Redland Tech Center

Presentation Outline

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Shawn Pepple • Construction Management • April 14, 2009
Redland Tech Center

Project Overview

• Two office buildings with stand alone parking garage
 • Building II: 9 levels; 210,240 SF
 • Building III: 6 levels; 136,430 SF
 • Parking Garage: 6 levels; 310,600 SF
 • January 2008 – June 2009 Construction
 • $52,800,000 Negotiated GMP
 • Design-Bid-Build
Redland Tech Center

Presentation Outline

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Project Overview

- Structural steel office buildings
- Precast façade with curtain wall and ribbon windows
- Self-contained air conditioning units with VAVs
- Precast parking garage
- LEED Silver Certification
Redland Tech Center

Critical Industry Research: Chilled Beams
- Energy efficiency becoming more important
- Water more efficient energy transporter
- Reduce ductwork, fans, AHUs, VAVs, plenum space
- Increase piping, pumping
- Two types: Passive and Active
- Used in Europe and Australia for several decades

Shawn Pepple • Construction Management • April 14, 2009
Passive Chilled Beams

- Use natural convection to cool air
- Only provide sensible cooling
- Cannot be used for heating
- Requires separate system for latent loads and ventilation
- 200-650 BTUH sensible heat per ft of beam
- Exposed or recessed type
Active Chilled Beams

- Forced air induction
- Primary air and secondary cooling
- Used for cooling and heating
- 1,100 BTUH sensible heat per ft of beam
- Typically used with dedicated outdoor air system (DOAS)
- Several varieties to suit building requirements
Multi-service Chilled Beams

- Prefabricated unit
- Incorporates other building systems
- Both passive and active types
Presentation Outline

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Chilled Beam Advantages

- Reduce primary air by 75-85%
- 20-40% savings in energy consumption
- Reduced ductwork size
- Low maintenance
- Increased room comfort; quiet
- Payback less than 5 years typical
Chilled Beam Disadvantages

- Initial cost higher
- Not familiar in United States
- Cannot be used in areas with high or unpredictable humidity levels
Redland Tech Center

Chilled Beam Applications
- Best for projects with high sensible loads
- Retrofit and renovation projects
- Projects with building height restrictions
- Projects with ultimate sustainability goals

Shawn Pepple • Construction Management • April 14, 2009
Redland Tech Center

Chilled Beams at RTC Building II
- Analysis uses active chilled beams
- Used chilled beams only in open office space
- Maximized energy efficiency by matching primary air to ventilation air requirements
- Analysis assumptions:
 - 100 ft²/person
 - Current design used 72°F room air, 55°F supply air
 - Latent load = 200 BTUH/person

Shawn Pepple • Construction Management • April 14, 2009
Chilled Beams at RTC Building II

- Analysis uses active chilled beams
- Used chilled beams only in open office space
- Maximized energy efficiency by matching primary air to ventilation air requirements

Analysis assumptions:
- 100 ft²/person
- Current design used 72°F room air, 55°F supply air
- Latent load = 200 BTU/person

Floor Description

<table>
<thead>
<tr>
<th>Floor</th>
<th>Description</th>
<th>Area (SF)</th>
<th>Population</th>
<th>VAV CFM</th>
<th>Sensible Load (BTUH)</th>
<th>Latent Load (BTUH)</th>
<th>chilled beams requirement (BTUH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open Office</td>
<td>11,380</td>
<td>114</td>
<td>9,500</td>
<td>174,420</td>
<td>22,760</td>
<td>1,565</td>
</tr>
<tr>
<td>2</td>
<td>Open Office</td>
<td>19,862</td>
<td>199</td>
<td>12,000</td>
<td>220,320</td>
<td>39,724</td>
<td>2,731</td>
</tr>
<tr>
<td>3</td>
<td>Open Office</td>
<td>20,534</td>
<td>205</td>
<td>12,000</td>
<td>220,320</td>
<td>41,068</td>
<td>2,823</td>
</tr>
<tr>
<td>4</td>
<td>Open Office</td>
<td>20,534</td>
<td>205</td>
<td>12,000</td>
<td>220,320</td>
<td>41,068</td>
<td>2,823</td>
</tr>
<tr>
<td>5</td>
<td>Open Office</td>
<td>20,534</td>
<td>205</td>
<td>12,000</td>
<td>220,320</td>
<td>41,068</td>
<td>2,823</td>
</tr>
<tr>
<td>6</td>
<td>Open Office</td>
<td>20,534</td>
<td>205</td>
<td>12,000</td>
<td>220,320</td>
<td>41,068</td>
<td>2,823</td>
</tr>
<tr>
<td>7</td>
<td>Open Office</td>
<td>20,534</td>
<td>205</td>
<td>12,000</td>
<td>220,320</td>
<td>41,068</td>
<td>2,823</td>
</tr>
<tr>
<td>8</td>
<td>Open Office</td>
<td>20,534</td>
<td>205</td>
<td>12,000</td>
<td>220,320</td>
<td>41,068</td>
<td>2,823</td>
</tr>
</tbody>
</table>
Redland Tech Center

