THE CROSSROADS

AT WESTFIELDS - BUILDING II

CHANTILLY, VA

THE DEPARTMENT OF ARCHITECTURAL ENGINEERING

THE PENNSYLVANIA STATE UNIVERSITY

SENIOR THESIS 2009

BUILDING INTRO

PROPOSED GOALS

• STRUCTURAL DEPTH

LATERAL REDESIGN

DESIGN

• PROGRESSIVE COLLAPSE

• ARCHITECTURE BREADTH

• COMPARISONS &

CONCLUSIONS

• THANK YOU

QUESTIONS

PRESENTATION OUTLINE

- BUILDING INTRODUCTION
 - PROPOSED GOALS
 - STRUCTURAL DEPTH
 - LATERAL REDESIGN
 - OPTIONS BREAKDOWN
 - FINAL DESIGN
 - COST COMPARISON
 - PROGRESSIVE COLLAPSE DESIGN
 - BACKGROUND
 - GSA/DOD REQUIREMENTS
 - FINAL DESIGN
 - COST COMPARISON
 - ARCHITECTURAL BREADTH
 - INTRODUCTION
 - DESIGN
 - ADDITIONAL COSTS
 - COMPARISONS & CONCLUSIONS
 - QUESTIONS

✓ BUILDING INTRO

PROPOSED GOALS

LATERAL REDESIGN

• COMPARISONS &

CONCLUSIONS

• THANK YOU

QUESTIONS

DESIGN

• PROGRESSIVE COLLAPSE

• ARCHITECTURE BREADTH

BUILDING INTRODUCTION

- LOCATION: CHANTILLY, VA (WESTFIELDS CORPORATE CENTER)
- TYPE: 5-STORY OFFICE BUILDING (68 FT)
- BUILDING AREA :155,692 GSF
- STRUCTURAL DEPTH COST: \$14.5 MILLION
 - PROJECT TEAM
 - •OWNER: THE ALTER GROUP
 - STRUCTURAL DESIGN: STRUCTURA
 - ARCHITECT: HICKOK COLE
 - ➤ NEVER CONSTRUCTED, PROJECT CURRENTLY ON HOLD
 - > AT CROSSROADS OF LEE RD. AND STONECROFT BLVD, HENCE THE NAME
 - > 41 FT BAYS CREATE AN OPEN FLOOR PLAN FOR TENANT FLEXIBILITY

CROSSROADS AT WESTFIELDS

SITE PLAN

EXISTING SITE

FLOOR PLAN

ELEVATION

BUILDING INTRODUCTION

EXISTING STRUCTURE

✓ PRESENTATION OUTLINE

✓ BUILDING INTRO

• PROPOSED GOALS • STRUCTURAL DEPTH

LATERAL REDESIGN

• PROGRESSIVE COLLAPSE

DESIGN

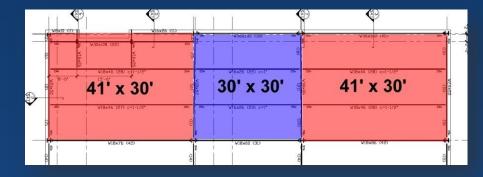
• ARCHITECTURE BREADTH

 COMPARISONS & CONCLUSIONS

• THANK YOU

• QUESTIONS

• FOUNDATION SYSTEM

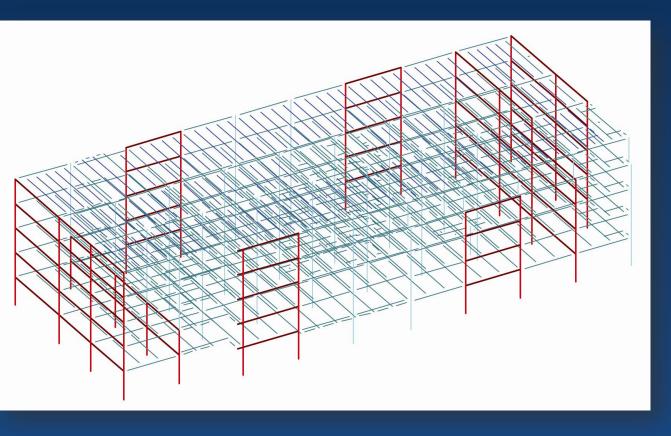

•REINFORCED CAST-IN-PLACE CONCRETE FOOTINGS (3-6 KSI)

• 4" SLAB ON GRADE

FLOOR SYSTEM

•3" COMPOSITE STEEL DECK WITH 3 ¼" LW CONC. SLAB

• EXTERIOR BAYS ARE 41' x 30' & INTERIOR BAYS ARE 30'x30'


