

Worcester North High School

Worcester North High School

Building Overview Thesis Overview

Thesis Overview

Introduction

Breadth Analysis 1: CHPS Study
Breadth Analysis 2: Green Roof
Breadth Analysis 3: Solar PV System
Conclusions
Lessons Learned
Closing Remarks

Project At A Glance

Location: Worcester, Massachusetts

Size: 195,000 Square-Foot Educational Facility

Replacing Existing 75,000 SF Building

1,200 Students

Introduction

Building Overview

Duration: 29 Months

Project At A Glance

April 2009 – September 2011

CM-at-Risk: Gilbane Building Co.

Gilbane

Building Overview
Thesis Overview
Breadth Analysis 1: CHPS Study
Proadth Analysis 2: Green Boof

Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Conclusions Lessons Learned Closing Remarks

Introduction

Overview: Thesis Efforts

Common Thread: Sustainability

How can this building's efficiency be improved?

Building Overview

Thesis Overview

Breadth Analysis 1: CHPS Study

Breadth Analysis 1: CHPS Study
Breadth Analysis 2: Green Roof
Breadth Analysis 3: Solar PV System
Conclusions
Lessons Learned
Closing Remarks

Introduction

Overview: Thesis Efforts

Common Thread: Sustainability

How can this building's efficiency be improved?

Analyses:

I. CHPS Rating (Collaborative for High-Performance Schools)

Introduction

Building Overview

Overview: Thesis Efforts

Common Thread: Sustainability

How can this building's efficiency be improved?

Analyses:

I. CHPS Rating (Collaborative for High-Performance Schools)

II. Green Roof

f

Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Conclusions Lessons Learned Closing Remarks

Introduction

Overview: Thesis Efforts

Common Thread: Sustainability

How can this building's efficiency be improved?

Analyses:

II. Green Roof

III. Solar PV System

I. CHPS Rating (Collaborative for High-Performance Schools)

Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Conclusions Lessons Learned

Introduction

Closing Remarks

Building Overview

Overview: Thesis Efforts

Common Thread: Sustainability

How can this building's efficiency be improved?

Analyses:

I. CHPS Rating (Collaborative for High-Performance Schools)

II. Green Roof

III. Solar PV System

IV. LED Luminaire Implementation

CREE

Introduction

Building Overview

Thesis Overview

Common Thread: Sustainability How can this building's efficiency be improved? Analyses: I. CHPS Rating (Collaborative for High-Performance Schools) II. Green Roof

Overview: Thesis Efforts

III. Solar PV System

IV. LED Luminaire Implementation

Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study

Introduction

Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Conclusions Lessons Learned Closing Remarks

CHPS Study: Probing Questions

How do CHPS and/or LEED affect the construction industry and building process?

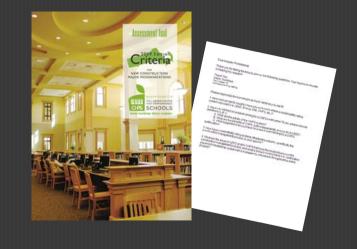
What can be done to improve the quality and efficiency of the rating system?

Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study

Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System

Conclusions


Introduction

Lessons Learned
Closing Remarks

CHPS Study: Research Methods

- Personal review of the rating system
- Surveys of professionals

Introduction

Building Overview Thesis Overview

• Established in California, 1999

CHPS Study: Background

• Region-specific programs in 11 states CA, WA, NY, MA, ME, NH, VT, CT, RI, CO, TX

• Over 225 organizations are currently members

(Schools, Utilities, Design firms, etc.)

