

Worcester North

High School

Worcester North

High School

Adam Trumbour

2010 AE | CM

Building Overview

Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

Project At A Glance

Location: Worcester, Massachusetts

Size: 195,000 Square-Foot Educational Facility

Replacing Existing 75,000 SF Building

1,200 Students

Thesis Överview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

Project At A Glance

Guaranteed Maximum Price: \$54 Million

Duration: 29 Months

April 2009 – September 2011

CM-at-Risk: Gilbane Building Co.

Thesis Overview

Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks Overview: Thesis Efforts

Common Thread: Sustainability

How can this building's efficiency be improved?

Thesis Overview

Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

Overview: Thesis Efforts

Common Thread: Sustainability

How can this building's efficiency be improved?

Analyses:

I. CHPS Rating (Collaborative for High-Performance Schools)

Thesis Overview

Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

Overview: Thesis Efforts

Common Thread: Sustainability

How can this building's efficiency be improved?

Analyses:

I. CHPS Rating (Collaborative for High-Performance Schools) II. Green Roof

Thesis Overview

Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

Overview: Thesis Efforts

Common Thread: Sustainability

How can this building's efficiency be improved?

Analyses:

I. CHPS Rating (Collaborative for High-Performance Schools) II. Green Roof

North Flight School

III. Solar PV System

Thesis Overview

Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

Overview: Thesis Efforts

Common Thread: Sustainability

How can this building's efficiency be improved?

Analyses:

I. CHPS Rating (Collaborative for High-Performance Schools) II. Green Roof

III. Solar PV System

IV. LED Luminaire Implementation

Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study

Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

CHPS Study: Probing Questions

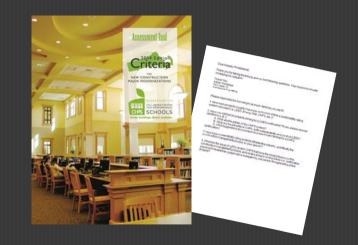
How do CHPS and/or LEED affect the construction industry and building process?

What can be done to improve the quality and efficiency of the rating system?

Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study

Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks


orcester North High School

CHPS Study: Research Methods

• Personal review of the rating system

• Surveys of professionals

Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study

Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

CHPS Study: Background

• Established in California, 1999

- Region-specific programs in 11 states
 - CA, WA, NY, MA, ME, NH, VT, CT, RI, CO, TX
- Over 225 organizations are currently members

(Schools, Utilities, Design firms, etc.)

Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study

Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

Worcester North High School

CHPS Study: Background

Massachusetts:

- Version 1.0 in 2006
- Version 2009 second and current version
- Standard for all new schools in Massachusetts
- 23 Prerequisite credits
- 125 possible points:
 - + Minimum of 40 points to be "Verified"
 - + Minimum of 50 points to be "Verified Leader"

Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study

Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

CHPS Study: Background

Massachusetts:

- Version 1.0 in 2006
- Version 2009 second and current version
- Standard for all new schools in Massachusetts
- 23 Prerequisite credits
- 125 possible points:
 - + Minimum of 40 points to be "Verified"
 - + Minimum of 50 points to be "Verified Leader"

Category	ID	Title
Ğ	2.2	Integration and Innovation
STRATIG	II.P1	Integrated Design
ES .	ILP2	Educational Display
		Indoor Environmental Quality
	EQ.P1	HVAC Design - ASHRAE 62.1
	EQ.P2	Construction IAQ Management
	EQ.P3	Pollutant and Chemical Source Control
	EQ.P4	Moisture Management
	EQ.P5	Minimum Filtration
	EQ.P6	Thermal Comfort - ASHRAE 55
	EQ.P7	View Windows, 70%
	EQ.P8	Eliminate Glare
	EQ.P9	Minimum Acoustical Performance
	EQ.P10	Minimum Low Emitting Materials
NDSX		Energy
	EE.P1	Minimum Energy Performance, 20%
	EE.P2	Commissioning
	EE.P3	Facility Staff & Occupant Training
		Water
	WE.P1	Irrigation System Performance on Recreational Fields
	WE.P2	Indoor Water Use Reduction, 20%
		Sile
	55.P1	Joint Use of Facilities and Parks
		Materials & Waste Management
	MW.P1	Storage and Collection of Recyclables
	MW.P2	Minimum Construction Site Waste Management, 75%
DN		Operations and Maintenance
CMA	OM.P1	Maintenance Plan
010	OM.P2	Anti-Idling Measures
9	OM.P3	Green Cleaning

Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study

Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned **Closing Remarks**

CHPS Study: Findings

- LEED difficult on limited budgets
- Closer relationships: CM, Designers, Owner
- CHPS is a smaller organization than LEED
- Need for lessons learned database
- No drastic change to CM by CHPS

• North High School will be CHPS Verified

COLLABORATIVE FOR HIGH PERFORMANCE

Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study

Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

CHPS Study: Recommendations

- CHPS is better for MA schools than LEED
- Need for training professionals in CHPS
- Create lessons-learned database for CHPS projects
- Increase capabilities of regional offices
- Glean input from students and administration

Green Roof Study: Intent

Evaluate the implementation of a green roof on North

High school, considering structural effects.

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

Green Roof Study: Background

- Reduced storm water runoff
- Reduced heat-island effects
- Increased aesthetic quality
- Increased life of roof membrane
- Incremental addition to roof R-value
- Possible addition to CHPS score

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions

Lessons Learned

Closing Remarks

Green Roof Study: Analysis Method

- 1. Research available green roof systems
- 2. Assemble weight data
- 3. Choose most economical option
- 4. Evaluate structural capacity

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions

Lessons Learned

Closing Remarks

Green Roof Study: Analysis Method

- 1. Research available green roof systems
- 2. Assemble weight data
- 3. Choose most economical option
- 4. Evaluate structural capacity

Manufacturer	Size	Soil Depth	Saturated Weight
Roofscapes Roofmeadow	No module size (mat-type)	3" – 5"	20 – 34 PSF
ZinCo	No module size (mat-type)	4.5"	22 PSF
Hydrotech USA	No module size (mat-type)	2" – 6"	17 – 41 PSF
GreenGrid	2' x 2', 2' x 4', 1.5' x 2'	4"	18 – 25 PSF
LiveRoof	1' x 2'	4" – 4.25"	15 – 29 PSF
Barrett Company	No module size (mat-type)		21 PSF

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires

Conclusions

- Lessons Learned
- **Closing Remarks**

Green Roof Study: Analysis Method

- 1. Research available green roof systems
- 2. Assemble weight data
- 3. Choose most economical option
- 4. Evaluate structural capacity

Manufacturer	Size	Soil Depth	Saturated Weight
Roofscapes Roofmeadow	No module size (mat-type)	3" – 5"	20 – 34 PSF
ZinCo	No module size (mat-type)	4.5"	22 PSF
Hydrotech USA	No module size (mat-type)	2" – 6"	17 – 41 PSF
GreenGrid	2' x 2', 2' x 4', 1.5' x 2'	4"	18 – 25 PSF
LiveRoof	1' x 2'	4" – 4.25"	15 – 29 PSF
Barrett Company	No module size (mat-type)		21 PSF

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires

Conclusions

Lessons Learned

Closing Remarks

Green Roof Study: Analysis Method

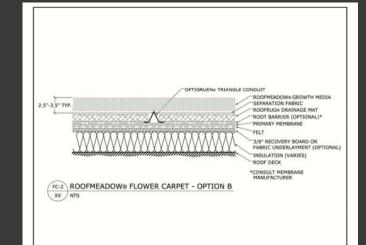
- 1. Research available green roof systems
- 2. Assemble weight data
- 3. Choose most economical option
- 4. Evaluate structural capacity

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System

Breadth Analysis 4: LED Luminaires

Conclusions

Lessons Learned

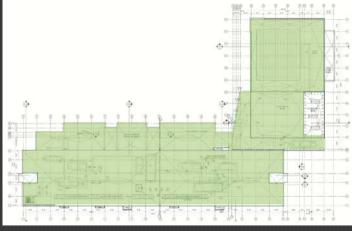

Closing Remarks

Worcester North High School

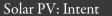
Green Roof Study: Findings

- Extensive roof appropriate option
- Minimum 15 PSF, Maximum 41 PSF
- Use 3" system with 23 PSF rating
- Maximum area is 51,000 SF
- Maximum moment, shear and deflection within allowable limits
- Added cost: \$522.750
- No schedule delay; not on critical path

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned


Closing Remarks

Green Roof Study: Recommendation


- Install green roof
- Use Roofscapes[™] assembly: Primarily sedum
- 51,000 square-feet will cost \$522,750
- Cost may be recouped after 50 year
 - maintenance is deferred
- 1 Point addition to CHPS score

Design a roof mounted solar photovoltaic system,

meeting the given \$250,000 allowance.

