

The First Albany Building 677 Broadway, Albany, NY

Gerald Craig

Bachelor of Architectural Engineering Candidate Structural Option

1

The First Albany Building 677 Broadway, Albany, NY

- Downtown Albany
- Near state and government offices
- Conveniently located off of I-787
- 12 Stories + Elevator Penthouse

Building Uses:

- Angelo's 677 Prime
- General office space
- Condominiums (possible future use)

The First Albany Building 677 Broadway, Albany, NY

Structural Systems:

- Foundation
 - First floor at grade, no basement
 - Steel H-Piles
 - Grade Beams
- Floor System
 - Composite Steel & Concrete Design (partial composite action)
 - Resists gravity forces & loads only
 - Simply Supported Beams
- Lateral Force Resisting System
 - Structural Steel, Concentrically Braced Frames

The First Albany Building 677 Broadway, Albany, NY

Structural Systems Design Requirements:

- Live Loads
 - Office Space (2-8) & Partitions, 75 psf
 - Office Space (9-12) with Access Flooring for computer use & Partitions, 115 psf
 - Office Space (2) with file storage, 125 psf

- Little significant seismic activity

- Seismic Design Category B
- Small potential ground accelerations $(S_{DS} = 0.28, S_{D1} = 0.12)$
- No extreme wind conditions
 - Minimum design wind velocity (v = 90 mph)

FIGURE 6-1C DESIGN WIND VELOCITY

TABLE 11.6-1 SEISMIC DESIGN CATEGORY BASED ON SHORT PERIOD RESPONSE ACCELERATION PARAMETER

	Occupa		
Value of Sps	l or ll		IV
$S_{DS} < 0.167$	Α	Α	Α
$0.167 \le S_{DS} < 0.33$	В	В	С
$0.33 \le S_{DS} < 0.50$	С	С	D
$0.50 \le S_{DS}$	D	D	D

TABLE 11.6-2 SEISMIC DESIGN CATEGORY BASED ON 1-S PERIOD RESPONSE ACCELERATION PARAMETER

	OCCUPANCY CATEGORY							
Value of Sp1	l or ll		IV					
$S_{D1} < 0.067$	Α	Α	Α					
$0.067 \le S_{D1} \le 0.133$	В	В	C					
$0.133 \le S_{D1} < 0.20$	С	С	D					
$0.20 \le S_{D1}$	D	D	D					

- Visually identical Building
- Identical Building Use
- New proposed location
 - Charleston, South Carolina
 - commercial sector
 - last exit off from I-26
 - height limitations (50-80 ft)
 - zoning variances are considered (report appendix E)
 - go ahead with project for educational purposes

- Slightly Altered Building Core Layout

- Elevators Relocated
- Symmetric Core Layout
- Little effect on foot-traffic

Proposed Building Core Layout

Charleston, SC

Structural Systems Design Requirements:

- Live Loads (same as previous)
 - Office Space (2-8) & Partitions, 75 psf
 - Office Space (9-12) with Access Flooring for computer use & Partitions, 115 psf
 - Office Space (2) with file storage, 125 psf
 - Reduced as allowed per (ASCE 7-05 4.8)
- Snow Loads
 - As calculated, 5 psf
- More chance of significant seismic activity
 - Seismic Design Category D ($S_{DS} = 0.991$, $S_{D1} = 0.406$)
- Hurricane prone area
 - High design wind velocity (v = 140 mph)

TABLE 11.6-1 SEISMIC DESIGN CATEGORY BASED ON SHORT PERIOD RESPONSE ACCELERATION PARAMETER

	Occupancy Category							
Value of Sps	l or ll	III	IV					
$S_{DS} < 0.167$	Α	Α	Α					
$0.167 \le S_{DS} < 0.33$	В	В	С					
$0.33 \le S_{DS} < 0.50$	С	С	D					
$0.50 \le S_{DS}$	D	D	D					

TABLE 11.6-2 SEISMIC DESIGN CATEGORY BASED ON 1-S PERIOD RESPONSE ACCELERATION PARAMETER

	OCCUPANCY CATEGORY						
Value of Sp1	l or ll	=	IV				
$S_{D1} < 0.067$	Α	Α	Α				
$0.067 \le S_{D1} < 0.133$	В	В	С				
$0.133 \le S_{D1} < 0.20$	C	С	D				
$0.20 \le S_{D1}$	D	D	D				

Structural Floor System Design:

- Main Objective: Reduce Effective Seismic Weight
- Thinner Floor Deck & Slab
 - 22 gage B-LOK 1.5"x 6" DECK, (United Steel Deck Catalog)
 - f'c = 4 ksi (lightweight concrete)
 - Total Slab Thickness = 4"
 - Weight = 1.6 psf (Composite Weight = 29 psf)
 - Φ Vnt = 2980 # (Vu = 930.9 #)
 - Φ Mno = 25.66 in-K (no studs present, conservative, Mu = 19.2 in-K)
 - Maximum Un-shored Span = 6.91' (maximum beam spacing = 6.88')
 - AWWF = 0.023 in² per ft

- Full Composite Action (Beams)

- Floor member strength controlled by the amount of concrete in compression rather than the shear stud connectors ability to transfer forces from the steel beam to the concrete slab.
- Reduces structural steel weight by ${\sim}20\%$
- Increases shear stud connector count by ${\sim}130\%$
- Design method & calculations found in Appendix A

Selecting a Lateral Force Resisting System :

- Main Objective: Provide Stability & Stiffness
- Special Reinforced Concrete Shear Walls
 - Response Modification Factor (R) = 6
 (verses R = 5 for Composite Steel & Concrete Concentrically Braced Frames)
 - Educational value of earthquake resistant shear wall design
 - Adds considerable seismic weight
 - ASCE 7-05 Table 12.2-1 Height Limitation of 160':

12.2.5.4 Increased Building Height Limit for Steel Braced Frames and Special Reinforced Concrete Shear Walls.

The height limits in Table 12.2-1 are permitted to be increased from 160 ft (50 m) to 240 ft (75 m) for structures assigned to Seismic Design Categories D or E and from 100 ft (30 m) to 160 ft (50 m) for structures assigned to Seismic Design Category F that have steel braced frames or special reinforced concrete cast-in-place shear walls and that meet both of the following requirements:

1. The structure shall not have an extreme torsional irregularity as defined in Table 12.2-1 (horizontal structural irregularity Type 1b).

2. The braced frames or shear walls in any one plane shall resist no more than 60 percent of the total seismic forces in each direction, neglecting accidental torsional effects.

Dynamic Lateral Analysis (Seismic):

- 3D Mathematical Model created using ETABS

- "Cracked" sections were considered
 - Beams 0.35Ig
 - Column 0.70Ig
 - Shear Walls $0.5 f_{22}$
- Effective seismic weight (applied as a uniform additional mass)
 - Steel Beams & Columns ~5.1 psf
 - Other Dead Loads ~77.1 psf
 - Core Structure as calculated (in report, Appendix C)

- Modal Superposition

- Less conservative / more accurate
- Equivalent Lateral Force Method not permitted by ASCE 7-05 Table 12.6-1

 $Ts = S_{D1} \ / \ S_{DS} = 0.406 \ / \ 0.991 = \ 0.4097$

- T < 3.5 Ts ? (3.5*0.4097=1.434)
- Tc = 1.6199 (calculated north-south)
- Tc = 1.2702 (calculated east-west)
- Modal Participating Mass ratios > 90% as per ASCE 7-05 12.9.1
- Modal Combination, Complete Quadratic Combination
- Base Shear lower limit (12.9.4)
 - 85% of base shear from ELF method
 - scale factor of 1.047 added to E-W direction
 - N-S direction base shear > 85% ELF method

Modal P	Modal Participating Mass Ratios											
Mode	Period	UX	UY									
1	1.946	0.146	0.615									
2	1.618	64.574	0.016									
3	1.268	0.001	60.672									
4	0.356	0.131	0.748									
5	0.296	20.265	0.009									
6	0.226	0.001	20.214									
7	0.146	0.034	0.267									
8	0.119	7.005	0.002									
9	0.092	0.001	6.040									
10	0.087	0.013	1.008									
11	0.069	3.432	0.001									
12	0.063	0.006	3.008									
	Totals -	95.609	92.600									

Story	F _x (K)	F _X (K)	F _X (K)	F _x (K)
	E-	w	N	-S
	ELF	Modal	ELF	Modal
PH	32.2	24.5	25.2	20.2
RF	140.7	119.3	110.1	108.5
12	170.0	147.8	133.0	130.8
11	146.9	126.6	114.9	111.4
10	125.0	103.3	97.8	92.7
9	104.4	87.0	81.7	74.6
8	86.7	69.8	67.8	62.5
7	68.5	52.8	53.6	49.2
6	51.9	38.8	40.6	38.6
5	36.9	29.0	28.9	28.2
4	23.9	22.7	18.7	23.3
3	12.9	18.5	10.1	18.4
2	4.6	13.8	3.6	9.3
	Total		Total	
	1004.7	854.0	786.0	767.7

Charleston, SC

Dynamic Lateral Analysis (Seismic):

