Advisor: Dr. Andres Lepage Final Report

April 7, 2009

**APPENDIX A - PHOTOGRAPHS** 

Advisor: Dr. Andres Lepage Final Report April 7, 2009

#### **PHOTOGRAPHS**



Figure 1A: Rendering of the House of Sweden Development



Figure 2A: Night View of the North Building

#### **PHOTOGRAPHS**



Figure 3A: Main Entrance of the North Building



Figure 4A: Comparison of the North and South building Exterior Cladding

Advisor: Dr. Andres Lepage Final Report

April 7, 2009

**APPENDIX B – GRAVITY LOAD CALCULATIONS** 

#### **SNOW AND RAIN LOAD CALCULATIONS**

Presented below are table summaries of the snow load calculations performed for the north building. Hand calculations can be reviewed upon request.

| Roof Snow Load                             |          |            |  |  |  |  |
|--------------------------------------------|----------|------------|--|--|--|--|
| Factor Design Value Code Section           |          |            |  |  |  |  |
| Ground Snow Load, P <sub>g</sub>           | 25 psf   | Figure 7-1 |  |  |  |  |
| Exposure Factor, C <sub>e</sub>            | 1.0      | Table 7-2  |  |  |  |  |
| Thermal Factor, C <sub>t</sub>             | 1.0      | Table 7-3  |  |  |  |  |
| Importance Factor, I                       | 1.0      | Table 7-4  |  |  |  |  |
| Flat Roof Snow Load, P <sub>f</sub>        | 17.5 psf | §7.3       |  |  |  |  |
| Minimum Flat Roof Snow Load P <sub>f</sub> | 20 psf   | §7.3.4     |  |  |  |  |

| Snow Drift (North Building)                 |              |              |  |  |  |
|---------------------------------------------|--------------|--------------|--|--|--|
| Factor                                      | Design Value | Code Section |  |  |  |
| γ                                           | 17.25 psf    | §7.7.1       |  |  |  |
| h <sub>b</sub>                              | 1.16'        |              |  |  |  |
| h <sub>c</sub>                              | 10.84'       |              |  |  |  |
| h <sub>c</sub> /h <sub>b</sub>              | 9.34'        |              |  |  |  |
| I <sub>u</sub> N-S top                      | 148'         |              |  |  |  |
| Leeward Drift, h <sub>d</sub> N-S top       | 4.03'        | Figure 7-9   |  |  |  |
| I <sub>u</sub> N-S lower                    | 11'          |              |  |  |  |
| Leeward Drift, h <sub>d</sub> N-S lower     | 1.56'        | Figure 7-9   |  |  |  |
| I <sub>u</sub> E-W top                      | 162'         |              |  |  |  |
| Leeward Drift, h <sub>d</sub> E-W top       | 4.20'        | Figure 7-9   |  |  |  |
| I <sub>u</sub> E-W lower                    | 11'          |              |  |  |  |
| Leeward Drift, h <sub>d</sub> E-W lower     | 1.56'        | Figure 7-9   |  |  |  |
| I <sub>u</sub> N-S top                      | 11'          |              |  |  |  |
| Windward Drift, h <sub>d</sub> N-S top      | 1.17'        | Figure 7-9   |  |  |  |
| I <sub>u</sub> N-S lower                    | 11'          |              |  |  |  |
| Windward Drift, h <sub>d</sub> N-S lower    | 1.17'        | Figure 7-9   |  |  |  |
| I <sub>u</sub> E-W top                      | 11'          |              |  |  |  |
| Windward Drift, h <sub>d</sub> E-W top      | 1.17'        | Figure 7-9   |  |  |  |
| I <sub>u</sub> E-W lower                    | 11'          |              |  |  |  |
| Windward Drift, h <sub>d</sub> E-W lower    | 1.17'        | Figure 7-9   |  |  |  |
| w=4*h <sub>d</sub> , N-S top                | 16.12'       |              |  |  |  |
| p <sub>d</sub> =h <sub>d</sub> γ, N-S top   | 69.5 psf     | §7.7         |  |  |  |
| w=4*h <sub>d</sub> , N-S lower              | 6.24'        |              |  |  |  |
| p <sub>d</sub> =h <sub>d</sub> γ, N-S lower | 26.9 psf     | §7.7         |  |  |  |
| w=4*h <sub>d</sub> , E-W top                | 16.8'        |              |  |  |  |
| p <sub>d</sub> =h <sub>d</sub> γ, E-W top   | 72.5 psf     | §7.7         |  |  |  |
| w=4*h <sub>d</sub> , E-W lower              | 6.24'        |              |  |  |  |
| p <sub>d</sub> =h <sub>d</sub> γ, E-W lower | 26.9 psf     | §7.7         |  |  |  |

## **APPENDIX C – LATERAL LOAD CALCULATIONS**

#### WIND LOAD CALCULATIONS

#### **Static Load Cases**

The load cases below were considered for wind loading of the structure. They were taken from ASCE7-05 Figure 6-9.





Advisor: Dr. Andres Lepage Final Report April 7, 2009

#### WIND LOAD CALCULATIONS

| Factor (Both Buildings) | Design Value | Reference  |
|-------------------------|--------------|------------|
| K <sub>zt</sub>         | 1            | §6.5.7     |
| K <sub>d</sub>          | 0.85         | Table 6-4  |
| Exposure Category       | В            | §6.5.6     |
| V                       | 90           | Figure 6-1 |
| I                       | 1            | Table 6-1  |

# North Building in the N-S Direction

|             | Wind Pressures (North Building N-S) |                         |                     |                     |                |                                 |  |  |
|-------------|-------------------------------------|-------------------------|---------------------|---------------------|----------------|---------------------------------|--|--|
| Height (ft) | K <sub>z</sub>                      | q <sub>z</sub><br>(psf) | Windward Wall (psf) | Leeward Walls (psf) | Total<br>(psf) | Length in E-W<br>Direction (ft) |  |  |
| 77          | 0.918                               | 16.18                   | 10.54               | -3.95               | 14.49          | 160                             |  |  |
| 59          | 0.846                               | 14.91                   | 9.71                | -3.95               | 13.66          | 190                             |  |  |
| 48.17       | 0.801                               | 14.12                   | 9.19                | -3.95               | 13.14          | 206                             |  |  |
| 37.33       | 0.746                               | 13.15                   | 8.56                | -3.95               | 12.51          | 206                             |  |  |
| 26.5        | 0.672                               | 11.84                   | 7.71                | -3.95               | 11.66          | 206                             |  |  |
| 15.67       | 0.587                               | 10.35                   | 6.74                | -3.95               | 10.69          | 206                             |  |  |
| 4.83        | 0.57                                | 10.05                   | 6.54                | -3.95               | 10.49          | 162                             |  |  |

| Gust Fac                  | tor (North Building N-S) |
|---------------------------|--------------------------|
| Factor                    | Design Value             |
| $\mathbf{g}_{\mathrm{q}}$ | 3.4                      |
| g <sub>v</sub>            | 3.4                      |
| g <sub>r</sub>            | 4.18                     |
| Ż                         | 46.2                     |
| lż                        | 0.284                    |
| Lż                        | 358                      |
| Q                         | 0.80                     |
| Vż                        | 64.6                     |
| N <sub>1</sub>            | 5.4                      |
| R <sub>n</sub>            | 0.05                     |
| R <sub>h</sub>            | 0.17                     |
| R <sub>B</sub>            | 0.07                     |
| R <sub>L</sub>            | 0.02                     |
| R                         | 0.08                     |
| G <sub>f</sub>            | 0.814                    |

|       | North Building N-S |              |              |                  |  |  |  |
|-------|--------------------|--------------|--------------|------------------|--|--|--|
| Story | Height<br>(ft)     | Force<br>(K) | Shear<br>(K) | Moment<br>(ft-K) |  |  |  |
| PH    | 77'-0"             | 14           | 0.0          | 1071             |  |  |  |
| MR    | 59'-0"             | 31           | 14           | 1805             |  |  |  |
| 6     | 48'-2"             | 30           | 44           | 1442             |  |  |  |
| 5     | 37'-4"             | 29           | 74           | 1069             |  |  |  |
| 4     | 26'-6"             | 81           | 103          | 2143             |  |  |  |
| 3     | 15'-8"             | 75           | 184          | 1178             |  |  |  |
| 2     | 4'-10"             | 18           | 259          | 85               |  |  |  |
| 1     | -6'-0"             | 0.0          | 277          | 0.0              |  |  |  |
|       |                    |              | V =<br>277   | ΣM =<br>8792     |  |  |  |

