Senior Thesis Presentation Jonathan Revtai -BAKERY SQUARE **BUILDING** 1

6425 Penn Avenue Pittsburgh, PA

Option: Construction Management Advisor: Dr. Riley

POINTS OF DISCUSSION

- Introduction
- General Project Overview
- Green Gym Analysis
 - M.A.E Research

PROJECT OVERVIEW

- Building 1 • \$24 Million GMP • 378,000 sq. ft. Multi-use Facility

Bakery Square • 5 Buildings Onsite

- Retail 42,000 sq. ft.
 - 1st Floor
- Fitness Center 59,500 sq. ft.
- 2nd 3rd Floor
- Parking Garage 276,500 sq. ft.
 - 1st 6th Floor
 - 850 Spaces

LOCATION

- Located in East Liberty
- Corner of Penn Ave. & East Liberty Blvd.

Building 1 Footprint Designated by Green

EXISTING CONDITIONS

Building 1 Footprint Designated by Green

• Blue Areas Required Demolition

PROJECT ORGANIZATION

- - Piezoelectric Floor Tiles Bamboo Flooring

GREEN GYM ANALYSIS

- Research Goal
 - Incorporate "green" technology and materials to create a more sustainable fitness center
- Sustainable Design
 - Electric Generating Bicycle

- Gym's Energy Needs

Lighting system mainly fluorescent lights with some incandescent bulbs

Calculations based on ASHRAE 90.1

Fitness Center uses 42,000 watts

- Bicycle Generator
 - Transforms mechanical energy to electrical energy
 - Energy produced by average bicyclist:
 - 150 watts for extended periods
 - 275 watts peak

Installa

Total

GREEN GYM ANALYSIS

GREEN GYM ANALYSIS

ption	Cost per Unit	Units	Cost
nent	\$500	25	\$12,500
er	\$500	1	\$500
ation	\$3,000	1	\$3,000
			\$16,000

- Piezoelectric Floor Tiles
 Used in Taiwan subway station and London dance club
- C •
- Walking induced vibrations transformed into electrical energy

GREEN GYM ANALYSIS

- Calculations based on:
 - 132 pound walker
 - 140 steps per minute

- \$100 per square foot
- 3,000 square feet of track
- Reduces energy load by 14%

- Bamboo Flooring • Use more sustainable materials
 - Bamboo has a shorter harvest cycle than standard maple floors
- Evaluated DIN 18032 Ball Rebou Force Red Vertical De Area Inden

GREEN GYM ANALYSIS

Characteristics of 2 Part II (1991)	Test Results (Avg.Values)	DIN 18032 Part II (1991) Requirements
ınd	93%	90% Minimum
uction	54.2%	53% Minimum
eflection	2.80mm	2.30mm Minimum
ntation	15%	15% Maximum

- Plyboo Sport
 - 6,000 square feet of area
 - \$7.75 per square foot for material and installation costs

Compared to maple floor

System	Cost/ SF	Area	Total Cost
Maple Concord II	\$10.50	6,000	\$63,000
Plyboo Sport	\$7.75	6,000	\$46,500

Descripti

- Bike Room Fitness Center
- Bicycles 50%
- Bicycles 75%
- Bicycles 100%
- Piezoelectr

GREEN GYM ANALYSIS

on	Daily Power (WH)	Yearly Cost	% of Load
Ì	5,736	\$209	-
	504,000	\$18,396	-
	20,280	\$740	4.0%
	30,360	\$1,108	6.0%
	40,500	\$1,478	8.0%
ric	69,300	\$2,529	13.8%

System	Cost/ SF	Area	Total Cost
Maple Concord II	\$10.50	6,000	\$63,000
Plyboo Sport	\$7.75	6,000	\$46,500
- Bacad on ¢0 10 nor KW-Hr			

- Based on \$0.10 per KW-Hr
- Energy prices will double soon
- Efficiencies and material costs should improve

M.A.E. RESEARCH

- Background
 - Expanded research on sustainable design
 - Focused on Parking Garage
 - Adoption of a LED Bi-level lighting system in place of fluorescent lights

M.A.E. RESEARCH

M.A.E. RESEARCH

System Information

- Replace fluorescent lights with LED which are more efficient and last longer
- Motion sensing equipment used to lower and raise lighting levels depending on use

M.A.E. RESEARCH

UC Davis Case Study

Design	Outcome
Light Quality	CRI 22 to CRI 80
LED Energy Savings	40% less energy
Bi-Level Energy Savings	30% less energy
Maintenance Savings	6 times longer lifespan