- Structure Irregularities (12.3.2)
 - Torsional & Extreme Torsional Irregularity
 - Maximum ratio of extreme drift and average drift is about 1.1 (<1.2 for torsional irregularity)
 - No major Re-entrant Corner Irregularity
 - Ratios all less than 15%
 - No Diaphragm Discontinuities
 - No Out of Plane Offsets
 - System is parallel & symmetric
 - No Vertical Irregularities
 - No single story stiffness is less than the story above
 - Effective seismic weight is relatively constant
 - Lateral system is uniform
- Redundancy Factor (12.3.4.2)
 - The value of ρ shall be taken as 1.3 - Removal of a shear wall results in extreme torsional irregularity
- Torsional Amplificaiton Factor (12.8.4.3)
 - Unnecessary, Type 1a or 1b torsional irregularity does not exist
- Direction of Loading (12.5.4)

-Since the structure does not display any horizontal irregularities (specifically type 5), loads in each of the orthogonal directions are considered independently.

Lateral Analysis (Wind):

- Design Wind Pressures

- Design wind velocity, 140 mph
- Open, Flat Terrain
- Applied as per ASCE 7-05 Figure 6.9

PSF	174.33" Top ScreenWall	
41.78		PSF
40.93	162 - RF	
	147.33' 12th Fleer	
39.80	134.00' 11th Flaer	-
38.38	120.67' 10th Figer	-
		-
36.96		
36,11	-	-
35.26	84.67 /th Figer	29.37
34.13	67.33 6th Floar	F
32.99	- 54.00' 58h Fleer	
31.86	40.67" 4th Eleoc	
30.44		
28.74	27.33 3rd Floor	-
26.48 25.06		
25.06	Q' 1st Floor	

Wind Pressure N-S

								PSF	174.33' Top ScreenWall
177.4	T7 177	17.01	72 177	37.01	E 111	N O	Main Wind Ferot Residing System - Mothed 2 All Heights	41.65	
Wind	E-W	N-S	E-W	N-S	E-W	N-5	Pigers 5-8 Bridge Wind Apod Essen	40.80	162' 85
Forces	r	P	lotal	lotal	Over	Over	11111 Per 1777	1000000	
Level			Shear	Shear	Tum	Tum	and a strong a strong a		147.33 12th Floor
	K	K	K	K	ft-K	ft-K		39.67	134.00' 11th Floor
SW							CASE 1 CASE 3		
RF*	175.0	144.4	175.0	144.4	27478.9	22670.4	- tr	38.26	120.67" 10th Flaor
12	133.6	112.2	308.6	256.6	19729.6	16566.7			107.33' 9th Flaor
11	125.5	105.5	434.1	362.1	16773.3	14104.9	E 2 E 2 4 8 2 6 1	36.11	
10	123.6	104.1	557.7	466.2	14869.1	12524.1	and and and a second and a second a second and a	76.00	94.00' 8th Floor
9	121.2	102.6	678.9	568.8	12967.9	10981.0	$\begin{array}{llllllllllllllllllllllllllllllllllll$	20.00	80.67' 7th Floor
8	119.5	101.0	798.4	669.9	11194.4	9463.9	CASE 2 CASE 4	36,15	, <u> </u>
7	118.0	99.2	916.4	769.1	947.5.8	7967.3	structure, considered aspects() along and principal sets. Cone 7. These superiors of the desire whole results on the section of the section of the section.	34.03	3 67.33 6th Fleor
6	115.4	97 N	1031.8	866.1	7731.8	6500.2	principal axis of the structure is comparation with a tenanal moment as shown, considered separately for each principal axis.	.32.90	0
Š	112.6	04.6	11/1/1/1	960.7	60/110	5070.0	Case 3. Wind building as defined in Case 1, but considered to not simultaneously at 77% of the upspilled value.	31.77	77
	100.2	01.0	1252.6	1052.6	4406.9	2704.2	Case 4. Wind loading as defined in Case 2, but considered to not simultaneously at 77% of the specified value.	30.36	40.67' 4th Flaor
2	107.5	00 1	1259.5	11/07	2920.1	2270.0	Notes: I. Design wird pressures for windowed and terment faces shallful dependent is accordance with the	28.64	56 27.33' 3rd Flaor
<u> </u>	104.0	00.1	1326.2	1003.4	2630.1	<u>4379.0</u>	provisions of 5.5.12.2.1 and 6.5.32.2.7 as upplicable, for building of all brights, 3. Disagrees three plant views of building, 9. Structure	27.5	
	103.4	80.9	1401.9	1227.0	1412.7	1187.5	Para Payer: Windowed Non-Resign generator acting indices s.y. principal axis, respectively, Para Payer: LetterentHere/design generator acting in the s.y. principal axis, respectively.	24.9	89 - 14.00' 2nd Floor
	Total	Total			Total	Total	 e.e. e.o.: Economically, for the n. y principal axis of the structure, respectively. M₂: Toroisonal moment on unit height acting about a vertical axis of the building. 	340	an O' tet Slove
	1461.9	1227.6			134912.4	113128.3		2.4.5	
								•	Wind Pressure E-W