## North Building in the E-W Direction

| Wind Pressures (North Building E-W) |                |                         |                     |                     |                |                                 |  |
|-------------------------------------|----------------|-------------------------|---------------------|---------------------|----------------|---------------------------------|--|
| Height (ft)                         | K <sub>z</sub> | q <sub>z</sub><br>(psf) | Windward Wall (psf) | Leeward Walls (psf) | Total<br>(psf) | Length in N-S<br>Direction (ft) |  |
| 77                                  | 0.918          | 16.18                   | 10.57               | -6.61               | 17.18          | 135.5                           |  |
| 59                                  | 0.846          | 14.91                   | 9.74                | -6.61               | 16.35          | 176.5                           |  |
| 48.17                               | 0.801          | 14.12                   | 9.22                | -6.61               | 15.83          | 192                             |  |
| 37.33                               | 0.746          | 13.15                   | 8.59                | -6.61               | 15.20          | 192                             |  |
| 26.5                                | 0.672          | 11.84                   | 7.74                | -6.61               | 14.35          | 192                             |  |
| 15.67                               | 0.587          | 10.35                   | 6.76                | -6.61               | 13.37          | 163.5                           |  |
| 4.83                                | 0.57           | 10.05                   | 6.56                | -6.61               | 13.17          | 163.5                           |  |

| Gust Fact      | tor (North Building E-W) |
|----------------|--------------------------|
| Factor         | Design Value             |
| <b>g</b> q     | 3.4                      |
| g <sub>v</sub> | 3.4                      |
| g <sub>r</sub> | 4.18                     |
| Ż              | 46.2                     |
| lż             | 0.28                     |
| Lż             | 358                      |
| Q              | 0.81                     |
| Vż             | 64.6                     |
| N <sub>1</sub> | 5.40                     |
| R <sub>n</sub> | 0.05                     |
| R <sub>h</sub> | 0.17                     |
| R <sub>B</sub> | 0.07                     |
| R∟             | 0.02                     |
| R              | 0.08                     |
| G <sub>f</sub> | 0.817                    |

|       | North Building E-W |              |              |                  |  |  |  |
|-------|--------------------|--------------|--------------|------------------|--|--|--|
| Story | Height<br>(ft)     | Force<br>(K) | Shear<br>(K) | Moment<br>(ft-K) |  |  |  |
| PH    | 77'-0"             | 14           | 0.0          | 1075             |  |  |  |
| MR    | 59'-0"             | 34           | 14           | 1996             |  |  |  |
| 6     | 48'-2"             | 33           | 48           | 1613             |  |  |  |
| 5     | 37'-4"             | 35           | 81           | 1293             |  |  |  |
| 4     | 26'-6"             | 97           | 116          | 2579             |  |  |  |
| 3     | 15'-8"             | 90           | 213          | 1404             |  |  |  |
| 2     | 4'-10"             | 22           | 303          | 107              |  |  |  |
| 1     | -6'-0"             | 0.0          | 325          | 0.0              |  |  |  |
|       |                    |              | V =<br>325   | ΣM =<br>10069    |  |  |  |

Presented above are table summaries of the wind load calculations performed for the north building. Hand calculations were also performed and can be reviewed upon request.

Advisor: Dr. Andres Lepage Final Report April 7, 2009

## **SEISMIC LOAD CALCULATIONS**

Presented below are summaries of the seismic load factors and tables summaries of the loads for both the north and south buildings. Hand calculations were also performed as well as manual calculations of story weights and can be reviewed upon request.

| Factor                                                                                    | Reference             |
|-------------------------------------------------------------------------------------------|-----------------------|
| Site Class D                                                                              | (Table 20.3.1)        |
| S <sub>s</sub> = 0.15                                                                     | (Figure 22-1)         |
| S <sub>1</sub> = 0.051                                                                    | (Figure 22-2)         |
| $T_L = 8$                                                                                 | (Figure 22-15)        |
| Occupancy Category II                                                                     |                       |
| $S_{ms} = 0.24$                                                                           | (Table 11.4.1)        |
| S <sub>m1</sub> = 0.1224                                                                  | (Table 11.4.2)        |
| S <sub>DS</sub> = 0.16                                                                    |                       |
| $S_{D1} = 0.0816$                                                                         | (eq. 11.4-4)          |
| SDC = B                                                                                   |                       |
| TS = 0.51                                                                                 |                       |
| North Building $T_L = 0.816 \text{ s}$                                                    |                       |
| North Building R = 3                                                                      | (Table 12.2-1)        |
| North Building Moment Frame $C_UT_A = 1.63 \text{ s}$                                     |                       |
| North Building Moment Frame C <sub>s</sub> = 0.01669                                      |                       |
| North Building Normal Weight Concrete Braced Frame $C_UT_A = 1.39$                        | S                     |
| North Building Normal Weight Concrete Braced Frame $C_s = 0.01957$                        | 7                     |
| North Building Lightweight Concrete Braced Frame T = 1.244 s (the                         | e calculated building |
| period was less that $C_{\text{U}}T_{\text{A}}$ therefore, the calculated period was used | for the calculations) |
| North Building Lightweight Concrete Braced Frame C <sub>s</sub> = 0.02186                 |                       |

Advisor: Dr. Andres Lepage Final Report April 7, 2009

## **SEISMIC LOAD DISTRIBUTIONS**

#### **Normal Weight Concrete:**

| Vertical Distribution of Seismic Forces (Moment Frame) |                               |                                       |                            |                          |                           |
|--------------------------------------------------------|-------------------------------|---------------------------------------|----------------------------|--------------------------|---------------------------|
| Level                                                  | Height h <sub>x</sub><br>(ft) | Story<br>Weight w <sub>x</sub><br>(K) | Lateral<br>Force Fx<br>(K) | Story<br>Shear Vx<br>(K) | Moment at<br>Floor (ft-K) |
| Р                                                      | 83'-0"                        | 1533                                  | 58                         | 58                       | 4775                      |
| MR                                                     | 65'-0"                        | 1613                                  | 41                         | 99                       | 2679                      |
| 6                                                      | 54'-2"                        | 1982                                  | 38                         | 137                      | 2061                      |
| 5                                                      | 43'-4"                        | 1995                                  | 27                         | 164                      | 1169                      |
| 4                                                      | 32'-6"                        | 1782                                  | 15                         | 179                      | 498                       |
| 3                                                      | 21'-8"                        | 1109                                  | 5                          | 184                      | 109                       |
| 2                                                      | 10'-10"                       | 1098                                  | 5                          | 186                      | 18                        |
|                                                        |                               |                                       |                            |                          |                           |
| Σw <sub>i</sub> h <sub>i</sub> <sup>k</sup> =          | 5,103,746                     | $\Sigma F_x = V =$                    | 186 K                      | ΣM =                     | 11,330 ft-k               |

| Vertical Distribution of Seismic Forces (Braced Frame) |                               |                                       |                            |                          |                           |
|--------------------------------------------------------|-------------------------------|---------------------------------------|----------------------------|--------------------------|---------------------------|
| Level                                                  | Height h <sub>x</sub><br>(ft) | Story<br>Weight w <sub>x</sub><br>(K) | Lateral<br>Force Fx<br>(K) | Story<br>Shear Vx<br>(K) | Moment at<br>Floor (ft-K) |
| Р                                                      | 83'-0"                        | 1524                                  | 64                         | 64                       | 5308                      |
| MR                                                     | 65'-0"                        | 1604                                  | 47                         | 111                      | 3069                      |
| 6                                                      | 54'-2"                        | 1972                                  | 45                         | 156                      | 2414                      |
| 5                                                      | 43'-4"                        | 1968                                  | 32                         | 188                      | 1394                      |
| 4                                                      | 32'-6"                        | 1769                                  | 19                         | 207                      | 619                       |
| 3                                                      | 21'-8"                        | 1098                                  | 7                          | 214                      | 142                       |
| 2                                                      | 10'-10"                       | 1076                                  | 2                          | 216                      | 26                        |
|                                                        |                               |                                       |                            |                          |                           |
| Σw <sub>i</sub> h <sub>i</sub> <sup>k</sup> =          | 3,119,645                     | $\Sigma F_x = V =$                    | 216 K                      | ΣM =                     | 12,972 ft-k               |

## **SEISMIC LOAD DISTRIBUTIONS**

#### **Lightweight Concrete:**

| Verti                                         | cal Distribut                 | tion of Seisn                         | nic Forces (               | Moment Fra               | me)                       |
|-----------------------------------------------|-------------------------------|---------------------------------------|----------------------------|--------------------------|---------------------------|
| Level                                         | Height h <sub>x</sub><br>(ft) | Story<br>Weight w <sub>x</sub><br>(K) | Lateral<br>Force Fx<br>(K) | Story<br>Shear Vx<br>(K) | Moment at<br>Floor (ft-K) |
| Р                                             | 83'-0"                        | 1014                                  | 38                         | 39                       | 3280                      |
| MR                                            | 65'-0"                        | 1094                                  | 28                         | 67                       | 1831                      |
| 6                                             | 54'-2"                        | 1336                                  | 26                         | 93                       | 1399                      |
| 5                                             | 43'-4"                        | 1328                                  | 18                         | 111                      | 784                       |
| 4                                             | 32'-6"                        | 1202                                  | 10                         | 121                      | 339                       |
| 3                                             | 21'-8"                        | 778                                   | 4                          | 125                      | 77                        |
| 2                                             | 10'-10"                       | 747                                   | 1                          | 126                      | 12                        |
|                                               |                               |                                       |                            |                          |                           |
| Σw <sub>i</sub> h <sub>i</sub> <sup>k</sup> = | 3,423,048                     | $\Sigma F_x = V =$                    | 126 K                      | ΣM =                     | 7,623 ft-k                |

| Vert                                          | ical Distribu                 | tion of Seisı                         | mic Forces (               | Braced Frai              | ne)                       |
|-----------------------------------------------|-------------------------------|---------------------------------------|----------------------------|--------------------------|---------------------------|
| Level                                         | Height h <sub>x</sub><br>(ft) | Story<br>Weight w <sub>x</sub><br>(K) | Lateral<br>Force Fx<br>(K) | Story<br>Shear Vx<br>(K) | Moment at<br>Floor (ft-K) |
| Р                                             | 83'-0"                        | 1006                                  | 47                         | 47                       | 3936                      |
| MR                                            | 65'-0"                        | 1086                                  | 36                         | 83                       | 2334                      |
| 6                                             | 54'-2"                        | 1314                                  | 33                         | 117                      | 1807                      |
| 5                                             | 43'-4"                        | 1312                                  | 24                         | 141                      | 1044                      |
| 4                                             | 32'-6"                        | 1185                                  | 14                         | 155                      | 466                       |
| 3                                             | 21'-8"                        | 761                                   | 5                          | 160                      | 111                       |
| 2                                             | 10'-10"                       | 727                                   | 2                          | 162                      | 19                        |
|                                               |                               |                                       |                            |                          |                           |
| Σw <sub>i</sub> h <sub>i</sub> <sup>k</sup> = | 2,084,780                     | $\Sigma F_x = V =$                    | 162 K                      | ΣM =                     | 9,718 ft-k                |