Introduction Building Overview Thesis Overview

Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof

Breadth Analysis 3: Solar PV System
Conclusions
Lessons Learned

CHPS Study: Background

Massachusetts:

- Version 1.0 in 2006
- Version 2009 second and current version
- Standard for all new schools in Massachusetts
- 23 Prerequisite credits
- 125 possible points:
 - + Minimum of 40 points to be "Verified"
 - + Minimum of 50 points to be "Verified Leader"

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study

Breadth Analysis 2: Green Roof

Introduction

Closing Remarks

Breadth Analysis 3: Solar PV System Conclusions Lessons Learned

CHPS Study: Background

Massachusetts:

- Version 1.0 in 2006
- Version 2009 second and current version
- Standard for all new schools in Massachusetts
- 23 Prerequisite credits
- 125 possible points:
 - + Minimum of 40 points to be "Verified"
 - + Minimum of 50 points to be "Verified Leader"

	Integration and Innovation
II.P1	Integrated Design
II.P2	Educational Display
	Indoor Environmental Quality
EQ.P1	HVAC Design - ASHRAE 62.1
EQ.P2	Construction IAQ Management
EQ.P3	Pollutant and Chemical Source Control
EQ.P4	Moisture Management
EQ.P5	Minimum Filtration
EQ.P6	Thermal Comfort - ASHRAE 55
EQ.P7	View Windows, 70%
EQ.P8	Eliminate Glare
EQ.P9	Minimum Acoustical Performance
EQ.P10	Minimum Low Emitting Materials
	Energy
EE.P1	Minimum Energy Performance, 20%
EE.P2	Commissioning
EE.P3	Facility Staff & Occupant Training
	Water
WE.P1	Irrigation System Performance on Recreational Fields
WE.P2	Indoor Water Use Reduction, 20%
	Ste
SS.P1	Joint Use of Facilities and Parks
	Materials & Waste Management
MW.P1	Storage and Collection of Recyclables
MW.P2	Minimum Construction Site Waste Management, 75%
	Operations and Maintenance
OM.P1	Maintenance Plan
OM.P2	Anti-Idling Measures
OM.P3	Green Cleaning

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Conclusions Lessons Learned Closing Remarks

Introduction

Worcester North High School

CHPS Study: Findings

- LEED difficult on limited budgets
- Closer relationships: CM, Designers, Owner
- CHPS is a smaller organization than LEED
- Need for lessons learned database
- No drastic change to CM by CHPS
- North High School will be CHPS Verified

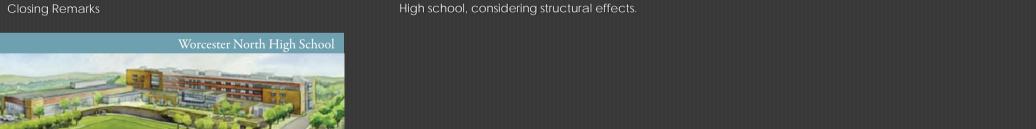
Introduction

Building Overview Thesis Overview

CHPS is better for MA schools than LEED Need for training professionals in CHPS

CHPS Study: Recommendations

• Create lessons-learned database for CHPS projects Increase capabilities of regional offices


Glean input from students and administration

Introduction

Building Overview Thesis Overview

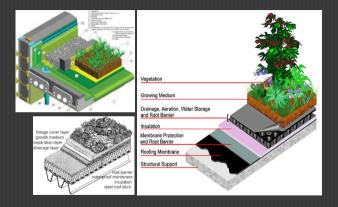
Green Roof Study: Intent

Introduction

Building Overview Thesis Overview

Green Roof Study: Background

- Reduced storm water runoff
- Reduced heat-island effects
- Increased aesthetic quality
- Increased life of roof membrane
- Incremental addition to roof R-value
- Possible addition to CHPS score


Introduction
Building Overview
Thesis Overview
Breadth Analysis 1: CHPS Study
Breadth Analysis 2: Green Roof
Breadth Analysis 3: Solar PV System
Conclusions
Lessons Learned

Closing Remarks

Green Roof Study: Analysis Method

- 1. Research available green roof systems
- 2. Assemble weight data
- 3. Choose most economical option
- 4. Evaluate structural capacity

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Conclusions Lessons Learned Closing Remarks

Introduction

Green Roof Study: Analysis Method

- Research available green roof systems
- Assemble weight data
- Choose most economical option Evaluate structural capacity

ZinCo Hydrotech USA

Roofscapes Roofmeadow

Manufacturer

GreenGrid

LiveRoof

Barrett Company

No module size (mat-type) No module size (mat-type) 2' x 2', 2' x 4', 1.5' x 2'