29.37

Charleston, SC

Design Forces:

- Load Combinations:
ASCE 7-05 2.3
- #1: 1.4D
- #2: 1.2D + 1.6L + 0.5S
- #3: 1.2D + 1.6S + 0.8W
- #4: 1.2D + 1.6W + 1.0L + 0.5S
- #5: $1.2D + 1.0E + 1.0L + 0.2S => (1.2 + 0.2S_{DS})D + \Omega_0Q_E + L + 0.2S$
- #6: 0.9D + 1.6W + 1.6H
$- #7: 0.9D + 1.0E + 1.6H => (0.9 - 0.2S_{DS})D + \Omega_0Q_E + 1.6H$

- Strength Requirements:

- Wind loads controlled strength requirements for the lower floors
- Seismic loads controlled strength requirements for the upper floors

Supported	Column			Beam			Walls 3,4,5			Walls D, E			
Story	Maximums			Maximums Maximums					Maximums				
	Axial	Shear	Moment	Shear	Moment		Axial	Shear	Moment		Axial	Shear	Moment
	К	K	fl-K	K	ft-K		К	K	fl-K		K	K	fl-K
PH	60.0	93.6	170.0	33.6	256.7		112.2	112.7	388.9		95.3	117.1	544.4
RF	138.4	79.2	108.3	36.0	276.5		438.7	230.3	1147.6		493.9	232.0	2341.3
12	227.1	74.2	119.7	35.3	273.0		742.3	342.3	2589.7		826.0	328.4	4680.5
11	355.6	71.9	116.9	35.4	273.3		1101.9	394.0	4181.8		1249.4	393.5	7497.5
10	484.2	76.7	119.1	35.0	269.2		1467.1	418.4	5739.6		1679.9	435.5	10422.1
9	608.0	76.6	119.7	34.3	262.8		1866.7	442.2	7200.1		2106.5	472.0	13434.0
8	726.8	75.2	119.0	33.2	252.8		2276.3	501.9	8590.4		2565.9	547.6	16618.0
7	846.5	72.4	116.4	31.8	238.8		2700.6	581.0	10020.7		3141.8	622.7	21914.5
6	977.4	67.9	111.8	29.8	220.0		3214.1	671.0	11664.6		3829.6	695.7	27913.8
5	1130.7	64.3	104.6	27.2	195.9		3813.8	778.1	13696.5		4573.0	762.6	34597.4
4	1314.2	65.4	95.3	24.0	165.8		4451.4	873.0	16302.1		5364.5	813.8	41897.5
3	1539.0	69.5	97.8	20.1	128.9		5113.6	939.2	19621.2		6187.8	832.2	49653.7
2	1855.7	75.2	103.7	16.4	85.7		5651.2	966.0	23320.8		69.57.8	805.0	57 470.5
8 7 6 5 4 3 2	726.8 846.5 977.4 1130.7 1314.2 1539.0 1855.7	75.2 72.4 67.9 64.3 65.4 69.5 75.2	119.0 116.4 111.8 104.6 95.3 97.8 103.7	33.2 31.8 29.8 27.2 24.0 20.1 16.4	252.8 238.8 220.0 195.9 165.8 128.9 85.7		2276.3 2700.6 3214.1 3813.8 4451.4 5113.6 5651.2	501.9 581.0 671.0 778.1 873.0 939.2 966.0	8590.4 10020.7 11664.6 13696.5 16302.1 19621.2 23320.8		2565.9 3141.8 3829.6 4573.0 5364.5 6187.8 6957.8	547.6 622.7 695.7 762.6 813.8 832.2 805.0	16 21 27 34 41 49 57

Element Forces

Lateral Structural System Design:

Lightweight concrete was taken advantage of for floors 5 through the roof. All appropriate properties of lightweight concrete were considered ($\lambda = 0.75$, Ec = $33w^{1.5}\sqrt{f'c} = 2900$ ksi). Normal weight concrete was used in the lower floors due to higher required strengths and limitations in ACI 3-18 21.1.4.3

Specified compressive strength of lightweight concrete, f²c, shall not exceed 5000 psi unless demonstrated by experimental evidence that structural members made with that lightweight concrete provide strength and toughness equal to or exceeding those of comparable members made with normal weight concrete of the same strength.

