Washington Park Condominiums Mt. Lebanon, Pennsylvania

Benjamin Follett
Structural Option
Architectural Engineering
Senior Thesis Presentation 2009
The Pennsylvania State University

Presentation Outline

Project Overview

Why Redesign

Existing Structural System

Structural Redesign

Architectural Detail Study

Acoustics Study

Conclusions

Questions

Project Overview

esentation Outli

Project Overview

Existing Structure

Why Re-design?

Structural Redes

Architectural Detailing

Conclusio

Location: Mt. Lebanon, Pennsylvania

Building Type: Multi-Use

(Residential/Retail)

Size: 148,000 sq. ft.

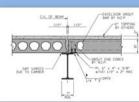
.

Project Cost: \$23,418,000

Delivery Method: Design-Bid-Build

Owner: Zamagias Properties

Construction Dates: Fall 2008-Fall 2010


Benjamin Follett

April 13, 2009

Existing Conditions – Floor Systems

Existing Floor Systems

- 8" Precast Concrete Plank (Basement thru Floor 2)
- VESCOM Composite Joist with 3 5/8" concrete slab (Floors 3 thru 8)
- Steel Beams and Columns

Benjamin Follett

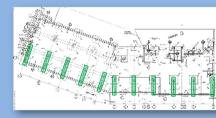
April 13, 2009

Existing Conditions – Lateral System

Steel Moment Frames

- •17 moment frames per floor
 - 6 exterior
 - 11 interior
- Comprised of special joist Girders designed by VESCOM in **East-West Direction**
- •W-shapes used in North-South Direction
- VESCOM floor system used as a rigid diaphragm to transfer loading

Benjamin Follett


April 13, 2009

Existing Conditions – Lateral System

Steel Brace Frames

- •11 frames in the sub-basement level
- •HSS 8x8x1/2 and HSS 6x6x3/8
- Primary function is to resist lateral soil pressure

Benjamin Follett

April 13, 2009

Why Redesign?

Problem Statement

Benjamin Follett

- •Lack of construction experience with newer composite steel joist system •Inefficient lateral system with most columns and beams being part of the
- moment frame system
- Possibility of unwanted floor vibrations with use of composite joist system.
- •Ultimately why was composite joist system chosen over a reinforced concrete system?

Problem Solution – Complete redesign of both the gravity and lateral systems of Washington Park Condominiums

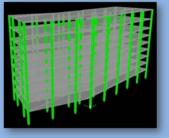
April 13, 2009

Why Redesign?

Design Goals

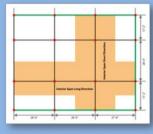
- •Study and determine relevant differences between the use of steel and concrete structures for Washington Park Condominiums
- Maintain allowable story drift while reducing motion perceived by building occupants
- Adhere to the current column layout of the building
- Design a more efficient lateral force resisting system using concrete
- Reduce sound transmission throughout building between areas with high noise levels and the apartments

Learn how to design both gravity and lateral systems using reinforced concrete.


Two Way Flat Plate

- Analysis/Design
 - PCASIab & Hand Calculations
- Slab Thickness
- Two Way Reinforcement
 - Flexural & Shear
- Deflections

Reinforced Concrete Columns


Placement and Reinforcement **Foundations**

Sizing and Overturning check

Two Way Flat Plate Slab

- •10" Slab Thickness using ACI 318-08
- •Typical bays are 28'-0" x 28'-0" and 28'-0" x 17'-2" bays
- •Controlling load case = 1.2D + 1.6L +0.8W
- For hand calculations only interior bays were checked
- Reinforcement using Direct Design Method

