

Virginia Tech Basketball Practice Facility

Virginia Tech - Basketball Practice Facility Blacksburg, VA

Daniel Moynagh April 14, 2010 Professors Houser and Dannerth

Project Scope

- 1. Electrical Depth
 - 1.1 Feeder Cost Analysis
 - 1.2 SKM Analysis
- 2. Lighting Depth
 - 2.1 Outdoor Space Façade
 - 2.2 Circulation Space Lobby
 - 2.3 Large Work Space Gymnasium
 - 2.3.1 M.A.E Daylighting Analysis
 - 2.3.2 Structural Breadth*
 - 2.3.3 Mechanical Breadth
 - 2.4 Special Purpose Space Lounge and Locker Room*

*Not included in presentation

Presentation Outline

1. Introduction

- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium
- 7.1 Lighting
- 7.2 Mechanical
- 8. Conclusion

Introduction

Building Background

1	Introduction	Location
- . 2	Feeder Cost Analysis	Size
2. 3.	SKM Analysis	Cost
4.	Lighting Overview	
5.	Façade	Construction D
6.	Lobby	Delivery Metho
7.	Gymnasium	
	7.1 Lighting	Architect
	7.2 Mechanical	Associate Arch
8.	Conclusion	
		General Contra
		Lighting Consu

	Blacksburg, VA
	50,000 ft ²
	\$21 million
ates	April 2008 – August 2009
od	Design – Bid - Build
	Cannon Design
tect	Ballou Justice Upton
ctor	Whiting Turner
tants	Atelier Ten USA LCC

Location

Coordinates: 37° 13′ 48″ N 80° 25′ 4″ W Orientation: 31° West of True North

www.maps.google.com

Feeder Cost Analysis

Example Feeder: 1LNH1 to 2LNH1 1 Set 3PH 1N 1G, 100'

Phase Conductor
Cost
Neutral Conductor
Cost
Ground Conductor
Cost
Conduit
Cost

1. Introduction

- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting 7.2 Mechanical
- 8. Conclusion

Overview

•Determine if substituting aluminum feeders for copper feeders will provide cost savings

 Consider increase conductor and conduit and conduit size

•Obtain cost data from RSMeans *Buidling* Construction Cost Data

Sample Calculation

Cost Differen	Aluminum	Copper
	350 KCMIL	4/0 AWG
-\$293	\$960	\$1,365
	350 KCMIL	4/0 AWG
-\$98	\$320	\$455
	6AWG	4 AWG
-\$38	\$105	\$118
	1-1/2"	1-1/2"
+\$560	\$1,595	\$1,035
+\$7	Total:	

Total Cost Analysis

Phase Conductors	\$60,723.74
Neutral Conductors	\$14,385.83
Ground Conductors	\$6,331.57
Conduit	\$48,304.63

Total: \$129,745.77 \$136,773.84

Total Cost Increase = \$7,028.07

Switching to aluminum feeders does not provide and cost savings, therefore use copper.

\$39,699.92 \$9,511.31 \$4,992.70 \$82,569.91

SKM Systems Analysis

1. Introduction

Design Goals

Analyze electrical distribution system

3. SKM Analysis 4. Lighting Overview

2. Feeder Cost Analysis

- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting 7.2 Mechanical
- 8. Conclusion

•Comprehensive short circuit analysis, arc fault study, and protective device coordination

Arc Flash Analysis

Arc I	Arc Flash Evaluation IEEE 1564 - 2002/2004a Edition Bus + Line Side Report (Include Line Side + Load Side Contributions) Project: VI BASKE I BALL, Base Project																	
	Bus Name	Protective Device Name	Bus kV	Bus Bolted Fault (kA)	Bus Arcing Fault (kA)	Prot Dev Bolted Fault (kA)	Prot Dev Arcing Fault (kA)	Trip/ Delay Time (sec.)	Breaker Opening Time (sec.)	Ground	Equip Type	Gap (mm)	Arc Flash Boundary (in)	Working Distance (in)	Incident Energy (cal/cm2)	Required Protective FR Clothing Category	Label #	L
1	B-SWBDN-1	PD SWBDN	0.480	19.15	11.43	17.18	10.25	0.05	0.000	Yes	PNL	25	24	18	1.9	Category 1	# 0002	
2	B-SWBDN-1	PD-011	0.480	19.15	11.43	0.36	0.22	0.083	0.000	Yes	PNL	25	25	18	2.1	Category 1		
3	B-SWBDN-1	PD-012	0.480	19.15	11.43	1.61	0.96	0.083	0.000	Yes	PNL	25	25	18	2.1	Category 1		
4	B-SWBDN-1 (PD SWBDN LineSide)	PD SWBDN	0.480	19.15	11.43	1.98	1.18	0.083	0.000	Yes	PNL	25	33	18	3.2	Category 1 (*N2)		
5	B-SWBDN-1 (PD SWBDN LineSide)	MaxTripTime @2.0s	0.480	19.15	11.43	17.18	10.41	2	0.000	Yes	PNL	25	214	18	70	Dangerous! (*N2) (*N9)	# 0002	
																	C	-