Number of Chilled Beams Required

- Room air: 72°F/50% relative humidity (0.00836 lbw/lbda)
- Supply air: 55°F/58% relative humidity (0.00535 lbw/lbda)
- Analysis used 1,000 BTUH sensible heat per ft of beam
- Based on 6’ chilled beams

Shawn Pepple • Construction Management • April 14, 2009
Redland Tech Center

Number of Chilled Beams Required

- Room air: 72°F/50% relative humidity (0.00836lbw/lbda)
- Supply air: 55°F/58% relative humidity (0.00535lbw/lbda)
- Analysis used 1,000 BTUH sensible heat per ft of beam
- Based on 6’ chilled beams

<table>
<thead>
<tr>
<th>Floor</th>
<th>Floor Load (BTUH)</th>
<th>Primary Air Sensible (BTUH)</th>
<th>Secondary Air Sensible (BTUH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100,000</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>150,000</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>150,000</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>150,000</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>150,000</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>150,000</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>150,000</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>150,000</td>
<td>30,000</td>
<td></td>
</tr>
</tbody>
</table>
Redland Tech Center

Number of Chilled Beams Required

- Room air: 72°F/50% relative humidity (0.00836lbw/lbda)
- Supply air: 55°F/58% relative humidity (0.00535lbw/lbda)
- Analysis used 1,000 BTUH sensible heat per ft of beam
- Based on 6’ chilled beams

<table>
<thead>
<tr>
<th>Floor</th>
<th>Secondary Ambient Temperature (BTUH)</th>
<th>Linear Feet of Chilled Beam Required (ft)</th>
<th>Number of 6’ Beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>135,454</td>
<td>145</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>160,379</td>
<td>150</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>166,407</td>
<td>150</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>166,407</td>
<td>150</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>166,407</td>
<td>150</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>166,407</td>
<td>150</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>166,407</td>
<td>150</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>166,407</td>
<td>150</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>166,407</td>
<td>150</td>
<td>27</td>
</tr>
</tbody>
</table>

Total Number of 6’ Beams: 257
Chilled Beam Costs

- Material cost for chilled beams is $140 per linear foot
- Material cost for chilled beams is $140 per linear foot
- Each 6’ beam will cost $1,680 installed

<table>
<thead>
<tr>
<th>Floor</th>
<th>Number of 6’ Chilled Beams</th>
<th>Material Cost (Each)</th>
<th>Labor Cost (Each)</th>
<th>Total Cost (Each)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>$3,500</td>
<td>$1,500</td>
<td>$5,000</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>$3,500</td>
<td>$1,500</td>
<td>$5,000</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>$3,500</td>
<td>$1,500</td>
<td>$5,000</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>$3,500</td>
<td>$1,500</td>
<td>$5,000</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>$3,500</td>
<td>$1,500</td>
<td>$5,000</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>$3,500</td>
<td>$1,500</td>
<td>$5,000</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>$3,500</td>
<td>$1,500</td>
<td>$5,000</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>$3,500</td>
<td>$1,500</td>
<td>$5,000</td>
</tr>
</tbody>
</table>

Total Chilled Beam Cost: $431,760
Chilled Beam Cost per SF: $2.47
Presentation Outline