Benjamin Follett

April 13, 2009

Two Way Flat Plate Slab

	Interior Slab - Hand Calculations		Interio	or Slab - PCASlab		Interior Slab – inforcement		ng Interior Slab - teinforcement
1	M ⁻ (CS)	#5 @ 5.5" O/C	M ⁻ (CS)	(28) #5 @ 6" O/C	M ⁻ (CS)	#5 @ 6" O/C	M ⁻ (CS)	(29) #5 @ 5.5" O/C
١	VI⁺(CS)	#5 @ 14" O/C	M ⁺ (CS)	(17) #5 @ 10" O/C	M ⁺ (CS)	#5 @ 14" O/C	M ⁺ (CS)	(10) #5 @ 16" O/C
٨	л ⁻ (MS)	#5 @ 15.25" O/C	M ⁻ (MS)	(10) #5 @ 16" O/C	M ⁻ (MS)	#5 @ 15.75" O/C	M ⁻ (MS)	(10) #5 @ 16" O/C
N	Λ⁺ (MS)	#5 @ 15.25" O/C	M ⁺ (MS)	(14) #5 @ 12" O/C	M ⁺ (MS)	#5 @ 15.75" O/C	M ⁺ (MS)	(8) #5 @ 16" O/C

	Shear Capacity	y in Slab	Shear Reinforcement				
V _u	52.41	ОК	Bar/Wire Limit - V _c	244.19			
φV _c	142.44	UK	$V_u \le V_c$	USE BAR/WIRE			
Pur	nching Shear Ca	pacity in Slab	V _s	188.68			
V _u	222.9051	NO GOOD	s = d/2	4.5			
φ۷с	128.7158	NO GOOD	A,	1.57			
			Use (15) #3 Stirrups @ 4.5"				

Benjamin Follett

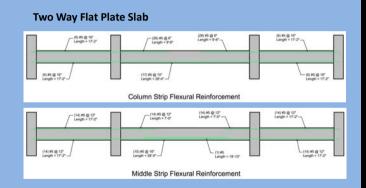
April 13, 2009

Project Overview

Existing Structure

Why Re-design

Structural Rede


Detailing

Acoust

Conclusio

Question

Two Way Flat Plate Slab - Deflections

- Allowable deflections from ACI 9.5
- All slab deflections meet given criteria

	Deflections for Two Way Slabs									
	Interior Span (Short Direction)	Exterior Span (Short Direction)	Interior Span (Long Direction)	Exterior Span (Long Direction)						
Allowable Live Load Deflection	I/360 = 0.944 in	I/360 = 0.944 in	I/360 = 0.933 in	I/360 = 0.944 in						
Actual Live Load Deflection	0.111 in	0.139 in	0.149 in	0.118 in						
Allowable Total Load Deflection	I/240 = 1.417 in	I/240 = 1.417 in	I/240 = 1.417 in	I/240 = 1.417 in						
Actual Total Load Deflection	0.326 in	0.412 in	0.421 in	0.353 in						

Presentation Outline

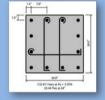
Project Overview

Existing Structure

Why Re-design?

Structural Redes

Detailing


Conclusio

Questions

Reinforced Concrete Columns

- All interior columns designed as gravity only columns
- •All columns sized at 24" x 24"
- Loading determined using gravity load take downs
- Reinforcement designed using PCAColumn and hand calculations

Туре	Flexural	Shear	Reinf.	Transverse
	Reinforcement	Av _{min}	0.240	Reinforcement
Interior	(12) #11 @ 7"	No	20	Use (3) #4 Ties @ 24"
interior	(12)#11@7	NO	ile	throughout

Benjamin Follett

April 13, 2009

Structural Redesign – Foundations

Presentation Outline

Project Overview

Existing Structure

Why Re-design?

Structural Redesi

Detailing

Conclusio

Questions

Foundation Considerations

Overturning Factor of Safety = $\frac{Resisting\ Moment}{Overturning\ Moment}$

	Uplift Check - Shear Wall (Wind)												
	Overturning Moment (k-ft)	Wall Length (ft)	Wall Weight (kips)	Axial Load on Wall (kips)	Resisting Moment (k-ft)	Factor of Safety (Calculated)	Factor of Safety (Recommended)	Uplift Problem					
ST2	3127.59	19.5	422.66	981.9	13694.0	4.38	3.0	No					
SL2	1385.26	10	216.75	619.7	4182.1	3.02	3.0	No					
			ι	Jplift Check - Sl	near Wall (W	ind)							
	Overturning Moment (k-ft)	Wall Length (ft)	Wall Weight (kips)	Axial Load on Wall (kips)	Resisting Moment (k-ft)	Factor of Safety (Calculated)	Factor of Safety (Recommended)	Uplift Problem					
ST2	2543.45	19.5	422.66	981.9	13694.0	5.38	3.0	No					
SL2	715.11	10	216.75	619.7	4182.1	5.85	3.0	No					

Benjamin Follett

April 13, 2009

Structural Redesign – Foundations

esentation Outline

Project Overview

Existing Structure

Why Re-design?

