se	16.00.0	-	1.031	L/D =	372	
	load (in)		at	16.00 ft 16.00 ft		-1.031 -0.425	L/D = L/D =	373 904	
Live lo	ad (in)		at	16.00 ft		-0.425	L/D = L/D =	734	
	omp load (i	10	at						

APPENDIX B

• RA	AM Printouts f	for Alternative	Composite Stee	l Framing System
------	----------------	-----------------	----------------	------------------

RAM Steel v11.0 DataBase: RAM A Building Code: IB		lan	10/23/07 15:02:4 Steel Code: AISC LRFI
STEEL BEAM DESIGN T.	AKEOFF:		
Floor Type: Typical Story Levels 1 to 3 Steel Grade: 50			
SIZE	#	LENGTH (ft)	WEIGHT (lbs)
W8X10	30	284.52	2866
W10X12	9	127.04	1530
W12X16	10	178.75	2865
W14X22	5	116.11	2564
W16X26	10	238.32	6228
W18X35	6	163.75	5739
W18X40	14	429.25	17236
W21X44	3	77.00	3406
W21X50	2	64.00	3201
W24X55	5	160.00	8874
W24X62	1	32.00	1993
W27X84	2	81.00	6836
	97		63338

Total Number of Studs = 1079

Gravity Column Design TakeOff

	RAM Steel v11.0	
RAM	DataBase: RAM Alternative Floor Plan Building Code: IBC	10/23/07 15:22:06
NTERNATIONAL	Building Code: IBC	Steel Code: AISC LRFD

Steel Grade: 50

1	s	е	c	t1	n	n
		÷	*	••	•	**

Size	#	Length (ft)	Weight (lbs)	
W14X43	8	213.3	9144	
W14X48	3	93.3	4477	
W14X53	1	26.7	1415	
W14X61	4	145.0	8831	
W14X68	2	66.7	4537	
W14X82	4	145.0	11840	
W14X90	6	223.3	20136	
W14X120	2	78.3	9408	
	30		69788	

				Gr	avity Be	eam De	sign				
RAM	RAM Sto DataBase Building	: RAM	Alternativ	e Floor	Plan						/07 15:02 AISC LR
Floor Typ	e: Typic	al	Bea	m Nun	nber = 126		10.1				
	FORMA' Size (Op Beam Le	timum)	t): I-Eno	and the second	27X84	J-End (61	.16,61.16		= 50.0 k	si	
COMPOS			ES (Not	Shored):						
					·	Left		Righ	t		
Concr	ete thicks	ness (in)				3.25		3.25	5		
	veight con	ncrete (p	cf)			110.00		110.00			
fc (ks						4.00		4.00			
	ng Orient	ation			perpend		100 C	erpendicula			
	ng type				JSD 3" Lok			" Lok-Floo			
beff (i		=		7.00	Y bar(in	P	=	23.42			
	kip-ft)	=	1864		Mn (kip PNA (in		-	1438.74			
C (kip Ieff (in		_	513	8.32 7.87	Itr (in4)	100	=	7365.54			
	ength (in)			5.00	Stud dia		_	0.75			
	· · · ·		m[1] = 1		2n[2] = 17			0.75			
			ient: Max			6,27,24					
			Part			0,11,10					
			Act	ual		0,11,10					
Numb	er of Stud	d Rows =	2 Per	cent of	Full Compo	osite Actio	n = 25.67	7			
POINT L	OADS (k	ips):									
Dist	DL		RedLL	Red%	NonRLL	StorLL	Red%	RoofLL	Red%	C	LL
22.625	19.65	16.21	18.33	37.1	0.00	0.00	0.0	0.00	Snow	9.	16
32.000	7.82	6.47	7.20	37.1	0.00	0.00	0.0	0.00	Snow	3.	.60
LINE LO.	ADS (k/f	t):									
Load	Dist		L C	DL	LL	Red%	Туре	CLL			
1	0.000	0.45	0 0.	366	0.450	37.1%	Red	0.225			
	32.000	0.45	i0 0.	366	0.450			0.225			
2	32.000	0.90	0 0.	731	0.900	37.1%					
	40 500					57.170	Red	0.450			
	40.500	0.90		731	0.900	57.170	Red	0.450 0.450			
3	0.000	0.37	75 0.	305	0.375	37.1%	Red	0.450 0.188			
	0.000 40.500	0.37 0.37	75 0. 75 0.	305 305	0.375 0.375		Red	0.450 0.188 0.188			
3 4	0.000 40.500 0.000	0.37 0.37 0.08	75 0. 75 0. 34 0.9	305 305 084	0.375 0.375 0.000			0.450 0.188 0.188 0.000			
	0.000 40.500	0.37 0.37	75 0. 75 0. 34 0.9	305 305	0.375 0.375		Red	0.450 0.188 0.188			
4	0.000 40.500 0.000 40.500	0.37 0.37 0.08 0.08	75 0. 75 0. 84 0. 84 0.	305 305 084 084	0.375 0.375 0.000	37.1%	Red NonR	0.450 0.188 0.188 0.000 0.000			
4 SHEAR (I	0.000 40.500 0.000 40.500 Ultimate)	0.37 0.37 0.08 0.08 0.08	75 0. 75 0. 84 0. 84 0.	305 305 084 084	0.375 0.375 0.000 0.000	37.1%	Red NonR	0.450 0.188 0.188 0.000 0.000			
4 SHEAR (1 MOMEN	0.000 40.500 0.000 40.500 Ultimate)	0.37 0.37 0.08 0.08 0: Max V nate):	75 0. 75 0. 84 0. 84 0.	305 305 084 084 L+ 1.6L	0.375 0.375 0.000 0.000	37.1%	Red NonR	0.450 0.188 0.188 0.000 0.000	Phi	P	hi*Mn
4 SHEAR (1 MOMEN Span	0.000 40.500 0.000 40.500 Ultimate) FS (Ultim Cond	0.37 0.37 0.08 0.08 0: Max V nate):	75 0. 75 0. 34 0. 34 0. V u (1.2DI LoadCom	305 305 084 084 L+ 1.6L bo	0.375 0.375 0.000 0.000 L) = 83.05 Mu kip-ft	37.1% kips 0.90 ft	Red NonR 0Vn = 33 Lb ft	0.450 0.188 0.188 0.000 0.000 1.61 kips Cb			kip-ft
4 SHEAR (1 MOMEN Span	0.000 40.500 0.000 40.500 Ultimate) TS (Ultim Cond	0.37 0.37 0.08 0.08 0: Max V nate): 1 mp+ 1	75 0. 75 0. 84 0. 84 0. V u (1.2DI LoadCom	305 305 084 084 L+ 1.6L bo	0.375 0.375 0.000 0.000 L) = 83.05 Mu kip-ft 737.5	37.1% kips 0.90 @ ft 22.6	Red NonR 0Vn = 33) Lb	0.450 0.188 0.188 0.000 0.000 1.61 kips	Phi 0.90		
4 SHEAR (1 MOMEN Span	0.000 40.500 40.500 Ultimate) TS (Ultim Cond PreCu Init D	0.37 0.37 0.08 0.08 0: Max V nate): 1 mp+ 1 DL 1	75 0. 75 0. 84 0. 84 0. V u (1.2DI LoadCom 1.2DL+1.0	305 305 084 084 L+ 1.6L bo	0.375 0.375 0.000 0.000 L) = 83.05 Mu kip-ft 737.5 493.6	37.1% kips 0.90 ft 22.6 22.6	Red NonR 0Vn = 331 Lb ft 0.0 	0.450 0.188 0.000 0.000 1.61 kips Cb 1.00 	0.90		kip-ft 915.00
4 SHEAR (1 MOMENT Span Center	0.000 40.500 40.500 Ultimate) TS (Ultim Cond PreCt Init D Max	0.37 0.37 0.08 0.08 0: Max V nate): 1 1 DL 1 + 1	75 0. 75 0. 84 0. 84 0. Vu (1.2DI LoadCom 1.2DL+1.4 1.2DL+1.4	305 305 084 084 L+ 1.6L bo 6LL 6LL	0.375 0.375 0.000 0.000 L) = 83.05 Mu kip-ft 737.5 493.6 906.9	37.1% kips 0.90 ft 22.6 22.6 22.6 22.6	Red NonR 0Vn = 331 Lb ft 0.0 	0.450 0.188 0.188 0.000 0.000 1.61 kips Cb 1.00 	0.90 0.85	1	kip-ft 915.00 222.93
4 SHEAR (1 MOMENT Span Center Controlling	0.000 40.500 40.500 Ultimate) TS (Ultim Cond PreCt Init D Max	0.37 0.37 0.08 0.08 0: Max V nate): 1 mp+ 1 DL 1 + 1	75 0. 75 0. 84 0. 84 0. 70 (1.2DI LoadCom 1.2DL+1.4 1.2DL+1.4 1.2DL+1.4	305 305 084 084 L+ 1.6L bo 6LL 6LL 6LL	0.375 0.375 0.000 0.000 L) = 83.05 Mu kip-ft 737.5 493.6	37.1% kips 0.90 ft 22.6 22.6	Red NonR 0Vn = 331 Lb ft 0.0 	0.450 0.188 0.000 0.000 1.61 kips Cb 1.00 	0.90	1	kip-ft 915.00
4 SHEAR (I MOMENT Span Center Controlling DEFLEC	0.000 40.500 0.000 40.500 Ultimate) TS (Ultin Cond PreCt Init D Max	0.37 0.37 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	75 0. 75 0. 84 0. 84 0. 70 (1.2DI LoadCom 1.2DL+1.4 1.2DL+1.4 1.2DL+1.4	305 305 084 084 L+ 1.6L bo 6LL 6LL 6LL 5LL	0.375 0.375 0.000 0.000 L) = 83.05 Mu kip-ft 737.5 493.6 906.9 737.5	37.1% kips 0.90 ft 22.6 22.6 22.6 22.6 22.6	Red NonR 0Vn = 33) Lb ft 0.0 0.0	0.450 0.188 0.188 0.000 0.000 1.61 kips Cb 1.00 1.00	0.90 0.85 0.90	1	kip-ft 915.00 222.93 915.00
4 SHEAR (I MOMENT Span Center Controlling DEFLEC Initia	0.000 40.500 0.000 40.500 Ultimate) TS (Ultin Cond PreCr Init D Max g CTIONS al load (i	0.37 0.37 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	75 0. 75 0. 84 0. 84 0. 70 (1.2DI LoadCom 1.2DL+1.4 1.2DL+1.4 1.2DL+1.4	305 305 084 084 L+ 1.6L bo 6LL 6LL 6LL	0.375 0.375 0.000 0.000 L) = 83.05 Mu kip-ft 737.5 493.6 906.9 737.5 20.3	37.1% kips 0.90 @ ft 22.6 22.6 22.6 22.6 22.6 22.6 86 ft =	Red NonR 0Vn = 33 Lb ft 0.0 0.0	0.450 0.188 0.000 0.000 1.61 kips Cb 1.00 1.00	0.90 0.85 0.90 L/D	1	kip-ft 915.00 222.93 915.00 422
4 SHEAR (I MOMENT Span Center Controlling DEFLEC Initia Live	0.000 40.500 0.000 40.500 Ultimate) TS (Ultin Cond PreCtinit D Max S CTIONS al load (in load (in	0.37 0.37 0.08 0.08 0: Max V nate): 1 1 1 1 1 1 2 1 1 2 1 3 5: (Can in))	75 0. 75 0. 34 0. 34 0. 7 u (1.2DI LoadCom 1.2DL+1.4 1.2DL+1.4 1.2DL+1.4 nber = 3	305 305 084 084 L+ 1.6L bo 6LL 6LL 6LL 5LL	0.375 0.375 0.000 0.000 L) = 83.05 Mu kip-ft 737.5 493.6 906.9 737.5 20.3	37.1% kips 0.90 ft 22.6 22.6 22.6 22.6 22.6	Red NonR 0Vn = 331 Lb ft 0.0 0.0 1. -0.	0.450 0.188 0.000 0.000 1.61 kips Cb 1.00 1.00	0.90 0.85 0.90 L/D L/D	1	kip-ft 915.00 222.93 915.00 422 1086
4 SHEAR (I MOMENT Span Center Center Controlling DEFLEC Initia Live	0.000 40.500 0.000 40.500 Ultimate) TS (Ultin Cond PreCr Init D Max g CTIONS al load (i	0.37 0.37 0.08 0.08 0: Max V nate): 1 1 1 1 1 1 2 1 1 2 1 3 5: (Can in))	75 0. 75 0. 34 0. 34 0. 7 u (1.2DI LoadCom 1.2DL+1.4 1.2DL+1.4 1.2DL+1.4 nber = 3	305 305 084 084 L+1.6L bo 6LL 6LL 6LL 6LL 6/4) at	0.375 0.375 0.000 0.000 L) = 83.05 Mu kip-ft 737.5 493.6 906.9 737.5 20.4 20.4	37.1% kips 0.90 @ ft 22.6 22.6 22.6 22.6 22.6 22.6 86 ft =	Red NonR 0Vn = 331 Lb ft 0.0 0.0 1. -0.	0.450 0.188 0.000 0.000 1.61 kips Cb 1.00 1.00	0.90 0.85 0.90 L/D	1	kip-ft 915.00 222.93 915.00 422