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Redland Tech Center

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Material</th>
<th>Labor</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water Piping</td>
<td>$116,601</td>
<td>$66,159</td>
<td></td>
<td>$182,760</td>
<td>7.6%</td>
</tr>
<tr>
<td>Mechanical Insulation</td>
<td>$58,998</td>
<td>$76,002</td>
<td></td>
<td>$135,000</td>
<td>5.6%</td>
</tr>
<tr>
<td>Pumps</td>
<td>$20,004</td>
<td>$3,558</td>
<td></td>
<td>$23,562</td>
<td>1.0%</td>
</tr>
<tr>
<td>Cooling Towers</td>
<td>$205,775</td>
<td>$16,325</td>
<td></td>
<td>$222,100</td>
<td>9.2%</td>
</tr>
<tr>
<td>VAVs</td>
<td>$37,088</td>
<td>$8,212</td>
<td></td>
<td>$45,300</td>
<td>1.9%</td>
</tr>
<tr>
<td>Fans</td>
<td>$79,100</td>
<td>$7,413</td>
<td></td>
<td>$86,513</td>
<td>3.6%</td>
</tr>
<tr>
<td>Self Contained AHUs</td>
<td>$790,242</td>
<td>$38,183</td>
<td></td>
<td>$828,425</td>
<td>34.5%</td>
</tr>
<tr>
<td>Ductwork</td>
<td>$97,290</td>
<td>$607,710</td>
<td></td>
<td>$705,000</td>
<td>29.3%</td>
</tr>
<tr>
<td>Controls</td>
<td>$86,670</td>
<td>$48,330</td>
<td></td>
<td>$135,000</td>
<td>5.6%</td>
</tr>
<tr>
<td>Condensate Piping</td>
<td>$9,412</td>
<td>$13,488</td>
<td></td>
<td>$22,900</td>
<td>1.0%</td>
</tr>
<tr>
<td>Testing and Balancing</td>
<td>$0</td>
<td>$18,000</td>
<td></td>
<td>$18,000</td>
<td>0.7%</td>
</tr>
<tr>
<td>Totals</td>
<td>$1,501,178</td>
<td>$903,382</td>
<td></td>
<td>$2,404,560</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

VAV Mechanical System Cost per SF = $11.44
Redland Tech Center

Chilled Beam Component Costs

- Chilled water piping
 - Material: $8.94/lf * 1,300lf/floor * 9 floors = $104,598
 - Labor: $5.06/lf * 1,300lf/floor * 9 floors = $59,202
 - Total Additional Cost: $163,800

- Mechanical Insulation
 - No change

- Pumps
 - Material: $20,004 * 2 = $40,008
 - Labor: $3,558 * 2 = $7,116
 - Total Additional Cost: $47,124

- Cooling Tower
 - No change
Presentation Outline
• Project Overview
• Chilled Beam HVAC System (MAE) (Mechanical)
• NEC Wire Sizing (Electrical)
• Parking Garage Sequencing
• Conclusion and Recommendations
• Questions and Acknowledgements

Chilled Beam Component Costs
• VAVs
 • Material: 72 VAVs * $442/VAV = $31,824
 • Labor: 72 VAVs * $442/VAV = $31,824
 • Total Savings: $38,808
• Fans
 • Material: 0.7 * 0.92 * $79,100 = $50,940
 • Labor: 0.7 * 0.92 * $7,413 = $5,774
 • Total Savings: $55,714
• SCUs
 • Material: $790,242
 • Labor: $38,183
 • Total Savings: $828,425
• Electric Heating Coils
 • Material: 257 coils * $620/coil = $159,340
 • Labor: 257 coils * $59/coil = $15,163
 • Total Additional Cost: $174,503

Redland Tech Center

Shawn Pepple • Construction Management • April 14, 2009
Redland Tech Center

Chilled Beam Component Costs

• Wiring and Conduit for Heating Coils
 • Material: 3-wires*$0.81/LF*650LF/floor*9floors = $14,217
 • Labor: $2.47/LF*650LF/floor*9floors = $14,450
 • Total Additional Cost: $28,667

• Centrifugal Chillers
 • Material: $384,160
 • Labor: $384,160
 • Total Additional Cost: $402,192

• AHUs
 • Material: $46,592
 • Labor: $7,056
 • Total Additional Cost: $53,648

• Ductwork
 • Material: 0.45*0.92*$97,290 = $46,278
 • Labor: 0.25*0.92*$607,710 = $134,773
 • Total Savings: $179,051
Redland Tech Center

