CARDEROCK SPRINGS ELEMENTARY SCHOOL Bethesda, Maryland

Joe Hirsch | Construction Management | Dr. Magent

Presentation Outline

I. Project Overview
II. BIM 3D MEP Coordination
III. Relocation of Underground Storm Water Retention System (UGS)
IV. Solar Panel Analysis
V. Structural Analysis
VI. Conclusions
VII. Questions & Answers

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Project Overview

- Location: Bethesda, Maryland
- Owner: Montgomery County Public Schools
- CM @ Risk: Hess Construction + Engineering Services

Goal: Modernize Carderock Springs Elementary School

New Building is 80,121 ft²

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Building Systems	Cost	Cost/SF
General Conditions	\$1,665,420	\$20.79
Site Work	\$3,412,850	\$42.60
Concrete	\$1,044,350	\$13.03
Masonry	\$1,974,625	\$24.65
Structural	\$1,952,070	\$24.36
Moisture Protection	\$669,000	\$8.35
Carpentry	\$310,600	\$3.88
Openings	\$1,758,436	\$21.95
Finishes	\$871,828	\$10.88
Specialties	\$221,025	\$2.76
Equipment	\$236,390	\$2.95
Furnishings	\$101,000	\$1.26
Elevator	\$95,000	\$1.19
Mechanical	\$3,894,487	\$48.61
Electrical	\$1,303,550	\$16.27
Allowances	\$975,036	\$12.17
Total	\$21,304,667	\$265.91

Project Overview

COST AND SCHEDULE

- Approximate cost = \$21.3 Million GMP
- Construction Schedule is 20.5 Months
 Demolition Started October 2008
- Owner Receives Building July 7, 2010
 - Must complete for start of school year

CHEDULE SUMMARY													
tivity Name	Original Start Duration	Finish	Α	м	J	J	A	S	0	Ν	D	J	F
					ШП		ШТ				IIT		ШТ
Carderock Springs Elen	832 01-May-07	07-Jul-10	1	-			1						
HIRE ARCHITECT	0 01-May-07		1	∲ н	RE /	RC	ė́пте	ст					
SCHEMATIC DESIGN	134 14-May-07	15-Nov-07									SCH	EMA	TIC
DESIGN DEVELOPMENT	81 01-Nov-07	21-Feb-08									-		
CONSTRUCTION DOCS	114 22-Feb-08	30-Jul-08	1										
BID DAY	0 07-Oct-08		Γ.										
PROCUREMENT	203 08-Oct-08	17-Jul-09					1			2			
DEMOLITION	80 08-Oct-08	27-Jan-09											
EXCAVATION/UTILITIES	187 20-Nov-08	07-Aug-09					1			1			
SUBSTRUCTURE A	69 09-Mar-09	11-Jun-09											
GEOTHERMAL WELLS	129 26-Mar-09	22-Sep-09					1						
SUBSTRUCTURE B	85 10-Apr-09	06-Aug-09											
SUPERSTRUCTURE A	30 12-Jun-09	23-Jul-09	1										
SUPERSTRUCTURE B	41 17-Jul-09	11-Sep-09					1						
DECKING & SOD A	31 17-Jul-09	28-Aug-09											
DECKING & SOD B	34 20-Aug-09	06-Oct-09		-			1						
ENCLOSURE	144 25-Aug-09	12-Mar-10	1				2			1			
ROUGH INS A	115 00-3ep-09	10-Feb-10					1						
ROUGH INS B	109 23-Oct-09"	24-Mar-10					2						
FINISHES A	127 11-Nov-09*	06-May-10	1										
FINISHES B	85 27-Jan-10*	25-May-10					1						
WATERTIGHT	0	12-Mar-10					1						
FINAL PAVE/LANDSCAPE	38 01-Apr-10*	24-May-10											
FINAL INSPECTIONS/START-UP	21 04-May-10"	01-Jun-10					1						
PUNCHLIST A	22 07-May-10*	07-Jun-10	1										
PUNCHLIST B	22 24-May-10"	22-Jun-10	1				1			1			
GAS OFF PERIOD	11 23-Jun-10"	07-Jul-10	1										
	-		1										

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Project Overview

- BUILDING SYSTEMS
 - Steel Superstructure
 - Shallow Footing Substructure (strip and pier footings)
 - 2-3 Stories
 - Geothermal heating & cooling
 - 120 Wells @ 520' Deep
 - Primarily Masonry Façade w/ CMU backup
 - Attempting LEED Silver Certification

Geothermal Drilling and Trenching

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
 IV. Solar Panel Analysis
 V. Structural Analysis

- VI. Conclusions
- VII. Questions & Answers

BIM PROJECT EXECUTION PLANNING GUIDE VERSION 1.0 1 CII : CII Computer integrated T HALL