Page 21 of 41

APPENDIX C

• Hand Calculations for One Way Concrete Slab with Beams and Girders
Alternative : 1 UAY CONC SLAD W/ BRAMS & GIRDERS
Assuming Typical Floor (2nd, 3nd, 41%, 64%, 74%)
Super imposed OL = 17 p.S
LL = 80 pef
Assume S" thick slab (Normal Weight Conc = 150 pcf)
Self Wright =
$$\frac{1}{12}(150) = 62.5 \text{ ps} \text{ f}$$

1.20 + 1.6C
1.2(17 + 52.5) + 1.6(eo) = 224 psf
Typical BCAIM / GIRDER SPANS : 22'-7%
32'-0"
Typical SLAB SPANS : 11'-9"
DEPTH OF BEAMIS / SLAB [Act SIB-05, TABLE 9.5(4)]
BEAMS:
32'SPAN => $\frac{1}{21} = \frac{32(n)}{21} = 18.3" => USE h-19^{16} for 32'SPANS
and contact = $\frac{1}{21} = \frac{32(n)}{21} = 12.9" \in 16^{\circ} \text{ Mok}$
SLAB
11.33' SPAN => $\frac{1}{21} = \frac{22.6(n)}{20} = 4.86" \leq 5" Mok$$

ACT MOMENT COEFFICIENTS bopp = { cur st = 11.33' 8h = 3.33' (40" #Assume INTERIOR SPANS $M^{+} = \frac{\omega_{u} \ln^{2}}{16}, \quad M^{-} = \frac{\omega_{u} \ln^{2}}{11}$ • 32' BEAM * Assume ln=32' Width = 11.33' = 19.9 KFF $M^{+} = \frac{(22, 4)(11.33)(32)^{2}}{16 \cdot 1000} = 162.4 \text{ K-81}$ Museam SELP WT m = = (2241/11.331/322) = 236.3 K-St Negadive Manent: $a = \frac{A_{3}F_{1}}{858'_{2}b}, \quad M_{u} = \phi A_{3}F_{1}\left(d - \frac{a}{2}\right) = > \phi A_{3}F_{1}\left[d - \left(\frac{A_{3}F_{V}}{1.7f_{2}cb}\right)\right]$ My = 256,3 K-St As = 3.98 m² => use (4) #9 [As=4.0] * Assume d=16.5 -(4)#9 Positive Moment Mu=182.3" K-Pt $M_u = 182.3$ $A_s = 2.56 \text{ m}^2 = 2 \text{ use } (4) \# 8 \quad A_s = 3.16 \text{ m}^2 \text{ P}^2$ (4)# 16 " • ZZ, - 71/2" BEAM * Assume ln= ZZ.625 h=s' d= 13.5" widh = 11,33' M+= (224 × 11.33')(22.6752) = 81.3 K.84 $M^{-} = \frac{(224)(11.33')(22.625^{2})}{11 \cdot 1000} = 118.3^{16.14}$ My Boxm = 5,8 K-St SELF WT Negative moment: Mu= 124.1 K-St As = 7.34 in 2 => Use (4) # 8 As = 3.16m2 000 Positive moment: Mu = 87.1 K-PL (4)#8 16 As= 1.44 m2 => Use (4) # 6 As= 1.76 m2 0000 (4)#6 12"