Charleston, SC

Lateral Structural System Design (Continued) :

- Typical Column Design:

To satisfy ACI 3-18 Sections 21.6.4 & 21.6.5, transverse reinforcement (hoops) must be spaced at maximum of 3" for a distance greater than or equal to 1/6th of the clearspan (l_o) from each joint face, and at 6" (maximum) along the rest of the length. The first hoop shall be placed less than 2" from joint face.

Transverse Reinforcement (within lo):

$$\begin{split} Ash &\geq 0.3[(s)(bc)(f^{*}c)/(fyt)]/[(Ag/Ach)-1] = 0.49 \text{ in}^{2} (\text{for } s = 3" \text{ and } f^{*}c = 5 \text{ ksi}) \\ Ash &\geq 0.09[(s)(bc)(f^{*}c)/(fyt)] = 0.38 \text{ in}^{2} (\text{for } s = 3" \text{ and } f^{*}c = 5 \text{ ksi}) \\ Ash &\geq 0.3[(s)(bc)(f^{*}c)/(fyt)]/[(Ag/Ach)-1] = 0.81 \text{ in}^{2} (\text{for } s = 3" \text{ and } f^{*}c = 8 \text{ ksi}) \\ Ash &\geq 0.09[(s)(bc)(f^{*}c)/(fyt)] = 0.61 \text{ in}^{2} (\text{for } s = 3" \text{ and } f^{*}c = 8 \text{ ksi}) \\ \end{split}$$

From these requirements, #4 hoops & ties are selected (Ash = 0.60 in^2) for where f'c = 5 ksi and #5 hoops & ties are selected (Ash = 0.93 in^2) for where f'c = 8 ksi.

- Column Shear Strength:

 $\begin{array}{lll} \Phi = & 0.75 & \text{for shear} \\ \Phi \forall n = \Phi \forall c + \Phi \forall s \\ \Phi \forall c = \Phi 4 (\lambda \sqrt{fc}) \cdot (bw) \cdot (d) & (without shear reinforcing) \\ \Phi \forall c = \Phi 2 (\lambda \sqrt{fc}) \cdot (bw) \cdot (d) & (with shear reinforcing) \\ \Phi \forall s = \Phi (Av \cdot Fy \cdot d) / S \end{array}$

S = hoop / stirrup spacing Smax = 21.6.4 Min Reinforcement - #3's @ d / 2 (if Vs provided) Av = area of shear reinforcement

h	bw	đ	Fy	λ	fc	Size # Hoops /	# of legs	S	Av	ΦVc	ΦVs	ΦVn	
in	in	in	ksi		psi	Stirrups		in	in ²	K	К	K	
20.00	20.00	15.38	60	0.75	5000	4	3	3.00	0.60	24.5	138.4	162.8	
20.00	20.00	15.38	60	0.75	5000	4	3	6.00	0.60	24.5	69.2	93.6	(Vu
20.00	20.00	15.38	60	1.00	8000	5	3	3.00	0.92	41.3	212.3	253.5	(Vu
20.00	20.00	15.38	60	1.00	8000	5	3	6.00	0.92	41.3	106.1	147.4	(, u

Vu max = 93.5 K)

Lateral Structural System Design (Continued) :

- Column Axial & Flexural Strength:

"PCA Column" was used to check flexural and axial combinations. Full documentation and interaction diagrams can be found in Appendix G.

				0
Flexur	al/Axial Stri	ength:		
Story	Pu (K)	Mu (ft-K)	Moment Capacity @ Pu]
2	1856.0	104	226.4	f'c = 8 ksi
3	1539.0	98	296.0	normalweight concrete
4	1315.0	96	320.3	1
Flexur	allAxial Stre	ength (contin	ued):	-
Story	Fu (K)	Mu (ft-K)	Moment Capacity @ Pu]
5	1106	105	186.6	f°c = 5 ksi
6	914	112	219.7	lightweight concrete
7	739	117	235.0	1
8	582	119	239.2	1
9	442	120	238.4	1
10	333	119	243.5	1
11	248	117	246.0]
12	163	120	242.9	1
RF	116	109	239.6	1
PH	60	170	234.0]

(Moment Capacities are for biaxial flexure @ each axial load)

-Column Design Summary:

- Longitudinal (Flexural & Axial) Reinforcement
 - (8) #9s distributed evenly around 4 faces
- Transverse Reinforcement -
 - Supporting Floors 5 PH
 - #4 hoops & ties @ 3" O.C. within l_o (1/6th of the clearspan from each joint face)

#4 hoops & ties @ 6" O.C. in middle sections

- Supporting Floors 2 4
- #5 hoops & ties @ 3" O.C. within l_o (1/6th of the clearspan from each joint face)
- #5 hoops & ties @ 6" O.C. in middle sections

Charleston, SC

Lateral Structural System Design (Continued):

- Typical Beam Design:

As per ACI 3-18 Sections 21.5.3, transverse reinforcement (hoops) must be spaced at maximum of 3.5" (d/4 = 3.86") for a distance greater than or equal to twice the member depth (l_o) from face of each support, and at 7" (d/2 = 7.72") along the rest of the length. The first hoop shall be placed less than 2" from face of support.