**APPENDIX D – Wide-Flange Beam Preliminary Design** 



|   | Composite Stell Deck Composite Beams                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------|
|   | Table 3-19                                                                                                             |
| 0 | WIX x 24 PNA location to OMN= 220 ft-K > Mn= 212 Ft-K / EQn= 135 K                                                     |
|   | a= 135<br>0.85(3)(46) = 0.80" < 1.5" \                                                                                 |
|   | # 06 stude = 135 = 8 stude per side = 16 stude                                                                         |
|   | = Exterior "Cantilevered" Beam<br>tributary wiath : 10'<br>W = 1.6(100) + 1.2(42) = 210 paf<br>w= 210(10) = 2.10 K/Ft  |
|   | $Mn = \frac{\omega L^2}{8} = \frac{2.10(92)^2}{8} = 127 H - K$ $Vn = \frac{\omega L}{2} = \frac{2.10(22)}{8} = 23.1 K$ |
|   | Stel Construction Manual - Table 3-19 assume a=1.5" Y2 = 3'14" - 9/2 = 3'14" - 115/2 = 2.5"                            |
| U | W12 × 19 PNA location 7 pmn = 130ft-K > Mn = 127ft-K /<br>\Son = 69.7 K                                                |
|   | a = 69.7 = 0.41" < 1.5" \                                                                                              |
|   | Table 3-21<br>Qn=17.ak                                                                                                 |
|   | # of studs = 69,7/17.2 = 5 stude per side = 10 stude                                                                   |
|   |                                                                                                                        |
|   |                                                                                                                        |
|   |                                                                                                                        |
|   |                                                                                                                        |
|   |                                                                                                                        |
|   |                                                                                                                        |

House of Sweden

Washington, DC

|    |                            | Composite Stee                 | 1 Deck                         | Composite Beams                                    |
|----|----------------------------|--------------------------------|--------------------------------|----------------------------------------------------|
|    |                            |                                |                                |                                                    |
|    | Check Defl                 | ections in Bea                 | MS                             |                                                    |
| 1  | . Interior Beam            | (worst case apo                | (0.1                           |                                                    |
|    | Table 3-20<br>T=424104     | Dray = 4/360<br>Au = 56264 5 ( | = 30(12)/361<br>1 × 30) 4(12)3 | 0=1"<br>1.49" >1" No!                              |
|    |                            | 38487 384                      | (29000)(42)                    |                                                    |
|    | Ireq = 6 29 int            |                                |                                |                                                    |
|    | Try W16×31                 | dinostasoi ANA                 | BMn= 296<br>EQn= 164           | ft-K >MA = 212ft-K                                 |
|    | a = 164<br>0.85(3)(66)     | 0.97" × 15" J                  | # 063                          | huds = 164/17,2 = 10 stude per side<br>= 20 studes |
|    | AL = 5(1×30)4<br>384(29000 | (12)3 = 0.98" 1                | " ]                            |                                                    |
|    | Dmax = 1/240               | = 30(12)/240=/                 | 5"                             |                                                    |
| 3  | DD+L = 5(1.42)(            | (30)4 (12)3 = 1.40" ·          | ∠1.5" √                        |                                                    |
|    | - Exterior "Cantileve      | red" Beam<br>Amax = e/Ble      | _ 22(12)/                      | A A - A 72"                                        |
|    | Table 5-20<br>I = 212104   | Au = 5wly-                     | 5 (1)(22) 4<br>384 (29000      | (12) - 0.86" >0.73" No.                            |
|    | Ireq = 249 in2             |                                |                                |                                                    |
|    | Try W12×22                 | PNA location 7                 | φMn = 153<br>EQn = 81.0        | 3 ft-K>Mn=127ft-K                                  |
|    | 0.95(3)(66)                | .48"×1.5" #                    | of studio = 8                  | 1/17.2 = 55trdo per side<br>= 10 Studo             |
|    |                            | 2)3 = 0.72" <0.75              | 3"√                            |                                                    |
|    |                            | 22(12)/240=1.1"                |                                |                                                    |
|    |                            | <u>82)4(12)3</u> =1.02"<       | 1.1"√                          |                                                    |
|    | 0041,8401                  |                                |                                |                                                    |
|    |                            |                                |                                |                                                    |
|    |                            |                                |                                |                                                    |
| 20 |                            |                                |                                |                                                    |
|    |                            |                                |                                |                                                    |

|                        | Composite Steel Deck         | Composite Beams            |
|------------------------|------------------------------|----------------------------|
|                        |                              |                            |
| Design the Giro        | lers                         |                            |
| ~                      |                              |                            |
| Interior Birden        | Un '                         |                            |
| I'ri butary wio        | th: worst case 30'           |                            |
| beam Self              | weight: 31 py (30) = 093     |                            |
|                        | 2(28.2)=57.5K                |                            |
|                        |                              |                            |
| 1                      | 5K 57.5K                     |                            |
| 110' 1                 | 0' 110'                      |                            |
| √n=575K                |                              |                            |
| $M_n = Pa = 5$         | 7.5(10)=575 ft-K             |                            |
| Slava C - a bay        | ction Manual - Table 3       |                            |
| W21 x 68               | MMn= 600ft-K > Mn=575f       | 4-K / OVn=273K > Vn=57.5K/ |
|                        |                              |                            |
| Exterior Girden        | d+h: 11'+10'                 |                            |
| Tribolary with         | 2411 1 1 10                  |                            |
| beam self-u            | weight: 31 plf (10) + 22 plf | (11)=0.552K                |
| 055(12)+               | 23.1+28.2=52.0K              |                            |
| ,58.04                 | 5a.ok                        |                            |
| 5a.ok                  | <b>V</b>                     |                            |
| 10, 10,                | 10                           |                            |
| Vn=52.0K               |                              |                            |
| Mn=Pa=5                | a. D(10) = 520 K             |                            |
| Steel Const            | notion Manual - Table        | 3-2                        |
| W21x62 d               | Mn= 540A+ K>Mn = 520K V      | 6Vn=252K>Vn=52.0K√         |
| " Cantilevered         | " Girdoc                     |                            |
| Tributory u            |                              |                            |
|                        |                              |                            |
| beam self-             | weight: 22 pef (11) = 0.24   | 4                          |
| 0.242(1,2)             | + 28,1 = 23.4K .             |                            |
| 23.4/                  | 123.4K                       |                            |
| A 101 10               | 1 10' 4                      |                            |
|                        |                              |                            |
| Vn = 23,41             | <<br>23.4(10) = 234 ft-K     |                            |
| Mn = Pa =<br>Stal Cons | truction Manual - Table 3-   | 2                          |
| W18×35                 | OMn = 249 Ft-K>Mn = 234 A    | -KV OVn=159K>Vn=23,4KV     |
|                        |                              |                            |

| Composite Steel Deck Composite Beams                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Check Deflections in Girders                                                                                                                              |
| Interior Girder (worst case 30.)                                                                                                                          |
| $\Delta_{LL} = \frac{2}{860} = \frac{30(12)}{360} = 1"$ $\Delta_{LL} = \frac{9L^3}{28(29000)(1480)} = 1.16" > 1" No!$                                     |
| Try a $1.24 \times 68$<br>$\Delta_{11} = \frac{9.03}{28E1} = \frac{30(30)^3(12)^3}{28E1} = 0.94" < 1" / 28E1$                                             |
| $\Delta max = 2/240 = \frac{30(12)}{(240)} = 1.5''$ $\Delta D+L = \frac{923}{28E1} = \frac{43.9(30)^3(12)^3}{28(29000)(1830)} = 1.38'' < 1.5'' $          |
| Exterior Girden                                                                                                                                           |
| $\Delta \max = \frac{2}{360} = \frac{30(12)}{360} = \frac{1}{360}$ $\Delta L = \frac{PL^3}{38} = \frac{21.9(30)^5(12)^5}{38(29000)(330)} = 0.75'' < 1'' $ |
| Dmax = $\frac{1}{240} = \frac{30(12)}{240} = 1.5''$<br>DOL = PL3 = $\frac{30.5(305(12)^3}{28(24000)(330)} = 1.32'' < 1.5''$                               |
| "Cantilevered" Girder                                                                                                                                     |
| DMAX = 1/260 = 30(12)/360 = 1"<br>Du = PL3 = 15 (30)3(12)3 = 1.69" > 1" No!<br>BABEI 28 (2900)(510)                                                       |
| Try W 21 × 50<br>DL = PL3 = 15(30)8(12)3 = 6.88" <1" /<br>28[29000](984)                                                                                  |
| $\Delta_{D+L} = \frac{2/3}{28E1} - \frac{30(12)}{28(39000)(984)} = 0.93" \times 1.5" \frac{200000000000000000000000000000000000$                          |
|                                                                                                                                                           |
|                                                                                                                                                           |
|                                                                                                                                                           |