Structural Redesig

Detailing

Acousti

Conclusio

Question

Foundation Considerations

Overturning Factor of Safety = $\frac{Resisting\ Moment}{Overturning\ Moment}$

	Spread Footing Sizes									
Туре	Existing Design	EnerCalc Design	Optimized Design							
Interior Col	12'-0" x 12'-0"	13'-0" x 13'-0"	13'-0" x 13'-0"							
Corner Column (C55)	11'-0" x 11'-0"	7'-0" x 7'-0"	11'-0" x 11'-0"							
Exterior Column (C65)	8'-0 x 8'-0"	9'-6" x 9'-6"	9'-6" x 9'-6"							
Exterior Column (C80)	13'-0" x 13'-0"	8'-6" x 8'-6"	13'-0" x 13'-0"							

resentation Outili

roject Overview

Existing Structure

Why Re-design?

Structural Redesi

Detailing Detailing

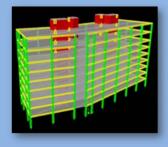
Conclusion

. ..

stions Benjamin Follett

Shear Walls

- Analysis/Design
 - •ETABS, PCAColumn & Hand Calculations
- Reinforcement
 - Flexural, Shear and Transverse


Coupling Beams

• Size and Reinforcement

Modal Analysis Concrete Moment Frame

oncrete Moment

- •Columns and Beams
 - Size and Reinforcement

llett

April 13, 2009

Project Overview

g Structure

e-design?

Structural Rede

Architectural
Detailing

Acoustics

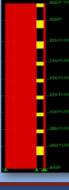
Conclusion

Reinforced Concrete Shear Walls

• Placement of Shear Walls around Stair and Elevator Shafts

Benjamin Follett

April 13, 2009



Reinforced Concrete Shear Walls

- •Trial size of 18" thick walls determined
- Hand Calculations and ETABS used for analysis PCAColumn used for design

ETABS Analysis

- Wind and Seismic Assumptions (ACI 10.10.4.1)
- $f_{22} = 0.7$ (Shear Walls)
- $I_3 = 0.35$ (Coupling Beams)
- Area = 1.0A_g (Both)
- Rigid diaphragm modeled to transfer loading
- •Controlling Load Case = 1.2D + 1.6W + 1.0L + 0.5S
- Torsion considered using 5% eccentricity

Presentation Outline

Project Overview

Existing Structure

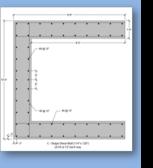
Why Re-design

Structural Redesi

Detailing

Acoustic

Conclusio


Question

Reinforced Concrete Shear Walls

- Each Wall designed as C-shape since all were part of a shaft
- •Reinforcement designed using PCAColumn and hand calculations
- Final design (2) #5 @ 12" for shear and flexural reinforcement

Shear Wall Reinforcement Designs								
Shear Walls	Flexural	Shear						
SL1, SR1, SL2 & SR2	(2) #5 @ 12"	(2) #5 @ 12"						
ER1 & EL1	(2) #5 @ 12"	(2) #5 @ 12"						
EB2, ER2, EL2 & ET2	(2) #5 @ 12"	(2) #5 @ 12"						
EB1 & ET1	(2) #5 @ 12"	(2) #5 @ 12"						
SB1, ST1, SB2 & ST2	(2) #5 @ 12"	(2) #5 @ 12"						

Benjamin Follett

Presentation Outlin

Project Overview

Existing Structure

Why Re-design?