- Beam Shear Strength:

 $\begin{array}{lll} \Phi = & 0.75 & \text{for shear} \\ \Phi \mathbb{V}n = \Phi \mathbb{V}c + \Phi \mathbb{V}s \\ \Phi \mathbb{V}c = \Phi 4(\lambda \sqrt{f}c) \cdot (bw) \cdot (d) & (\text{without shear reinforcing}) \\ \Phi \mathbb{V}c = \Phi 2(\lambda \sqrt{f}c) \cdot (bw) \cdot (d) & (\text{with shear reinforcing}) \\ \Phi \mathbb{V}s = \Phi (Av*Fy*d) / S \end{array}$

S = hoop / stirup spacing Smax = 21.6.4 Min Reinforcement - #3's @ d / 2 (if Vs provided) Av = area of shear reinforcement

Γ	h	bw	d	Fy	λ	fc	Size#	# of	S	Av	ΦVe	ΦVs	ΦVn
L							Hoops /	legs			w/Vs		
L	in	in	in	ksi		psi	Stirrups	_	in	in²	K	K	К
Γ	18.00	20.00	15.44	60	0.75	5000	3	3	3.50	0.331	24.6	65.8	90.3
	18.00	20.00	15.44	60	0.75	5000	3	3	7.0	0.331	24.6	32.9	57.5
	18.00	20.00	15.44	60	1.00	8000	3	3	3.50	0.331	41.4	65.8	107.2
Γ	18.00	20.00	15.44	60	1.00	8000	3	3	7.0	0.331	41.4	32.9	74.3

Vu = 36.0 k

 $A_{VMIN} = 0.12 \text{ in}^2 @ s = 7''$

Charleston, SC

Lateral Structural System Design (Continued):

- Beam Flexural Strength:

 $\Phi = 0.90 \quad \text{for tension control}$ Es = 29000 ksi Fs' = (0.003/c)(c-d')(Es) ≤ 60

a=(β1): β1 = 0.85 (fc ≤ 3000 psi);0.65 (fc ≥ 8000 psi); linear between

≊s >0.005

$$\begin{split} \rho b &= 0.85(\beta 1)(fc \ / Fy)(87,000 \ / (87,000 + Fy)) \\ \rho &= As \ / (bw)(d) \\ \rho' &= As' \ / (bw)(d) \end{split}$$

$$\begin{split} & If Fs' = 60, \ a = ((As*Fy) \cdot (As*Fy)) / (0.85*fc*b) \\ & If Fs' < 60, \ (As Fy) = (As*(0.003 / c) \cdot (c - d)*Es) + (0.85*fc*b*\beta1*c) \\ & \Phi Mn = \Phi \ [0.85(fc)(a)(b)(d - a/2) + (As')(Fs')(d - d')] \end{split}$$

h	bw	Fy	(fc)	Tension Steel			Compres	sion Steel			
				Bars	Max Bar	#of	Ás	Bars	Max Bar	#of	As'
í191.	im	ksi	psi		Size	Layers	in ²		Size	Layers	in ²
18.00	20.00	60	\$000	S#9	9	1	S.O	S#9	9	1	S.0
18.00	20.00	© 0	8000	SHÐ	9	1	5.0	SHQ	9	1	S.0

d	ď	Quad. 1	Eq. Coeffi	cierds	с	a	Fs'	β1	o min	ρ	E ₅	Φ Mm	
in	in	05	β	Y	in	in	ksi					ñ-K	
15.44	2.56	68.00	134.19	-1108.0	3.17	2.54	16.65	0.80	0.0035	0.0161	0.015	308.88	Mu = 256.7 ft-k
15.44	2.56	88.40	134.19	-1108.0	2.86	1.86	9.10	0.65	0.0045	0.0161	0.016	318.93	As, A's min = 4.1 in

- Beam Design Summary:

Longitudinal (Flexural) Reinforcement

All Supported Floors

(5) #9s distributed evenly @ each face

(2) #9s placed in middle on each side

Transverse Reinforcement -

All Supported Floors

#3 hoops & ties @ 3.5" O.C. within l_o (2x member depth from face of support)

#3 hoops & ties @ 7" O.C. in middle sections

Charleston, SC

Lateral Structural System Design (Continued):

- Shear Wall Design:

