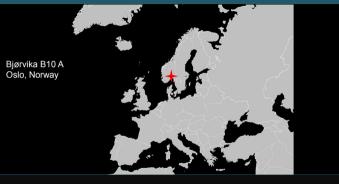
PricewaterhouseCoopers Building Oslo, Norway



James Wilson


Structural Option Senior Thesis Presentation 2009 The Pennsylvania State University

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Oslo, Norway

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

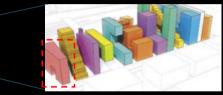
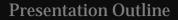
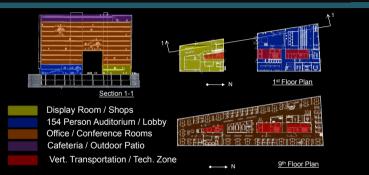



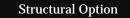
Image Courtesy of Oslo S Utvikling AS

Image Courtesy of Oslo S Utvikling AS

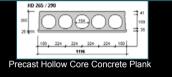
- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion



- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion



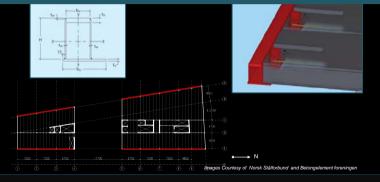
- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion



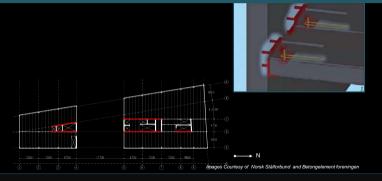


- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

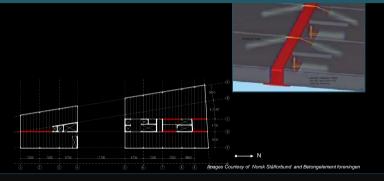
4' wide 11" deep + 2" Topping



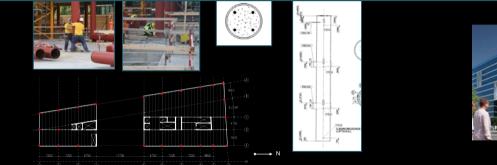
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion



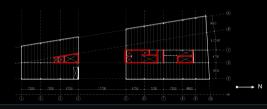
- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion



- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

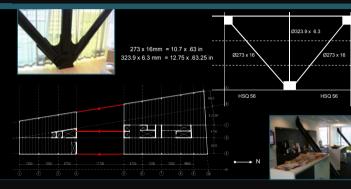


- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion



LFRS - Cast in Place Concrete Shear Walls

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion



- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Introduction

Existing Structural System

- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Steel:

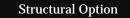
Item	Euronorm	ASTM	Fy (ksi)	Fu (ksi)	Ea		Density
					(ksi)		(Ib/ft ³)
Columns	S355	A572Gr50	51	74	30 500	.3	50
Beams	S355	A572Gr50	51	74	30 500	.3	50
Reinforcing	B500C	-	-	72	30 500	-	-

Concrete:

Item	Norwegian	Eurocode		f _{etm}	Ecm	
	Standard	CEN	(ksi)	(ksi)	(ksi)	
Cast in place	B35	C35/45	5	0.46	4 850	
Prefabricated	B45	C45/55	6.5	0.55	5 2 2 2	
Columns	B45	C45/55	6.5	0.55	5 2 2 2	

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion



- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Relocation – Dorchester Ave., Boston, MA

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Image Courtesy of Oslo S Utvikling AS

Arial images courtesy of Google Earth

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

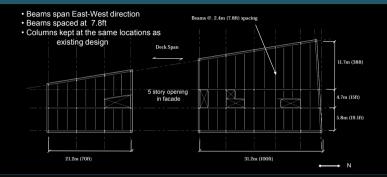
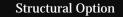



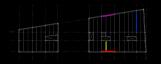
Image Courtesy of Oslo S Utvikling AS

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Live Load: 80 psf SIMP Dead Load: 15psf Span: 7.8ft

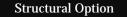
Results using United Steel Deck Manual: 20 gage 2" LOK- FLOOR composite deck 3.25" thk. Lightweight concrete slab Provides 2hr fire rating without the need for fireproofing WWF: 6 x 6 – W2.0 x2.0 reinforcing

Image Courtesy of Oslo S Utvikling AS



Beam / Girder Design

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

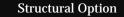

Composite or Non-composite?

