Gouverneur Healthcare Services

New York, NY
Technical Report 1

Scott Rabold
Structural
Consultant: Dr. Ali Memari
9.29.2008

Table of Contents

Executive Summary 3
Introduction 4
Structural Systems 5
Materials 6
Applicable Codes 6
Design Loads 6
Lateral Loads
Wind Loading 7
Seismic Loading 8
Spot Checks 9
Conclusions 10
Appendix A - List of Figures 11
Appendix B - Expanded Wind Tables 12
Appendix C - Expanded Seismic Tables 14
Appendix D - Spot Checks 16

Executive Summary

The Gouverneur Health Services was designed using the NYC Building Code. For the purpose of this report, existing conditions were analyzed using the loads provided in ASCE 7-05. Wind loads were analyzed using Chapter 6 of ASCE 7-05 and values were obtained that were significantly higher than the NYC Building Code. For the controlling case, wind in the East-West direction, a base shear of 671 kips was obtained and an overturning moment of 51100 ft -k was calculated. Seismic Loads were calculated using Chapter 12 of ASCE $7-05$ with a base shear of 116 kips and an overturning moment of $10050 \mathrm{ft}-\mathrm{k}$, but these loads was unable to be compared to the loads specified in the NYC Building Code.

Spot checks were performed on selected members from a representative bay. Moment capacities for castellated beams were determined to be adequate for minimum loads, while other criteria was checked using a design aid from CMC Steel Products and was determined to be adequate. Capacities for regular W-shapes were adequate, which was expected. Their capacity is assumed to be controlled by lateral loads.

Introduction

The Gouverneur Health Services Modernization Project is an addition to an existing building and a renovation of the 35 -year-old healthcare facility. The existing building is a 2 -way flat plate floor construction with square and rectangular columns. An existing conditions survey revealed no shear-walls, so it can be assumed that lateral loads are resisting by the continuous frame construction of the flat plate slab. For the purpose of this technical report, and subsequent thesis project, only the addition will be investigated in further detail. Furthermore, portions of the addition that wrap around the existing building and tie into the existing structure will be neglected for this technical report.

The addition that will be the main focus of this thesis project consists of two distinct portions. The first portion is the 5 -story ambulatory care facility. This facility is approximately 115 ' $\times 175$ ' in plan, and sits on the western side of the site, connected to the existing building. The second portion is an expansion to the floor plan to the existing building in floors 6 through 13. It is roughly square, 50 'x60' in plan, and extends upwards from the ambulatory center on the western side of the existing building. The portions may be referred to as lower addition and upper addition, or ambulatory addition and tower addition, respectively. See Figures below.

Fig 1. Gouverneur Layout Schematic

Fig 2. Typical Ambulatory Center Framing Plan

Fig 3. Typical Tower Addition Framing Plan

Structural System

Foundation

The Gouverneur Healthcare Facility bears on a pile foundation system, with 60 -ton capacity, 12 " piles. Pile caps vary from 35 " to 54 " thick with the number of piles ranging from 2 to 16 piles per cap. The footprint for the cellar is smaller than the extents of the overall building so the depths of the pile caps vary. The depths of the caps are either 4 '- 6 " below datum if the columns terminate in the cellar, or 16 ' -9 " above datum if the columns terminate on the first floor.

The piles support grade beams that span between 15^{\prime} and 40^{\prime}. Their sizes range from $4^{\prime}-0^{\prime \prime}$ to $8^{\prime}-3^{\prime \prime}$ deep with reinforcing bars from \#8 to \#12 bars. A structural, one-way slab-on-grade spans between grade beams to make up the cellar floor.

Floor System

The floor system for Gouverneur Healthcare Services is a composite system that utilizes castellated beams for all gravity beams in the ambulatory addition. A $4 \frac{1}{4}$ " slab rests on a 2 " LOK floor composite deck, and is tied to the beam with $5^{\prime \prime}$ long, $3 / 4^{\prime \prime}$ diameter shear studs. Typical bays are $30^{\prime}-0^{\prime \prime}$ by $44^{\prime}-0^{\prime \prime}$ and almost all beams are nominally $27^{\prime \prime}$ deep to accommodate mechanical systems. The tower addition uses traditional W-shapes in a composite floor system. Beams are W16's in areas where clearance for mechanical equipment is not an issue, and W14's where clearance is an issue.