ROOF SYSTEM

ROOF FRAMING CONSISTS OF K-SERIES JOISTS

• SCREEN WALL CONSTRUCTED OF LIGHTGAGE FRAMING

EXISITNG LATERAL SYSTEM

• 4 MOMENT FRAMES IN EACH DIRECTION

STRUCTURAL ISSUES

PROPOSED SOLUTION AND GOALS

✓ PRESENTATION OUTLINE

✓ BUILDING INTRO

• STRUCTURAL DEPTH

✓ PROPOSED GOALS

• LATERAL REDESIGN

 PROGRESSIVE COLLAPSE DESIGN

• ARCHITECTURE BREADTH

• COMPARISONS & CONCLUSIONS

• THANK YOU

• QUESTIONS

• REDESIGN THE EXISTING LATERAL SYSTEM TO BE MORE COST EFFICIENT

• REDESIGN THE STRUCTURE TO MITIGATE THE RISK OF PROGRESSIVE COLLAPSE USING TWO DIFFERENT THREAT LEVELS

HYPOTHETICAL SITUATION

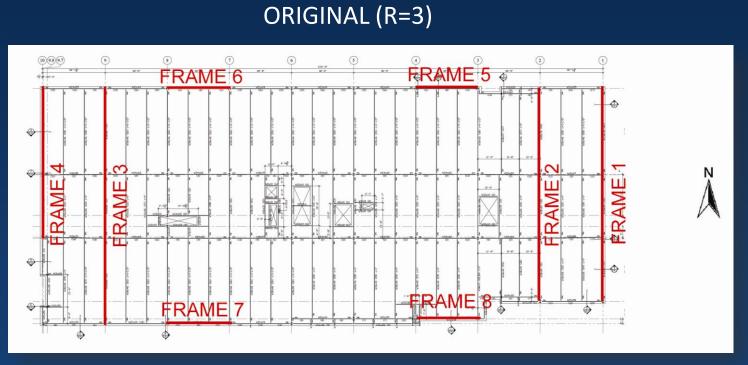
BUILDING

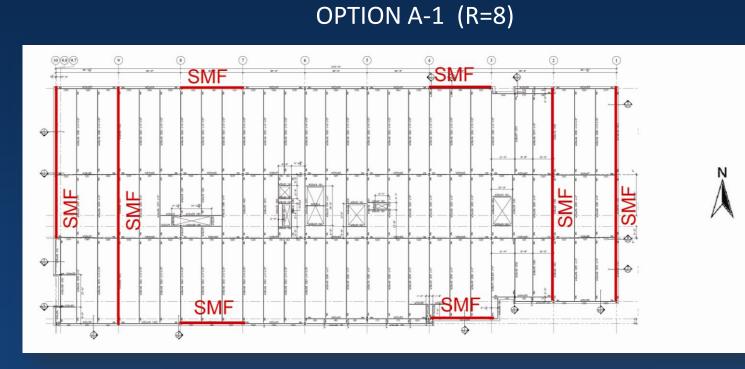
• WITH THE CLOSE PROXIMITY TO OUR NATION CAPITAL AND ITS LOCATION IN A CORPORATE CENTER, BUILDING II WILL BE CONSIDERED A 'HIGH-PROFILE' BUILDING FOR THIS REPORT.

• EXISTING LATERAL SYSTEM CONSISTS OF 8 MOMENT

FRAMES WHICH ADDS A LOT OF EXTRA WEIGHT TO THE

• ACHIEVE BOTH P.C. DESIGNS USING THE NEW LATERAL SYSTEM AND STILL PRODUCE A MORE COST EFFICIENT STRUCTURE THAN ORIGINAL


• REDESIGN THE SITE AND HARDEN THE FAÇADE TO PROTECT THE BUILDING FROM A POTENTIAL ATTACK


LATERAL REDESIGN

- ✓ BUILDING INTRO
- ✓ PROPOSED GOALS
- ✓ STRUCTURAL DEPTH
- ✓ LATERAL REDESIGN
- PROGRESSIVE COLLAPSE DESIGN
- ARCHITECTURE BREADTH
- COMPARISONS & CONCLUSIONS
- THANK YOU
- QUESTIONS

Design Base Shears - Original					
Lateral Force	North-South	East-West			
Later at Force	R=3	R=3			
Wind	342 K	144 K			
Seismic 210 K 210 K					

Design Base Shears - Option A-1				
Lateral Force	North-South	East-West		
Lateral Force	R=8	R=8		
Wind	342 K	144 K		
Seismic	124 K	124 K		