Key	Member	Span	Composite			Non Comp	Most Economical	
		(ft)	Least Wt. Mem.	# Studs	Equivalent Wt.	Least Wt. Mem.	Wt	by Equiv. Wt.
	Typical Int. Beam	19.14	W12x14	8	348	W12x19	364	Composite
	Typical Ext. Girder	23.6	W14x22	12	639	W14x30	708	Composite
	Long span beam	38.5	W14x53	23	2271	W14x68	2618	Composite
	Long Span Ext. Girder	23.9	W14x30	22	937	W14x43	1028	Composite

Beam / Girder Design Criteria

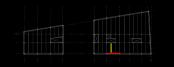
- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

<u>Strength – ASCE 7-05 sec2.3 LRFD load combinations:</u> 1. 1.4 Dead 2. 1.2 Dead + 1.6Live + 0.5 Roof Live 3. 1.2 Dead + 1.6 Roof Live + 0.5 Live


Economy – Camber Do <u>not</u> camber: Beams less than 25ft Beams that require less than 3/4" of camber Beams in braced frames

<u>No shoring</u>

Member Depth limited to 14"

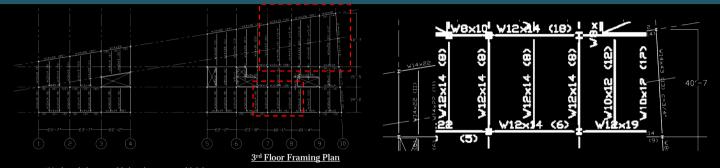

Beam / Girder Design

Introduction

- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Optimal members were determined by RAM and checked with hand calculations Example– Typical Beam and Girder

	Member	L (ft)	Mu	I Req Deflection (in ⁴)			Least Wt.	I _{PC} (in ⁴)	ا _{نه} (in ⁴)
	Member		Mu	Διι	Δτ	Δ_{PC}	Member	IPC (IN')	100 (IN)
Hand Calc	Beam	19.14	70.5	103	116.4	67.5	W12x14	88.6	101
Hand Care	Girder	23.62	126.3	203	268.8	108.36	W14x22	199	424
RAM	Beam	19.14	72.4				W12x14	88.6	101
	Girder	23.62	154				W14x22	199	424



- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

4/14/09

**Members which are part of the lateral system are not labeled

Column Design

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Perimeter columns resisting gravity loads only: Level 1-12:

Columns resisting gravity + lateral load: Level 1-12: W14

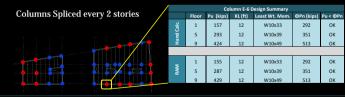


Image Courtesy of Oslo S Utvikling AS

OK

OK

OK

ОК

OK

OK

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Brace Location Study

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

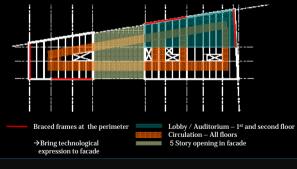
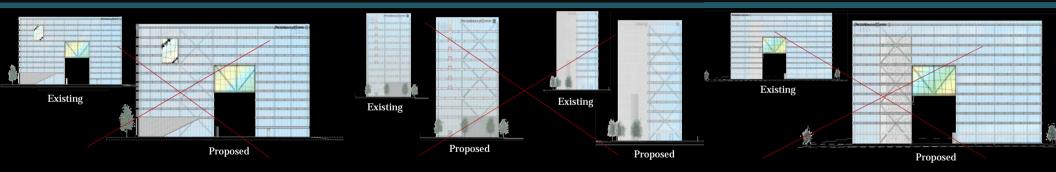


Image Courtesy of Oslo S Utvikling AS



Architectural Study

Braced Frames at Perimeter

James Wilson

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

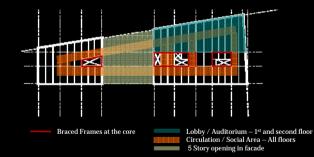


Image Courtesy of Oslo S Utvikling AS

ETABS Model - Preliminary Design

Introduction

Existing Structural System

Proposal

- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study

Conclusion

Model of lateral system only was constructed in ETABS to determine optimal framing layout