Presentation Outline
• Project Overview
• Chilled Beam HVAC System (MAE) (Mechanical)
• NEC Wire Sizing (Electrical)
• Parking Garage Sequencing
• Conclusion and Recommendations
• Questions and Acknowledgements

Chilled Beam Component Costs
• Controls
 • Material: 0.92*$86,670 = $79,736
 • Labor: 0.92*$48,330 = $44,464
 • Total Savings: $124,200

• Condensate Piping
 • No change

Shawn Pepple • Construction Management • April 14, 2009

Testing and Balancing
• Material: $0
• Labor: $16,560
• Total Savings: $16,560
Redland Tech Center

Presentation Outline

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

<table>
<thead>
<tr>
<th>Description</th>
<th>Material</th>
<th>Labor</th>
<th>Total</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Beam</td>
<td>$215,880</td>
<td>$215,880</td>
<td>$431,760</td>
<td>17.4%</td>
</tr>
<tr>
<td>Water Piping</td>
<td>$221,199</td>
<td>$125,361</td>
<td>$346,560</td>
<td>14.0%</td>
</tr>
<tr>
<td>Mechanical Insulation</td>
<td>$58,998</td>
<td>$76,002</td>
<td>$135,000</td>
<td>5.4%</td>
</tr>
<tr>
<td>Pumps</td>
<td>$60,012</td>
<td>$10,674</td>
<td>$70,686</td>
<td>2.9%</td>
</tr>
<tr>
<td>Cooling Towers</td>
<td>$205,775</td>
<td>$16,325</td>
<td>$222,100</td>
<td>9.0%</td>
</tr>
<tr>
<td>VAVs</td>
<td>$5,264</td>
<td>$1,228</td>
<td>$6,492</td>
<td>0.3%</td>
</tr>
<tr>
<td>Fans</td>
<td>$28,160</td>
<td>$2,639</td>
<td>$30,799</td>
<td>1.2%</td>
</tr>
<tr>
<td>Self-Contained AHUs</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Electric Heating Coils</td>
<td>$159,340</td>
<td>$15,163</td>
<td>$174,503</td>
<td>7.0%</td>
</tr>
<tr>
<td>Wiring and Conduit</td>
<td>$14,217</td>
<td>$14,450</td>
<td>$28,667</td>
<td>1.2%</td>
</tr>
<tr>
<td>Centrifugal Chiller</td>
<td>$384,160</td>
<td>$18,032</td>
<td>$402,192</td>
<td>16.2%</td>
</tr>
<tr>
<td>AHUs</td>
<td>$46,592</td>
<td>$7,056</td>
<td>$53,648</td>
<td>2.2%</td>
</tr>
<tr>
<td>Ductwork</td>
<td>$57,012</td>
<td>$469,937</td>
<td>$526,949</td>
<td>21.3%</td>
</tr>
<tr>
<td>Controls</td>
<td>$6,934</td>
<td>$3,866</td>
<td>$10,800</td>
<td>0.4%</td>
</tr>
<tr>
<td>Condensate Piping</td>
<td>$9,412</td>
<td>$13,488</td>
<td>$22,900</td>
<td>0.9%</td>
</tr>
<tr>
<td>Testing and Balancing</td>
<td>$0</td>
<td>$16,560</td>
<td>$16,560</td>
<td>0.7%</td>
</tr>
<tr>
<td>Totals</td>
<td>$1,472,954</td>
<td>$1,006,662</td>
<td>$2,479,616</td>
<td>100%</td>
</tr>
</tbody>
</table>

Chilled Beam Mechanical System Cost per SF = $11.79
Presentation Outline

• Project Overview
• Chilled Beam HVAC System (MAE) (Mechanical)
• NEC Wire Sizing (Electrical)
• Parking Garage Sequencing
• Conclusion and Recommendations
• Questions and Acknowledgements

Redland Tech Center

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
<th>% Decrease</th>
<th>% Increase</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Beam</td>
<td>$215,880</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Piping</td>
<td>$221,199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Insulation</td>
<td>$58,998</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumps</td>
<td>$60,012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling Towers</td>
<td>$205,775</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAVs</td>
<td>$5,264</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fans</td>
<td>$28,160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self Contained AHUs</td>
<td>$0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Heating Coils</td>
<td>$159,340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiring and Conduit for Heating Coils</td>
<td>$14,217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chilled Beam Mechanical System</td>
<td>$75,056</td>
<td>1.03%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAV Cost</td>
<td>$117,977</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$2,479,616</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Redland Tech Center