Protective Device Coordination Study

Lighting Overview

1. Introduction

- Overview
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- Gymnasium
 T.1 Lighting
 T.2 Mechanical
- 8. Conclusion

•Highlight architectural elements of the building

Complement the interior design

•Use energy efficient design solutions

•Create an environment comfortable for the athletes and that can be used as a recruiting tool for potential players

1. Introduction

3. SKM Analysis

7. Gymnasium

8. Conclusion

7.1 Lighting

7.2 Mechanical

5. Façade

6. Lobby

2. Feeder Cost Analysis

4. Lighting Overview

Design Goals

•Draw visitors into the building

•Illuminate the surfaces within the lobby so that it glows from within

•Highlight building materials – bring out the texture of the "Hokie Stone"

Design Criteria •LPD = 5 W/ft

Entrance Facade

"Hokie Stone"

Courtesy Canon Design

http://www.virginiaplaces.org/

1. Introduction

- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting 7.2 Mechanical
- 8. Conclusion

AREA EQ. ROOM 106 Ford

Lighting Power Density = 2.6 W/ft

In-ground wall washer 20W/842 T4 Metal Halide Lamp

In-ground wall washer 35W/842 T4 Metal Halide Lamp

1. Introduction

- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting 7.2 Mechanical
- 8. Conclusion

EXAM ROOM Fortal በጠ

Lighting Power Density = 2.6 W/ft

Entrance Rendering

Façade False Color - Illuminance

1. Introduction

- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting 7.2 Mechanical
- 8. Conclusion

Fortal

Lighting Power Density = 2.6 W/ft

Entrance Rendering

Entrance Rendering

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- Gymnasium
 T.1 Lighting
 T.2 Mechanical
- 8. Conclusion

Lobby Graphics – South Wall

Lobby Graphics – East Wall

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting 7.2 Mechanical
- 8. Conclusion

Design Goals

•Highlight the graphics in the space to celebrate the tradition of Virginia Tech Basketball

•Orient visitors to circulation of the building

•Illuminate wall surfaces to create glow from within

Design Criteria •Horizontal Illuminance = 100 lux

•LPD = $1.1W/ft^{2}$

Lobby Graphics – South Wall

Lobby Graphics – East Wall

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting 7.2 Mechanical
- 8. Conclusion

- FO32/841 Linear Fluorescent
- **Recessed Wall Washer** (2) CF32DT 841
- **Recessed Downlight** 35W/842 T4 Metal Halide
- Surface Mounted Spot Light 35W/842 T4 Metal Halide
- **Recessed Spot Light** 35W/842 T4 Metal Halide

Recessed Wall Washer FP28/841 Linear Fluorescent

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- Gymnasium
 T.1 Lighting
 T.2 Mechanical
- 8. Conclusion

Lobby Rendering

Lobby Rendering

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- Gymnasium
 T.1 Lighting
 T.2 Mechanical
- 8. Conclusion

Lobby Rendering

Entrance False Color - Illuminance

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting 7.2 Mechanical
- 8. Conclusion

Lobby Rendering

View From Exterior – False Color

Illuminance (lx)						
0.00	32.00	66.00	100.0			

Gymnasium

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium

7.1 Lighting 7.2 Mechanical

8. Conclusion

Gymnasium Graphics – East Wall

Gymnasium Graphics – South Wall

AREA 7 - SOUTH COURT WALL FRONT ELEVATION, TYPICAL SCALE: 3/32" = 1'-0"

Gymnasium - Lighting

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting
- 7.2 Mechanical
- 8. Conclusion

Design Goals

•Bring daylight into the space to reduce energy use while maintaining appropriate light levels for basketball playing