· 32' GIRDER SELF WT OF BEAM SPANNING INTO GIEDER P=(241.33 s+)(224 psf) + (11 * 16) (22,625) (150 pcf) = 54.1 K + 4.15 K = 58.2 K $b_{ept} = \begin{cases} \frac{Span}{4} = 8'\\ cck = 22'\\ 8h = 40'' \end{cases}$ M+ = . 111 (P(L) = 207 K P) m = . ZZZ (P)(L) = 414 K-PA Negad Ne moment: Mu= 434 At => (6) # 11 As = 8.46 Mugeam SELP Lut $A_{s} = 7.97$ Posider Moment Mu - 227 (6) #11 (6) #7 = 3.6 6000 As = 3.2 ... 2 00 (6) #7 19 000000 16 · ZZ' 71/2" GIRDER P= (224 ps1)(309 SF) + (11 × 16 Y27.3 / 150 per) $P = 69,22^{k} + 5$ = 74.22 K Muber = 7.8 K-SL M+ = PL = ZIOKPL SELF WT M = = PL = Z10 10 SL Negative moment: Mu = 218 K.Ft (6) #8 As = 4.63 in 2 => (6)#8 As . 4.74 000 Positive Moment Mu = 218 K- Pt 16" $(4) \neq 9 \quad A_3 = 4.0 m^2$ As = 4.0 . m2 00000 (4)#9 16 "

CHECK SLAB THICKNESS (5") · l' Strip width , 11.3125' SPAN $\left(\frac{5}{12}, \left(1'\right)\right)$ = 50 pl $M^{+} = \frac{(80.0)(11.3125^{3})}{16.1000} = 0.64 \text{ K-B} \implies As = \#4 \text{ e } 12^{4} \text{ o/c}$ $M^{-} = \frac{80.0 (11.3125^{2})}{11 \times 10^{00}} = 0.93^{k-p_{1}} \longrightarrow A_{3} = #40 12^{*} 0/c$ a= (.2×60) = 0.294" \$Mun .9(.2)60 (3.5" - .294) = 36.2 K-in (3.0 K. PL) > 0.93 K. PL JOK DEFLECTIONS W= 1.2(D) + 1.6(L) E_L = 57000 June = .224 Kof x = 3605 Kosi Ec= 57000 54000 /1000 $I_{DM} = K\left(\frac{b_0 h^3}{12}\right)$ 16×16 $\frac{b_{e}}{b_{W}} = \frac{40''}{16} = 7.5 \\ \frac{1}{h} = \frac{3}{16} = .0125 \\ \end{array} \xrightarrow{\begin{subarray}{l} -> \end{subarray}} K = 1.49 \\ \xrightarrow{\begin{subarray}{l} -> \end{subarray}} S = \frac{(.22.4)(11.3')(32'')(32'')}{384(3605)(8137)} = 0.41'' \\ \xrightarrow{\begin{subarray}{l} -> \end{subarray}} K = 1.49 \\ \xrightarrow{\begin{subarray}{l} -> \end{subarray}} S = \frac{(.22.4)(11.3')(32'')}{384(3605)(8137)} = 0.41'' \\ \xrightarrow{\begin{subarray}{l} -> \end{subarray}} K = 1.49 \\ \xrightarrow{\begin{subarray}{l} -> \end{subarray}} S = \frac{(.22.4)(11.3')(32'')}{384(3605)(8137)} = 0.41'' \\ \xrightarrow{\begin{subarray}{l} -> \end{subarray}} K = 1.49 \\ \xrightarrow{\begin{subarray}{l} -> \end{subarray}} K = 0.41'' \\ \xrightarrow{\begin{subarray}{l} -> \end{subarray}} K = 1.49 \\ \xrightarrow{\begin{sub$ @ For FixED - FIXED END CONNECTIONS I = 1,49 (16× 163) ~ 8137 11 4 $\frac{12\times16}{22} = K\left(\frac{b\omega h^3}{12}\right)$ $\frac{bc}{bw} = \frac{40}{12} = 3.3 \\ \frac{1}{12} = \frac{3.3}{324} - 3K = 1.67$ $\int = \frac{(.224)(1.3)(22^{-4})(.128)}{324(3005)(6240)} = 0.12^{-4} \text{ Vok}$ I= 1.67 (12×103) = 6840 IN4 $\frac{22 \times 16}{32'} \quad \text{Igr} = K\left(\frac{6 \times h^2}{12}\right)$ 16 + 10 ZGR = K (buh3) 5. 1008 (74,2 ¥223) 1728 2 0.404 4 VOK 3605 (8137) bc = 2,5 th = ,3125 I= 8137

APPENDIX D

	_			SIONING MANUAL	_ DATE	
		_	or Ed	t	BY	
					CHECKED BY	_
	DES	(AN)	OF A TWO-	WAY P.T SLAB		
	<u>n</u>	ICAIN				
Ci.						
	= 40			L= 80 psf		
		,000		artidion Lomp = 10 psf		
D	= 150	pef 1	one D	DL-12 psf		
f.	- 2	70,000	psi			
P	^	1 1	Sheets Starting			
-	-					
-	00	WAY	SLAB = SPAN	PLOCPSH	040.0	
			L	= <u>32</u> (112) = 8,5" = 2 45 =	> Y SLAB	
			45	45	> USE 11,5" P. R.	(C)
L	OAD	5				and the
-		DLa	3 (150) = 14	14 psf + 17 psf = 161	5. 9,	06
			1,2 (DL)			
			12 (00)	- 1919 ps -		
		LL=	32' 1 32' 64	¥5	5 = 40%, use 40	10
			80 x (1-	25 .08(32×32-193) - 80(.3	5)	
			- (·	100		
			80 (.4) = :	32 050		
			22' x22' bays			
			LE XCE Days	ne (22 ² - 193)		
			80 x (1-	.08(22 ² -193)) = 6F.9 ps		
		TL	= 193 +	1.6 (32) = 2441 psf	# LL 18 x 27 Bays	1
					80 (1- 100 (18×27 - 19)	1
		TI	= 193 + 14	0(585) = 291 psf	* 61,3 psf	
		1 - 22	147			
L	OAD		ANCING			
		Tend	ns belence 80%	O OF SLAB WERGET		
			(.8)(.144)	= 0.115 Ksf		
		MAY	TENDON SA	5 : 115" - 1" - 1" = 95"		
		-	12	1 = V == 1)2		
		Fc =	WBALL	= (.115 × 32') = 18.6 ×/51 8(95/2)		
			84	8(9%12)		

* Assume 1/2" \$, 270 KS: Tendons (14 KS: long term stresses)
.153 x (.7 x 270 - 14) = 26.8 K (per Jenden) '
$= FOR 32' BAY = 32 \times \left(\frac{18.6}{26.8}\right) = 22.5 = USE 23 TENDONS$
$F_{z} = 29\left(\frac{26.8}{32}\right) = 39.3 \text{ K/S+}$
F/A = TA.3/(A.S.M.) = 0.14 KSi
TENDON PROFILE: (COLUMN LINE 4)
5.75"
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
SPAN CD (22')
$\frac{SPANCD}{72^{\prime}} = \frac{1000}{L^2} = \frac{8F_{cq}}{L^2} = \frac{8(1913)(8/12)}{22^2} = 0.213 \text{ ksd}$
=> Adjust Tenden prosite in span AC
$a = \frac{W_{PAL}L^2}{8Fc} = \frac{0.213(18^2)}{8(19.3)} \times 12 = 5.4 \text{ "} \leq 6.38^{\text{"}} \sqrt{0K}$
$\frac{\text{MIDSPAN} \text{CGS:}}{(5.17+10.3)} = 5.4 = 2.72^{11} = 2.75^{11}.$
ACTUAL SAGE IN SPANS AC (ENO SPANE) (5:75+10,5) - 7.75= 5.375
BALANCE LOAD IN SPANS
$\frac{\text{SPAN AC}}{ 8' } = \frac{8 F_{C} \alpha}{L^{2}} = \frac{8 (49.3) (5875/12)}{18^{2}} = 0.213 \text{ KsS}$ $\frac{18'}{18^{2}} = \frac{18}{18^{2}} = 0.12 \text{ KsS}$ $\frac{18}{37^{2}} = 0.12 \text{ KsS}$
SPAN DE = UBAC = 8 (10,3) (**/12) = 0.12 KSF 321 322