	Analysis 1 – BIM 3D MEP Coordination	
🛠 Goa	als of Analysis	What is BII
1.	Review Carderock's 2D Coordination Process	• "Process
2.	Overview of General Plan for Implementation of 3D MEP Coordination @ Carderock	during the conflicts b – PSU CIC
3.	Assess Potential Advantages/Disadvantages of 3D MEP Coordination Process	• "The goa prior to ir
		phorito

IM and 3D MEP Coordination?

s in which Clash Detection software is utilized e coordination process to determine field by comparing 3D models of building systems."

bal is to eliminate the major system conflicts nstallation." – PSU CIC

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

- Analysis 1 BIM 3D MEP Coordination
- 2D Coordination Process @ Carderock
 - Separated by Area and Floor Level
 - Meeting for each separate area
 - Coordination through Intuition and Experience
 - 3-4 Weeks Coordination Cycle per Area
 - Project Manager noted majority of time spent on Change Order Management
 - Change Order Process Approximately 1-2 months

Analysis 1 – BIM 3D MEP Coordination

- ✤ 3D MEP Coordination Process w/ CM @ Risk Delivery
 - Prequalify Contractors based on capabilities
 - CM Creates Contract Specific 3D Modeling Requirements
 - Must define who will model, what to model, level of detail, and software compatibility requirements
 - Contractors: Create Models, Upload to FTP,
 - CM: Integrate Model, Run Clash Detection, Distribute Reports
 - Meetings to crease solutions to conflicts

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Analysis 1 – BIM 3D MEP Coordination

- 3D MEP Considerations if Implemented @ Carderock
 - What trades?
 - What are the trades capabilities?
 - When to start coordination process?

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

- Trades
 - Steel
 - Mechanical/HVAC
 - Plumbing
 - Electrical
 - Fire Protection

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Analysis 1 – BIM 3D MEP Coordination

- Potential Advantages of 3D MEP Coordination
 - •Decrease Change Orders & cost increases
 - Decrease amount of RFI's
 - Increase Potential for Prefabrication
 - Increase Overall Productivity
 - Decrease Schedule
 - Automated Process

Potential Disadvantages and Resistance to 3D MEP Coordination

- Learning Curve
- Team Commitment
- Cost of Initial Investment
- Lack of Resources

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Analysis 2 – Relocation of UGS

- Background of Analysis
 - Superintendent identified current location restricting to site Utilization in Area B
 - Potential for Schedule Acceleration
 - Potential for More Parking and on-site Material Storage

Analysis 2 – Relocation of UGS

- New Location Site Analysis
 - Current Location at High Site Elevation
 - Requires Deeper Elevation for Correct Inverts
 - Excavation was approx 25'-30' deep
 - New Location would require only 10' excavation

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Analysis 2 – Relocation of UGS

- Results of New Location
 - Save about \$5,000 in excavation Costs
 - Better Site Utilization Close to Area B
 - Ability to Create Additional Parking

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

SUMP PAT

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Analysis 2 – Relocation of UGS

- Schedule Acceleration Analysis
 - By moving UGS, work on Substructure B can begin simultaneously with Substructure A
 - Saves about 20-30 Work Days on Critical Path
 - General Conditions Savings of about \$94,000
 - Reduces schedule by about 9.1%
- Management Considerations
 - Addition of an Assistant Superintendent
 - Materials Procurement & Supply Chain
 - Additional Crews Needed
 - Quality Control and Concrete Testing