M.A.E. RESEARCH

M.A.E. RESEARCH

Bakery Square Application • Fluorescent lights

• Lighting Load = 81,000 watts

• Assumed lights are on 12 hours per day year round

LED Bi-level System Savings

Description	Daily Power (WH)	Daily Cost	Yearly Cost	% of Load
Parking Garage	977,000	\$97.70	\$35,672	-
Bi-Level LED	586,400	\$58.64	\$21,403	60%

- Existing Structure Structural Steel with Composite Decking
- Lightweight Alternatives • Wire Rope

 - Steel Joist

MEZZANINE ANALYSIS

Precast Concrete

- Goals
 - Reduce costs
 - Reduce schedule
 - Maintain mezzanine layout and aesthetic appeal

- Wire Rope • Open space design
 - Requires many precast concrete embeds
 - Concerns of floor vibrations, especially around the track

MEZZANINE ANALYSIS

- Precast Concrete

 - Cheap alternative

 - Requires more crane time

Easily attached with superstructure

Alters floor plan and aesthetic look

- Steel Joist System Eliminates need for precast crane
- Retains open floor plan

MEZZANINE ANALYSIS

• Easily attached to superstructure

- Assumptions
 - Live load = 100 psf
 - Dead load = 57 psf + joists
 - Typical bay size = $34' \times 62'$
 - Dead Space in floor plan may be eliminated

- 83.2 kip load
- Girder 36G6N83.2 34' span 505 kip load

MEZZANINE ANALYSIS

- Steel Joist Members
 - Joist 44LH17
 - 62' span

Member	Count	Weight (Ton)	Unit Cost	Total Cost
Joists	60	73.2	\$2,898	\$212,100
Girders	12	25.5	\$2,249	\$57,300
Total	72	98.7	-	\$269,400

- Cost Comparison
 - Structural Steel \$341,500
 - Steel Joist \$269,400

MEZZANINE ANALYSIS

- Schedule Comparison
 - Reduces precast crane time by 4 days
 - Allows construction of mezzanine to start earlier

- Summary
 - 21%
 - Reduce schedule by 4 days
 - Maintain aesthetic appeal from original design

Reduce mezzanine structure costs by

MECHANICAL ANALYSIS MECHANICAL ANALYSIS

- Me
 F
 - Required redesign of mechanical system
- Resulted in a higher upfront cost, but reduced operational costs and created better aesthetics

- Mechanical Breadth
 - Relocate mechanical system to open southern façade in fitness center

Research Background Triangular pile caps had a significantly lower production rate

• Redesign of the pile cap should reduce costs and schedule length

• Used as a structural breadth

Descri

Floor L

Garage

Stairs 8

Roof Liv

Snow L

Load Requirements

ption	Load (PSF)
ive Load	100
e Live Load	40
& Lobby Live Load	100
ve Load	30
oad	25

- Assumptions & Calculations • Live Load = 106 kips • Dead Load = 412 kips

 - Pile diameter = 18''
 - f'c = 3,000 psi
 - Column Dimension = $30'' \times 42''$

- Pile Cap Design • 6'-6" x 6'-6"

- 42" deep
- #11 bars spaced 12" o.c.

Pile Cap Comparison

Description	Triangular	Square
Formwork	\$744	\$564
Concrete Material	\$769	\$608
Concrete Placing	\$80	\$63
Rebar	\$318	\$393
Total	\$1,911	\$1,628

- Schedule Comparison Productivity of Formwork
- Square 176 sq. ft. / day
- Multiplied by 31 type PC3 pile caps
- Reduces schedule by 5 days

Triangular – 140 sq. ft. / day

Redesign Results

Comparison Cost Savings P Total Cost Savi

Schedule Redu

	Results
er Pile Cap	\$283
ngs	\$8,773
oction	5 Days

SUMMARY

- Green Gym Analysis
 - Increased costs
 - Reduction in operational costs
 - Successfully incorporates "green" technologies and materials

SUMMARY

- Lightweight Mezzanine Analysis Reduces construction costs by 21%
 - Reduces schedule by 4 days
 - Maintains open floor plan and aesthetic appeal from original design

- Pile Cap Analysis
 - Reduces costs by \$8,773
 - Reduces schedule by 5 days

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

- Shane Allison
- Dino Bagatelas
- Anthony Dolan
- Dave Fields
- Colin Fink
- Darryl Fink
- Linda Hanagan
- Robert Holland
- Michael Horman
- Justin Jones

- Michael Koza
- Kevin Parfitt
- Eric Pascucci
- Gregg Perelman
- Bill Porter
- Todd Reidbord
- David Riley
- Steven Schrader
- Friends and Family

QUESTIONS