N	ET LOAD CAUSING BENDING TOTAL UNFACTORED LOAD
	SPAN DE (32'): Wn= = .19312 = 0.073 K36
	SPAN AC (181) : Wast = .222213 : 0.009 Kst
	SPAN CD (22'): Where 222-,213 : 0,009Ksf
EQUI	VALENT FRAME PROPERTIES
- 4 MI	
co	LUMN STIFFNESS (APPROX METHODS)
	K = 4ET Assume All Columnus = 16" x16"
	$K_{c} = \frac{4ET}{L-2h} \qquad \qquad \boxed{* Assume All Columnus = 16" \times 16"} \\ \times Assume h = 11' = 132" \qquad \qquad$
	$T_{cot} = 16 \times 16^3 = 5461 \text{ is}^4 \frac{E_{col}}{E_{SLAD}} = 1.0$
	Escalo
	$K_c = 4(1.0)(5401) = 200.4 \text{ m}^3$ 132"- 2(ms)
T	DRSIDNAL STIFFNESS OF SLAB
10	
	$C = [163 \frac{x}{y}] \frac{x^{3}y}{3}$
	$= \left[\left[63(11) \frac{1}{16} \right] \left(\frac{115^3 \cdot 16}{3} \right) \right]$
	= 4438
	K1 = 9 (E = 9 (4438) 1.0) 22510
	$K_{+} = 9 \ \zeta E = 9 \ (\mu + 38) (1.0) = \frac{22570}{12} \ (27.3' \times 12) (1 - \frac{1.33}{27.3})^{3} = \frac{22570}{292}$
	= 141.6 13
	$\frac{1}{K_{ec}} = \tilde{Z}K_{T} + \tilde{Z}K_{c}$
	$K_{ec} = \left[\frac{1}{(2_{A}M_{F}G)} + \frac{1}{(2_{X}200)}\right] = \frac{166_{10}}{166_{10}} For ALL columns$
	Kec = (2,1416) * (2x200)

Swedish American Hospital Heart and Vascular Center 1400 Charles St, Rockford, IL

0	SLAB	STIFFN	ESS											
		width =	27,3'					,						
		11 = 7												
	K	$= \frac{4EI}{L_1 - (}$	(4)		Ke	= 166 , .	?							
		L1 - (2)											
				3)				1						
	Ke	= 4(1,0 ZZ	JZ7,3 (11)	5	= 649 m	3								
	Z2 '	ZZ	(12.) -	(1/2)										
			V V 3											
	Ks	= 4 (110	X 27, 3 (115	=	942 11 3									
	32	52	(12*)-("/z)										
		1	N N	2)		2			-					
	Ks	- 4 (1,0	KZ7,3 (Hos	2 2	798 m				-					
	10	16	(12) - 8											
Ē	DISTRIE	ution_	FACTORS											
	AW	= 0.009	w	= .00a	0 ~	= 0.073	E	-						
	1													
DF	,82	.495	-	,51			.31		2		-			
FEM		+ ,513		+ , 72			5.55		Ī				-	
	+.395-	+.101			1 +1.606 -,83 Z		803							
							-							
		655			1 +. 263		241	_				_		
JOJAC	-,106	+ 0.05	+.007	3.52	-4.5	4	.15							
					MAX									
	MAXI	VEGATION	e mome	NJ					-					
				m	Ve									
		AT COL	PACE (D	$) = nn_{\mu}$	nay T 3									
				4 5 4	1 (.073	x 32 /1	6	1						
		10.1		TINT	31	2 1								
		- 10	MAK	4.00)	5-4									
		c	- 6h2 -	16×11.5	2 (. 073 2 - F 3 - F 3 - F	2								
		2	6	6	11 (20	2								
V/A		2	75	m	=145	+ (4.00	×12)							
		9413	= - dpc	= S	=140	7 35	>			-				
			= 1 m	0) /	XXX Ksi									
			(.02	0) (X04 KSI									