✓ BUILDING INTRO

✓ PROPOSED GOALS

✓ STRUCTURAL DEPTH

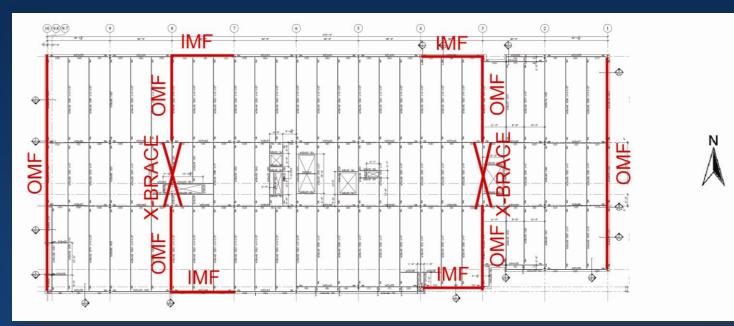
✓ LATERAL REDESIGN

DESIGN

• PROGRESSIVE COLLAPSE

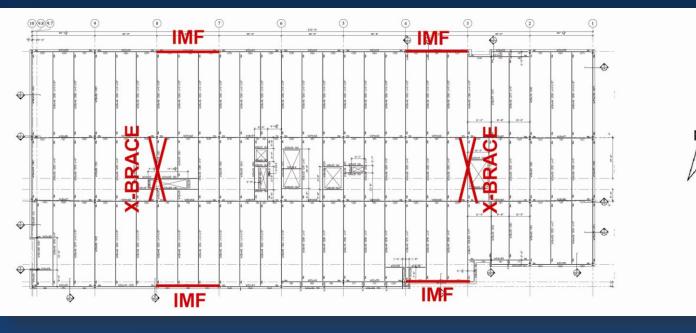
• ARCHITECTURE BREADTH

• COMPARISONS & CONCLUSIONS


• THANK YOU

• QUESTIONS

STRUCTURAL DEPTH


LATERAL REDESIGN

OPTION B-1 (R= 6 N-S, R =4.5 E-W)

Design Base Shears - Option B-1					
Latoral Force	North-South	East-West			
Lateral Force	R=6	R=4.5			
Wind	315 K	144 K			
Seismic	123 K	142 K			

OPTION B-2 (R= 3 N-S, R=4.5 E-W)

Design Base Shears - Option B-2				
Lateral Force	North-South	East-West		
Lateral Force	R=3	R=4.5		
Wind	315 K	144 K		
Seismic 208 K 141				

LATERAL REDESIGN

✓ PRESENTATION OUTLINE

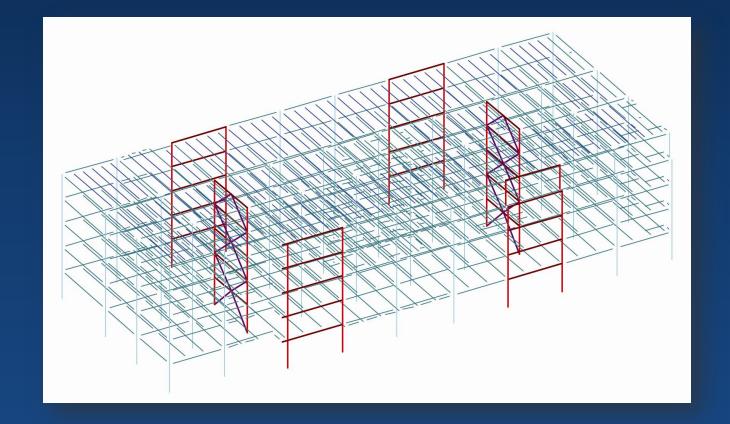
✓ BUILDING INTRO

✓ PROPOSED GOALS

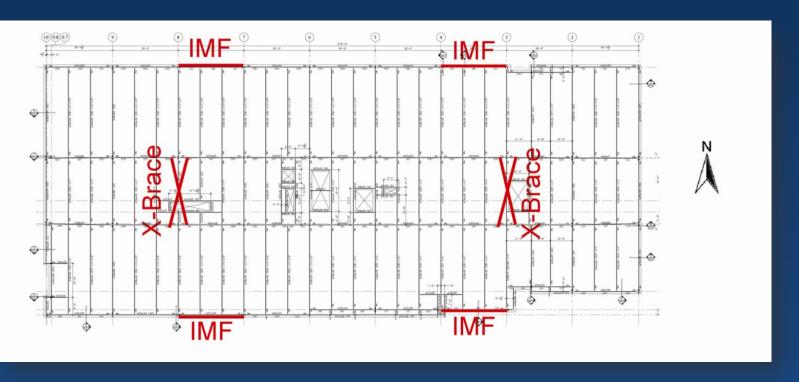
✓ STRUCTURAL DEPTH

✓ LATERAL REDESIGN

• PROGRESSIVE COLLAPSE DESIGN


• ARCHITECTURE BREADTH

• COMPARISONS & CONCLUSIONS


THANK YOU

QUESTIONS

FINALIZED LATERAL DESIGN

N-S BRACED FRAMES (R= 3) E-W IMF (R=4.5)