Columns

Almost all columns in the Gouverneur Healthcare Services Building are W14 columns, regardless if it is a part of the lateral system or just a gravity column. Sizes range from W14×43 to W14x257, and are continuous from the foundation to the roof, with only column bearing on a transfer girder on the seventh floor. Columns are spliced on every other floor starting on the third floor. Base plates are typically $22^{\prime \prime} \times 22^{\prime \prime}$ with bolts ranging in size from $3 / 4$ " to 2 ".

Lateral System

Due to the vast use of glass curtain walls and irregular plan between floors, most of the lateral system in the Gouverneur Healthcare Services Building is moment resisting frames. For the interior moment frames, sizes are either W27's for long span beams or W14's for the shorter spans. Most beams in exterior moment frames are W18's and W24's. In the tower portion of the building, lateral loads are resisted by exterior moment frames in the East-West direction, and braced frames in the North-South direction, both concentric and eccentric. Most braced frames are continuous from the roof to the column termination at the foundation. But at the interface of the upper addition and the lower addition, where one frame is discontinuous, loads transfer into columns in the floor below, and redistribute through the structure.

Wind loads transfer from curtain wall system to floor diaphragm. Floor diaphragm is rigid compared to structure so loads transfer to lateral frames based off of relative stiffness.

Fig 4. Typical Framing Plan Showing Moment Frames

Concrete	ASTM	Min Strength
\quad Structural slab-on-grade	-	3000 psi
Pile cap	-	4000 psi
Retaining walls	-	4000 psi
\quad Interior Slabs	A615	4000 psi
Reinforcing Steel		60 ksi
Structural Steel	A500	46 ksi
\quad Structural Tubing	A53	35 ksi
Steel Pipe	A992	50 ksi
Rolled Shapes	A36	36 ksi
Other Rolled Plates	A325	90 ksi
Connection Bolts	A307	45 ksi

Applicable Codes and Design Requirements

Codes and References

The City of New York Building and Administrative Code
New York Electrical Code
All Applicable NFPA Codes
New York State Energy Code
AIA Guidelines for Design and Construction of Hospital and Health Care Facilities

Deflection Criteria

Floor Deflection Lateral Deflection Total Drift Story Drift

L/240 Total and L/360 Live
$31 / 2 "$ (due to expansion joint between addition and existing building) H/400

DEsign LOADS

Dead Load (psf)	
Floor Load	
$31 / 4 " ~ L W ~ c o n c r e t e ~$ fill on 3" LOK-Floor	60
Ceiling	2
Floor Finish	2
Mech/Elect	10
Partitions	12
Steel Framing	13
TOTAL	99
	(psf)

Live Load (psf)	As Designed	As per ASCE7
Live Load	40	40
Dormatory Floors	100	100
Lobby	100	100
Lounge	100	100
Corridor 1st Floor	80	80
Corridor above 1st	100	100
Stairs	150	-
Mechanical Rooms	150	-
Main Roof (Mech)		

Wall assemblies	
1. Metal Panel	25
2. Glass Curtainwall	15
GFRC	40
	(psf)

Fig 5. Design Load Tables

LATERAL LOADS

Wind Analysis

Lateral loads were calculated as per the provisions described in Chapter 6 of ASCE-7. Appendix A provides expanded tables used in the calculation of wind loads. Analysis was performed using a wind speed of 110 mph , an importance factor of 1.15 and a directionality factor of 0.85 .

Small irregularities in the footprint were neglected; however, the building was split into two zones vertically to account for the dramatic change in size. The change in dimensions between the ambulatory portion and the tower portion of the building was drastic enough to change gust factors, as evident in the jump in total pressure between the lower roof higher segments. Other portions of the building, including the mechanical screen wall on the lower roof, were neglected for the purpose of this technical assignment.

Story Force	Story Shear
(kip)	(kip)
17.7	17.7
33.4	51.1
51.1	102.3
35.6	137.8
35.3	173.1
33.3	206.4
31.9	238.3
30.7	269.1
31.4	300.5
30.7	331.2
52.1	383.3
71.1	454.4
65.7	520.1
61.4	581.5
59.2	640.7
30.3	671.0
671.0	Total

Fig 7. Wind East-West Pressures

Wind in the East-West direction was determined to be the controlling case for all lateral loads. The base shear was calculated to be 671 k and the overturning moment was calculated to be $51100 \mathrm{ft}-\mathrm{k}$. These values appear to be high but could be due to the importance factor and the high wind-speed conditions of New York City.