ALLOWAGUE TENSION = $(A21 318-05)$ 1 11 GJSTE = 0.38 KS1 > 0.028 KS1 ICK ALLOWAGUE COMPRESSION = $(und. bd) = 1 (ec.t)$.GSTE = .6(uond) = 2.4 KS1 > .604 KS1 [OK] $(und. sinsteined loads].46 3/c = .45 (uon) = 1.8 KS1 \ge .004 KS1 [OK]MAX POSITIVE MOMERTSPAN DE = M \ge .075 (32!)/6 - 5.55 = [3.600 K.1H] = CONTPOLSSPAN DE = M \ge .075 (32!)/6 - 5.55 = [3.600 K.1H] = CONTPOLSSPAN DE = M \ge .075 (32!)/6 - 7.76 = -0.18 E-F1SPAN DE = M \ge .009 (22!)/8 - 7.76 = -0.18 E-F1SPAN DE = M \ge .009 (22!)/8 - 0.27 KS1 = [3.600 K.1H] = CONTPOLSSPAN DE = M \ge .009 (22!)/8 - 0.27 KS1 = [3.600 K.1H] = CONTPOLSSPAN DE = M \ge .009 (22!)/8 - 0.27 KS1 = [3.600 K.1H] = CONTPOLSSPAN DE = M \ge .009 (22!)/8 - 0.27 KS1 = [3.600 K.1H] = CONTPOLSSPAN DE = M \ge .009 (22!)/8 - 0.27 KS1 = [3.600 K.1H] = CONTPOLSSPAN DE = 0.011 KS1 = -0.017 KS1 = [3.600 K.1H] = CONTPOLSSPAN DE = 0.011 KS1 = -0.017 KS1 = [3.600 K.1H] = CONTPOLSSPAN DE = 0.011 KS1 = -0.017 KS1 = [3.600 K.1H] = CONTPOLSSPAN DE = 0.011 KS1 = -0.017 KS1 = [3.600 K.1H] = CONTPOLSSONDED REINFORCEMENT IN TENSION = [3.350 K.1H] = CONTPOLSSPAN DE = T = -0.017 KS1 = [3.750 K] = [3.$
ALLOWA BLE COMPRESSION: (under bothel local) .6 fle = .6(4000) = 2.4 KS1 > .604 KS1 /OK (under Susphermed locals) .46 fle = .45/4me) = 1.8 KS1 ≥ .004 KS1 /OK MAX POSITIVE MOMENT SPAN DE = M = .075 (32 ³)/8 - 5.55 = [3.603 K.1] = CONTROLS SPBN CD : M = .009 (22 ³)/8 - 7.76 = -0.18 K-FI $5_{4,6} = -f_{p,2} \pm \frac{MNCL}{5} =144 \pm \frac{12(3.80)}{350}$ $f_{4,6} = -0.01 K KS1, -0.27 KS1$ COMPRESSION AT TOP = 0.27 KS1 ≤ 1.8 KS1 /OK $\leq 2.4 K_{2}$ Tension AT COTION =01K ± 0.474 FOK ≤ 0.32 $F_{4} = 2JT_{12} = 2[4000 = 0.126$ $O.126 \ge T = -0.01 T KS1$
$G \ f(L = .6(4000) = Z.4 \ KS1 >004 \ KS1 / OK (under Sustement locols)48 3'C = .45(400) = 1.8 \ KS1 \ge004 \ KS1 \ POKMAX POSITIVE MOMENTSPAN DE = M = .075 (32°)/8 - 5.55 = [3.80 \ K.11] \leftarrow CONTPOLSSPEN CO : M = .007 (22')/8726 = -0.18 \ K-S1F_{4,6} = -F_{FC} \pm \frac{M_{MEL}}{S} =141 \pm \frac{12(3.80)}{350}F_{4,6} = -0.01 \ KS1, -0.27 \ KS1COMPRESSION AT TOP = 0.27 \ KS1COMPRESSION AT TOP = 0.27 \ KS1Tension AT COTION =07F \le 0.4744\le 0.320F_{4} = 2.55c = 2.54000 \ = 0.126F_{4} = 2.55c = 2.54000 \ = 0.126$
$G \ f(L = .6(4000) = Z.4 \ KS1 >004 \ KS1 / OK (under Sustement locols)48 3'C = .45(400) = 1.8 \ KS1 \ge004 \ KS1 \ POKMAX POSITIVE MOMENTSPAN DE = M = .075 (32°)/8 - 5.55 = [3.80 \ K.11] \leftarrow CONTPOLSSPEN CO : M = .007 (22')/8726 = -0.18 \ K-S1F_{4,6} = -F_{FC} \pm \frac{M_{MEL}}{S} =141 \pm \frac{12(3.80)}{350}F_{4,6} = -0.01 \ KS1, -0.27 \ KS1COMPRESSION AT TOP = 0.27 \ KS1COMPRESSION AT TOP = 0.27 \ KS1Tension AT COTION =07F \le 0.4744\le 0.320F_{4} = 2.55c = 2.54000 \ = 0.126F_{4} = 2.55c = 2.54000 \ = 0.126$
$\begin{array}{c} (under Sustemed loces) \\ .46 3'c = .45 (44.4) = 1.8 (KS1 2004 KS1 70K \\ \hline \\ MAX POSITIVE MOMENT \\ \hline \\ SPAN DE = M2.075 (322)/8 - 5.55 = [3.80 K.14] \leftarrow CONTROLS \\ SPEN CD : M2.009 (223)/8776 = -0.18 K-51 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
$\begin{array}{c} .485 \ 3'C = .45 \ 4me \) = 1.8 \ KS1 \ \ge .004 \ KS1 \ \overrightarrow{rolc} \\ \hline \mbox{MAX POSITIVE MOMENT} \\ \hline \mbox{SPAN DE : } M = .075 \ (32^{2})/6 \ - 5.55 \ = \ 3.800 \ K \cdot 11 \) \ \leftarrow \ CONTPOLS \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{c} .485 \ 3'C = .45 \ 4me \) = 1.8 \ KS1 \ \ge .004 \ KS1 \ \overrightarrow{rolc} \\ \hline \mbox{MAX POSITIVE MOMENT} \\ \hline \mbox{SPAN DE : } M = .075 \ (32^{2})/6 \ - 5.55 \ = \ 3.800 \ K \cdot 11 \) \ \leftarrow \ CONTPOLS \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SPAN DE = M = .073 $(32^{2})/8 - 5.55 = 3.60 \text{ K} \cdot 11) \leftarrow CONTROLS$ SPAN CD : M = .009 $(22^{2})/8726 = -0.18 \text{ K} \cdot 51$ $f_{1,6} = -f_{P} \pm \frac{M_{NEL}}{S} =145 \pm \frac{12(3.89)}{350}$ $f_{1,6} = -0.017 \text{ Ks}; -0.27 \text{ Ks};$ COMPRESSION AT JOP = 0.27 Ks; $(2.37) \times 10^{2} \text{ K} \cdot 51$ Tension AT COTION =015 ≤ 0.4744 VOK ≤ 0.320 BONDED REINFORCEMENT IN TENSION $f_{\pm} = 2JST_{\pm} = 2[4000] = 0.126$
$SPAN CO : M = .009(22^{3}/16726 = -0.18 \times -91$ $F_{1,6} = -F_{pc} \pm \frac{M_{WCL}}{5} =146 \pm \frac{12(3.80)}{350}$ $F_{1,6} = -0.011 \text{ Ks}^{2}, -0.27 \text{ Ks}^{2}$ $COMPRESSION AT TOP = 0.27 \text{ Ks}^{2} \leq 1.8 \text{ Ks}^{2} \text{ / OK}$ $\leq 2.4 \text{ Ks}^{2}$ $Tension AT COTTOM =015 \leq 0.474 \text{ / OK}$ ≤ 0.35 $BONDED REINFORCEMENT IN TENSION$ $F_{c} = 2JS_{1c} = 2[4000 = 0.126$ $0.126 \geq T = -0.015 \text{ Ks}^{2}$
$SPAN CO : M = .009(22^{3}/16726 = -0.18 \times -91$ $F_{1,6} = -F_{pc} \pm \frac{M_{WCL}}{5} =146 \pm \frac{12(3.80)}{350}$ $F_{1,6} = -0.011 \text{ Ks}^{2}, -0.27 \text{ Ks}^{2}$ $COMPRESSION AT TOP = 0.27 \text{ Ks}^{2} \leq 1.8 \text{ Ks}^{2} \text{ / OK}$ $\leq 2.4 \text{ Ks}^{2}$ $Tension AT COTTOM =015 \leq 0.474 \text{ / OK}$ ≤ 0.35 $BONDED REINFORCEMENT IN TENSION$ $F_{c} = 2JS_{1c} = 2[4000 = 0.126$ $0.126 \geq T = -0.015 \text{ Ks}^{2}$
$\begin{aligned} & \int_{4,6} z - \int_{P^{-}} \pm \frac{M_{WEL}}{5} &=146 \pm \frac{12(3.80)}{350} \\ & \int_{4,6} z - 0.015 \text{ ksi}, -0.27 \text{ ksi} \\ & \text{COMPRESSION AT TOP} = 0.27 \text{ ksi} \leq 1.8 \text{ ksi} \text{ for } \\ & \leq 2.4 \text{ ksi} \end{aligned}$ $\begin{aligned} & \text{Tension AT Cottom} =015 \pm 0.474 \\ & \leq 0.32 \end{aligned}$ $\begin{aligned} & \text{BONDED REINFORCEMENT IN TENSION} \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
$S_{1,b} = -0.011$ Ksi, -0.27 Ksi COMPRESSION AT TOP = 0.27 Ksi ≤ 1.8 Ksi $\sqrt{0}$ K ≤ 2.4 Ksi Tension AT COTTOM = $01F \leq 0.474$ $\sqrt{0}$ K ≤ 0.32 BONDED REINFORCEMENT IN TENSION $E_{T} = 2JS_{12} = 2J4020 = 0.126$
$S_{1,b} = -0.011$ Ksi, -0.27 Ksi COMPRESSION AT TOP = 0.27 Ksi ≤ 1.8 Ksi $\sqrt{0}$ K ≤ 2.4 Ksi Tension AT COTTOM = $01F \leq 0.474$ $\sqrt{0}$ K ≤ 0.32 BONDED REINFORCEMENT IN TENSION $E_{T} = 2JS_{12} = 2J4020 = 0.126$
COMPRESSION AT TOP = 0.27 KSI ≤ 1.8 KSI $\int OK$ ≤ 2.4 KSI Tension AT BETOM =01F ≤ 0.474 $\int OK$ ≤ 0.352 $\int OK$ BONDED REINFORCEMENT IN TENSION $E_{\pm} = 2JSI_{\pm} = 2[4000] = 0.126$ $O.126 \geq T = -0.01T$ KSI
Tension AT BETTOM =01F ≤ 0.474 ≤ 0.322 BONDED REINFORCEMENT IN TENSION $E = 2JS_{12} = 2[4000] = 0.126$ $0.126 \geq T = -0.01T$ bit
Tension AT BETTOM =01F ≤ 0.474 ≤ 0.322 BONDED REINFORCEMENT IN TENSION $E = 2JS_{12} = 2[4000] = 0.126$ $0.126 \geq T = -0.01T$ bit
Tension AT BETTOM =01F ≤ 0.474 ≤ 0.322 BONDED REINFORCEMENT IN TENSION $E = 2JS_{12} = 2[4000] = 0.126$ $0.126 \geq T = -0.01T$ bit
BONDED REINFORCEMENT IN TENSION $E = 2JJ_{12} = 2[10000 = 0.126$ $0.126 \ge T = -0.01T$ ksi
BONDED REINFORCEMENT IN TENSION $E = 2JJ_{12} = 2[10000 = 0.126$ $0.126 \ge T = -0.01T$ ksi
BONDED REINFORCEMENT IN TENSION $E = 2JJ_{12} = 2[10000 = 0.126$ $0.126 \ge T = -0.01T$ ksi
$f = 2JS_{12} = 2[u_{0000} = 0.126$ $0.126 \ge T = -0.01T$ ksi
$0.126 \ge T = -0.01T^{k_{5}}$
$0.126 \ge T = -0.01T^{k_{5}}$
> NO POSITIVE REINFORCEMENT REQUIRED