Additional Office Space w/ Chilled Beams
- Removed SCUs add office space for floors 2-7
- 360SF/floor
- 2,160SF additional office space
- Office space will lease for $12/SF/month
- Additional leasing income of $25,290/month
Redland Tech Center

Chilled Beam Schedule Impacts

- Original Schedule:
 - June 9, 2009 – February 10, 2009
 - 246 days
- Chilled Beam Schedule:
 - June 9, 2009 – March 19, 2009
 - 283 days
- Overall Project Schedule:
 - No change
Redland Tech Center

Energy Savings

- EPA estimates annual HVAC energy cost/SF for Mid-Atlantic area office building to be $1.59/SF
- Annual HVAC Cost = $1.59/SF * 210,240SF = $334,282 per year
Redland Tech Center

Energy Savings

- EPA estimates annual HVAC energy cost/SF for Mid-Atlantic area office building to be $1.59/SF

- Annual HVAC Cost = $1.59/SF\times210,240\text{SF} = $334,282 per year

<table>
<thead>
<tr>
<th>Energy Reduction</th>
<th>Initial HVAC Cost</th>
<th>Annual HVAC Cost</th>
<th>Annual Energy Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>$687,704</td>
<td>$588,820</td>
<td>$98,884</td>
</tr>
<tr>
<td>30%</td>
<td>$646,497</td>
<td>$530,419</td>
<td>$116,078</td>
</tr>
<tr>
<td>40%</td>
<td>$605,290</td>
<td>$472,030</td>
<td>$133,260</td>
</tr>
</tbody>
</table>

Shawn Pepple • Construction Management • April 14, 2009
Redland Tech Center

Payback Period

- Additional cost of $75,056 (1.03% increase)
- Savings between $66,856 and $133,713 in energy costs
- Additional $311,040/year in office leasing revenue
- Less than 1 year payback

Shawn Pepple • Construction Management • April 14, 2009
Redland Tech Center

Conclusion

- Initial cost increase of $75,056 (1.03%)
- VAV system cost = $2,404,560 = $11.44/SF
- Chilled beam system cost = $2,479,616 = $11.79/SF
- Lower operating costs, higher revenues offset higher initial cost with less than 1 year payback
- Chilled beams increased HVAC construction duration by 37 days
- Overall project schedule not affected
- Chilled beams unfamiliar to industry professionals in United States

Recommendation

- Chilled beams should be pursued on more projects in US
- Would be appropriate to use for RTC project
Presentation Outline

• Project Overview
• Chilled Beam HVAC System (MAE) (Mechanical)
• NEC Wire Sizing (Electrical)
• Parking Garage Sequencing
• Conclusion and Recommendations
• Questions and Acknowledgements

Redland Tech Center

NEC Wire Sizing

• Upsizing wire conductors has the potential to improve the energy efficiency of buildings
• Wire conductors have resistance which creates voltage drops and uses energy
• Larger conductors have lower resistance than smaller wires
• Analysis determines the feasibility of upsizing wires one size larger than NEC code minimum to reduce energy usage

Shawn Pepple • Construction Management • April 14, 2009
Presentation Outline

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Redland Tech Center

Calculations

- Circuit No. 12 on lighting panel LP-H
- Powers 2'x4' parabolic troffer luminaires
- 277V
- Connected load = 4,400 VA
- 2-#12 AWG - #12 Ground
- Luminaires are approximately 100' from panelboard
Calculations

- Current in wires = 4,400VA/277V = 15.9 amps
- The first step is to calculate the resistance of #12 wire:
 - For #12 THHN @ 75°C (From NEC Chapter 9, Table 9):
 \[R = 2Ω/kFt \]
 - To correct resistance to 30°C, use NEC Table 8 footnote:
 \[R_1 = 2 [1+0.00323(30-75)] = 1.71 Ω/kFt \]
 - The second step is to calculate the power loss for #12 wire:
 \[\text{Power Loss} = I^2R = (15.9)^2 \times 1.71 \times 0.1 = 43.0 \text{ W} \]