Wind load application:

ASCE 7 – 05 – Analytical Procedure
Wind loads applied at the center of pressure of diaphragm at each level

Levels 5-12

Image Courtesy of Oslo S Utvikling AS

ETABS Model - Preliminary Design

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Seismic load application:

ASCE 7 – 05: Equivalent Lateral Force Procedure

Seismic loads applied at the center of mass at each level

✦ = Center of Mass

Levels 5-12

Image Courtesy of Oslo S Utvikling AS

Preliminary Design Results

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Very large axial forces were induced in the columns towards the base of the structure due to the narrow shape of the core

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

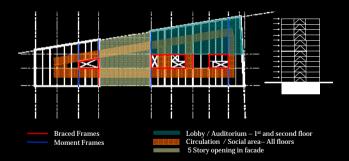
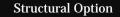



Image Courtesy of Oslo S Utvikling AS

Introduction

Existing Structural System

- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Members checked under combined loading in an integrated RAM model

1.1.4(D + F) 2.1.2(D + F + T) + 1.6(L + H) + 0.5(L r or S or R) 3.1.2D + 1.6(L r or S or R) + (L or 0.8W) 4.1.2D + 1.6W + L + 0.5(L r or S or R) 5.1.2D + 1.0E + L + 0.2S 6.0.9D + 1.6W + 1.6H 7.0.9D + 1.0E + 1.6H

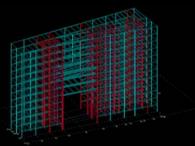
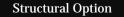
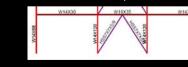
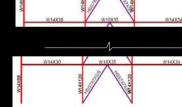



Image Courtesy of Oslo S Utvikling AS

12th floor

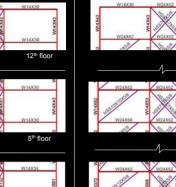
1st floor

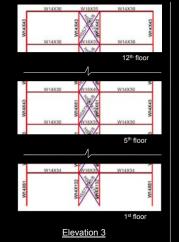

1st floor

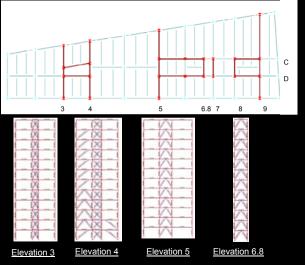


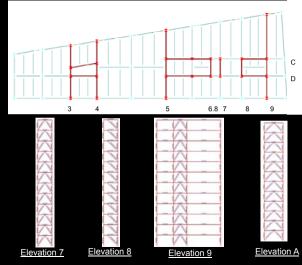
Elevation 5

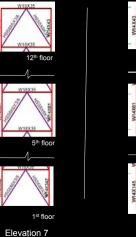
W14X34

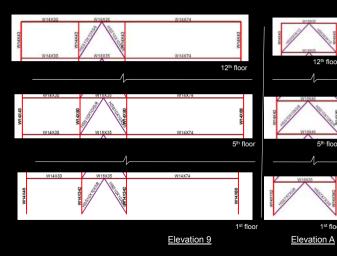


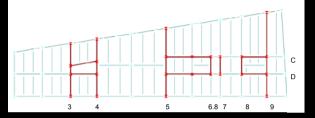





Elevation 4


1st floor

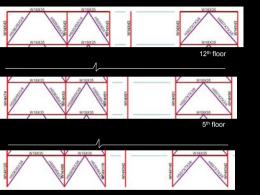




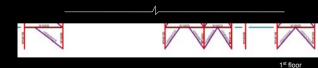
12th floor

5th floor

1st floor



-



Elevation D

Elevation C

Elevation D

Elevation C

Drift and Torsion

- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

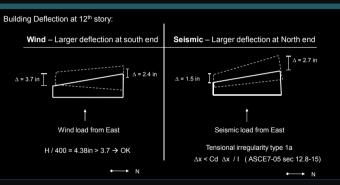
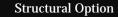
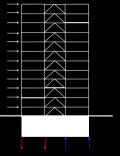