Closing Remarks

Solar PV: Background

- \$250,000 allowance in budget, unused
- System has the ability to provide sustainable power

to North High School

• Potential credit to CHPS score

Worcester North High School

• System design is project-specific

Solar PV: Method

1. Research system types and components, costs

2. Design 2 options:

Meet full \$250,000 allowance

Fill allotted roof space

Worcester North High School

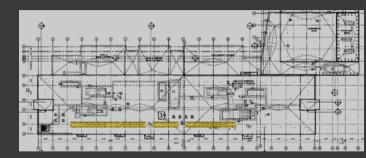
3. Calculate Payback

Source	Cost per Watt	Source	Average Cost per Watt	
Estimation Cost Data		Newspaper Articles	\$5.46	
RSMeans 2009 Cost Data	\$11.70	Online Estimates	\$6.02	
Newspaper Articles		Cold Call	\$8.00	
Alteris Renewables	\$5.87	Total Average:	\$5.98	
Ostrow Electric	\$5.39			
Fall River Electrical Associates	\$4.72			
Waterline Industries, Corp.	\$5.86			
Online Estimation Tools				
BP Solar Estimator:	\$6.00			
Solar-Estimate.org:	\$6.03			
Cold Calls				
Zapotec Solar	\$8.00			

Solar PV: Method

1. Research system types and components, costs

2. Design 2 options:


Meet full \$250,000 allowance

Fill allotted roof space

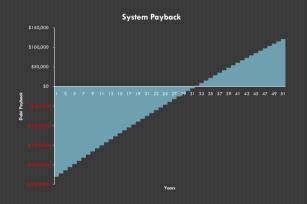
Worcester North High School

3. Calculate Payback

Solar PV: Method

1. Research system types and components, costs

2. Design 2 options:


Meet full \$250,000 allowance

Fill allotted roof space

Worcester North High School

3. Calculate Payback

Solar PV: \$250,000 System

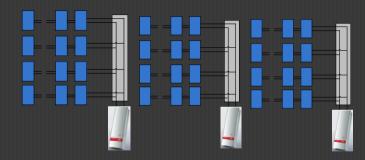
Maximum Power: 38,640 Watts (38.64 kW)

(3) 12.88kW arrays comprise the 38.64 kW system:

Solar Panels: (56) BP Solar 3230T, 230W each

Inverter: (1) Fronius IG Plus, 13.8 kW

Worcester North High School



Combiner Box: (1) SMA SBCB-6

Wiring:

(4) Strings in Parallel(1) string = 14 panels in series

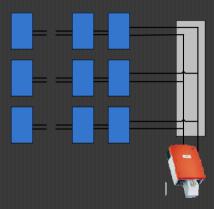
Area Required: 3,000 Square Feet

Solar PV: 6,000 SF of Roof Space

Maximum Power: 7,590 Watts (7.59 kW)

Solar Panels: (33) BP Solar 3230T, 230W each

Inverter: (1) SMA Sunny Boy SB7000US, 8.75 kW


Combiner Box: (1) SMA SBCB-6

Wiring :

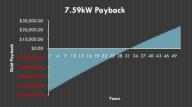
worcester North Fright School

(3) Strings in Parallel (1) String = 11 panels wired in series

Area Required: 592.68 Square Feet

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned

Closing Remarks


Solar PV: Recommendation

- Both systems show a payback of 31 years (cash financing)
- Implement smaller array to reduce structural impact
- Implement larger array if funds are available and

gymnasium can support array

• Up to 5 credits added by PV system

LED Luminaires: Intent

Investigate the application of LED luminaires as part of the

general illumination scheme.

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned

Closing Remarks

LED Luminaires: Background

- Useful in down, accent and track lighting
- Low lumen/watt rating

High initial cost

•

- Color temperature tends to be cool
- Ballast often integrated with lamp: replacement?