Structural Redes

Detailing

Conclusio

. .

stions Benjam

Reinforced Concrete Coupling Beams

- Controlling Loads found using ETABS
- Designed to crack before the shear walls and act as plastic hinges
- Designed as 18" thick
- •No diagonal reinforcement needed per ACI 21.9.7
- •Beams designed as regular and deep beams

	Stair Coupling Beams											
Story	I _n (in)	h (in)	A _{cw}	Vn	d	As _{min}	Av_{min}	Flexural Reinf.	Shear Reinf.	Skin Reinf.		
Roof	40	58	1044	264.113	55	4.400	0.495	(3) #8 @ 6" T & B	(2) Legs of #5 @ 11"	#4 @ 6.5"		
8th	40	54	972	614.747	51	4.080	0.459	(3) #8 @ 6" T & B	(2) Legs of #5 @ 11"	#4 @ 6.5"		
2nd -7th	40	26	468	295.989	23	1.840	0.320	(3) #5 @ 6" T & B	(2) Legs of #4 @ 16"	None		
1st	40	66	1188	751.357	63	5.040	0.567	(3) #9 @ 6" T & B	(2) Legs of #5 @ 11"	#4 @ 6.5"		

Benjamin Follett

April 13, 2009

Presentation Outlin

Project Overview

Existing Structure

Why Re-design?

Structural Redes

Detailing

Conclusio

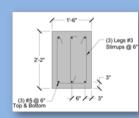
Overtion

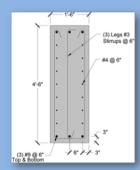
stions

Reinforced Concrete Coupling Beams

- Controlling Loads found using ETABS
- Designed to crack before the shear walls and act as plastic hinges
- Designed as 18" thick
- •No diagonal reinforcement needed per ACI 21.9.7
- Beams designed as regular and deep beams

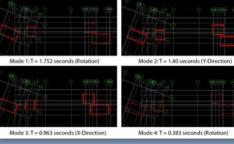
	Elevator Coupling Beams												
tory	I _n (in)	h (in)	Acw	Vn	d	As _{min}	Av _{min}	Flexural Reinf.	Shear Reinf.	Skin Reinf.			
OOF	46	58	1044	660.284	55	4.400	0.495	(3) #8 @ 6" T & B	(2) Legs of #5 @ 11"	#4 @ 6"			
Bth	46	54	972	614.747	51	4.080	0.459	(3) #8 @ 6" T & B	(2) Legs of #5 @ 11"	#4 @ 6"			
l - 7th	46	26	468	295.989	23	1.840	0.320	(3) #5 @ 6" T & B	(2) Legs of #4 @ 16"	None			
1st	46	66	1188	751.357	63	5.040	0.567	(3) #9 @ 6" T & B	(2) Legs of #5 @ 11"	#4 @ 6"			


Benjamin Follett


April 13, 2009

Reinforced Concrete Coupling Beams

- Typical Beam Sections
- Regular beams and deep beams (≥ 36" deep)
- Deep beams require skin reinforcement



Mode Shapes & Period

• Code determined period, T = 1.046 seconds

Benjamin Follett

April 13, 2009

Structural Option

Questi

resentation Outling

ct Overview

Existing Structure

Why Re-design?

Structural Redesi

Detailing

Conclusio

Question

estions Benja

Torsional Amplification

- Additional torsional considerations because of building's difference in center of mass and rigidity
- Necessary to design for extra torsion
- Additional eccentricity of 3% used for torsion

$$A_x = \left(\frac{\delta_{MAX}}{1.2\delta_{AVG}}\right)^2$$

Torsional Amplification Factor									
Loading	δ_A	$\delta_{\scriptscriptstyle B}$	δ_{MAX}	Α					
Seismic X	0.5582	0.3474	-	1.534					
Seismic XXY (5% Ecc)	-	-	0.67293						
Seismic XXY (7.67% Ecc)	-	-	0.6822	1.576					
Seismic XXY (7.9% Ecc)	-	-	0.6836	1.583					
Seismic Y	0.8155	0.5587	-						
Seismic YX	-	-	0.8262	1.004					

Benjamin Follett

April 13, 2009

t Overview

Structure

Re-design

Structural Rede

Architectura Detailing

Detailing

Conclusi

Torsional Amplification

- Additional torsional considerations because of building's difference in center of mass and rigidity
- Necessary to design for extra torsion
- •Additional eccentricity of 3% used for torsion

As a result of accidental torsion and the desire to investigate, additional lateral systems, exterior moment frames were designed.

Beniamin Follett

April 13, 2009

ETABS Analysis

to 1.