- The third step is to calculate energy loss per year for #12 wire:
 \[\text{Energy Loss} = 43.0 \text{ W} / 1000\text{W/kW} \times 12\text{hrs/day} \times 365\text{days/year} = 188 \text{ kWh/yr} \]
- Repeat steps for #10 wire
Redland Tech Center

Calculations
- **Resistance of #10 wire:**
 - For #10 THHN @ 75°C (From NEC Chapter 9, Table 9):
 \[R = 1.20 \Omega/\text{kFt} \]
 - To correct resistance to 30°C, use NEC Table 8 footnote:
 \[R_2 = 1.2 \times (1 + 0.00323(30-75)) = 1.03 \Omega/\text{kFt} \]
- **Power loss for #10 wire:**
 \[\text{Power Loss} = I^2R = (15.9)^2 \times 1.03 \times 0.1 = 26.0 \text{ W} \]

- **Energy loss per year for #10 wire:**
 \[\text{Energy Loss} = 26.0 \text{ W} / 1000 \text{W/kW} \times 12 \text{hrs/day} \times \frac{365 \text{days}}{365} = 113 \text{ kWh/yr} \]
- **Savings due to upsizing wire:**
 - initial cost increase:
 \[\text{Cost of #12 wire and conduit} = 2.85 \text{LF} \times 100' = 285 \]
 \[\text{Cost of #10 wire and conduit} = 3.03 \text{LF} \times 100' = 303 \]
 \[\text{Cost difference} = 18 \]
 - Energy saved:
 \[188.113 = 75 \text{ kWh/yr} \]
 \[\text{Dollar savings at $0.09 per kWh:} \]
 \[6.75/\text{yr} \]
 \[\text{Dollar savings at $0.09 per kWh:} \]
 \[6.75/\text{yr} \]
Redland Tech Center

Discounted Payback Period

• Assume MARR = 15%

<table>
<thead>
<tr>
<th>Period</th>
<th>Cost Flow</th>
<th>Cost of Return (MARR)</th>
<th>Discounted Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>($18)</td>
<td>($18)</td>
<td>($18)</td>
</tr>
<tr>
<td>1</td>
<td>$6.75</td>
<td>$10.50</td>
<td>($8.75)</td>
</tr>
<tr>
<td>2</td>
<td>$6.75</td>
<td>$10.50</td>
<td>($3.23)</td>
</tr>
<tr>
<td>3</td>
<td>$6.75</td>
<td>$10.50</td>
<td>$9.09</td>
</tr>
</tbody>
</table>

$0.09/kWh – 4 year payback

<table>
<thead>
<tr>
<th>Period</th>
<th>Cost Flow</th>
<th>Cost of Return (MARR)</th>
<th>Discounted Cash Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>($18)</td>
<td>($18)</td>
<td>($18)</td>
</tr>
<tr>
<td>1</td>
<td>$10.50</td>
<td>($2.70)</td>
<td>$7.80</td>
</tr>
<tr>
<td>2</td>
<td>$10.50</td>
<td>($1.53)</td>
<td>$6.97</td>
</tr>
<tr>
<td>3</td>
<td>$10.50</td>
<td>($0.18)</td>
<td>$9.09</td>
</tr>
</tbody>
</table>

$0.14/kWh – 3 year payback
Other Findings

- Payback shows wire upsizing is feasible
- Most circuits do not operate at design
- Penn State Campus buildings design capacities typically 3 to 4 times average load
- Wires already upsized several times
Redland Tech Center

Possible Uses of Wire Upsizing
- Locations with constant high loads
- Data center equipment
- Large constant speed motors
- HVAC chillers

Shawn Pepple • Construction Management • April 14, 2009

Presentation Outline
- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements
Redland Tech Center

Conclusion
- Wire upsizing feasible
- Savings not drastic
- Payback typically within a few years
- Best uses would be areas with constant high loads
- Data center equipment, large constant speed motors, HVAC chillers

Recommendation
- Apply principle only in areas of building projects with high constant loads
Redland Tech Center

Actual Construction Sequence
- February 6, 2008 – April 1, 2009; 420 days
- Constructed in 2 phases
- 46 day gap in precast member erection
Redland Tech Center