Design Criteria

•Horizontal Illuminance = 800 lux •Illuminance Uniformity •CV= 0.21 •E_{max}/E_{min}=2.5:1 or less

•LPD = 2.3 W/ft^2

Gymnasium Graphics – East Wall

Gymnasium Graphics – South Wall

1 AREA 7 - SOUTH COURT WALL FRONT ELEVATION, TYPICAL SCALE: 3/32" = 1'-0"

Gymnasium – Electric Lighting

Luminaires

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting

7.2 Mechanical

8. Conclusion

High Bay With Protective Cage (6) FP 54T5HO 841

Gymnasium – Electric Lighting

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting
 - 7.2 Mechanical
- 8. Conclusion

Electric Light Levels (lux)

$E_{Average}$	877 lux
E_{max}/E_{min}	1.52
C.V.	0.09
LPD	1.35 W/ft

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting

7.2 Mechanical

8. Conclusion

Skylight Design Data

Dimensions Skylight/Floor Area 11.1%

0 U SHGC 10' x 12'

0.30

0.80

0.23 Btu/hr-sq ft °F

0.26

Daylight Autonomy

DA Continuous

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting

7.2 Mechanical

8. Conclusion

Critical Point Location

Daylighting Controls

8 Circuit Dimming Panel

Low Voltage Control Interface

Set Point Algorithm

Micro PS Photocell – Closed Loop Proportional

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting

7.2 Mechanical

8. Conclusion

Daylight Tracking

March 21: 7:00 am – 7:00 pm

1400.0 1120.0 840.0 560.0 280.0

Percent Light Output

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting

7.2 Mechanical

8. Conclusion

Energy Savings

- Annual Energy Consumption
- All Lighting Base 116,242 kWh
- Dimmed Zone Base 64,579 kWh
- Savings
- 43,550 kWh Dimmed Zone 67.4% Total 37.5% 28,311 kWh
- SkyCalc Predicted Total Savings

Dimmed Zone – Algorithm 21,028 kWh

Gymnasium – Mechanical

Overview

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby

7. Gymnasium

7.1 Lighting

7.2 Mechanical

8. Conclusion

•Analyze the of the gymnasium skylighting design on the cooling system

•Use build an energy modeling to determine increase in loading

Equipment

Capacity

Peak Cooling Load

Cooling Data Scroll Air Cooled Chiller 141.5 ton 155.1 ton

Gymnasium – Mechanical

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby

7. Gymnasium

7.1 Lighting

7.2 Mechanical

8. Conclusion

Overview

 Analyze the of the gymnasium skylighting design on the cooling system

•Use build an energy modeling to determine increase in loading

Energy Model

Roof U Valu

Exterior Wa

Interior Wal

Floor

Cooling Set

Internal Gai

Lighting

People

Sensik

Laten

Occup

Increase in

е	0.0440 BTU/hr ft2 ^o F
ll U Value	0.0544 BTU/hr ft2 ^o F
ll U Value	0.0616 BTU/hr ft2 ^o F
	0.0440 BTU/hr ft2 ^o F
point	74 ⁰
ns	
	1.4 W/ft2
ole Gain	710.0 BTU/hr person
t Gain	1090.0 BTU/hr person
ancy Density	50 people
Peak Load	11.9 ton

Gymnasium – Mechanical

Overview

Chiller Redesign

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby

7. Gymnasium

7.1 Lighting

7.2 Mechanical

8. Conclusion

 Analyze the of the gymnasium skylighting design on the cooling system

•Use build an energy modeling to determine increase in loading

Equipment

Peak Cooling Load

New Chiller Size

Cooling Data Scroll Air Cooled Chiller ad 167 ton

Size 172.2 ton

Virginia Tech Basketball Practice Facility

Conclusion

- 1. Introduction
- 2. Feeder Cost Analysis
- 3. SKM Analysis
- 4. Lighting Overview
- 5. Façade
- 6. Lobby
- 7. Gymnasium 7.1 Lighting 7.2 Mechanical
- 8. Conclusion

Acknowledgements

- Cannon Design •Kevin Ledoux and all the engineers in the Boston Office
- •Fellow AE Lighting/Electrical Students
- •All Family and Friends

Questions/Comments?

- Thank you to the following for support throughout the year:
 - •AE Faculty and Staff
 - •Professors Houser, Mistrick, and Dannerth