- Added because of torsion and mode period considerations
- •End offset length = 12" for all beams Torsional amplification factor reduced
- Rigid zone factor = 0.5 $\bullet I_2 = 0.35 \text{ (ACI } 10.10.4.1)$
- •Controlling Load Case = 1.2D + 1.6W + 1.0L + 0.5S

Benjamin Follett

April 13, 2009

Presentation Outline

Project Overview

Existing Structure

Why Re-design?

Structural Redesig

Detailing

Conclusio

Question

ETABS Analysis

- Added because of torsion and mode period considerations
- •End offset length = 12" for all beams
 •Torsional amplification factor reduced
- eams C
- •I₃ = 0.35 (ACI 10.10.4.1) •Controlling Load Case = 1.2D + 1.6W +
 - 1.0L + 0.5S

• Rigid zone factor = 0.5

	Fundamental Period Comparison								
Mode Shape	Shear Wall Only Design	Shear Wall and Moment Frame Design	Difference						
1 (Rotation)	T = 1.752 secs	T = 1.43 secs	0.322						
2 (Y-Direction)	T = 1.40 secs	T = 1.312 secs	0.088						
3 (X-Direction)	T = 0.963 secs	T = 0.914 secs	0.049						
4 (Rotation)	T = 0.383 secs	T = 0.360 secs	0.023						

to 1.

Presentation Outlin

Project Overview

Existing Structure

Why Re-design?

Structural Redesig

Detailing

Conclusio

Question

Concrete Moment Frame - Columns

- Designed as intermediate moment frame as stated in ACI 21.3
- Redesign of all exterior and corner columns
 Loads determined using ETABS and takedowns
- •Load Case (long direction) = 1.2D + 1.0E + 1.0L + 0.2S
- •Load Case (short direction) = 1.2D + 1.6W

•Load Case (short direction) = 1.2D + 1.6 + 1.0L + 0.5S

Concrete Column Loading (kips)										
Туре	Area	Self Wt.	Dead	Live	Quake	Wind	Snow	LC		
Corner (C55)	118.75	49.027	194.750	53.438	9.320	42.520	2.731	415.37		
Exterior 1 (C65)	314.71	49.027	516.124	141.620	20.280	20.200	7.238	855.74		
Exterior 2 (C80)	240.33	49.027	394.141	108.149	14.600	13.020	5.528	663.55		

Benjamin Follett

April 13, 2009

Presentation Outline

Project Overview

Existing Structure

Why Re-design

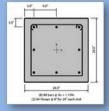
Structural Redesi

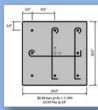
Architectura Detailing

Acoust

Conclusio

Question


Concrete Moment Frame – Columns


- Reinforcement designed using PCAColumn and hand calculations
- •Special reinforcement per ACI 21.3
- •Hoops required for 24" at each end
- •Ties required throughout remainder of column

	Element Belof	Shear	Reinf.	Transverse Reinf.		
Туре	Flexural Reinf.	Av _{min}	0.240			
Corner	(8) #8 @ 9"	Use (2) #4 Ho	ops @ 8" for	Use (3) #3 Ties @ 24		
(C55) (8) #8 @ 9		24" ea	ch end	Use (3) #3 Ties @ 24		
terior 1	(8) #8 @ 9"	Use (2) #4 Ho	ops @ 8" for	Use (3) #3 Ties @ 24		
(C65)	(8) #8 @ 9	24" ea	ch end			
terior 2 (8) #8 @ 9"		Use (2) #4 Hoops @ 8" for		Use (3) #3 Ties @ 24"		
(C80)	(0) #0 @ 5	24" ea	ch end	030 (3) #3 1103 @ 24		

Concrete Moment Frame – Columns

- Reinforcement designed using PCAColumn and hand calculations
- •Special reinforcement per ACI 21.3
- •Hoops required for 24" at each end
- •Ties required throughout remainder of column

Benjamin Follett

April 13, 2009

Presentation Outline

Project Overview

Existing Structure

Why Re-design

Structural Redesig

Detailing

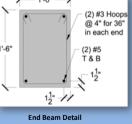
Conclusion

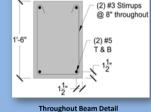
Questions

Concrete Moment Frame – Beams

- Beams used both in gravity and lateral systems
- •Initial beam cross section of 12" x 18"
- •All reinforcement designed using ACI 21.3
- • f'_c = 4000 psi & f_v = 60000 ksi