Actual Construction Sequence

- February 6, 2008 – April 1, 2009; 420 days
- Constructed in 2 phases
- 46 day gap in precast member erection

Shawn Pepple • Construction Management • April 14, 2009
Presentation Outline

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Redland Tech Center

Actual Construction Sequence

- February 6, 2008 – April 1, 2009; 420 days
- Constructed in 2 phases
- 46 day gap in precast member erection

Shawn Pepple • Construction Management • April 14, 2009
Redland Tech Center

Actual Construction Sequence
- February 6, 2008 – April 1, 2009; 420 days
- Constructed in 2 phases
- 46 day gap in precast member erection

Presentation Outline
- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements
Redland Tech Center

Presentation Outline
- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

<table>
<thead>
<tr>
<th>Actual Construction Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 6, 2008 – April 1, 2009; 420 days</td>
</tr>
<tr>
<td>Constructed in 2 phases</td>
</tr>
<tr>
<td>46 day gap in precast member erection</td>
</tr>
</tbody>
</table>

Shawn Pepple • Construction Management • April 14, 2009
Redland Tech Center

Actual Construction Sequence

- No remobilization fees were paid to the Precast Erectors, Inc. because only 1 mobilization charge was stated in contract with Clark Construction
- Precast Erectors PM estimated second mobilization costs were $70,000
- Precast Erectors absorbed second mobilization costs
Redland Tech Center

Proposed Construction Sequence

- Erect majority of building in same manner as the actual sequence except leave out south non-load bearing foundation wall instead of corner
- Erect members from inside the building
- Move crane from basement to outside foundation wall through opening in wall and erect last sequence

Shawn Pepple • Construction Management • April 14, 2009
Redland Tech Center

Proposed Construction Sequence

- Erect majority of building in same manner as the actual sequence except leave out south non-load bearing foundation wall instead of corner
- Erect members from inside the building
- Move crane from basement to outside foundation wall through opening in wall and erect last sequence

Shawn Pepple • Construction Management • April 14, 2009
Presentation Outline

- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Redland Tech Center

Proposed Construction Sequence

- Erect majority of building in same manner as the actual sequence except leave out south non-load bearing foundation wall instead of corner
- Erect members from inside the building
- Move crane from basement to outside foundation wall through opening in wall and erect last sequence
- February 6, 2008-February 17, 2009; 377 days
- Saves 43 days in construction duration

Shawn Pepple • Construction Management • April 14, 2009
Presentation Outline
• Project Overview
• Chilled Beam HVAC System (MAE) (Mechanical)
• NEC Wire Sizing (Electrical)
• Parking Garage Sequencing
• Conclusion and Recommendations
• Questions and Acknowledgements

Redland Tech Center

Cost Impacts
• GCs are reduced
• Precast Erectors would save $70,000 for the second mobilization costs
• Project cost is not affected
Conclusion

• Proposed sequence saves 43 days in construction duration
• Saves Precast Erectors $70,000 in second mobilization costs
• Does not reduce cost to owner
• Allows Clark Construction to better manage risks

Recommendation

• Use proposed sequence to reduce construction duration, minimize risks on project, allow site work to finish earlier, and save Precast Erectors second mobilization costs
• Would make project more of a success for everyone involved
Conclusion

- Chilled beams are a new HVAC technology which has the potential to drastically improve a building’s energy efficiency
- Chilled beams can be implemented at RTC BII for $75,056 with payback period less than 1 year and no schedule impact
- Wire upsizing has the potential to save energy
- Implement in areas with constant high loads
- Proposed sequence for the parking garage saves 43 days on the schedule; costs are not reduced

Recommendation

- All three analysis topics should be used for project
Redland Tech Center

Presentation Outline
- Project Overview
- Chilled Beam HVAC System (MAE) (Mechanical)
- NEC Wire Sizing (Electrical)
- Parking Garage Sequencing
- Conclusion and Recommendations
- Questions and Acknowledgements

Acknowledgements
- Penn State Architectural Engineering Faculty
- Clark Construction
 - Jim Martinoski
 - Erin Gardner
 - John Neuenschwander
- Syska Hennessy Group
 - Alla Ketsnelson
- WSP Flack & Kurtz
 - Albert Flaherty
- Tindall Corporation
 - Jeff Lepard
- Friends and Family

Questions?