Advisor: Dr. Andres Lepage Final Report

**APPENDIX E – Castellated Beam Preliminary Design** 

Advisor: Dr. Andres Lepage Final Report April 7, 2009

## Exterior Beam - CB 15x19

| CASTELLATED      | BEAM INFO   | RMATION  |                      | LOADIN      | G INFORM      | ATION          |            | EXPAI        | ND'D. SXN. P    | ROP'S       |
|------------------|-------------|----------|----------------------|-------------|---------------|----------------|------------|--------------|-----------------|-------------|
| Job Name         | NWC         |          |                      | Uniform     | Distributed   | Loads          |            | Avg. wt.     | 19.0            | plf         |
| Beam Mark #      | Exterior    |          | Live Load            | 1000        | plf           | Pre-comp %     | 0%         | Anet         | 4.556           | in^2        |
| Span             | 20.000      | ft       | Dead Load            | 660         | plf           | Pre-comp %     | 80%        | Agross       | 6.676           | in^2        |
| Spac. Left       | 10.000      | ft       |                      | Concen      | trated Point  | Loads          |            | lx net       | 201.85          | in^4        |
| Spac. Right      | 10.000      | ft       | Load#                | Magnitude   | Dist from     | Percent DL     | Percent    | lx gross     | 214.55          | in^4        |
| Mat. Strength-Fy | 50 ▼        | ksi      | (#)                  | (kips)      | Lft. End (ft) | (%)            | Pre-Comp.  | Sx net       | 27.88           | in^3        |
| Round Duct Diam. | 8.114       | in       | P1                   | 0.00        | 0.00          | 0%             | 0%         | Sx gross     | 29.63           | in^3        |
| Duct W x H       | 4.500 in    | 7.980 in | P2                   | 0.00        | 0.00          | 0%             | 0%         | rx min       | 5.67            | in          |
| Castellated Beam | CB15X19     | -        | P3                   | 0.00        | 0.00          | 0%             | 0%         | ly           | 4.29            | in^4        |
| Root Beams (T/B) | W10X19      | W10X19   | P4                   | 0.00        | 0.00          | 0%             | 0%         | Sy           | 2.14            | in^3        |
| d                | 10.24       | 10.24    |                      | COMPOS      | ITE INFOR     | MATION         |            | COMP         | OSITE SXN. I    | PROP'S      |
| bf               | 4.02        | 4.02     | Concrete & Dec       |             |               | Shear Studs:   |            | n            | 7.89            |             |
| tf               | 0.395       | 0.395    | conc. strength - f   | c' (psi)    | 4000 🔻        | stud dia. (in) | 5/8* ▼     | beffec.      | 60.00           | in          |
| tw               | 0.25        | 0.25     | conc. wt wc (po      | rf)         | 150 🔻         | stud ht. (in)  | 5          | Actr         | 26.607          | in^2        |
| CASTELLATIO      | N PARAME    | TERS:    | conc. above deci     | c - tc (in) | 3 1/2         | studs per rib  | 1          | N.A. ht.     | 16.63           | in Conc.    |
| е                | 5.000       | in       | rib height - hr (in) | )           | 2             | composite %    | 100% ▼     | ltr          | 698.79          | in^4        |
| b                | 2.500       | in       | rib width - wr (in)  |             | 6             | Stud Sp        | acing:     | leffec.      | 698.79          | in^3        |
| dt               | 3.000       | in       |                      |             |               | N=26,Unifo     | rmly Dist. | Sxconc       | 208.34          | in^3        |
| S                | 15.000      | in       | F                    | RESULTS     |               | WARN           | INGS       | Sxsteel      | 42.03           | in^3        |
| dg               | 14.480      | in       | Failure Mode         | Interaction | Status        |                |            | CONST        | RUCTION BE      | RIDGING     |
| phi              | 59.475      | deg      | Bending              | 0.726       | <= 1.0 OKII   | l              |            | End Conn     | ection type     | Double clip |
| ho               | 8.480       | in       | Web Post             | 0.914       | <= 1.0 OK!!   | l              |            | Min. No. Of  | Bridging Rows   | 0           |
| wo               | 10.000      | in       | Shear                | 0.800       | <= 1.0 OKII   | l              |            | Max. Bridgin | g. Spacing (ft) | 28          |
| Ø D              |             |          | Concrete             | 0.340       | <= 1.0 OKII   | l              |            |              |                 |             |
|                  |             |          | Pre-Comp.            | 0.458       | <= 1.0 OKII   | l              |            | l            |                 |             |
|                  |             |          | Overall              | 0.914       | <=1.0 OK!!    | 1              |            | I            |                 |             |
| CMC CM           | C Steel Pro | oducts   | Pre-Composite D      | Deflec.     | 0.361"        | =L/665         |            | I            |                 |             |
|                  |             |          | Live Load Deflec     | tion        | 0.178"        | =L/1351        |            |              |                 |             |

## Interior Beam - CB 21x26

| CASTELLATED E    | BEAM INFO   | RMATION   |                      | LOADIN      | G INFORM      | ATION          |            | EXPA          | ND'D. SXN. F    | ROP'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|-------------|-----------|----------------------|-------------|---------------|----------------|------------|---------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Job Name         | NWC         |           |                      | Uniform     | Distributed   | Loads          |            | Avg. wt.      | 26.0            | plf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Beam Mark #      | Interior    |           | Live Load            | 862         | plf           | Pre-comp %     | 0%         | Anet          | 5.869           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Span             | 30.000      | ft        | Dead Load            | 660         | plf           | Pre-comp %     | 80%        | Agross        | 9.393           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Spac. Left       | 10.000      | ft        |                      | Concen      | trated Point  | Loads          |            | lx net        | 560.22          | in^4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Spac. Right      | 10.000      | ft        | Load #               | Magnitude   | Dist from     | Percent DL     | Percent    | lx gross      | 616.31          | in^4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mat. Strength-Fy | 50          | ksi       | (#)                  | (kips)      | Lft. End (ft) | (%)            | Pre-Comp.  | Sx net        | 53.82           | in^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Round Duct Diam. | 11.184      | in        | P1                   | 0.00        | 0.00          | 0%             | 0%         | Sx gross      | 59.20           | in^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Duct W x H       | 6.250 in    | 11.161 in | P2                   | 0.00        | 0.00          | 0%             | 0%         | rx min        | 8.10            | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Castellated Beam | CB21X26     | •         | P3                   | 0.00        | 0.00          | 0%             | 0%         | ly            | 8.90            | in^4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Root Beams (T/B) | W14X26      | W14X26    | P4                   | 0.00        | 0.00          | 0%             | 0%         | Sy            | 3.54            | in^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| d                | 13.91       | 13.91     |                      | COMPOS      | ITE INFOR     | MATION         |            | COMP          | OSITE SXN. I    | PROP'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| bf               | 5.025       | 5.025     | Concrete & Deci      | k:          |               | Shear Studs:   |            | n             | 7.89            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| tf               | 0.42        | 0.42      | conc. strength - fo  | c' (psi)    | 4000 🔻        | stud dia. (in) | 5/8* ▼     | beffec.       | 90.00           | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tw               | 0.255       | 0.255     | conc. wt wc (pc      | f)          | 150           | stud ht. (in)  | 5          | Actr          | 39.910          | in^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CASTELLATIO      | N PARAME    | TERS:     | conc. above deck     | - tc (in)   | 3 1/2         | studs per rib  | 1          | N.A. ht.      | 22.76           | In Deck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| е                | 5.500       | in        | rib height - hr (in) |             | 2             | composite %    | 100% ▼     | ltr           | 1626.88         | in^4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| b                | 4.000       | in        | rib width - wr (in)  |             | 6             | Stud Sp        | acing:     | leffec.       | 1626.88         | in^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| dt               | 3.500       | in        |                      |             |               | N=32,Unifo     | rmly Dist. | Sxconc        | 456.37          | in^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S                | 19.000      | in        |                      | RESULTS     |               | WARN           | INGS       | Sxsteel       | 71.49           | in^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| dg               | 20.820      | in        | Failure Mode         | Interaction | Status        |                |            | CONST         | RUCTION BE      | RIDGING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| phi              | 59.935      | deg       | Bending              | 0.886       | <= 1.0 OK!!   | l              |            | End Conn      | ection type     | Double clip 🔻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ho               | 13.820      | in        | Web Post             | 0.955       | <= 1.0 OKII   | l              |            | Min. No. Of   | Bridging Rows   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| wo               | 13.500      | in        | Shear                | 0.874       | <= 1.0 OK!!   | 1              |            | Max. Bridging | g. Spacing (ft) | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ATO.             |             |           | Concrete             | 0.322       | <= 1.0 OK!!   | l              |            |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (47))——          |             |           | Pre-Comp.            | 0.544       | <= 1.0 OK!!   | l              |            | l             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  |             |           | Overall              | 0.955       | <=1.0 OK!!    | <u> </u>       |            | I             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| cmc cm           | C Steel Pro | oducts    | Pre-Composite D      | eflec.      | 0.661"        | =L/544         |            | l             |                 | plf in^2 in^2 in^4 in^4 in^3 in in^4 in^3 in in^4 in^3 !. PROP'S  in in in^2 In Deck in^4 in^3 in solution in vertical in ver |
|                  |             |           | Live Load Deflect    | ion         | 0.333"        | =L/1081        |            |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Advisor: Dr. Andres Lepage Final Report April 7, 2009

## Exterior Girder - CB 21x83

| BEAM INF         | ORMATION    |     | LO/              | ADING INF     | ORMATION      |          | EXPA         | ND'D. SXN. P    | ROP'S     |
|------------------|-------------|-----|------------------|---------------|---------------|----------|--------------|-----------------|-----------|
| Job Name:        | NWC         |     | Uni              | form Distrik  | outed Loads   |          | Anet         | 19.281          | in^2      |
| Beam Mark#       | Exterior    |     | Live Load        | 0             | plf           |          | Agross       | 28.963          | in^2      |
| Span             | 30.000      | ft  | Dead Load        | 0             | plf           |          | lx net       | 3910.423        | in^4      |
| Unbraced Length  | 10.000      | ft  | C                | oncentrated I | Point Loads   |          | lx gross     | 4195.6          | in^4      |
| Mat. Strength-Fy | 50 🔻        | ksi | Load#            | Magnitude     | Dist from     | Perc. DL | Sx net       | 253.924         | in^3      |
|                  | <u> </u>    | 7   | (#)              | (kips)        | Lft. End (ft) | (%)      | Sx gross     | 272.441         | in^3      |
|                  |             |     | P1               | 40.00         | 10.00         | 0%       | rx net       | 14.241          | in        |
| Castellated Beam | CB30X83     | •   | P2               | 40.00         | 20.00         | 0%       | rx gross     | 12.036          | in        |
| Root beam        | W21X83      |     | P3               | 0.00          | 0.00          | 0%       | ly<br>Sy     | 81.429          | in^4      |
| d                | 21.4        | in  | P4               | 0.00          | 0.00          | 0%       |              | 19.481          | in^3      |
| bf               | 8.36        | in  | -                | RESU          | LTS           |          | ry           | 2.055           | in        |
| tf               | 0.835       | in  | Failure Mode     | Interaction   | Status        |          | rΤ           | 2.274           | in        |
| tw               | 0.515       | in  | Bending          | 0.939         | <=1.0 OK!!    |          | deffec       | 28.310          | in        |
| Castellation     | Parameters: |     | Shear            | 0.580         | <=1.0 OK!!    |          | CONST        | RUCTION BR      | IDGING    |
| e                | 6.000       | in  | Web Post         | 0.630         | <=1.0 OK!!    |          | End Conr     | nection type    | Shear Tab |
| b                | 5.500       | in  | Overall          | 0.939         | <=1.0 OK!!    |          | Min No. Of   | Bridging Rows   | 0         |
| dt               | 6.000       | in  | Li∨e Load Defled | ction         | 0.685"        | =L/526   | Max. Bridgin | g. Spacing (ft) | 43        |
| S                | 23.000      | in  | Dead Load Defle  | ection        | 0.016"        | =L/22959 | MAXIMU       | JM PASSABLI     |           |
| dg               | 30.800      | in  |                  | WARNI         | NGS           |          | (Diam.(in)   | Width (in) x    |           |
| phi              | 59.668      | deg |                  |               |               |          | 14.173       | 8.000           | 14.027    |
| ho               | 18.800      | in  |                  |               |               |          |              |                 |           |
| wo               | 17.000      | in  |                  |               |               |          | cm           | CMC Steel P     | roducts   |