G	iven:	
Mu	40.48	
Vu	5.3	
Tu	0.26	
b	12	
h	18	

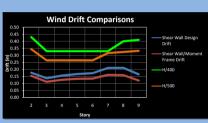

Fifth Floor


Structural Option

	Fifth Floor B9									
	Estimation	on of d	Torsional Reinford	Shear Reinforcement						
	$bd^2 \ge 20M_u$	8.214	$Tu \leq \frac{1}{4} \varphi 4 Vf'_{c} (A_{c}^{2} / P_{c})$	36.885	V _s ≤ 4Vf' _c bd	yes				
l	Use d =	15.5	Reinf. Needed?	no	$S_{max} = d/4 = 3$.875", use 4"	S _{max} = d/2 = 7.75", use 8"			
	A _s (Flexure)		Transverse Shear Reinf.		Av _{min}	0.120	Av _{min}	0.120		
	As	0.882	Vc	23.527	Use (2) #3 Ho	ops @ 4" for	Use (2) #3 Stirrups @ 8"			
	Use (2) #5 Bars T & B		Vu ≥ ½φV _c	no	36" @ e	ach end	throughout length			

Benjamin Follett April 13, 2009

Concrete Moment Frame – Beams Details

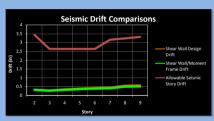


Drift Analysis

- Comparison between drift of shear wall only design and shear wall with concrete moment frames design •Seismic (ASCE 7-05)

 - $\bullet \Delta = 0.020 h_{sx}$ •Amplified drift = $\delta_{ve} C_d/I$
- Wind
 - •H/400 for story drift

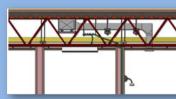
 - •H/500 for non-structural considerations



Drift Analysis

- Comparison between drift of shear wall only design and shear wall with concrete moment frames design
- •Seismic (ASCE 7-05)
 - $\bullet \Delta = 0.020 h_{sx}$
 - •Amplified drift = $\delta_{ve} C_d/I$
- Wind

 - •H/400 for story drift
 - •H/500 for non-structural considerations



Architectural Detailing Study

Architectural Detailing

- •Changes in the ceiling cavity caused by the change in structural system
- •Existing system used as architectural feature to efficiently integrate mechanical systems into ceiling cavity
- New system utilizes 18" airspace to run all mechanical equipment

Benjamin Follett

April 13, 2009

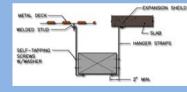
Architectural Detailing Study

Architectural Detailing

- •Changes in the ceiling cavity caused by the change in structural system
- •Existing system used as architectural feature to efficiently integrate mechanical systems into ceiling cavity
- New system utilizes 18" airspace to run all mechanical equipment

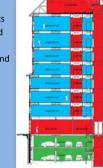
Benjamin Follett

April 13, 2009


Architectural Detailing Study

Architectural Detailing

- Changes and differences in connections used for steel and concrete systems
- New connection uses concrete screws along with a lag screw expansion shield and anchor



Acoustics

wall assemblies

- Owner expressed concern about building acoustics
- Investigated sound transmission through floor and
- •Identified spaces with high expected noise level and studied their impact on the apartments
- •Goal was to improve TL and STC values for assemblies

Presentation Outline

Project Overview

Existing Structure

Why Re-design?

Architectural

Acoustic

Conclusion

Questions

Floor Sound Isolation Assembly used on Floors 3 thru 8								
	125	250	500	1000	2000	4000	STC	
Expected Noise Level in Apartments	62	64	67	70	68	63		
Minus expected background noise in Apartment (RC-30)	45	40	35	30	25	20		
Required NR	17	24	32	40	43	43	50	
Minus 10 log a2/S	-1	-1	-1	-1	-1	-1		
Required TL	18	25	33	41	44	44	50	
Finding an Adequate Wall Construction:								
3/4" Wood Flooring on 1" glass fiber	0	1	0	1	1	1	-	
10" Reinforced Concrete Slab	44	48	55	58	63	67	-	
18" Airspace	12	12	14	15	16	8	-	
1/2" Gypsum Wall Board Finished Ceiling	15	20	25	29	32	27	-	
Total TL of Wall Construction	71	81	94	103	112	103	95	
Difference between Actual and Required Transmission Loss	53	56	61	62	68	59	45	