Image Courtesy of Oslo S Utvikling AS

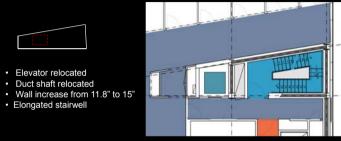


4/14/09

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Concrete substructure acts as a base to distribute loads to pile foundations

Outriggers help distribute loads to the perimeter



- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Proposed Design

Existing Design

4/14/09

Cost comparison

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System

Breadth Study

Conclusion

Composite Concrete Deck vs. Precast Concrete Plank

Composite Concrete Deck on Composite Steel Frame								
Quantity	Description	Extended Cost (\$)						
Quantity	guantity Description	Material	Labor	Equipment	Total			
150000 S.F.	Metal Decking	279,000	69,000	6,000	354,000			
660 Ton	Structural Steel	1,518,000	250,800	87,120	1,855,920			
1500 C.S.F	WWF 6 x 6	23,475	33,000		56,475			
1960 C.Y.	L.W. Concrete	286,160			286,160			
14871 Ea.	Studs - 3/4"	8,030	11,153	5,651	24,835			
150000 S.F.	Concrete Finish		73,500	3,000	76,500			

Total =

\$ 2,653,889.57

Precast Concrete Plank on Steel Frame									
Quantity	Description	Extended Cost (\$)							
	Description	Material	Labor	Equipment	Total				
430 Ton	Structural Steel	989,000	163,400	56,760	1,209,160				
150000 S.F.	Precast Plank, 10" thick	1,147,500	126,000	78,000	1,351,500				
923 C.Y.	2" Concrete Topping	97,838	-	-	97,838				
150000 S.F.	Concrete Finish		52,500	6,000	58,500				
2758 Ea.	Shear Stud - 3/4"	1,489	2,069	1,048	4,606				

Image Courtesy of Oslo S Utvikling AS

Total = \$ 2,721,603.86

Schedule comparison

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Construction schedule for composite concrete deck and precast concrete plank created in Microsoft Project

Results for Construction of structure :

+ Composite steel deck = 52 days+ Precast Concrete Plank = 40 days

23% schedule reduction with use of precast plank

Conclusions – Gravity System

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Composite concrete deck on composite steel beams and girders is the most viable floor system for the PwC building if located in Boston

 However, precast concrete plank has potential to be more economical due to cost saving incurred by reduction of construction schedule

Conclusions – Lateral System

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Acknowledgements

- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

I would like to thank the following for their generous support and assistance on this senior thesis:

+ Prof. M. Kevin Parfitt - Thesis Consultant

+Pareto Investments - for granting me permission to use the PwC-building as the subject of this year long project.

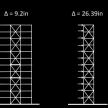
+All the Professors at The Pennsylvania State University - for their assistance over the past five years.

+ Friends and family - for their patients and support

Questions?

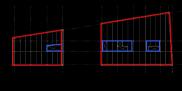
4/14/09

	12.3-1 Horizontal Structural Irregularities				
	Irregularity	Must Comply with			
		Reference Section:			
1a	Torsional Irregularity	12.7.3			
	$\Delta 1$ (in.) = 1.53	16.2.2			
	$\Delta 2 (in.) = 2.67$				
	\rightarrow 1.2(($\Delta 1 + \Delta 2$)/2) = 2.52 < $\Delta 2$				
3	Diaphragm Discontinuity Irregularity	12.7.3			
	→ Slit diaphragm at the bottom four stories	16.2.2			
5	Nonparallel Systems-Irregularity	12.7.3			
	→ Vertical lateral force resisting elements are not	16.2.2			
	parallel or symmetric about major orthogonal axes.				



- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

 \rightarrow 1/3 of deflection



- Introduction
- Existing Structural System
- Proposal
- Redesign of Gravity System
- Redesign of Lateral System
- Breadth Study
- Conclusion

Moment Frames at the perimeter

- Braced frames
- Moment frames
- Reduce large axial forces at the core

Special Steel Plate Shear Walls

4/14/09