Swedish American Hospital Heart and Vascular Center 1400 Charles St, Rockford, IL

	RAL CAPACI			
SPAN DE	(32') : FEM	= WBAL = 0.	12 32 2 10.24 8-3	54
		12	12	
SPAN CO	(22') : -213 (2	2" = 8,6 K-A		
SPAN AC	(18) : 113 (18"	- 5.75 K.ft		
	12			
A	4	D	E	
DF .ZZ	.49 .40	-51 .35	.31	
FEM -517	5 - 5.75 -8.6	8.6 -10,24		
+4.71	- +1,40 +1.14 -	the second se		
+,70	+2.35 4.42	+.57 -1.50	+.28	
57_	-1.36 -1.0	+.47 +.33	-0.08	
7-68			+ =16	
+.56		+.30 +.21	05	
Sum -1.03	7.88 -7.9	10.23 -10.6	7.55	
)				
M	= M. + M	Mz = MDAL - M.		
UAC	1.2)	- MC		
50	condary Maments	s = (From Tendon	5	
The second second				
	CA: M. = 10	$3 - 19.3(\frac{0}{12}) = 1.0$	3 K-SI	
	CC M. = 7.8	$381 - 19.3 \left(\frac{5.75 - 1}{12}\right) =$	0.24 K-84	
	$CC_{1} + = 7.9$	- 19.3 (12) = 0.2	6 K-St	
	C Der = 10.23	- 19.3 (475) = Z.S	g x-fl	
	2 Dint = 10.67	- 19.3 (475) = 3.0	3 K-Ft	
	= Eext = 7.55	- 19.3(4.75)0.0	9 K-62	
FACTOR	D LOAN MO	MENTS: 1.2(1)+ 1.6/LL)	
			, , , ,	
SPAN D	5 (32') = 244	1 x 32°/12 = ZO.	B K-14	
SPANI CY	(221) = 291	× 22 ² /12 = 11.2	7 K-St	
SPAN A	(101) 3 791	$\times zz^{2}/12 = 11.2$ $\times 18^{2}/12 = 7.8$	3 r-ft	
	- [0]	0 1 - 110		

DF	A	C		P			CHECKE			
PI	.8z	.49	,40	.51 .	35	3	51			
FEM	-78	+70	-11 7	+11.7/ -	-20.8	+20,8	3			
	+6.4	+1,91	+1,56	+4.64 +	3.18 ->	-6.20	1 9			
	+6.4	+3.2	+2.32	5 +.78 -1	3.12	+1.59				
	78	-2.7	-2.21	+1.19 +	.82	48				
	-1.35	-,39	+.59	-1.10 -	24	5+.91				
		10	-,08	+0.68 +	.47	12				
TOTAL	-1.47	9,72	-9.52	17.89 -	19.69	15.96				
							100			
							1			
1	DESIGN	mom	ENTS C	COL, FA	KE					
-										
	F.A.S.			A		1	10		E	
	FACTORE	0 m	MENT	-1.97	- 9,72	- 9.52	-17.89	-19.69	-15,96	
	Secondary			+1.03		+0.26				
	momens	eco	or q	-0.44		-9.26				
						1				
CAL	CULATE	11150	- 1 / - 1 /							
				FOR MID			ENTS			
			V = .29	(× 18 _	(9.4849	r.)	ENTS			
		\$`) :	V = .29 ext -29 = 2.1	2 KIJI C	(9.4849	r.)	ENTS			
		\$`) :	V = .29	2 KIJI C	(9.4849	r.)	ENTS			
	PAN AC (1	\$') e	$V = -29$ $= 2.17$ $V_{int} = 3.1$	$\frac{1 \times 18}{2} = \frac{1}{2} \times 151 = \frac{1}{2}$	(9.4844 18 900	t) eon s	SNTS			
	PAN AC (1	bing o	V = .29 = 2.17 Vint = 3.1 F 2000	1 × 18 - Z × 1St = 1Z × 1St = Shear Sour	(9.4844 18 gov n Ext,	t.) ems coc.				
	PAN AC (1	bing o	V = .29 = 2.17 Vint = 3.1 F 2000	$\frac{1 \times 18}{2} = \frac{1}{2} \times 151 = \frac{1}{2}$	(9.4844 18 gov n Ext,	t.) ems coc.		·		
	PAN AC (1	5') :	V = .29 = 2.17 $V_{int} = 3.1$ F 2000 $\chi = 2.12/1$	1 × 18 - 2 × 1 St = 12 × 1 St = Shear draw 291 = 7.	(9.4844 18 gov n Ext, 28 A &	t) coc, m & c	ol Ext			
	PAN AC (1	5') :	V = .29 = 2.17 $V_{int} = 3.1$ F 2000 $\chi = 2.12/1$	1 × 18 - 2 × 1 St = 12 × 1 St = Shear draw 291 = 7.	(9.4844 18 gov n Ext, 28 A &	t) coc, m & c	ol Ext			
	PAN AC (1	5') :	V = .29 = 2.17 $V_{int} = 3.1$ F 2000 $\chi = 2.12/1$	1 × 18 - Z × 1St = 1Z × 1St = Shear Sour	(9.4844 18 gov n Ext, 28 A &	t) coc, m & c	ol Ext			
SI	PAN AC (1	eine o NO SI	$V = \frac{29}{24}$ $= 2.17$ $V_{int} = 3.1$ $F = 2EPO$ $X = 2.12/1$ $PAN = 000$ $I_{max} = 000$	1 × 18 - 2 × 151 = 12 × 151 = shear frax 291 = 7. 5 171 VE mon 5 (2.172) (7.28	(9.4845 18 900 N EXT, 28 7 8. 28 7 8.	t) coc, m & c	ol Ext			
SP	PAN AC (1	ene o WO SH	V = .29 = 2.17 $V_{int} = 3.1$ F ZERO X = 2.12/. PAN POS $V_{max} =$ 291(22	$\frac{1 \times 18}{2} =$ $\frac{2 \times 131}{2 \times 131} =$ $\frac{1 \times 18}{2 \times 131} =$ $$	(9.4844) 18 900 NEXT, 28 7 8. 28 7 8. 29 7 8. 20 7 70 70. 20 7 70. 20 7 70. 20 7 70. 20 7 70. 20 7 70. 20	() ems col, m 4 a	1 Ext			
SP	PAN AC (1	ene o WO SH	V = .29 = 2.17 $V_{int} = 3.1$ F ZERO X = 2.12/. PAN POS $V_{max} =$ 291(22	$\frac{1 \times 18}{2} =$ $\frac{2 \times 131}{2 \times 131} =$ $\frac{1 \times 18}{2 \times 131} =$ $$	(9.4844) 18 900 NEXT, 28 7 8. 28 7 8. 29 7 8. 20 7 70 70. 20 7 70. 20 7 70. 20 7 70. 20 7 70. 20 7 70. 20	() ems col, m 4 a	1 Ext			
SI SP (PAN AC (1	oint o NO SI W V= Mma	V = .29 = 2.17 $V_{int} = 3.1$ F 2000 $\chi = 2.12/.$ PAN POS $M_{AX} =$.291 (25 $\chi =$	1 × 18 - 2 × 1 St - 12 × 1 St - 12 × 1 St - Shear frax 291 = 7. 5 17 1 VE MON 5 (2.12) (7.28 2') = 3.46 2.46 (11) - 1	(9.4844 18 900 NEXT, 28 A & DENT 3)4 2/51 15.30	() ()) Ext 1.27 A- M-14/A			
SI SP (PAN AC (1	oint o NO SI W V= Mma	V = .29 = 2.17 $V_{int} = 3.1$ F 2000 $\chi = 2.12/.$ PAN POS $M_{AX} =$.291 (25 $\chi =$	1 × 18 - 2 × 1 St - 12 × 1 St - 12 × 1 St - Shear frax 291 = 7. 5 17 1 VE MON 5 (2.12) (7.28 2') = 3.46 2.46 (11) - 1	(9.4844 18 900 NEXT, 28 A & DENT 3)4 2/51 15.30	() ()) Ext 1.27 A- M-14/A			
SI SP (PAN AC (1	oint o NO SI W V= Mma	V = .29 = 2.17 $V_{int} = 3.1$ F 2000 $\chi = 2.12/.$ PAN POS $M_{AX} =$.291 (25 $\chi =$	$\frac{1 \times 18}{2} =$ $\frac{2 \times 131}{2} =$ $\frac{2 \times 131}{2} =$ $\frac{2}{2} \times 131} =$ $\frac{3}{2} \times 131 =$ $\frac{3}{2} \times $	(9.4844 18 900 NEXT, 28 A & DENT 3)4 2/51 15.30	() ()) Ext 1.27 A- M-14/A			