		Windward Leeward								Story Shear
		Height	Kz,Kh	p_{z}	p_{h}	Total	NYC Code	Total	Overturning	
Zone 2		(ft)		(psf)	(psf)	(psf)	(psf)	(kip)	(ft-k)	(kip)
	Parapet	175.66	1.16	52.72	-35.15	87.87	25.00	17.7	3080	15.8
	Upper Roof	172.16	1.15	39.18	-14.27	53.45	25.00	33.4	5545	45.9
		160.00	1.13	38.50	-14.27	52.77	25.00	54.2	8134	91.8
		140.00	1.09	37.30	-14.27	51.56	25.00	53.0	6888	123.9
		120.00	1.04	35.96	-14.27	50.23	25.00	51.6	5678	155.6
		100.00	0.99	34.45	-14.27	48.72	25.00	25.0	2378	185.5
		90.00	0.96	33.62	-14.27	47.89	25.00	24.6	2091	214.2
		80.00	0.93	32.72	-14.27	46.98	25.00	24.1	1810	241.9
		70.00	0.89	30.30	-11.03	41.33	25.00	21.2	1380	270.2
		60.00	0.85	29.20	-11.03	40.24	25.00	5.1	297	296.2
Zone 1	Lower Roof	57.55	0.84	28.26	-7.51	35.77	25.00	31.0	1664	332.5
		50.00	0.81	27.34	-7.51	34.85	25.00	39.9	1797	378.9
		40.00	0.76	25.95	-7.51	33.46	25.00	38.3	1342	421.6
		30.00	0.70	24.29	-7.51	31.79	25.00	18.2	501	461.3
		25.00	0.67	23.30	-7.51	30.81	25.00	17.7	397	499.3
		20.00	0.62	22.16	-7.51	29.67	25.00	17.0	297	518.7
		15.00	0.57	20.80	-7.51	28.30	25.00	48.6	365	518.7 Total
						Sase She	$\begin{gathered} 316.6 \\ \text { (kip) } \end{gathered}$	$\begin{aligned} & \hline \hline 520.7 \\ & \text { (kip) } \end{aligned}$	$\begin{gathered} \hline \hline 43646 \\ (\mathrm{ft}-\mathrm{k}) \end{gathered}$	

Fig 9. Wind North-South Tables

For wind in the North-South direction, the base shear is calculated to be 521 k and the overturning moment is $43600 \mathrm{ft}-\mathrm{k}$. Values for wind loads in this direction are smaller due the change in dimensions from one face to the other - the area loaded by the wind pressure is smaller.

Seismic Analysis

Seismic forces were calculated using the Equivalent Lateral Force Method as described in ASCE-7, and response coefficients were determined by inputting the site latitude and longitude into the USGS Earthquake Ground Motion Parameter Application. All seismic coefficients used can be found in the appendix.

Seismic forces did not control the lateral design by a large margin. The base shear was calculated to be 115.7 k and the overturning moment was determined to be 10050ft-k, significantly less than the controlling wind condition. Forces were not able to be compared to the NYC Building Code, although it would be safe to assume

Spot Checks

Sport checks were performed on a representative bay to analyze the strength and serviceability of the members. Composite castellated beams were analyzed by modeling an approximate cross section and using stress relationships to find the full plastic moment capacities. To be conservative, the web of the member was neglected and the live load was not reduced unless unexpected values were obtained. Further analysis was performed using a CMC Steel Products design tool in order to determine capacities due to other failure modes and deflection limits.

W-shapes that were part of the lateral system were only analyzed in order to investigate moment capacity since gravity loading was expected to not control. All members were stronger by a margin that was large enough to make it obvious that lateral loads controlled the design of these members and it was not necessary to continue analysis.

Conclusions

The design solutions used in the Gouverneur Healthcare Services Modernization project reflect the need to match floor-to-floor heights of the existing concrete building. For a variety of reasons, the project team determined steel framing to be the most desirable structural system. A unique floor framing was developed as is evident in the extensive use of deep, castellated beams to allow for the MEP systems. In this technical report, the existing conditions of the addition to the existing building were investigated. Gravity loads were determined using ASCE 7-05 and lateral loads for wind and seismic conditions were calculated using chapter 6 and 12 respectively. Then, spot checks were completed to investigate the design.

Lateral loads were controlled by wind in the East-West direction. Without design checks for the main wind force resisting system, it was hard to gauge the accuracy of the calculations. However, upon comparing the values obtained using the analytical method to the current NYC Building Code, certain issues were evident; the loads acquired using ASCE 7 are significantly higher than the values specified by the code used in the original design of the building. Two possible conclusions for this disparity are that either mistakes were made in the analysis of the structure, or the analytical method is conservative in New York City. One way to determine the validity of the latter conclusion is to perform a wind tunnel test, which is outside the possible scope of this thesis report. The analytical method will be investigated in further detail in future technical reports to determine if mistakes were made in some of the simplifying assumptions used in the calculations.