 $\Phi V_{x MAX} = \Phi 10 A_{ev} \sqrt{f} c$ (per pier/wall)

 $\Phi V_n \!=\! \Phi A_{ev}[\alpha_e \; \lambda \; \sqrt{f'c} + \rho_t(f_y)]$

Wall I.D.	Ф	A _{or} in²	ď	λ	f. psi	ρι	£, psi	Steel Desc	As in²	spacing in	wall t in	L _w in	ΦVn K
D,E	0.75	4640	2	0.75	5000	0.0032	60000	2#5s	0.62	16	16	290	1043.4
ΦV _{nMAX} = 2460.7 K (upper limit) Supported Floors 5 - PH Vu = 762.6										762.6 k			
D,E	0.75	4640	2	1	8000	0.0032	60000	2#5s	0.62	16	16	290	1296.8
ΦV_{nM}	LAX = 31	12.6 K	(upp	er limit)				Suppo	rted Floor	s 2 - 4	Vu =	805.0 k
3,4,5	0.75	4400	2	0.75	5000	0.0032	60000	2#5s	0.62	16	20	220	989.4
ΦV _{n MAX} = 2333.5 K (upper limit) Supported Floors 5 - PH Vu										Vu =	778.1 k		
3,4,5	0.75	4400	2	1	8000	0.0032	60000	2#5s	0.62	16	20	220	1229.7
ΦV _{nMAX} = 2951.6 K (upper limit) Supported Floors 2 - 4 Vu = 966.0									966.0 k				

 $\Phi V_{nMAX} = \Phi 8 A_{cv} \sqrt{f} c \text{ (all piers/walls in D,E)}$ $\Phi V_{nMAX} = 7874.3 \text{ K (for f'c = 5 ksi)}$ $\Phi V_{nMAX} = 9960.3 \text{ K (for f'c = 8 ksi)}$

 $\Phi V_{nMAX} = \Phi 8 A_{cv} \sqrt{f} c \text{ (all piers/walls in 3,4,5)}$ $\Phi V_{nMAX} = 7467.0 \text{ K (for } f c = 5 \text{ ksi)}$ $\Phi V_{nMAX} = 9445.2 \text{ K (for } f c = 8 \text{ ksi)}$

 $\rho_t = 0.0032 > 0.0025 \text{ OK}$ $\rho_l = 0.0032 > 0.0025 \text{ OK}$

Lateral Structural System Design (Continued):

- Boundary Elements:

Wall	Pu	Mu	у	Ig	Ag	hw	t	fc	fe	0.2fc
I.D.	K	ft-K	in	in^4	in²	in	in	ksi	ksi	ksi
D,E-2/3/4	6957.8	\$7470.5	145	9.430E+09	4640	290.00	16.00	1.510	8	1.6
D,E-5-PH	4 <i>5</i> 73.0	34597.4	145	9.430E+09	4640	290.00	16.00	0992	5	1.0
3,4,5-2/3/4	5651.0	23320.8	110	3904E+09	4400	220.00	20.00	1.292	8	1.6
3,4,5-5/PH	3813.8	13375.9	110	3904E+09	4400	220.00	20.00	0.871	5	1.0

Special boundary elements not needed

Flexural & Axial Strength:

Shear Walls - Considering (20)#9s as flexural reinforcement for each of the walls, the following results are calculated.

Flexural Reinforcement – All Supported Floors (20) #9s distributed evenly, 10 @ each edge

Longitudinal Reinforcement – All Supported Floors (2)#5s at 16" O.C. Max (1 each face) Transverse (Shear) Reinforcement – All Supported Floors (2)#5s at 16" O.C. Max (1 each face).

Lateral Structural System Design (Continued):

Drifts:

For the overall design, drifts due to wind loads are the controlling factor. The level of structural stiffness needed to limit drifts (due to wind) to 0.25% or L/400 provides enough lateral strength to carry all seismic and wind load combinations. L/400 is used as a drift limit due the presence of exterior brick veneer that is sensitive to excessive displacements. Drifts due to seismic loads, which are limited to 0.020hx (2%), can be found in Appendix H.