## Interior Girder - CB 24x94

| BEAM INF         | ORMATION    |     | LO               | ADING INF     | ORMATION      |          | EXPA         | ND'D. SXN. P     | ROP'S     |
|------------------|-------------|-----|------------------|---------------|---------------|----------|--------------|------------------|-----------|
| Job Name:        | NWC         |     | Uni              | form Distrik  | outed Loads   |          | Anet         | 21.151           | in^2      |
| Beam Mark#       | Interior    |     | Live Load        | 0             | plf           |          | Agross       | 33.820           | in^2      |
| Span             | 30.000      | ft  | Dead Load        | 0             | plf           |          | lx net       | 6243.032         | in^4      |
| Unbraced Length  | 10.000      | ft  | C                | oncentrated I | oint Loads    |          | lx gross     | 6881.9           | in^4      |
| Mat. Strength-Fy | 50 🔻        | ksi | Load#            | Magnitude     | Dist from     | Perc. DL | Sx net       | 341.149          | in^3      |
|                  |             |     | (#)              | (kips)        | Lft. End (ft) | (%)      | Sx gross     | 376.062          | in^3      |
|                  |             |     | P1               | 46.00         | 10.00         | 0%       | rx net       | 17.180           | in        |
| Castellated Beam | CB36X94     | •   | P2               | 46.00         | 20.00         | 0%       | rx gross     | 14.265           | in        |
| Root beam        | W24X94      |     | P3               | 0.00          | 0.00          | 0%       | ly           | 108.929          | in^4      |
| d                | 24.3        | in  | P4               | 0.00          | 0.00          | 0%       | Sy           | 24.020           | in^3      |
| bf               | 9.07        | in  |                  | RESU          | LTS           |          | ry           | 2.269            | in        |
| tf               | 0.875       | in  | Failure Mode     | Interaction   | Status        |          | rT           | 2.485            | in        |
| tw               | 0.515       | in  | Bending          | 0.982         | <=1.0 OK!!    |          | deffec       | 34.228           | in        |
| Castellation     | Parameters: |     | Shear            | 0.585         | <=1.0 OK!!    |          | CONST        | TRUCTION BR      | IDGING    |
| е                | 7.000       | in  | Web Post         | 0.646         | <=1.0 OK!!    |          | End Con      | nection type     | Shear Tab |
| b                | 7.000       | in  | Overall          | 0.982         | <=1.0 OK!!    |          | Min No. Of   | Bridging Rows    | 0         |
| dt               | 6.000       | in  | Live Load Deflec | ction         | 0.528"        | =L/682   | Max. Bridgin | ng. Spacing (ft) | 46        |
| S                | 28.000      | in  | Dead Load Defle  | ection        | 0.012"        | =L/30365 | MAXIMU       | JM PASSABLI      |           |
| dg               | 36.600      | in  |                  | WARNI         | NGS           |          | (Diam.(in)   | Width (in) ×     |           |
| phi              | 60.356      | deg |                  |               |               |          | 17.751       | 10.000           | 17.950    |
| ho               | 24.600      | in  |                  |               |               |          |              |                  |           |
| wo               | 21.000      | in  |                  |               |               |          | cm           | CMC Steel P      | roducts   |

Final Report

April 7, 2009

APPENDIX F - GARAGE LEVEL COLUMN DESIGN

## **GARAGE LEVEL COLUMN DESIGN**

| Column Design                        | Reinforced Concrete                                             | Garage Level                   | 1/3     |
|--------------------------------------|-----------------------------------------------------------------|--------------------------------|---------|
| Critical Column 7                    | Tributary Area: 30'x                                            | 30'                            |         |
|                                      | 3                                                               |                                |         |
| Column Dimensi                       | ons: 24" 0 f                                                    | 'c = 5000 psi                  |         |
|                                      |                                                                 |                                |         |
| 0                                    | Thickness of                                                    | Slab: 10"                      |         |
|                                      | 150 pcf - 10/1-                                                 | 2 = 125psf                     |         |
|                                      |                                                                 | 21: 12:00                      |         |
| / '                                  | Super imposed<br>Live Load: 10                                  |                                |         |
| 000/                                 |                                                                 |                                |         |
| Loads from the Ste                   | Live Load Red                                                   | uction:                        |         |
| P = 1037, 59 K                       | LL= LL0 (0.25                                                   | 5 + 15 = 100 0.25 + 15 VH(900) |         |
| Mmajor = 56.75 K-F                   | - 100 (45                                                       | (NAT) - 100 (0.60) = 60p       | ch      |
| Mminor= 10.14 K-f+                   | - 100 ( 0.5                                                     | <0.6) - 100(0.00) - 00p        | DF      |
|                                      | 100) + 1.6 (60) (900) + 103                                     | 7.59 K= 1272 K                 |         |
| Y-axis: 56.75 K-1<br>X-axis: 10.14 K |                                                                 |                                |         |
| A 00x15 . 10.14 K                    |                                                                 |                                |         |
| Use PCA column                       | n to investigate colum                                          | n designs                      |         |
| ·Start with 6                        | #9 bars                                                         |                                |         |
| · Analyze in +                       | ne x and Y direction                                            | n - Works (see PCA pri         | ntouts) |
| By ACI code, (                       | o bars is the least a                                           | mount of reinforcing           |         |
| that can be con                      | fined by spiral ties                                            | )                              |         |
| Use spiral rein                      | Arcing                                                          |                                |         |
| Since and Pitch                      | M spicals hasad por To                                          | ince Alt of Design of          |         |
| Concrete Struct                      | of spirals based on To                                          |                                |         |
| for fyt = 60,                        | 000 001 1150                                                    | 4 4 spiral reinforcing         |         |
| f'c = 5000                           | opsi at a                                                       | 3" pitch                       |         |
| 24" Ø col                            | OMO                                                             | A                              |         |
| Will the reinforcin                  | ig fit with the wide fla                                        | ngi? - (±)                     |         |
| b cc b                               | bar \$ spiral spacing N shar<br>1,128) - 2(0,5) - 4(2") - 14.8" | ge 1                           |         |
| 27 - 265 / - 26                      | 1,207 - 2(0.3) - 1(2) - 11.0                                    |                                |         |
|                                      |                                                                 |                                |         |
|                                      |                                                                 |                                |         |
|                                      |                                                                 |                                |         |
|                                      |                                                                 |                                |         |
|                                      |                                                                 |                                |         |

## **GARAGE LEVEL COLUMN DESIGN**

|   | Column Design                                         | Reinforced Concrete                                                           | Garage Level        | 2/3 |
|---|-------------------------------------------------------|-------------------------------------------------------------------------------|---------------------|-----|
| 0 | Try a 30" colu<br>\$ cc \$box<br>30" - 2(3") - 2(1.0° | mn with 10 #8 bars<br>spiral spacing wshape<br>3 - 2(0,5) - 4(1,5") - 14.8" = | 0.2* ✓              |     |
|   | for fyt = 60,000 p<br>f'c = 5000 psi<br>30" \$ column | si Use # 4 spin<br>at a 314" (                                                |                     |     |
|   | · See PCA column<br>intraction diagr                  | printouts for the co                                                          | luma                |     |
|   | Transfer of the from the skel co                      | load P=1037.59 K                                                              |                     |     |
|   |                                                       | deck Qn = 26.1K                                                               |                     |     |
|   |                                                       | d to fronsfer the load                                                        |                     |     |
| 0 |                                                       | studo per web side, 2                                                         | 2 per foot          |     |
|   | Check as the Corr                                     | posite Column Section                                                         |                     |     |
|   |                                                       | 0(0.79)=7.901A2, AC = T(15)2                                                  | -42.7-7-90 = 656102 |     |
|   | $\frac{42.7}{(\pi(15)^2)} = 0.60 > 0.0$               | · 1                                                                           |                     |     |
|   | Po = Asfy + Asr Fyr +0                                | 0.85f'cAc = 5397K                                                             |                     |     |
|   | y-axis is weak a                                      |                                                                               |                     |     |
|   |                                                       | ) + 2(6.79(6)2) = 199 in 4<br>77-199 = 38885 in4                              |                     |     |
|   | C1 = 0.1 + 2 A5                                       |                                                                               |                     |     |
|   | = 0.1 + 2 42.7                                        | = 0.22 < 0.3 \                                                                |                     |     |
|   |                                                       |                                                                               |                     |     |
|   |                                                       |                                                                               |                     |     |