Spot checks were performed on the composite, castellated beams to briefly investigate their capacity. The cross section was simplified into rectangles in order to calculate the plastic moment capacity through (the rule) tension=compression and plastic stress distribution. The web was neglected to be conservative and simplify the analysis. Through the analysis, it became evident that bending either controlled member design, or a shape was chosen to satisfy the depth requirements. This was the case of the LB27x46 found in the representative bay, the lightest 27 " deep castellated beam provided by CMC Steel Products. When necessary, further analysis of the castellated beams was performed using the design guide provided by CMC. W-shapes in the moment-frame, lateral system were analyzed by investigating their moment capacity. Strengths exceeded the required gravity loading significantly, even while conservatively assuming a simply supported beam while the beams were actually fully restrained. This proved that lateral loads controlled the design and shear and deflection calculations were deemed unnecessary to perform. Along the same lines, a preliminary gravity analysis was conducted on a typical column. Analysis was conservative in that the live load was not reduced, so it became evident that the lateral loads controlled the design of the column as expected.
Figure Description Page

Fig1 Gouverneur Layout Schematic 4
Fig1 Typical Ambulatory Center Framing Plan 4
Fig $3 \quad$ Typical Tower Addition Framing Plan 4
Fig 4 Typical Framing Plan Showing Moment Frames 5
Fig 5 Design Load Tables 6
Fig $6 \quad$ Wind East-West Tables 7
Fig $7 \quad$ Wind East-West Pressures 7
Fig $8 \quad$ Wind East-West Story Forces 7
Fig $9 \quad$ Wind North-South Tables 8
Fig 10 Wind North-South Pressures 8
Fig 11 Wind North-South Story Forces 8
Fig 12 Seismic Design Table 9
Fig $13 \quad 9$

ApPENDIX B

(this page is left intentionally blank)

				คٌ					
	風	二i．	\％		mis	\％			
言壇包：	$\stackrel{\square}{\square}$	边菏	＝	${ }^{\text {a }}$	$\mid \vec{Z}$				
		可第	咢		\％				
	\％	歇彥	遃等		¢				
									，顔
			\％					霛	

(this page is left intentionally blank)

	Seismic Loading												
	General Information												
				source	section/table page								
	Occupancy Type		IV	ASCE7-05	Table 1-1 (page 3)								
	Occupancy Importance Factor		1.15				Floor	Floor			Story	Story	Moment
	Site Class		B	Seismic Tool		Story	Height	Weight	$w_{\text {Wh }}{ }_{1}{ }_{1}$	C_{vx}	Force	Shear	Contribution
	Seismic Design Category		B	ASCE 7-05	Table 11.6-1 116	Upper Roof	174.2	134.344	23397	0.039	4.517	4.517	786.722
	Height Above Grade [ft]	h_{n}	172.16			Main Roof	152.26	367.8	56009	0.094	10.814	15.331	1646.526
	Short Period Spectral Response	S_{5}	0.363	Seismic Tool		13	140.3	343.4	48178	0.081	9.302	24.633	1304.898
	Spectral Response at 1 Second	S_{1}	0.070	Seismic Tool		12	128.30	343.4	44064	0.074	8.508	33.141	1091.553
	Maximum Short Period Spectral Reponse	$\mathrm{S}_{\text {Ms }}$	0.363	Seismic Tool		11	116.3	343.4	39950	0.067	7.713	40.854	897.239
	Maximum Spectral Reponse at 1 Second	$\mathrm{S}_{\mathrm{M} 1}$	0.070	Seismic Tool		10	105.13	343.4	36104	0.061	6.971	47.825	732.807
	Design Short Period Spectral Response	S_{os}	0.242	Seismic Tool		9	93.9	343.4	32258	0.054	6.228	54.053	585.004
	Design Spectral Response at 1 Second	S_{01}	0.047	Seismic Tool		8	82.73	343.4	28413	0.048	5.486	59.539	453.832
	Period Parameter 1	C_{t}	0.028	ASCE 7-05	Table 12.8-2 129	7	70.8	343.4	24299	0.041	4.691	64.231	331.918
	Period Parameter 2	x	0.8	ASCE 7-05	Table 12.8-2 129	6	59.55	1438.5	85664	0.144	16.539	80.770	984.958
	Response Modification Coefficient	R	3.5	ASCE 7-05	Section 12.8.1.1 $120>129$	5	47.6	1450.3	68994	0.116	13.321	94.091	633.713
$T a=C t^{*} n^{\wedge} \times$	Approximate Fundamental Period	T_{a}	1.721	ASCE 7-05	Section 12.8.2.11 129	4	36.38	1447.4	52649	0.088	10.165	104.256	369.760
Can use Ta in lieu oft	Fundamental Period	T		ASCE 7-05	Section 12.8.2	3	25.2	1447.4	36441	0.061	7.036	111.292	177.143
	Long-Period Transition Period	T_{L}	6.000	ASCE 7-05	see Section 11.4 > 229	2	13.98	1450.3	20274	0.034	3.914	115.206	54.719
	Short-Period Transition Period	$\mathrm{T}_{\text {S }}$	0.194			Ground	2.0	1380.5	2761	0.005	0.533	115.739	1.066
$\mathrm{Cs}=\mathrm{Sds} /(\mathrm{R} / \mathrm{l})$	Seismic Response Coefficient	C_{5}	0.080	ASCE 7-05	Section $12.8 \quad 129$		(ft)	(kip)			115.74		10051.9
$\left.\mathrm{Cs}=\mathrm{Sd1} 1 / \mathrm{T}^{*} \mathrm{R} / 1\right)$	Maximum Required Cs Value	$\mathrm{C}_{\text {s.max }}$	0.009	ASCE 7-05	Section 12.8.1.1 129						Base Shear		Overturning
	Max Cs per ASCE7-12.8.1.1	C_{5}	0.01										
	Effective Weight	w	11520.62377										
	Base Shear	V	115.21	ASCE 7-05	Section 12.8129								
	Overturning Moment	M	10051.9										