✓ BUILDING INTRO

✓ PROPOSED GOALS

✓ STRUCTURAL DEPTH

✓ LATERAL REDESIGN

DESIGN

• PROGRESSIVE COLLAPSE

• ARCHITECTURE BREADTH

• COMPARISONS &

CONCLUSIONS

• THANK YOU

• QUESTIONS

STRUCTURAL DEPTH

LATERAL REDESIGN

ORIGINAL (R=3) TYPICAL MOMENT FRAME

Original Design Takeoff						
	Beams	Columns	Joists	Braces		
Gravity members (lbs)	813,457	88,509	58,000	0	480.0	tons
Lateral members (lbs)	210,003	173,127	-	0	191.6	tons
Total Weight (lbs)	1,023,460	261,636	58,000	0		
Tons of Steel	511.7	130.8	29.0	0.0	671.5	tons

REDESIGN (R= 3 N-S, R=4.5 E-W) BRACED FRAME

Lateral Redesign Takeoff						
	Beams	Columns	Joists	Braces		
Gravity members (lbs)	831,534	123,582	58,000		506.6	tons
Lateral members (lbs)	129,539	65,588		8,686	101.9	tons
Total Weight (lbs)	961,073	189,170	58,000	8,686		
Tons of Steel	480.5	94.6	29.0	4.3	608.5	tons

PROGRESSIVE COLLAPSE
DESIGN

- ✓ PRESENTATION OUTLINE
- ✓ BUILDING INTRO
- ✓ PROPOSED GOALS
- ✓ STRUCTURAL DEPTH
- ✓ LATERAL REDESIGN
- ✓ PROGRESSIVE COLLAPSE
- ARCHITECTURE BREADTH
- COMPARISONS & CONCLUSIONS
- THANK YOU
- QUESTIONS

IN THE PAST 15 YEARS THERE HAVE BEEN ATTACKS ON US BUILDINGS
CAUSING PORTIONS TO COLLAPSE AND RESULTING IN CAUSUALTIES.
THE ATTACKS HAVE TARGETED HIGHER PROFILE AND GOVERNMENT
BUILDINGS:

- MURRAH FEDERAL BUIDLING* (OKLAHOMA CITY)
- WORLD TRADE CENTER (NEW YORK CITY)

WITH THE CLOSE PROXIMITY TO OUR NATION'S CAPTIAL AND ITS LOCATION IN A CORPORATE CENTER, <u>BUILDING II WILL BE</u>

<u>CONSIDERED A 'HIGH-PROFILE' BUILDING FOR THIS REPORT.</u>

*MURRAH FEDERAL BUILDING – PORTION OF BUILDING COLLAPSED AFTER BEING BOMBED ON APRIL 19TH, 1995

PROGRESSIVE COLLAPSE DESIGN

✓ PRESENTATION OUTLINE

✓ BUILDING INTRO

✓ PROPOSED GOALS

✓ STRUCTURAL DEPTH

✓ LATERAL REDESIGN

✓ PROGRESSIVE COLLAPSE DESIGN

• ARCHITECTURE BREADTH

• COMPARISONS & CONCLUSIONS

• THANK YOU

QUESTIONS

ASCE 7-05 - GENERAL COMMENTARY

C1.4 STRUCTURAL INTEGRITY:

"...Except for specially designed protective systems, it is usually impractical for a structure to be designed to resist general collapse caused by gross misuse of a large part of the system or severe abnormal loads acting directly on a large portion of it. However, precautions can be taken in the design of structures to limit the effects of local collapse to prevent or minimize progressive collapse...."