ty Name	Öriginal	Clark	Finish		NCJEMAMJJASCNDJE	NAME IN A SIG	
y roanne	Duration	and the	rinan -			MANJJASO	
Project: Carderock Spr	832	01-May-07	07-Jul-10			97-Jul-1	
HIRE ARCHITECT	0	01-May-07		ME ARCHITEOT			
SCHEMATIC DESIGN		14-May-07	15-Nev-07	SCHEMATIC DESIGN			
DESIGN DEVELOPMENT		01-Nov-07	21-Feb-08	DESIGN DEVELOPM	ENT		
CONSTRUCTION DOCS		22-Feb-08	30-Jul-08		RUCTION DOCS		
BID DAY		07-Oct-08			ID DAY		
DEMOLITION	80	08-0:5-08	27-Jen-09		6ESIOLITION		
PROCUREMENT	203	08-0::508	17-Jul-09	1	PROCUREMENT		
			07-10-100				
SUBSTRUCTURE A	69	09-Mar-09	11-Jun-09		SUBSTRUCTURE A		
GEOTHERMAL WELLS	129	28-Mar-09	22-Sep-09		GEOTHER	MAL WELLS	
SUBSTRUCTURE B	85	10-Apr-09	06-Aug-09			REB	
SUPERSTRUCTURE &	30	12, lun,09	23,04,09		SIPERSTRUCT	IRE C	
SUPERSTRUCTURE B		17-Jul-09	11-Sep-09		SUPERSTR		
DECKING & SOD A		17-Jul-09	28-Aug-09		ECKING &		
DECKING & SOD B		20-Aug-09	06-0ct-09		рескиха		
ENCLOSURE		25-Aug-09	12-Mar-10			⇒ jenic¢ojsukrej i	
ROUGH INS A		08-Sep-09	15-Feb-10			ROUGH INSIA	
ROUCH INS B		23-Oct-091	24-Mar-10			🚍 HobaH insi B	
FINISHES A		11-Nov-09*	06-May-10			FISISHES A	
FINISHES B		27-Jan-10*	25-May-10			1: FINISHES E	
WATERTIGHT	0		12-Mar-10			 WATERINGHT 	
FINAL PAVEILANDSCAPE		01-Apr-101	24-May-10			PINAL PAVE	
FINAL INSPECTIONS/START-UP		04-May-10*	01-Jun-10			EINALINS	
PUNCHLIST A		07-May-10*	07-Jun-10			📫 РОМАНИЯ	
PUNCHLIST B GAS OFF PERIOD		24-May-10* 23-Jun-10*	22-Jun-10 07-Jul-10			PUNCHL	
TURNOVER DUILDING	11	23-Jun-10*	07-Jul-10			 B SAS DF TURNO 	
TOTINOVELEDUIEDING	0		07-261-10			1 1 1 in troimio	
OUTION				00	08-Oct-08	27-120-09	
DUITION				60	US-COCHUS	275340-09	-
			-				-
AVATION/U	THE	TIES		187	20-Nov-08	07-Aug-09	
			10 C	101	201101-00	arring as	
STRUCTUR	ΕA			69	09-Mar-09	11-Jun-09	
	_						
THERMAL	1/51	10		129	26-Mar-09	22-Sep-09	
THERMAL	VEL	Lo		129	20-mar-09	22-Seb-0a	
	-						
STRUCTUR	EΒ			85	10-Apr-09	06-Aug-09	
	-						1
ERSTRUCT	100			30	12-Jun-09	23-Jul-09	
COLOR CUC I				30	12-301-09	23-30-09	
	-						
		-					- 12
ERSTRUCT		-		41	17-Jul-09	11-Sep-09	

31 17-Jul-09

28-Aug-09

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Analysis 2 – Relocation of UGS

- Summary of UGS Relocation
 - More room for materials and parking
 - Opportunity to Decrease Schedule by 9.1% or 20-30 Days
 - More Supervision Needed for Quality Control & Coordination

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)

IV. Solar Panel Analysis

- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Analysis 3 – Addition of Solar Panels (Elec. Breadth)

- Background of Analysis
 - Carderock striving to achieve LEED Silver from USGBC
 - MCPS District dedicated to Sustainable Buildings
 - Offset electrical Consumption
 - Energy Prices are on the Rise
- Goals of Analysis
 - Maximize Solar Energy Generation with available Roof Space

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Analysis 3 – Addition of Solar Panels

- Product Selection
 - •Solyndra SL-001-191 Solar Panel
 - •Cylindrical In Shape Collects Direct, Indirect, and Reflected Light
 - •Takes Advantage of the white "cool roof" @ Carderock
 - Requires little structural considerations no protrusions through roof
 - •Weighs 68lb making installations easier

Product Specifications Electrical Data Measured at Standard rest Conditions (STC) irradiance of 1000 W/m², air mass 1.5, and cell temperature 25° C Model Number 0.001137

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)

IV. Solar Panel Analysis

- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

- LEED Design Considerations
 Potentially Can add 2-7 credits in "Optimizing Energy Performance"
 - Possibly can push rating to LEED Gold

Analysis 3 – Addition of Solar Panels

Design

- Determine Available Roof Space
- Amount of Panels Used is 990 Panels
 - 660 Panels on A
 - 330 Between B & Gym
- Three Arrays of 330 Panels will be used
 - PVPowered 75 kW inverter for each array
 - 66 Parallel Strings of 5 Panels
- Amtec Solar Combiner Used to group strings together
 - Max Load = 36 strings @ 540 A
 - 2 Combiners Per Array of 330 Panels
- #2 AWG Conductor used to carry load to Electrical Room
 - Rating of 106.6A
 - Carried in ½" EMT