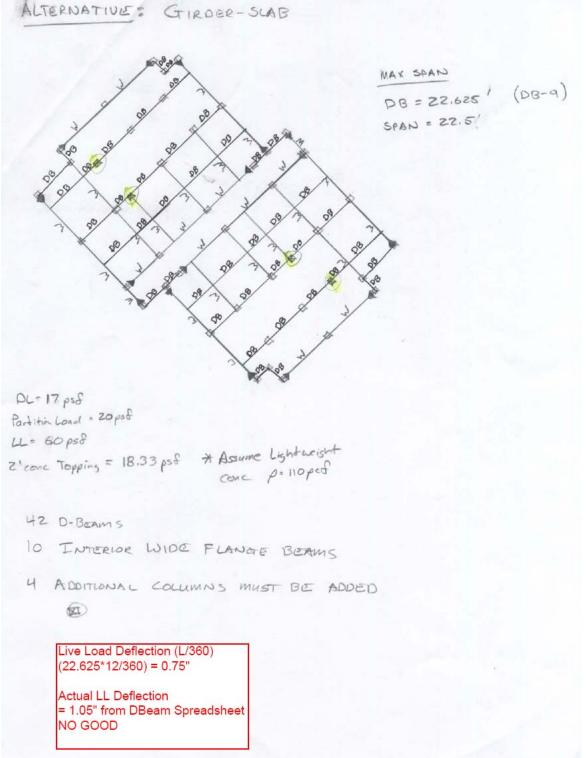
F	FLEXURAL STRENGTH
1	
	As = . 00075 Acr
	$H_{s} = .000 \text{ N } h_{cf}$ $= .000 75 (115)(22+32) \times 12 = 2.79 \text{ m}^2$
	=>-USE (S) H7 As= 3.0 m2 Z Z.79 m2
	BAR LENGTH: $2 \times (32 - \frac{16}{12}) + \frac{16}{12} = 11.56' (11' - 7'')$
	ONE FOOT STRIP:
	$A_5 = 5 \times \frac{60}{27.3} = 0.11 \text{ m}^2/\text{st}$
	CALC DESIGN STRESS IN TENPON :
	Eps = Epe = 10000 + 800 p.
	$P_{p} = \frac{A_{ps}}{bd} = \frac{23(.153)}{(27.3)(12)(10.5)} = 0.0010$
	Fse = .7 (270) -14 = 175 Ksi
	$f_{ps} = 175 + 10 + \frac{4}{300(.001)}$
	$5_{PS} = 17S + 10 + 300(.001)$ = 198.3 Ksi
	S are concerned and
	Sps NOT GREATER THAN: Spy = ,85 Fpu = 230 Ks1 2 198,3 POK
	S _{5e} + 30 = 205 ≥ 198.3 10K
Tender	$F_{54} = \frac{198.3 \times .153 \times 29}{27.3'} = 25.5 \times 157$
ebar	$F_{4} = 60 \times .111 = 6.6 \times .151$
	FIOTAL = 25.5 + 6.6 = 32.1 K/St

Depth of compression block (a)	
$a = \frac{F}{.85 b S_c} = \frac{32.1}{.85 (12)(4)} = 0.79 in$	
$\mathcal{E}_{+} = (10.521) \times \frac{.003}{(.79/.85)} = 0.033$	
* Assume Reinforcing Bars & Tendons in SAME layer	
$d - 9/z = a5 - \left(\frac{.79}{2}\right) = 0.76 \text{ St}$	
MOMENT COPACITY AT COL CENTERLINE	
Mariana Copacity of Coc Carolecence	
$\phi M_n = .9(.76)(32.1) = 21.9 (-1) \ge 16.66$ VOIC	
=> Redistribution at excess negative moment	
Permissible change in regative moment 1000 Et = 1000 (.033) = 33% ≥ 20% MAX	
1000 Et = 1000 (.033) = 03 10 = 000 111	
AVAILABLE INCREASE IN NEG MOM,	
. 2 (16.66) = 3.33 St-k/St	
ACTUAL INCREASE IN NECLIMOMENT CAPACITY	
Z1,9-16,66 = 5,24 = 3.33 X NO GOOD	
-> CAN ONLY INCREASE 3.33 #1-K/SL	
SPON DE: MIN DESIGN POSITIVE MOMENT	
(32') $(4.34 - 3.35 = 11.21 Pr-K/S4$	
CAPACITY AT MIDSPAN	
Aps Sps = 25.5 K/12	
$a = \frac{25.5}{.85(12)(1)} = 0.625''$	
$d - \frac{9}{2} = \left(\frac{35''}{2} - \frac{825}{2} \right) = 0.76 \text{ ft}$	
12	

	MOMENT CAPACITY & CONTER SPAN
	φmn = .9 (25.5 ¥.76) = 17.6 K-11/4+ ≥ 11.21 K-81/5+ VOK
	END SPAN= - , 7
- 10	$(12') \qquad d - \frac{2}{2} = \left[(11.5 - 2.75) - \frac{.625}{2} \right] / 12 = 0.70 \text{St}$
	CHECK POSITIVE MOMENT:
	pmn= 19(25,5)(.70) = 16.17 ≥ 7,29 Voic
EX.	TERIOR COLUMNS
	Asmin = 00075 (27')(12')(115) = 2,79 m ²
	-> USE (5) #7, As= 3.0 m2
	$A_3 = 5\left(\frac{169}{27}\right) = 0.18$
12	Asby = .110 (60) = 6.6 12/5t
	$p_{-} = \frac{23(153)}{2} = 0.00187$
	$P_{P} = \frac{23(153)}{27.3(12)(5.75)} = 0.00187$ $f_{e} = 175 + 10 + (.00187 - 300) = 192. \text{Ksi}$
	$f_c = 175 + 10 + (.00187 + 300) = 192 \text{ ksi}$
	ApsSps = 20(.153) 192/273) = 24:75 K/St
	$q_{1} = \frac{24.75 + 4.6}{85(12)(4)} = 0.77 \text{ in}$
	TENPONS: d- = 5.7577/12 = 0.45 ft
	REBAR = d- 9/2 = (105- 2)/12 = 0.84 SI
	6m = .9[(24.75 x, 45] + (6.6 x, 84)]
	$\phi m_n = .9[(24.75 \times .45) + (6.6 \times .84)]$ = 15.01 K-S1/S1 ≥ 0.44 K-St/SL