DEPARTMENT OF DEFENSE (DoD)

• UNIFIED FACILITIES CRITERIA (UFC, 2005)

GENERAL SERVICES ADMINISTRATION (GSA)

• PROGRESSIVE COLLPASE ANALYSIS AND DESIGN GUIDELINES (2003)

SITUATION 1: DOD GUIDELINES

PROGRESSIVE COLLAPSE DESIGN

✓ PRESENTATION OUTLINE

✓ BUILDING INTRO

✓ PROPOSED GOALS

✓ STRUCTURAL DEPTH

✓ LATERAL REDESIGN

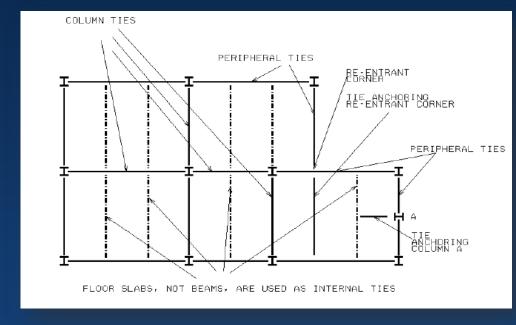
✓ PROGRESSIVE COLLAPSE DESIGN

• ARCHITECTURE BREADTH

• COMPARISONS & CONCLUSIONS

• THANK YOU

QUESTIONS


THREAT LEVEL: LOW LEVEL OF PROTECTION (LLOP)

Indirect Design Approach – provide resistance to progressive collapse "implicitly through the provision of minimum levels of strength, continuity, and strength."

- Plan layout
- Integrated system of ties
- Redundancy
- Ductile detailing
- Reinforcement for blast and load reversal

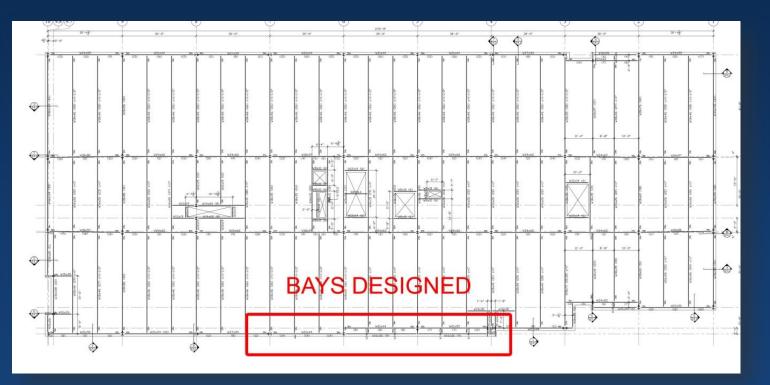
FINAL DESIGN

➤ ALL TIE FORCE MET AND MOMENT CONNECTIONS (R=3) ADDED AROUND PERIMETER TO ADD DUCTILITY TO STRUCTURE.

EXAMPLES OF TIES IN STEEL FRAMED BUILDING

Tie Force	Force Required	Connection Capacity	
ernal Tie Force	42.2 K	48.1 K	ok
ripheral Tie Force	42.2 K	51.0 K	ok
rizontal Tie Force	42.2 K	51.0 K	ok
rtical Tie Force	113.9 K	Continuous	ok

STRUCTURAL DEPTH


SITUATION 2: GSA GUIDELINES

THREAT LEVEL: HIGH LEVEL OF PROTECTION

Direct Design Approach – provide "explicit consideration of resistance to progressive collapse during the design process"

- •Alternate Path structure must be capable of bridging over a missing structural element, localizing damage.
- •Specific Local Resistance which requires a part of the building to sufficient strength to resist the load or blast

PROGRESSIVE COLLAPSE DESIGN

✓ BUILDING INTRO

✓ LATERAL REDESIGN

✓ PROGRESSIVE COLLAPSE DESIGN

ARCHITECTURE BREADTH

• COMPARISONS & CONCLUSIONS

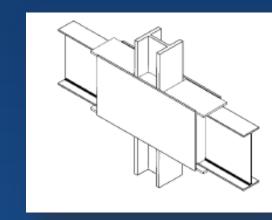
• THANK YOU

• QUESTIONS

PROGRESSIVE COLLAPSE DESIGN

✓ PRESENTATION OUTLINE

- ✓ BUILDING INTRO
- ✓ PROPOSED GOALS
- ✓ STRUCTURAL DEPTH
- ✓ LATERAL REDESIGN
- ✓ PROGRESSIVE COLLAPSE DESIGN
- ARCHITECTURE BREADTH
- COMPARISONS & CONCLUSIONS
- THANK YOU
- QUESTIONS


>PLASTIC ANALYSIS USING VIRTUAL WORK TO MEET ALL REQUIRED DEMAND CAPACITY RATIOS (DCR) FOR RESPECTIVE MEMBERS

$$DCR = \frac{Q_{UD}}{Q_{CE}}$$

FINAL DESIGN

Q_{UD} – DEMAND FORCE Q_{CE} – UN-FACTORED CAPACITY

➤ SIDE PLATE CONNECTIONS

• SIDE PLATE CONNECTIONS MEET ALL GSA TESTING REQUIREMENTS

FINAL 3-BAY DESIGN

Tons of Steel

671.5

ORIGINAL DESIGN (R=3)