## **GARAGE LEVEL COLUMN DESIGN**

|   | Column Design              | Reinforced Concrete                     | Garage Level     | 3/3 |
|---|----------------------------|-----------------------------------------|------------------|-----|
|   | Eleff = 19000 (6= 55,900,0 | 77) + 0,5(29000)(199) + 0,2<br>000 K-10 | Z (39 04)(3888S) |     |
|   | 0.44Po = 2375k             |                                         |                  |     |
|   | Pn=Po[0.658<br>= 5397[0.6  | Fo/PE]<br>5397/32648] = 5036K           |                  |     |
|   | \$Pn = 0.75 (5             | 036 K): 3777K                           |                  |     |
|   |                            |                                         |                  |     |
| 0 |                            |                                         |                  |     |
|   |                            |                                         |                  |     |
|   |                            |                                         |                  |     |
|   |                            |                                         |                  |     |
|   |                            |                                         |                  |     |
|   |                            |                                         |                  |     |
|   |                            |                                         |                  |     |

Advisor: Dr. Andres Lepage Final Report April 7, 2009

#### **INTERACTION DIAGRAMS**

| X-Axis | Plastic Stress D | istribution Method | Nominal : | Strength Method | Design S | trength Method |
|--------|------------------|--------------------|-----------|-----------------|----------|----------------|
| Point  | P (K)            | M (in-K)           | P (K)     | M (in-K)        | P (K)    | M (in-K)       |
| Α      | 5397             | 0                  | 5036      | 0               | 3777     | 0              |
| С      | 2788             | 7448               | 2690      | 7448            | 2018     | 5586           |
| D      | 1394             | 16389              | 1369      | 16389           | 1027     | 12292          |
| В      | 0                | 7448               | 0         | 7448            | 0        | 5586           |



| Y-Axis | Plastic Stress D | istribution Method | Nominal S | Strength Method | Design S | trength Method |
|--------|------------------|--------------------|-----------|-----------------|----------|----------------|
| Point  | P (K)            | M (in-K)           | P (K)     | M (in-K)        | P (K)    | M (in-K)       |
| Α      | 5397             | 0                  | 5036      | 0               | 3777     | 0              |
| С      | 2788             | 7448               | 2690      | 7448            | 2018     | 5586           |
| D      | 1394             | 22470              | 1369      | 22470           | 1027     | 16852          |
| В      | 0                | 7448               | 0         | 7448            | 0        | 5586           |



Final Report

April 7, 2009

## **APPENDIX G - FOUNDATION CHECKS**

## **FOUNDATION CHECKS**

|     | Foundation                                                                                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
|     | Determine if the north building was the driving factor for the 48" thick mad foundation.                                                   |
|     | Critical Column: 43N 30" x 30" P: 2320 K From the Structural drawings                                                                      |
|     | 30" 30 de Gritical Section is at 4/2 from the column                                                                                       |
|     | bo = 4(30+d) = 120+4d                                                                                                                      |
|     | ΦVc ≥ Vu                                                                                                                                   |
|     | $\phi V_c = \phi + \sqrt{f'c'} b_0 d = 0.85(4) \sqrt{4000'} (120 + 4d) d$ $= > 0.75(4) \sqrt{4000'} (120 + 4d) d \ge 2320$ $1000$          |
|     | (120 +4d) d = 12227.47<br>d = 42.3"                                                                                                        |
|     | Use d= 43"                                                                                                                                 |
|     | with a minimum cover of 3" over the skel reinforcement and 1.27" & skel bano;                                                              |
|     | Total thickness:                                                                                                                           |
|     | n= 43"+3" + 1.27" = 47.27" € 48"                                                                                                           |
|     | North Building Columns were probably the driving force behind the 48" thick mat;                                                           |
|     | The largest embedded sewer pipes are only 6" and there are no existing conditions sewer pipes to impact the single of the most foundation. |
| J ' |                                                                                                                                            |
|     |                                                                                                                                            |
|     |                                                                                                                                            |

## **FOUNDATION CHECKS**

|  | Foundation                                                                                        |
|--|---------------------------------------------------------------------------------------------------|
|  | Determine the thickness of the mat slab for a critical braced frame column in the North Building. |
|  | Critical Column: Frame 4, column 2 WI4×109<br>P=1323.27 K                                         |
|  | Critical Section is at d/2 from the column                                                        |
|  | A/2 30" A/2                                                                                       |
|  | Do = πD = π (30+d)                                                                                |
|  | ΦVc ≥ Vu                                                                                          |
|  | OVC = O 4 \ f'c bod = 0.75(4) \ \ 4000 \ T (24+d) d                                               |
|  | $\Rightarrow 0.75(4)\sqrt{4000}\pi(30+d)d > 1323.27$                                              |
|  | (30+d)d ≥ 2219.97<br>d≈ 34.4"                                                                     |
|  | Use d = 35"                                                                                       |
|  | with a minimum cover of 3" over the steel reinforcement and 123" & steel bars:                    |
|  | Total thickness:                                                                                  |
|  | h = 35" + 3" + 1,27" = 39,27" ≈ 40"<br>Use 42" for ease of<br>excavation                          |
|  | Original Mat: 48" deep                                                                            |
|  | New Mat: 42" deep under the North Building                                                        |
|  | See if mat can be thinned under the South Building                                                |
|  |                                                                                                   |

## **FOUNDATION CHECKS**

| Determine the thickness of the mat slab for a critical column in the South Building.  Critical column: S5 18" x 30"  P=1277 x from the Structural drawings  18.d  Critical section is at \$\frac{1}{3}\$ from the column.  30.td  \$\frac{18}{412}\$ \$\frac{1}{3}\$ to \$\frac{1}{3}\$ or \$\frac{1}{3}\$ from the column.  \$\frac{18}{412}\$ \$\frac{1}{3}\$ or \$\frac{1}{3}\$ from the column.  \$\frac{1}{3}\$ \$\frac{1}{4}\$ \$\frac{1}{2}\$ or \$\frac{1}{3}\$ |  | Foundation                                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------|--|--|
| (ritical section is at d/a from the column  30.4  bo = 2(18+d) + 2(30+d) = 96+4d  ØVc = \$\psi 4\psi f'c' \ bod = 0.85(4)\sqrt{4000'}(96+4d)d  => \frac{0.75(4)\sqrt{4000'}(96+4d)d}{1000} \graphi 1277  1000  (96+4d)d \graphi 6730.38  d\graphi 30.7"  Use d = 31"  with a minimum cover of 3" over the skeel reinforcement and 1.77" \$\phi\$ skeel bars:  Total thick ness:  h = 31" + 3" + 1.27" = 35.27" \graphi 36"  Original Mat: 48" dup  New Mat: 36" dup under the south Building  New Mat : 36" dup under the south Building  New Mat : 48" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                  |  |  |
| bo = 2(18+d) + 2(30+d) = 96+4d $\phi V_c = V_u$ $\phi V_c = \phi + \sqrt{f'c'} b_o d = 0.85(4) \sqrt{4000'} (96+4d) d$ => 0.75(4) \( \sqrt{4000'} (96+4d) d \) \( \sqrt{1000'} \) \( \left( 96+4d) d \) \( \sqrt{277} \)  \( \left( 96+4d) d \) \( \left( 267 \) \) \( 30.38 \)  \( \left( 30.7)'' \)  Use d = 31'''  with a minimum cover of 3" over the skel reinforcement and 1.7" \( \phi \) skel bars:  Total thick ness:  h = 31" + 3" + 1.27" = 35.27" \( \sqrt{36}'' \)  Original Mat: 48" dup  New Mat: 36" dup under the south Building  i. New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  | Critical column: S5 18" x 30" P=1277 K from the Structural drawings              |  |  |
| Φνc = νν<br>Φνc = Φ + ν f'c bod = 0.85(4) ν 4000 (96+4d) d<br>=> 0.75(4) ν 4000 (96+4d) d ≥ 1277<br>1000<br>(96+4d) d ≥ 6730.38<br>d≈ 30.7"  Use d=31"  with a minimum cover of 3" over the steel reinforcement and 1.27" φ steel bars:  Total thick ness:  h=31"+3"+1.27"=35.27" ≈36"  Original Mat: 48" deep  New Mat: 36" deep under the south Building  : New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | 30° 30+d                                                                         |  |  |
| Φνc = Φ 4ν f'c bod = 0.85(4) ν 4000 (96+4d) d  => 0.75(4) ν 4000 (96+4d) d = 1277  1000  (96+4d) d ≥ 6730.38  d ≈ 30.7"  Use d = 31"  with a minimum cover of 3" over the skel reinforcement and 1.7" φ skel bars:  Total thick ness:  h = 31" + 3" + 1.27" = 35.27" ≈ 36"  Original Mat: 48" deep  New Mat: 36" deep under the south Building  i. New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  | bo = 2(18+d) + 2(30+d) = 96+4d                                                   |  |  |
| => 0.75(4)\(\square\) \(\frac{4000}{96+4d}\) \(\delta \geq 1277\)  \(\left(96+4d)\) \(\delta \geq 6730.38\) \(\delta \geq 30.7''\)  Use d=31''  with a minimum cover of 3" over the steel reinforcement and 1.37'' \(\phi\) steel bars:  Total thick ness:  \(h = 31'' + 3'' + 1.27'' = 35.27'' \geq 36''\)  Original Mat: 48" deep  New Mat: 36" deep under the south Building  :. New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  | ØVc ≥ Vu                                                                         |  |  |
| (96+4d)d = 6730.38  d= 30.7"  Use d=31"  with a minimum cover of 3" over the steel reinforcement and 1.27" \$\phi\$ steel bars:  Total thick ness:  h= 31"+3"+1.27"=35.27" \$\pi 36"  Original Mat: 48" deep  New Mat: 36" deep under the south Building  New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  | Que = Q4Vf'c bod = 0.85(4) V4000 (96+4d)d                                        |  |  |
| Use d=31"  with a minimum cover of 3" over the steel reinforcement and 1.27" \$\phi\$ steel bars:  Total thick ness:  h=31"+3"+1.27"=35.27" \$\precedot{36"}  Original Mat: 48" deep  New Mat: 36" deep under the south Building  i. New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  | => 0.75(4) \(\frac{4000'(96+4d)d}{1000}\) \(\frac{2}{2}\) 1277                   |  |  |
| with a minimum cover of 3" over the steel reinforcement and 127" \$\phi\$ steel bars:  Total thick ness:  h = 31" + 3" + 1.27" = 35.27" \$\precedex 36"  Original Mat: 48" deep  New Mat: 36" deep under the south Building  i. New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  | (96+4d)d≥ 6730.38<br>d≈ 30.7"                                                    |  |  |
| and 1.7" \$ steel bars:  Total thick ness:  h = 31" + 3" + 1.27" = 35.27" \$ 36"  Original Mat: 48" deep  New Mat: 36" deep under the south Building  i. New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  | Use d=31"                                                                        |  |  |
| h= 31"+3"+1,27"=35,27" \$36"  Original Mat: 48" deep  New Mat: 36" deep under the south Building  New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  | with a minimum cover of 3" over the steel reinforcement and 1.27" of steel bars: |  |  |
| Original Mat: 48" deep  New Mat: 36" deep under the south Building  New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  | Total thick ness:                                                                |  |  |
| New Mat: 36" dup under the south Building  New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  | h= 31"+3"+1.27"=35.27" \$36"                                                     |  |  |
| : New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  | Original Mat: 48" deep                                                           |  |  |
| :. New mat foundation is 42" deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  | New Mat: 36" dup under the south Building                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                                                                                  |  |  |