Story	Itern	Load	DriftX	DriftY
PHRF	Max Drift X	WIND	0.002077	
PHRF	Max Drift Y	WIND		0.001868
RF	Max Drift X	WIND	0.002165	
RF	Max Drift Y	WIND		0.002368
STORY12	Max Drift X	WIND	0.00217	
STORY12	Max Drift Y	WIND		0.002364
STORY11	Max Drift X	WIND	0.002163	
STORY11	Max Drift Y	WIND		0.002345
STORY10	Max Drift X	WIND	0.002135	
STORY10	Max Drift Y	WIND		0.002304
STORY9	Max Drift X	WIND	0.002072	
STORY9	Max Drift Y	WIND		0.002232
STORY8	Max Drift X	WIND	0.001992	
STORY8	Max Drift Y	WIND		0.002125
STORY7	Max Drift X	WIND	0.001863	
STORY7	Max Drift Y	WIND		0.001974
STORY6	Max Drift X	WIND	0.001686	
STORY6	Max Drift Y	WIND		0.001772
STORYS	Max Drift X	WIND	0.0014.53	
STORYS	Max Drift Y	WIND		0.001514
STORY4	Max Drift X	WIND	0.0011.58	
STORY4	Max Drift Y	WIND		0.001193
STORY3	Max Drift X	WIND	0.000791	
STORY3	Max Drift Y	WIND		0.000801
STORY2	Max Drift X	WIND	0.000335	
STORY2	Max Drift Y	WIND		0.000286

Foundation Considerations Overturning:

The increased design wind velocity results in an increased overturning moment. The current foundation would have to be altered, namely the number of piles supporting the shear walls. The overturning moments of the existing building are roughly 80,000 ft-k (between 2 wide frames) in one direction and 60,000 ft-k in the other (between 3 narrow frames). Overturning moments in the new structure are roughly 135,000 ft-k and 113,000 ft-k.

Other Considerations:

Other foundation changes would be needed to fully support the shear walls along their lengths. A foundation design for the new structure was beyond the scope of this project.

Construction Schedule & Cost Impact:

The First Albany Building took 24 months to build and cost roughly \$25 million (excluding design service and property costs). The original schedule was a rotating 5 week schedule per floor (generally speaking) and total construction time was projected at 26 months.

Taking into consideration the changes made through out this thesis project, the overall schedule was minimally affected. The same rotating 5 week schedule is projected to be sufficient. The original schedule was controlled by the time needed by the mechanical, electrical, and plumbing trades; roughly 5 weeks per floor level.

Construction of the concrete shear walls could be completed nearly in parallel with the structural steel erection. Shifting the shear wall construction phase (per floor) to slightly lead the steel erection phase would provide the time necessary to remove concrete formwork and allow the structural steel to be connected to the shear wall.

The building layout and size would allow for a single crane to operate from one location for the entire project, with the location depending on the exact site layout (property setbacks, surrounding space). A projected construction schedule can be found in Appendix I. Considerations specifically taken into account for creating the schedule include coordinating the three principle trades (MEP) in such a fashion that they aren't interfering in each other's work and which tasks/phases can be overlapped.

The projected schedule spans 26 months from breaking ground to installing the last outlet cover.

Construction Schedule & Cost Impact (Continued):

Considering a building that is identical to the First Albany Building except for the new structural system designed for a location in Charleston, the cost of the building is projected to increase. This is mainly due to the need for a more robust lateral structural system.

Switching to full composite action and choosing a thinner floor slab (decrease from 4.5" to 4") does reduce material costs, but is offset by extra labor required for shear stud connector installation. Labor costs remain unchanged for the slab since costs are based square footage rather than volume of concrete placed.

Overall Steel fabrication and erection costs for the floor system also remain relatively unchanged because the only factor that changed was raw tonnage of steel (same number of pieces, but smaller shapes).

Material:

Structural Steel (floor)	-117 (ton)	-\$110,500
Structural Steel (lateral)	-101.5 (ton)	-\$96,000
Slab Concrete	-293 (CY)	-\$23,500
Wall Concrete	+1500 (CY)	+\$120,000

Labor:		
Shear Stud Connectors	+9500 (EA)	+\$166,000
Structural Steel (lateral)	-101.5 (ton)	-\$256,000
Shear Walls (+forms & reinf)	+1500 (CY)	+\$600.000

Estimated Cost Difference:

Total +\$400,000

Charleston, SC

Conclusions:

This project was an excellent exercise in structural design.

Original Expectation:

- Design controlled by seismic forces

Incorporated Topics:

- Proper usage of computer modeling software (ETABS)
- Dynamic analysis
- Reinforced concrete design
- Composite steel & concrete design
- Earthquake resistant design

Outcomes:

- Design controlled by drift limitations (Wind)
- Strength controlled by wind forces in lower floors, seismic forces in upper floors.
- Thicknesses of 16" & 20" in each or the orthogonal directions
- Design could be used along much of the east coast
- Concrete reinforcement detailing mostly prescriptive

(can see reasoning for reinforcement requirements in many pictures from the recent earthquake in Haiti)

A very large Thank you to the people at Columbia Development Companies

Thank you to the Architectural Engineering faculty

And finally, a HUGE thank you goes to my wife, Courtney. Without her support and perseverance, none of this would have been possible.

Questions