COST COMPARISONS

✓ PRESENTATION OUTLINE

- ✓ BUILDING INTRO
- ✓ PROPOSED GOALS
- ✓ STRUCTURAL DEPTH
- ✓ LATERAL REDESIGN
- ✓ PROGRESSIVE COLLAPSE DESIGN
- ARCHITECTURE BREADTH
- COMPARISONS & CONCLUSIONS
- THANK YOU
- QUESTIONS

LATERAL REDESIGN (N-S R=3, E-W R=4.5)

Tons of Steel	Total Cost of Structure	+/- Costs	+/- %	Total Project +/-%
608.5	\$1,578,115	-\$347,557	-18.05%	-2.39%

LATERAL REDESIGN + PROGRESSIVE COLLAPSE (DIRECT)

Tons of Steel	Total Cost of Structure	+/- Costs	+/- %	Total Project +/-%
647	\$1,710,159	-\$215,513	-11.19%	-1.48%

LATERAL REDESIGN + PROGRESSIVE COLLAPSE (INDIRECT)

Tons of Steel	Total Cost of Structure	+/- Costs	+/- %	Total Project +/-%
608.5	\$1,616,789	-\$308,883	-16.04%	-2.12%

ADVISOR: DR. LEPAGE

CROSSROADS AT WESTFIELDS – BUILDING II STEPHEN LUMPP STRUCTURAL OPTION

Total Cost of Structure

\$1,925,672

ARCHITECTURE BREADTH

INTRODUCTION

✓ PRESENTATION OUTLINE

✓ BUILDING INTRO

✓ PROPOSED GOALS

✓ STRUCTURAL DEPTH

✓ LATERAL REDESIGN

✓ PROGRESSIVE COLLAPSE DESIGN

✓ ARCHITECTURE BREADTH

• COMPARISONS & CONCLUSIONS

• THANK YOU

• QUESTIONS

SITUATION 3: GSA'S SITE SECURITY DESIGN CRITERIA

THREAT LEVEL: **HIGH LEVEL OF PROTECTION**

EXPLOSIVE WEIGHT: 500 LB EQUIVALENT TNT

SITE DESIGN SOLUTION:

> SECURE THE PERIMETER

• BOLLARDS

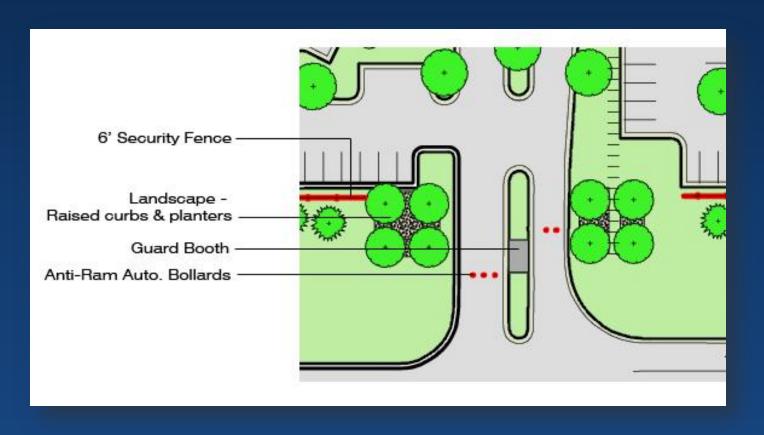
• FENCES

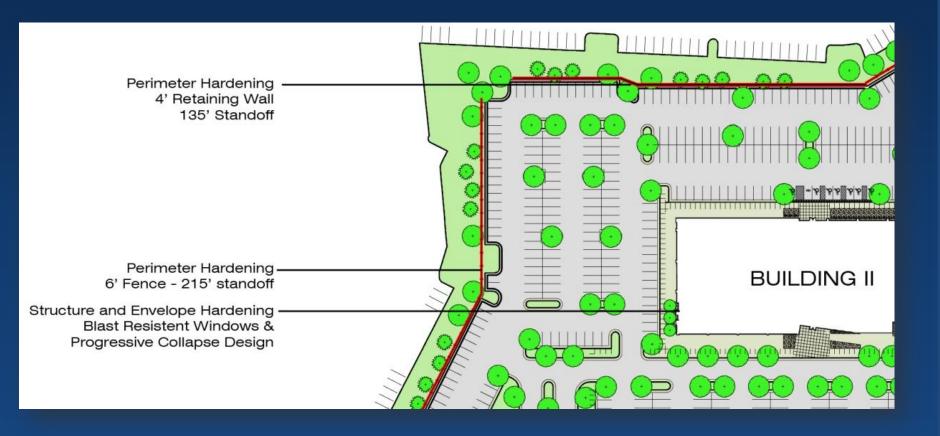
• GUARD BOOTHS

> HARDEN FAÇADE

• BLAST RESISTANT GLAZING

• PRECAST CONNECTIONS


OVERALL SITE DESIGN


ARCHITECTURE BREADTH

SITE REDESIGN

- ✓ PRESENTATION OUTLINE
- ✓ BUILDING INTRO
- ✓ PROPOSED GOALS
- ✓ STRUCTURAL DEPTH
- ✓ LATERAL REDESIGN
- ✓ PROGRESSIVE COLLAPSE DESIGN
- ✓ ARCHITECTURE BREADTH
- COMPARISONS & CONCLUSIONS
- THANK YOU
- QUESTIONS

SECURED ACCESS POINTS

PERIMETER HARDENING

✓ BUILDING INTRO

✓ PROPOSED GOALS

✓ LATERAL REDESIGN

✓ ARCHITECTURE

• COMPARISONS & CONCLUSIONS

THANK YOU

QUESTIONS

DESIGN

BREADTH

✓ PROGRESSIVE COLLAPSE

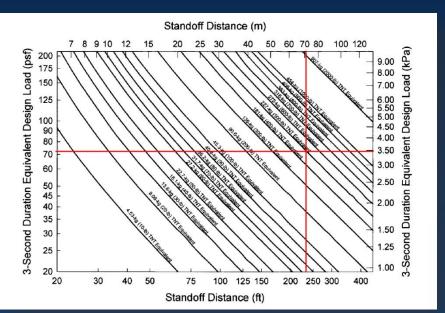
ARCHITECTURE BREADTH

GLAZING DESIGN:

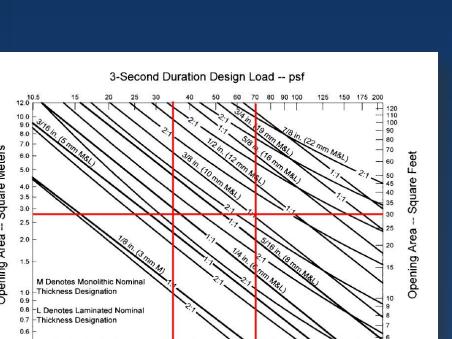
CRITICAL STANDOFF = 230 FT

✓ STRUCTURAL DEPTH **EXPLOSIVE WEIGHT = 500LB**

TYPICAL 30 SF WINDOW OPENING


FROM ASTM CHARTS:

- → 71 PSF (3-SECOND DURATION DESIGN LOAD)
- → ½" ANNEALED MONOLITHIC OR ¼" HEAT STRENGTHENED (LAMINATED GLASS)


FINAL DESIGN

- ¼" HS-LG ((2) 1/8" HS PLIES WITH .03" PVB LAYER)
- MEETS DOD REQUIREMENTS AS WELL
- COSTS TWICE AS MUCH AS ORIGINAL GLAZING!

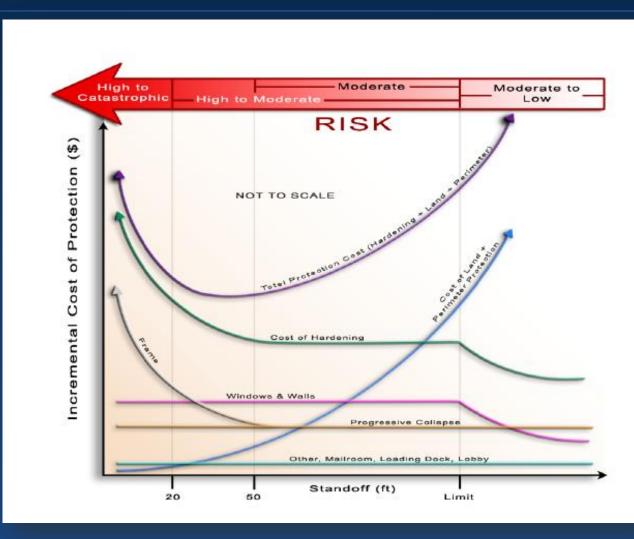
FAÇADE HARDENING – GLAZING DESIGN

STANDOFF DISTANCE VS.
3 SEC. DESIGN BLAST LOAD
(ASTM 2248-03)