Typical Story Weight of Steel					
count				length	Steel Beam Weight
5	w	18×50	@	$22.0=$	5500
11	w	12×45	@	$30.0=$	14850
1	w	12×45	@	$18.2=$	820.3125
1	w	14×22	@	$22.0=$	484
1	w	27×146	@	$44.0=$	6424
4	LB	27×46	@	$44.0=$	8096
5	LB	27×46	@	$39.0=$	8970
1	w	27×114	@	$44.0=$	5016
1	w	27×94	@	$39.0=$	3666
1	LB	27×50	@	$44.0=$	2200
10	LB	27×35	@	$22.0=$	7700
3	w	14×48	@	$22.0=$	3168
4	LB	27×106	@	$30.0=$	12720
1	w	24×55	@	$18.2=$	1002.604
3	LB	27×35	@	$18.2=$	1914.063
1	w	24×76	@	$30.0=$	2280
1	w	16×67	@	$30.0=$	2010
1	w	16×89	@	$30.0=$	2670
1	w	16×77	@	$30.0=$	2310
5	lb	27×35	@	$15.5=$	2712.5
1	w	27×114	@	$15.5=$	1767
1	w	14×68	@	$15.5=$	1054
2	1 b	27×35	@	48.1 =	3365.833
2	lb	27×76	@	48.1 =	7308.667
1	w	24×55	@	48.1 =	2644.583
1	1 b	27×56	@	$15.0=$	840
1	lb	27×56	@	$35.0=$	1960
1	w	21×44	@	18.2	802.0833
1	w	12×26	@	25	650
1	w	14×68	@	30.0	2040
1	w	18×46	@	21.83333	1004.333
					117950 k
					Column Weight
18	w	14×120	@	11	23760
3	w	14×90	@	11	2970
1	w	14×193	@	11	2123
1	w	14×257	@	11	2827
1	w	14×132	@	11	1452
2	w	14×145	@	11	3190
2	w	14×159	@	11	3498
2	w	14×176	@	11	3872
1	w	14×211	@	11	2321
1	w	14×342	@	11	3762
1	w	14×109	@	11	1199
					50974 k
				floor area:	13500 sf
				Steel area Load:	12.51 psf

(this page is left intentionally blank)

SmartBeam ${ }^{\text {TM }}$

9/25/2008

9/26/2008

Load Diagram
RAM Steel v11.2
DataBase:
Building Code: IBC
Floor Type: 2nd_Floor Beam Number $=\mathbf{3 4 0}$
Span information (ft): I-End $(-89.25,95.33)$ J-End $(-89.25,125.33)$

Load	Dist	DL	LL+	LL-	Max Tot
	ft	kips	kips	kips	kips
P1	10.000	29.757	21.874	0.000	51.631
P2	20.000	29.757	21.874	0.000	51.631
	ft	k / ft	k / ft	k / ft	k / ft
W1	0.000	0.106	0.000	0.000	0.106
W2	30.000	0.106	0.000	0.000	0.106

9/26/2008