Advisor: Dr. Andres Lepage

Final Report

April 7, 2009

**APPENDIX H – WATERPROOFING** 







**FOUNDATION WALL DETAILS** 





#### **SLAB DETAILS**



Final Report April 7, 2009 Advisor: Dr. Andres Lepage

#### **SLAB DETAILS**

#### JOINT INSTALLATION:

- COAT BOTH SIDES OF CONSTRUCTION JOINT WITH ADHESIVE
- LOOP IN 1 PLY OF WATERPROOFING SHEET INTO JOINT
- 3. COAT WITH ADHESIVE
- INSERT NEOPRENE RUBBER ROD 1½ TIMES THE SIZE OF THE JOINT, SQUEEZE TO INSERT AND USE WET ADHESIVE

- 5. COAT WITH ADHESIVE
- INSTALL FLASHING OVER JOINT
- 7. COAT WITH ADHESIVE
- APPLY CONTINUOUS SHEETS OF WATERPROOFING OVER
- INSTALL SEALANT OVER WATERPROOFING TO PROVIDE WEARING SURFACE



#### General Notes:

- Install all materials and details in accordance with manufacturer recommendations and details.
- Submit product data and perform adhesion tests on actual substrates prior to wide scale installation of work.
- Notify owner, general contractor, and consultant (if one is retained) before using a substitute product than the one specified.
- All dimensions to be field verified and coordinated with owner, general contractor, and consultant (if one is retained).

#### Component Functions Notes:

- Completes aesthetic affect.
- Protects membrane
- Prevents moisture entry
- Provides structural support to wear surface
- Provides structural support to wear e. surface
- Provides uniform slab base f.
- Promotes water flow to subdrain pipes or sumps
- Slab system foundation material

BELOW GRADE MAT -WATERPROOF SYSTEM Advisor: Dr. Andres Lepage Final Report April 7, 2009

#### **PLAZA DETAILS**



#### **PLAZA DETAILS**



Advisor: Dr. Andres Lepage Final Report April 7, 2009

#### WATERPROOFING CHECKLIST

- 1. Hire a building envelop consultant to review the waterproofing details. On most projects, architects normally deal with waterproofing details, but there is no one in the field checking the work. Most waterproofing details in construction documents are just standard details that have not been tailored for specific jobs. A consultant can perform a document review of the details and point out problem areas and this service normally only costs around \$5,000. This may seem costly, but it can save time and money later in the project when waterproofing details either need to be clarified, or are installed incorrectly and need to be taken out and reinstalled.
- 2. Hire a consultant to oversee correct installation of the waterproofing during the construction of the building. This is an expansive endeavor, but it is cheaper than hiring the consultant a few years after the final fit-out of the building when leaks start to occur and all the waterproofing has to be ripped out and reinstalled.
- 3. Hire experienced construction firms. There is an organization called the National Organization of Waterproofing and Structural Repair Contractors. This organization is a professional trade association whose members are required to uphold a strict standard of practice and cannon of ethics. These documents can be reviewed on their website <a href="http://nawsrc.org">http://nawsrc.org</a>. It is also possible to locate members and suppliers in the area of the construction project who are required to do the best possible job of waterproofing the construction job.
- 4. Ensure that the waterproofing is continuous around the entire building. This is one of the most important details. Even a small tear in the waterproofing can allow enough water to penetrate to the interior of the building that an identifiable leak can be found. Ideally, there should be no penetrations in the waterproofing, but this is impossible as windows and doors are a necessary part of design. Unnecessary penetrations as part of installation should be avoided. These include nail holes, tears in the waterproofing sheets, or outlet penetrations to name a few. If these occur, a new sheet of waterproofing should be installed, or at the very least, they should be repaired with mastic.
- 5. Create a mock-up of the system and/or perform tests during construction. It is possible to hire testing firms to come in and test curtain walls, brick panels, and other water sensitive areas to find trouble areas before the fit-out of the building when they will become harder and more costly to repair. These tests can cost approximately \$10,000/day, but they will again be cheaper than trying to fix the problem areas later during the lifetime of the building when leaks occur.
- 6. **Perform regular building maintenance.** Replacing all the sealant on a building every 5 years is cheaper than removing all the curtain walls, ripping out the steel that is now corroded because of water infiltration, and then replacing all the steel and the curtain walls every 10 years.

Final Report

April 7, 2009

## **APPENDIX I -ACOUSTICS STUDY**

## **ACOUSTICS STUDY**

| Transmission Loss (dB)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|---------|---------|-----------|---------------|---------------|
| Building Construction                                     | 125 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250 Hz  | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz   | STC<br>Rating | IIC<br>Rating |
| Walls <sup>2-6</sup> ‡                                    | A STATE OF THE PARTY OF THE PAR |         |        |         |         |           |               |               |
| Monolithic:                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| 1. 3/8-in plywood (1 lb/ft²)                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18      | 22     | 20      | 21      | 26        | 22            |               |
| <ol> <li>26-gauge sheet metal (1.5 lb/ft²)</li> </ol>     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14      | 15     | 21      | 21      | 25        | 20            |               |
| <ol> <li>1/2-in gypsum board (2 lb/ft²)</li> </ol>        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20      | 25     | 31      | 33      | 27        | 28            |               |
| <ol><li>2 layers 1/2-in gypsum board, lami-</li></ol>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| nated with joint compound (4 lb/ft²)                      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26      | 30     | 32      | 29      | 37        | 31            |               |
| <ol> <li>1/32-in sheet lead (2 lb/ft²)</li> </ol>         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21      | 27     | 33      | 39      | 45        | 31            |               |
| <ol> <li>Glass-fiber roof fabric (37.5 oz/yd²)</li> </ol> | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9       | 11     | 16      | 20      | 25        | 16            |               |
| Interior:                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| 7. 2 by 4 wood studs 16 in oc with 1/2-in                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| gypsum board both sides (5 lb/ft²)                        | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31      | 33     | 40      | 38      | 36        | 33            |               |
| 8. Construction no. 7 with 2-in glass-fiber               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.55(0) |        |         |         |           | -             |               |
| insulation in cavity                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30      | 34     | 44      | 46      | 41        | 37            |               |
| 9. 2 by 4 staggered wood studs 16 in oc                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         | 10      | - 3 0 2 2 | 0,            |               |
| each side with 1/2-in gypsum board                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| both sides (8 lb/ft²)                                     | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28      | 39     | 46      | 54      | 44        | 39            |               |
| 10. Construction no. 9 with 2 1/4-in glass-               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           | 00            |               |
| fiber insulation in cavity                                | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38      | 45     | 52      | 58      | 50        | 48            |               |
| 11. 2 by 4 wood studs 16 in oc with 5/8-in                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        | 02      | 00      | 00        | 40            |               |
| gypsum board both sides, one side                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| screwed to resilient channels. 3-in glass-                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| fiber insulation in cavity (7 lb/ft²)                     | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42      | 52     | 58      | 53      | 54        | 52            |               |
| 12. Double row of 2 by 4 wood studs 16 in                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -       | O.L    | 00      | 33      | 34        | 52            |               |
| oc with 3/8-in gypsum board on both                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| sides of construction. 9-in glass-fiber in-               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| sulation in cavity (4 lb/ft²)                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44      | 55     | 62      | 67      | 65        | 54            |               |
| 13. 6-in dense concrete block, 3 cells,                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 00     | 02      | 0,      | 03        | 54            |               |
| painted (34 lb/ft²)                                       | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36      | 42     | 49      | 55      | 58        | 45            |               |
| 14. 8-in lightweight concrete block, 3 cells,             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           | -             |               |
| painted (38 lb/ft²)                                       | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40      | 44     | 49      | 59      | 64        | 49            |               |
| 15. Construction no. 14 with expanded min-                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        | -10     | 00      | 04        | 43            |               |
| eral loose fill in cells                                  | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40      | 46     | 52      | 60      | 66        | 51            |               |
| 16. 6-in lightweight concrete block with                  | 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | .0     | 32      | 00      | 00        | 31            |               |
| 1/2-in gypsum board supported by re-                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| silient metal channels on one side, other                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| side painted (26 lb/ft²)                                  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42      | 50     | 64      | 67      | 65        | 53            |               |
| 17. 2 1/2-in steel channel studs 24 in oc                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72      | 50     | 04      | 07      | 05        | 53            |               |
| with 5/8-in gypsum board both sides                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| (6 lb/ft²)                                                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27      | 43     | 47      | 27      | 40        |               |               |
| 18. Construction no. 17 with 2-in glass-fiber             | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21      | 43     | 47      | 37      | 46        | 39            |               |
| insulation in cavity                                      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41      | 52     | E 4     | 45      |           |               |               |
| 19. 3 5/8-in steel channel studs 16 in oc                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41      | 52     | 54      | 45      | 51        | 45            |               |
| with 1/2-in gypsum board both sides                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| (5 lb/ft²)                                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36      | 43     | 51      | 40      |           |               |               |
| 20. Construction no. 19 with 3-in mineral-                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30      | 43     | 51      | 48      | 43        | 43            |               |
| fiber insulation in cavity                                | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4E      | E4     | e.e.    |         |           |               |               |
| 21. 2 1/2-in steel channel studs 24 in oc                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45      | 54     | 55      | 47      | 54        | 48            |               |
| with two layers 5/8-in gypsum board                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| one side, one layer other side (8 lb/ft²)                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21      | 16     | F.1     |         |           |               |               |
| 22. Construction no. 21 with 2-in glass-fiber             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31      | 46     | 51      | 53      | 47        | 44            |               |
| insulation in cavity                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12      |        | F.0     |         |           |               |               |
| 23. 3 5/8-in steel channel studs 24 in oc                 | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43      | 55     | 58      | 61      | 51        | 51            |               |
| with two layers 5/8-in gypsum board                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
|                                                           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.1     |        |         |         |           |               |               |
| both sides (11 lb/ft <sup>2</sup> )                       | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41      | 51     | 54      | 46      | 52        | 48            |               |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |         |         |           |               |               |
| 24. Construction no. 23 with 3-in mineral-                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E 0     |        | 00      |         |           |               |               |
|                                                           | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52      | 59     | 60      | 56      | 62        | 57            |               |