3-Second Duration Design Load -- kPa

FENESTRATION OPENING VS. — 3 SEC. DESIGN BLAST LOAD

CROSSROADS AT WESTFIELDS – BUILDING II



ARCHITECTURE BREADTH

SITE REDESIGN

- ✓ PRESENTATION OUTLINE
- ✓ BUILDING INTRO
- ✓ PROPOSED GOALS
- ✓ STRUCTURAL DEPTH
- ✓ LATERAL REDESIGN
- ✓ PROGRESSIVE COLLAPSE DESIGN
- ✓ ARCHITECTURE BREADTH
- COMPARISONS & CONCLUSIONS
- THANK YOU
- QUESTIONS

Additional Site Costs					
	quantity	unit	amount		
Bollards	12.0	Ea	\$600	\$7,200	
Guard Booth	3.0	booth	\$25,000	\$75,000	
Security Fence	1926.0	LF	\$130	\$250,380	Redesign
Additional site Costs		>			
Additional facade Costs			>	\$2,113,275	
Original Total			>	\$8,199,546	Original
New Total		>			
				29.83%	

COST VS. RISK
(ISC PERFORMANCE BASED DESIGN GUIDE)

COMPARISONS

CONCLUSIONS

EFFICIENT

- ✓ PRESENTATION OUTLINE
- ✓ BUILDING INTRO
- ✓ PROPOSED GOALS
- ✓ STRUCTURAL DEPTH
- ✓ LATERAL REDESIGN
- ✓ PROGRESSIVE COLLAPSE DESIGN
- ✓ ARCHITECTURE BREADTH
- ✓ COMPARISONS & CONCLUSIONS
- THANK YOU
- QUESTIONS

Summary of Cost Analysis						
Total Cost of Structure +/- Costs +/- % Total Project +/-%						
Original Design	\$1,925,672	-	-			
Lateral Redesign	\$1,578,115	-\$347,557	-18.05%	-2.39%		
Direct Method PC*	\$1,710,159	-\$215,513	-11.19%	-1.48%		
Indirect Method PC	\$1,616,789	-\$308,883	-16.04%	-2.12%		

^{*} Specific Load Path in lieu of Alternative Load Path

✓ REDESIGN THE STRUCTURE TO MITIGATE THE RISK PROGRESSIVE COLLAPSE USING TWO DIFFERENT THREAT LEVELS

✓ REDESIGN THE EXISTING LATERAL SYSTEM TO BE MORE COST.

- ACHIEVE BOTH PC MITIGATION DESIGNS USING THE NEW LATERAL

 SYSTEM AND STILL PRODUCE A MORE COST EFFICIENT STRUCTURE THAN

 ORIGINAL
- REDESIGN THE SITE AND HARDEN THE FAÇADE TO PROTECT THE BUILDING FROM A POTENTIAL ATTACK

✓ BUILDING INTRO

✓ PROPOSED GOALS

✓ STRUCTURAL DEPTH

DESIGN

BREADTH

✓ ARCHITECTURE

✓ COMPARISONS &

CONCLUSIONS

✓ THANK YOU

• QUESTIONS

✓ PROGRESSIVE COLLAPSE

* ACKNOWLEDGEMENTS

My family for all the support they've provided over the past five years while I've attended Penn State University

✓ PRESENTATION OUTLINE Thesis Advisor and Consultants

Dr. Andres Lepage, Assistant Professor of Architectural Engineering Prof. M. Kevin Parfitt, Associate Professor of Architectural Engineering Prof. Robert Holland, Associate Professor of AE and Arch.

✓ LATERAL REDESIGN Other Faculty Assistance

- Dr. Louis Geschwindner, Professor Emeritus of Architectural Engineering
- All of my professors in the Architectural Engineering Department from the past five years

Outside Assistance

- Mike Weiss, P.E. of Structura, Inc.
- Don Bockoven of Structura, Inc.
- Charlie Angelilli of Structura, Inc.
- Eric Inman, R.A. of Hickok Cole Architects
- David Morse, P.E., PhD

The Alter Group and Structura, Inc. for providing me permission and the drawings for The Crossroads at Westfields
Building II as my thesis project.

My roommates Jamison Morse and David Sivin

- ✓ PRESENTATION OUTLINE
- ✓ BUILDING INTRO
- ✓ PROPOSED GOALS
- ✓ STRUCTURAL DEPTH
- ✓ LATERAL REDESIGN
- ✓ PROGRESSIVE COLLAPSE DESIGN
- ✓ ARCHITECTURE BREADTH
- ✓ COMPARISONS & CONCLUSIONS
- ✓ THANK YOU

 ✓ QUESTIONS

QUESTIONS?