Benjamin Follett April 13, 2009 Structural Option

sentation Outline

Project Overview

Existing Structure

Why Re-design

Architectural

Acousti

Conclusion

Questions

Wall Sound Isolation Assembly to be used Between Apartments								
	125	250	500	1000	2000	4000	STC	
Likely noise level in Apartments	62	64	67	70	68	63		
Minus expected background noise in Apartment (RC-30)	45	40	35	30	25	20		
Required NR		24	32	40	43	43	50	
Minus 10 log a2/S	-1	-1	-1	-1	-1	-1		
Required TL		25	33	41	44	44	50	
Finding an Adequate Wall Construction:								
2 Layers of 1/2" Gypsum Wall Board (each side)	19	26	30	32	29	37	-	
2 Layers of 3 5/8" Steel Studs @ 24" O.C.	2	4	5	6	7	6	-	
1/2" Air Gap	1	1	0	2	3	1	-	
2 Layers of 3 1/2" fiberglass insulation	10	18	22	18	10	22	-	
Total TL of Wall Construction		49	57	58	49	66	61	
Difference between Actual and Required Transmission Loss	14	24	24	17	5	22	11	

Benjamin Follett April 13, 2009 Structural Option

esentation Outline

Project Overview

Existing Structure

Why Re-design?

Architectural

Acoustic

Conclusio

Questions

Acoustic Performance Comparison										
Assembly	STC - HUD Noise Control Guide	STC - Existing Design	STC - New Design	Difference						
Floor Assembly between 1st Floor Retail and 2nd Floor Apartment	STC - 56	STC - 62	STC - 95	+33						
Floor Assembly between Floors on Apartment Levels 3 thru 8	STC - 56	STC - 58	STC - 95	+37						
Floor Assembly between Penthouse Apartment and Rooftop Mechanical Equipment	STC - 56	STC - 62	STC - 105	+43						
Wall Assembly between Elevator Shaft and Apartments	STC - 56	STC - 55	STC - 75	+20						
Wall Assembly between two Apartments and an Apartment and a Corridor	STC - 56	STC - 57	STC - 61	+4						

Benjamin Follett April 13, 2009 Structural Option

Conclusions and Recommendations

Why Re-design

Structural Redesign

Detailing

Conclusio

Conclusions and Recommendations

- Redesign of structural system caused the following:
 - Reduced building motion in terms of building period and drift
 - Possible overdesign with the inclusion of concrete moment frames
 - Minor impacts on architectural aspects of the building
- Better acoustical performance of all floor/wall assemblies
- Recommendations
 - •Existing structural system is most likely the most efficient
 - Benefits of the use of reinforced concrete in the design of mid-rise apartment buildings is evident

Overall, the main objective of learning how to analyze and design all aspects of a concrete structure was accomplished!

Benjamin Follett

April 13, 2009

Acknowledgements

Zamagias Properties Michael Heins

WBCM, LLC

Brian Channer, PE Mike Wuerthele, PE, Senior VP Brandon Pettner Jeremy Urban

Indovina Associates Architects

Brian Roth, AIA **CJL Engineering**

Gary Czyrnik Harry Hoover

> Lastly, I would like to thank all of my peers in the AE program, along with my family and friends for their endless support and encouragement through this entire project. Your help was invaluable and for that I am extremely grateful.

The Penn State University

Prof. M.K. Parfitt Dr. Linda M. Hanagan Prof. Robert J. Holland Dr. Ali Memari

AE Students

Scott Rabold & the Bat Cave

Benjamin Follett

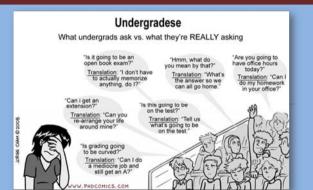
Questions?

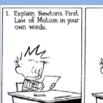
Presentation Outline

Project Overview

Existing Structure

Why Re-design


Structural Re


Architectural

Acoust

Conclu

Question

Benjamin Follett

April 13, 2009