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

LED Luminaires: Method

1. Literature research

2. Product search

- 3. Compute/Model illumination
- 4. Analyze
- 5. Recommendation

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

LED Luminaires: Method

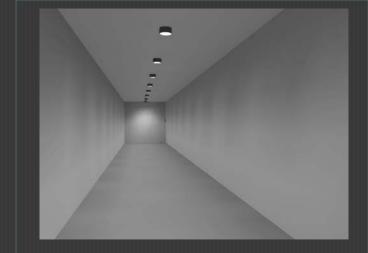
1. Literature research

2. Product search

3. Compute/Model illumination

4. Analyze

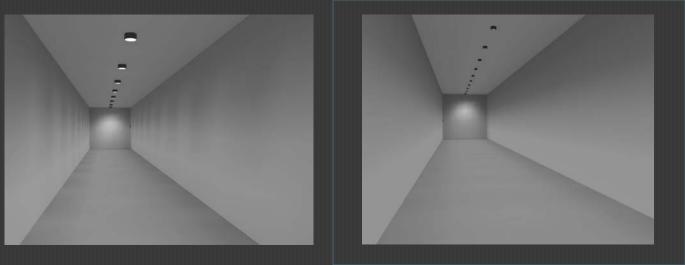
5. Recommendation


Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

LED Luminaires: Method

1. Literature research

2. Product search


- 3. Compute/Model illumination
- 4. Analyze
- 5. Recommendation

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned

Closing Remarks

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

LED Luminaires: Method

1. Literature research

2. Product search

- 3. Compute/Model illumination
- 4. Analyze efficiency, cost, payback
- 5. Recommendation

Luminaire	Lan Tyj		itts	Cost	Design Life Hrs	Cost per kWh	Cost for 50k Hours	Cost for 15 fc over 50k hours	
AF 1/32TRT 27	7 CFL		32	\$200	12000	0.172	\$525.20	\$4,726.80	(Req's 9 Luminaires)
LR6-DR1000 277V	LED	1	2.5	\$450	50000	0.172	\$557.50	\$7,805.00	(Req's 14 Luminaires)
req	uired 50k ours	Min # Lamps for 50k hours	F	Cost per amp	Relamp Cost Over 50k Hours				
4.16	56667	5		\$10	\$50				
Table IV.2 Life cy	cle cost a	analysis o	LED	v. CFL o	ver life of la	imp.			

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

LED Luminaires: Recommendation

- Not ready for general illumination
- Downlighting an option
- Life-cycle cost too high to justify
- LED technology not ready for North High School

Replacing 125 CFLs = 186 LEDs

Energy reduced from 3968 to 2325 watts

\$3,696 in annual energy savings

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

LED Luminaires: Recommendation

- Not ready for general illumination
- Downlighting an option
- Life-cycle cost too high to justify
- LED technology not ready for North High School

Replacing 125 CFLs = 186 LEDs

Energy reduced from 3968 to 2325 watts

\$3,696 in annual energy savings

Luminaire	Lamp Type	Watt	s Cost	Design Life Hrs	Cost per kWh	Cost for 50k Hours	Cost for 15 fc over 50k hours	
AF 1/32TRT 277	CFL	3	2 \$200	12000	0.172	\$525.20	\$4,726.80	(Req's 9 Luminaires)
LR6-DR1000 277V	LED	12.	5 \$450	50000	0.172	\$557.50	\$7,805.00	(Req's 14 Luminaires)
# Lar requi for 5 hou	red La Ok fo	lin # mps r 50k ours	Cost per Lamp	Relamp Cost Over 50k Hours				
4.166	667	5	\$10	\$50				

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 4: LED Luminaires Breadth Analysis 3: Solar PV System Conclusions

Lessons Learned Closing Remarks

Worcester North High School

CHPS

Good regional system for schools

• Needs improvement in knowledge transfer

Green Roof

• Feasible with current roof and 23 PSF assembly

• Cost: \$ 522,750

Could pay itself back in 50 years

Solar PV System

- Two options for owner
- Both pay back after 31 years
- Acts as a learning tool for students

•LED Luminaires

- More energy efficient
- Life-cycle cost not competitive
- Technology forthcoming

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions

Lessons Learned Closing Remarks

Worcester North High School

Lessons Learned

• Good input is hard to get!

• More research is needed on the effects of sustainability ratings on the construction management process.

• "Greening" a typical building produces large benefits; making a green building greener presents incremental benefits.

- Payback is not as immediate as you'd think.
- Great learning experience.

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Breadth Analysis 4: LED Luminaires Conclusions Lessons Learned Closing Remarks

Worcester North High School

Questions?