Advisor: Dr. Andres Lepage **Final Report** April 7, 2009

## **ACOUSTICS STUDY**

|               |        | a de ar sa h | mprovem | ent in TL ( | dB)     |         |
|---------------|--------|--------------|---------|-------------|---------|---------|
| Airspace (in) | 125 Hz | 250 Hz       | 500 Hz  | 1000 Hz     | 2000 Hz | 4000 Hz |
| 2             | 5      | 7            | 19      | 25          | 30      | 30      |
| 4             | 10     | 12           | 24      | 30          | 35      | 35      |

| Type of Space (and Listening Requirements)                                                                                                                                                                                                | Preferred Range of Noise Criteria     | Equivalent<br>dBA Level* |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|
| Concert halls, opera houses, broadcasting and recording studios, large auditoriums, large churches, recital halls (for excellent listening conditions)                                                                                    | < NC-20                               | < 30                     |
| Small auditoriums, theaters, music practice rooms, large meeting rooms, teleconference rooms, audiovisual facilities, large conference rooms, executive offices, small churches, courtrooms, chapels (for very good listening conditions) | NC-20 to NC-30                        | 30 to 38                 |
| Bedrooms, sleeping quarters, hospitals, residences, apartments, hotels, motels (for sleeping, resting, relaxing)                                                                                                                          | NC-25 to NC-35                        | 34 to 42                 |
| Private or semiprivate offices, small conference rooms, classrooms, libraries (for good listening conditions)                                                                                                                             | NC-30 to NC-35                        | 38 to 42                 |
| Large offices, reception areas, retail shops and stores, cafeterias, restaurants, gymnasiums (for moderately good listening conditions)                                                                                                   | NC-35 to NC-40                        | 42 to 47                 |
| Lobbies, laboratory work spaces, drafting and engineering rooms, general secretarial areas, maintenance shops such as for electrical equipment (for fair listening conditions)                                                            | NC-40 to NC-45                        | 47 to 52                 |
| Kitchens, laundries, school and industrial shops, computer equipment rooms (for moderately fair listening conditions)                                                                                                                     | NC-45 to NC-55                        | 52 to 61                 |
| *Do not use A-weighted sound levels (dBA) for specification purposes. Spect widely for background noises with identical A-weighted sound levels (see Cha                                                                                  | rum shapes and noise charac<br>p. 1). | cteristics can vary      |

|            | Sound Pressure Level (dB) |        |        |         |         |         |  |  |
|------------|---------------------------|--------|--------|---------|---------|---------|--|--|
| Curve      | 125 Hz                    | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | 4000 Hz |  |  |
| RC-50      | 65                        | 60     | 55     | 50      | 45      | 40      |  |  |
| RC-45      | 60                        | 55     | 50     | 45      | 40      | 35      |  |  |
| RC-40      | 55                        | 50     | 45     | 40      | 35      | 30      |  |  |
| RC-35      | 50                        | 45     | 40     | 35      | 30      | 25      |  |  |
| RC-30      | 45                        | 40     | 35     | 30      | 25      | 20      |  |  |
| RC-25      | 40                        | 35     | 30     | 25      | 20      | 15      |  |  |
| Threshold* | 22                        | 13     | 8      | 5       | 3       | 0-15    |  |  |

<sup>\*</sup>Approximate threshold of hearing for continuous noise by listeners with normal hearing.

**APPENDIX J - SUPPLEMENTAL COST INFORMATION** 

Advisor: Dr. Andres Lepage Final Report April 7, 2009

## STRUCTURAL COST INFORMATION

|          | Column  | Length (ft) | Cost/ft        | Cost         |
|----------|---------|-------------|----------------|--------------|
|          | W14x43  | 1800.50     | \$29.90        | \$53,834.95  |
|          | W14x61  | 715.00      | \$40.83        | \$29,193.45  |
| <u>,</u> | W14x74  | 335.90      | \$47.52        | \$15,961.97  |
| Takeoff  | W14x82  | 216.60      | \$52.25        | \$11,317.35  |
| Tak      | W14x90  | 260.00      | \$58.58        | \$15,230.80  |
| E        | W14x109 | 162.50      | \$71.06        | \$11,547.25  |
| Column   | W14x120 | 65.00       | \$77.76        | \$5,054.40   |
|          | W14x132 | 65.00       | \$85.04        | \$5,527.60   |
|          | W14x145 | 32.50       | \$112.75       | \$3,664.38   |
|          |         |             | Total Cost:    | \$151,332.14 |
|          |         |             | Adjusted Cost: | \$112,529.03 |

|         | Beam     | Length (ft) | Cost/ft        | Cost         |
|---------|----------|-------------|----------------|--------------|
|         | CB12x15  | 6863.50     | \$32.77        | \$224,916.90 |
|         | CB15x19  | 5383.45     | \$24.57        | \$132,271.37 |
|         | CB18x26  | 2592.00     | \$26.00        | \$67,392.00  |
| ±       | CB27x46  | 6671.07     | \$42.23        | \$281,719.29 |
| Takeoff | CB27x60  | 2070.14     | \$51.03        | \$105,639.24 |
|         | CB27x76  | 877.00      | \$65.83        | \$57,732.91  |
| Beam    | CB27x97  | 379.59      | \$81.97        | \$31,114.99  |
| Ď       | CB27x119 | 160.55      | \$98.35        | \$15,790.09  |
|         | CB36x162 | 139.50      | \$125.81       | \$17,550.50  |
|         | CB50x221 | 50.00       | \$193.45       | \$9,672.50   |
|         |          |             | Total Cost:    | \$943,799.78 |
|         |          |             | Adjusted Cost: | \$701,799.84 |

## STRUCTURAL COST INFORMATION

| Brace Takeoff | Brace         | Length (ft)             | Cost/ft        | Cost        |  |
|---------------|---------------|-------------------------|----------------|-------------|--|
|               | HSS7.5x0.5    | 865.30                  | \$75.46        | \$65,295.54 |  |
|               | HSS10.0x0.625 | 0x0.625 207.50 \$114.30 |                | \$23,717.25 |  |
|               |               |                         | Total Cost:    | \$89,012.79 |  |
|               |               |                         | Adjusted Cost: | \$66,189.00 |  |

| Steel Deck Takeoff | Floor        | Area (ft²)   | Cost/ft <sup>2</sup> | Cost         |  |
|--------------------|--------------|--------------|----------------------|--------------|--|
|                    | Roof         | 16269        | \$1.10               | \$17,895.90  |  |
|                    | Penthouse    | 25914        | \$1.10               | \$28,505.40  |  |
|                    | Sixth        | 32427        | \$1.10               | \$35,669.70  |  |
|                    | Fifth        | 32427        | \$1.10               | \$35,669.70  |  |
|                    | Fourth       | 32427        | \$1.10               | \$35,669.70  |  |
|                    | Third        | 28646        | \$1.10               | \$31,510.60  |  |
|                    | Second       | 17037        | \$1.10               | \$18,740.70  |  |
|                    |              | \$185,765.80 |                      |              |  |
|                    | Adjusted Cos |              |                      | \$138,133.54 |  |

| Concrete Takeoff | Floor     | Area (ft²) | Thickness (ft) | Volume (yd³) | Cost/yd <sup>3</sup> | Cost         |
|------------------|-----------|------------|----------------|--------------|----------------------|--------------|
|                  | Roof      | 16269      | 0.46           | 276          | \$85.00              | \$23,474.56  |
|                  | Penthouse | 25914      | 0.46           | 440          | \$85.00              | \$37,391.34  |
|                  | Sixth     | 32427      | 0.46           | 550          | \$85.00              | \$46,788.96  |
|                  | Fifth     | 32427      | 0.46           | 550          | \$85.00              | \$46,788.96  |
|                  | Fourth    | 32427      | 0.46           | 550          | \$85.00              | \$46,788.96  |
|                  | Third     | 28646      | 0.46           | 486          | \$85.00              | \$41,333.35  |
|                  | Second    | 17037      | 0.46           | 289          | \$85.00              | \$24,582.71  |
|                  |           |            |                |              | Total Cost:          | \$267,148.83 |