	SHEAR CAPACITY
EXTERIOR .	Vhor = ZIZ K/SL & Assume EXTERIOR FACADE
COLUMN *	= 0.5 K/St
	$V_{u} = (1.2)(.5) + 2.12 \times 27.3'$
	= 74.25 K
	Transfer 1 Moment = 27.3 x .44 = 12.01 St-k
	Combined Shear Stress e Moide face
	d = .3(115) = 9.2 "
	C, = 16 *
	$C_2 = 16''$ $b_1 = 16'' + \frac{9i7}{2} = 20.6''$
	$b_1 = 16'' + \frac{912}{2} = 20.6''$
	$b_2 = 16 + 9.2 = 25.2$ "
	Az = (26, +62)d = [2(20,6) + 25,2] 9,2 = 611 m2
	Jc/c = [2(206)(9,2)[20,6+2(25.2)] + (923)[2(206)+25.2] /205] /6
	= 9904
	V = 1 - 1 = 0.38
	$Y_{y} = 1 - 1 = 0.38$ $1 + \frac{2}{3}\sqrt{\frac{20.6}{25.2}}$
	$Y_{u} = \frac{74250}{6111} + \frac{.38(12.01 \times 1000 \times 12)}{4904}$
	611, 4904
	= 133 posi
	Permissible Shep, Solvess
	$\phi V_n = \phi V_c/b_{od}$
	\$Vn = .75 (4) Juoo = 190 psi ≥ 133 psi 1010
	CHECK FLEXURAL MOMENT CAPACITY
	As= ,00075 (115)(27.3)(12) = 2.79 in=
	=> Use (S) $#7$, A ₃ = 3.0 in ²

	CALC STRESS IN TENDONS
	ESt slab width = 16 + Z(1.5 x11.5) = 50.5 in
	A Contraction of the second second
	* Assume 6 Tendons ARE BUNDLED TOGETHER * Anchored Within the column cage,
	Anchorcal Wishin the column cage,
1	$P_{p} = \frac{6(.153)}{505 \cdot 505} = 0.0037$
	Sps = 175+10+,0032,300
	= 189.2 KSi Presdress force in cridical width
	6(153)(189.2) = 173.7 K
	Asly = 5 (.80×60) = 180 K
	Aps by , + As Ly = 173,7+180=353.7 K
	$C_1 = \frac{353.7}{(85/4)(505)} = 7.06.11$
	H E B 웹 경험 별 표정 위험 별 명 만 있을 것 뿐 만 원 만 원 1
	TENDON: (dp-5/2) = (5.75-2.02)/12 = 0.39 St
	REBAIL = (2 - 9/2) = (10.5-2:20)/12 = 0.79 St
	\$m_n = .9 (173.7 (39) + (180)(.79) = 188.9 K-PL
	$\varphi_{\mu\nu} = (13.7(131) + (132)(.41)) = 186.1$
	δ _F = 1-8, =.62
-	YPM4 = .62 (12.01) = 7.45 KC 188.9 Mac
INTERIOR -	
COLUMN 32'SPAN	DIRECT SHEAK: (3.46 + 3.40) 27.3' = 200,9 K Moment Transfu = 27.3 (16,66-15,3) = 37.13 K-Pt
JE SPAN	Monter F stansov - 273 (10:00 - 10:5) 57412
	d= q.2"
	C1 = 16 "
	C2 + 16 "
	$b_1 = b_2 = 25.2$
	Ac = 2 (25,2+25,2) 11.5 = 1159 142


Je/2 = {(25,2)(9,2)[25,2+3b2] + d3 {/3	
= 8049 in ²	
$r = 1 - \frac{1}{1 - $	
$Y_{v} = 1 - \frac{1}{1 + \frac{2}{3} \sqrt{b}} = 1 - \frac{1}{1 + \frac{2}{3} \sqrt{1}} = 0.4$	
$V_{4} = \frac{200900}{1159} + \frac{(.4)(37.13)(000)(12)}{8049} = + 34$	
= 19515 psi	
Permissible Shear Stress	
QVe = Q[4] Ste +.3 Epe + Vp bod	
USE Sou SQUARE LOLS	
=,75 (4 14000 + ,3(140)	
= ZZLK - ET F/A TENDONE	
221 K Z 196 K JOIK / TOWN	
check moment transfer:	
CRECK MONAPIS VIONSONS	
$Y_{y} = 14$ = 0.6	
= 0.6	
Y, My = . 6 (37.13) = Z2.3 H-K	
EFF. SLAB WIDTH = 16 + Z (115 × 11.5) = 50.5 in	
Aps Sps = 17377 (SAME AS EXT, COL)	+
$A_{s} = .00075(A_{CF})$	
$= 100075 (15) (32+22) \times 12 = 7.79 in^2$	
-> USE (5) #7 As= 3.0.11 2	
A D = /2 = Y(-) = 18 B Y	
$A_{5}F_{7} = (3.0)(60) = 180 \text{ K}$	+
$A_{PS}\Gamma_{PS} + A_{S}G_{X} = 353.7 K$	T
$a = \frac{350.7}{185(4/0.5)} = 2.06''$	
185 (4)(9).5)	

		$d - \frac{9}{2} = \left(10.5 - \frac{206}{2}\right)_{12} = 0.7951$
		\$Mn = ,9 (353,7)(,74) = 25V,5 K-FL ≥ 22,3 K-FL 101C
DIS	TRIE	BUTION OF TENDONS
	-	USE 23 TENDONS FOR 1-27.3' BAY
		W/ 6 TENDONS DIRECTLY THROUGH THE COLUMN
	_	SPACE THE REMAINING TENPONS (18) AT 1'-6" O/C.
		(ADOUT ZX Slab thickness)
	-	TENDONS RUNNING 1 to TENDONS DESIGNED HEREIN
		SHOULD BE PLACED IN NARROW BANDS THROUGH
		COLUMN LINES
	-	(14) # 4 REBAR CAN BE USED IN PLACE OF
		(5) # 7's. THIS WILL ALLOW FOR A MORE UNIFORM
	-	MESH OF REBAR DUER THE ENTIRE SLAB
		AS COMPARED TO LOCALIZED AREAS OF (5) #713.

Swedish American Hospital Heart and Vascular Center 1400 Charles St, Rockford, IL

APPENDIX E

• Sketch of Girder Slab framing plan with additional columns and wide flange beams

APPENDIX F

Design Information

• D-Beam design spreadsheet provided by Girder-Slab Technologies at girder-slab.com

D-Beam® Calculator Reference Tool 10/29/2007

Project Name: Swedish American Hospital Job Number:

DB Properties

Design information				Toperties		
Dead Load =	17 psf					
Partition Load =	20 psf		DB S	ize> D)B 9 x 46 🚬 🔻	
Live Load =	60 psf		Steel	Section		ned Section
Topping Load =	18.33 psf		١s	= 195 in ⁴	I _t =	356 in ⁴
DB Span =	22.625 ft		S,	= 33.7 in ³	S, =	68.6 in ³
Plank Span =	22.5 ft		S.	= 50.8 in ³	S _b =	80.6 in ³
Grout f'c =	5000 psi		M _{scap}		-0	
Allowable $\Delta_{LL} = L /$	240			= 0.375 in		
Allowable $\Delta_{LL} =$	1.13 in			= 5.75 in		
	1.13 11		b	- 5.75 11		
Live Load Reduction	on (IBC 00/03/06)					
Include LLR		2)				
% Reduction =	Check for Ye 27.99 %	5)				
Reduced Load =	43.2 psf					
Reduced Load -	45.2 psi					
Initial Load - Preco	omposite					
M _{DL} =	24.5 ft-k	<	84.0 ft-k	OK		
$\Delta_{DL} =$	0.40 in					
∆ Ratio = L /	681					
Camber D-Beam		s)				
D-Beam Camber	0.39 in	-,				
<u> Total Load - Comp</u>	<u>osite</u>					
M _{sup} =	117.4 ft-k					
M _{TL} =	141.9 ft-k					
S _{REQ} =	56.7 in ³	<	68.6 in ³	<u>0K</u>		
$\Delta_{SUP} =$	1.05 in	<	1.13 in	OK		
Δ _{TOT} =	1.06 in	= L/ 2				
-101						
Superimposed Cor	mpressive Stress o	on Concrete				
N value =	7.20					
S _{tc} =	494 in ³					
f _c =	2.85 ksi					
F _c =	2.25 ksi	<	2.85 ksi	NO GOOD		
Bottom Flange Ter	nsion Stress (Total	Load)				
f _b =	23.3 ksi					
F _b =	45 ksi	>	23.3 ksi	<u>0K</u>		
Shear Check						
Total Load =	99 psf					
w =	2.22 klf					
R =	25.1 k					
f _v =	11.6 ksi					
Fv =	20 ksi	>	11.6 ksi	OK		