No module size (mat-type)

1' x 2'

No module size (mat-type)

2" - 6"

3"-5"

Soil Depth Saturated Weight

20 - 34 PSF

17 - 41 PSF

22 PSF

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV System Conclusions Lessons Learned Closing Remarks

Introduction

Green Roof Study: Analysis Method

- Research available green roof systems
- Assemble weight data
- Choose most economical option

Evaluate structural capacity

ZinCo Hydrotech USA

Roofscapes Roofmeadow

Manufacturer

No module size (mat-type) No module size (mat-type)

No module size (mat-type)

Size

2" - 6"

3" - 5"

17 - 41 PSF 18 - 25 PSF 15 - 29 PSF 21 PSF

Soil Depth Saturated Weight

20 - 34 PSF

22 PSF

GreenGrid LiveRoof 1' x 2' **Barrett Company**

2' x 2', 2' x 4', 1.5' x 2' No module size (mat-type)

Introduction

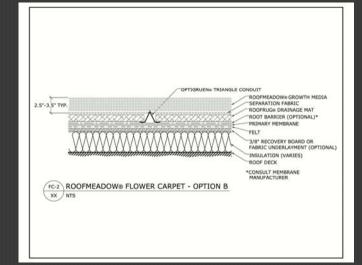
Building Overview Thesis Overview

Green Roof Study: Analysis Method

- . Research available green roof systems
- Assemble weight data
- 3. Choose most economical option
- 4. Evaluate structural capacity

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study

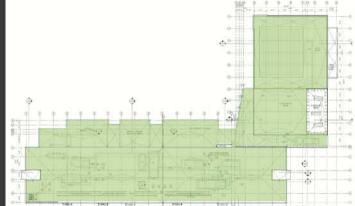
Breadth Analysis 2: Green Roof
Breadth Analysis 3: Solar PV System


Conclusions
Lessons Learned
Closing Remarks

Introduction

Green Roof Study: Findings

- Extensive roof appropriate option
 - Minimum 15 PSF, Maximum 41 PSF
 - Use 3" system with 23 PSF rating
 - Maximum area is 51,000 SF
 - Maximum moment, shear and deflection within allowable limits
 - Added cost: \$522,750
 - No schedule delay: not on critical path


Introduction

Building Overview Thesis Overview

Green Roof Study: Recommendation

- Install green roof
- Use Roofscapes[™] assembly: Primarily sedum
- 51,000 square-feet will cost \$522,750Cost may be recouped after 50 year
- maintenance is deferred1 Point addition to CHPS score

Introduction

Building Overview
Thesis Overview

Solar PV: Intent

Design a roof mounted solar photovoltaic system,
meeting the given \$250,000 allowance.

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study

Breadth Analysis 2: Green Roof

Breadth Analysis 3: Solar PV System Conclusions

Lessons Learned Closing Remarks

Introduction

Solar PV: Background

- \$250,000 allowance in budget, unused
- System has the ability to provide sustainable power
- Potential credit to CHPS score

to North High School

• System design is project-specific

Building Overview Thesis Overview Breadth Analysis 1: CHPS Study Breadth Analysis 2: Green Roof Breadth Analysis 3: Solar PV Syste Conclusions Lessons Learned Closing Remarks	m
Wo	orcester North High Schoo

Introduction

1. Research system types and components, costs 2. Design 2 options: Meet full \$250,000 allowance

Solar PV: Method

3. Calculate Payback

Fill allotted roof space

Waterline Industries, Corp. Online Estimation Tools BP Solar Estimator: Solar-Estimate.org:

Cold Calls Zapotec Solar

Source

Estimation Cost Data

Newspaper Articles

Alteris Renewables

Ostrow Electric

RSMeans 2009 Cost Data

\$5.39 Fall River Electrical Associates \$4.72

Cost per

Watt

Cold Call \$5.87 \$5.86

\$6.00

\$6.03

\$8.00

Total Average:

Source

Newspaper Articles

Online Estimates

Average Cost

per Watt

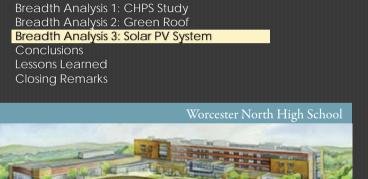
\$5.46 \$6.02

\$8.00

\$5.98

Introduction

Building Overview Thesis Overview

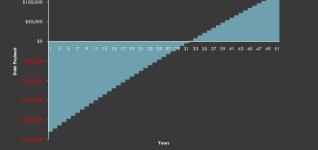

. Research system types and components, costs 2. Design 2 options:

Fill allotted roof space 3. Calculate Payback

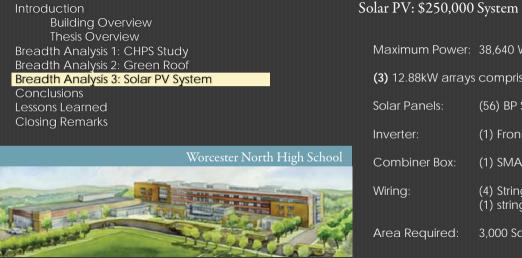
Solar PV: Method

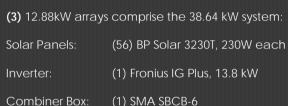
Meet full \$250,000 allowance

Introduction


Building Overview Thesis Overview

Research system types and components, costs Design 2 options:

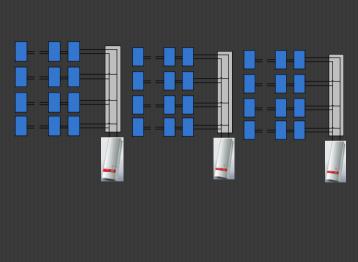


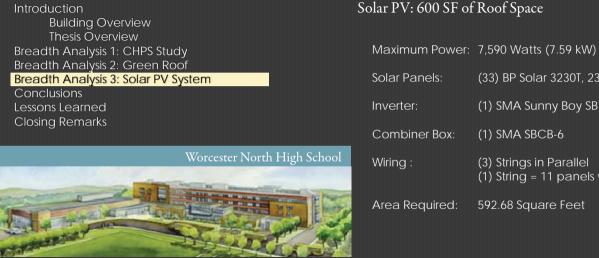

Solar PV: Method

System Payback

\$150,000

Wiring:


Area Required:


Maximum Power: 38.640 Watts (38.64 kW)

(4) Strings in Parallel

3,000 Square Feet

(1) string = 14 panels in series

Solar Panels: (33) BP Solar 3230T, 230W each (1) SMA Sunny Boy SB7000US, 8.75 kW Inverter:

(1) SMA SBCB-6

(3) Strings in Parallel (1) String = 11 panels wired in series

592.68 Square Feet

Introduction

Building Overview

Thesis Overview

Solar PV: Recommendation

- Both systems show a payback of 31 years (cash financing)
- Implement smaller array to reduce structural impact
- Implement larger array if funds are available and gymnasium can support array

4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

38.64kW Payback

\$150,000

\$100,000

Up to 5 credits added by PV system

Introduction

Building Overview

Thesis Overview

• God

- Good regional system for schoolsNeeds improvement in knowledge transfer
- Green Roof
- Feasible with current roof and 23 PSF assembly
- Cost: \$ 522,750Could pay itself back in 50 years
 -
- Solar PV SystemTwo options for owner
- Both pay back after 31 years
- Acts as a learning tool for students

Introduction

Building Overview
Thesis Overview

Good input is hard to get!

management process.

Great learning experience.

Lessons Learned

- More research is needed on the effects of sustainability ratings on the construction
- "Greening" a typical building produces large benefits; making a green building greener presents incremental benefits.
- Payback is not as immediate as you'd think.

Introduction
Building Overview
Thesis Overview
Breadth Analysis 1: CHPS Study
Breadth Analysis 2: Green Roof
Breadth Analysis 3: Solar PV System
Conclusions
Lessons Learned
Closing Remarks

Questions?