Analysis 3 – Addition of Solar Panels

Output and Payback

ENERGY OUTPUT AND COST DATA Number Energy Panel Adj. for Adj. for Energy Days in Insolation Energy Inverter of Month Output Roof Output Cost Month Value Rates PTC (W) Reflectivity Efficiency Panels (kWh) Savings 1.87 180 0.95 0.96 990 9,814 \$1,344 \$0.137 January 31 \$0.137 0.95 February 28 2.61 180 0.96 990 12,372 \$1,695 31 3.58 \$0.137 180 0.95 0.96 990 18,788 \$2,574 March April 30 4.61 \$0.137 180 0.95 0.96 990 23,413 \$3,208 0.95 31 5.27 \$0.137 180 0.96 990 27,657 \$3,789 May 30 5.75 0.95 0.96 June \$0.137 180 990 29,203 \$4,001 July 31 5.65 \$0.137 180 0.95 0.96 990 29,651 \$4,062 31 5.08 \$0.137 180 0.95 0.96 990 26,660 \$3,652 August 30 4.11 \$0.137 180 0.95 0.96 990 20,873 \$2,860 Septembe 31 3.14 \$0.137 180 0.95 0.96 990 16,479 \$2,258 October 30 2.10 \$0.137 180 0.95 0.96 990 10,665 \$1,461 November 31 1.64 \$0.137 180 0.95 0.96 990 8,607 \$1,179 December Totals: 234,181 \$32,083

	COST AND PAYBACK								
Cost/W (Installed)	Total Output STC (W)	Additional Project Cost	Federal Gov. Tax Incentive (30%)	Adjusted Cost	Yearly Savings	Payback (Years)			
\$7.00	187,180	\$1,310,260	\$393,078	\$917,182	\$32,083	28.6			
\$6.00	187,180	\$1,123,080	\$336,924	\$786,156	\$32,083	24.5			
\$5.00	187,180	\$935,900	\$280,770	\$655,130	\$32,083	20.4			

I. Project Overview

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

National Center for Education Statistics study in 1998 reported that a public educational facility stands for 42 Years

Recommendation & Conclusions • Approx. \$32,000 saved annually on energy Costs • Simple Payback between 21-29 Years less than Building lifetime of 42 Years • Feasible if Budget Allows Initial Investment

- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Analysis 4 – Structural Change

- Background of Analysis
 - Gym and Multipurpose Room have Load Bearing Concrete Masonry Unit Walls
 - •Steel truss rest on the walls
 - •Multiple Contractors Rely on Each Other
- Goals of Analysis
 - Change system to Steel columns and beams
 - Minimize Risks to Critical Path
 - Increase Constructability

Analysis 4 – Structural Change

Design & Layout

• Load and Resistance Factored Design (LRFD)

🛠 GYM

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Multipurpose Room

Analysis 4 – Structural Change

		Original			Re	design			
			General	Masonry		Steel	General	Percent	Total
Room	Material	Labor	Cond.	Material	Labor	Mat. + Install	Cond.	Difference	Savings
Gym	\$30,550	\$57,200	\$52,860	\$18,135	\$41,548	\$20,187	\$21,144	50.28%	\$39,596
MPR	\$45,947	\$86,029	x	\$26,021	\$61,485	\$28,647	x	12.75%	\$15,824
Totals	\$76,497	\$143,229	\$5 <i>2,8</i> 60	\$44,156	\$103,033	\$48,834	\$21,144	22.63%	\$55,420

Cost and Schedule Analysis

Notes: Multipurpose room not on the Critical Path, therefore no G.C. savings

General Conditions derived from actual budget in General Conditions Estimate section of report

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Poom	Original	New	Work Days Saved
loom	Duration	Duration	WORK Days Saveu
Gym	20	8	12
MPR	10	6	4

Note: Only Gym on the Critical Path

Original Project Finish: July 7,2010 New Project Finish: June 21, 2010

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusion
- VII. Questions & Answers

CONCLUSIONS

- BIM 3D MEP COORDINATION
 - Decrease Change Orders
 - Increase Productivity
- ✤ RELOCATE UNDERGROUND STORM RETENTION SYSTEM
 - Save 20-30 Days on Critical Path
 - \$94,000 General Conditions Savings
- ADDITION OF SOLAR PHOTOVOLTAIC PANELS
 Offsets \$32,000 on Energy Bill Annually
- CHANGE STRUCTURAL SYSTEM IN GYM & MPR
 - Saves \$55,000
 - Decrease Schedule by 12 days

Questions

- My Parents
- Meghan
- Buck

- I. Project Overview
- II. BIM 3D MEP Coordination
- III. Relocation of Underground Storm Water Retention System (UGS)
- IV. Solar Panel Analysis
- V. Structural Analysis
- VI. Conclusions
- VII. Questions & Answers

Acknowledgements

All of my friends

Penn State Faculty & Thesis Advisors Bryan Bailey, Hess Construction + Engineering Services Dave Gauthier, Hess Construction + Engineering Services Kristin DiStefano, Hess Construction + Engineering Services Kassia Aaron, Hess Construction + Engineering Services Montgomery County Public Schools BeeryRio Architect + Interiors