Columbia University Northwest Science Building

New York, NY

Jonathan R. Torch
Structural Option
B.A.E/M.A.E Candidate
Faculty Advisor: Dr. Ali Memari
Northwest Science Building – Location

- Located at the Corner of Broadway & West 120th Street, New York, NY
- 13,000 square feet lot size
- Adjacent to Columbia University’s Chandler Hall and Pupin Physics Laboratories.
- Building contains a 126-foot clear span over an existing structure, the Dodge Physical Fitness Center.
Northwest Science Building – Statistics

- **Location & Site:** Broadway & 120th Street, New York, NY
- **Building Occupant Name:** Columbia University
- **Function Type:** Educational
- **Size:** 188,000 Square Feet
- **Number of Stories:** 14 Stories Above Grade
- **Height:** 239' 4"
- **Construction Dates:** March 2007 – October 2010
- **Cost:** $250,000,000 (Total Construction Cost)
- **Project Delivery Method:** Design-Bid-Build

Architect
- **Role:** Structural/MEP/Fire Engineers
- **Location:** 155 Avenue of the Americas, New York, NY 10012

General Contractor:
- **Role:** Turner Construction
- **Location:** 375 Hudson Street, New York, NY 10014

Conclusion
- **Role:**
 - General Contractor
 - Structural/MEP/Fire Engineers
 - Associate Project Managers
 - Design-Bid-Build

Thesis Abstract
- **Location:** Engr. Unit A (across from Room 194)
- **Copies Also Upfront**
Northwest Science Building – Structure

- Composite Steel Frame Design
 - Concrete Slab & Metal Decking Sheared to Beam Members
- All Columns are W14's
- Lateral System Contains the following:
 - Horizontal HSS Shaped Girt Members
 - Concentric Braced Frames (Wide Flanges)

Thesis Abstract
- Located in Eng. Unit A
 - across from Room 104
- Copies Also Upfront
Thesis Proposal

Structural Depth
- Calculation of Wind Forces for Miami, FL
- Analyze Existing Lateral System for Miami, FL
- Redesign and Analyze Lateral System

Building Enclosure Breadth
- Perform R-value, Condensation, and Air Leakage Analyses
- Modify Curtain Wall for Miami, FL

Architectural Breadth
- Research Miami, FL Architecture
- Redesign Exterior Architecture for Miami, FL
Goals – Based on Relocation of Building to Miami, FL

- Redesign building's lateral system to meet code requirements.
- Provide analysis of lateral system through means of ETABS and hand calculations.
- Research, analyze, and modify building enclosure appropriately for water condensation and heat transmission concerns.
- Redesign exterior architecture of building.
Determination of Wind Forces for Miami, FL

- Determine Wind Forces using ASCE 7-05 Method 2 – Analytical Procedure.
- Base Shear Increased by 2600 kips (East-West Direction)
- Base Shear Increased by 418 kips (North-South Direction)

Comparison of Base Shears (NYC vs. Miami)

<table>
<thead>
<tr>
<th></th>
<th>Base Shear (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miami, FL</td>
<td>1400</td>
</tr>
<tr>
<td>New York, NY</td>
<td>982</td>
</tr>
</tbody>
</table>

-EXISTING
-THESIS PROPOSAL
-GOALS
-EXISTING LATERAL
-LATERAL REDESIGN
-BUILDING ENCLOSURE
-ARCHITECTURE
-CONCLUSION
Existing Lateral Analysis for Miami, FL

- Main Wind Force Resisting System – Method 2 – Design Wind Load Cases Used
- Governing Wind Case Determined for Each Frame

Comparison of Max Wind Drifts - NYC vs. Miami

Wind Case 1
Wind Case 2
Wind Case 3
Wind Case 4

Allowable Drift
H/400 = 6.78 in.

Existing Lateral System Failed Most Drift, Story Drift & Strength Checks
System Acceptable for Overturning Moment Calculations
My Lateral Redesign for Miami, FL

Strength Requirements Checked for Bracing & Columns:
- Available Compressive Strength (Φ_cP_n)
- Local Buckling
- Effective Length and Bracing Slenderness
- Available Strength in Axial Tension (Φ_tP_n)

Strength Requirements Checked for Participating Beam Members:
- Available Compressive Strength (Φ_cP_n)
- Available Strength in Axial Tension (Φ_tP_n)
- Shear Capacity/Transfer at Joints

Load Combinations Critical for Design of Members:
- $1.2(\text{Dead}) + 1.6(\text{Wind}) + 1.0(\text{Live})$
- $0.9(\text{Dead}) + 1.6(\text{Wind})$
My Lateral Redesign for Miami, FL

- Existing Building Drift (Miami, FL) – 14.09 Inches (East-West Direction)
- Redesigned Building Drift (Miami, FL) – 6.77 Inches (East-West Direction)

- Existing Building Drift (Miami, FL) – 2.16 Inches (North-South Direction)
- Redesigned Building Drift (Miami, FL) – 1.20 Inches (North-South Direction)

- North-South Direction Lateral System Redesign
 - Not as critical as East-West Direction
 - Larger member sections provided where needed. (small occurrence)

- Redesigned Lateral System Meets Drift, Story Drift, & Strength Requirements
- Redesign Acceptable for Overturning Moment Calculations

Allowable Drift
H/400 = 6.78 in.
My Lateral Redesign for Miami, FL

Lateral Steel Tonne:
- Existing Lateral Bracing – 50.38 Tons (East-West Direction)
- Redesigned Lateral Bracing – 122.32 Tons (East-West Direction)

Increase of 72 Tons

Bare Material Costs:
- Existing Lateral Bracing – $163,000 (East-West Direction)
- Redesigned Lateral Bracing – $368,000 (East-West Direction)

Increase of $205,000
Building Enclosure Breadth

Building Enclosure Breadth Goals

- Perform R-value, condensation, and air leakage analyses of curtain wall system for Miami, FL.
- Design for ASHRAE climate recommendations.
- Perform bare material cost analysis.

Wall Section

- Aluminum Cladding
- Cavity (1/2")
- Foamglass Insulation
- Vapor & Air Barriers
- 5 Inch Precast Face Seal
Building Enclosure Breadth

R-Value Analysis
- Decrease in insulation layer (due to Miami’s warmer climate)
- R-Value of Existing Wall System (21.23)
- R-Value of Redesign Wall System (13.53)

Condensation Analysis
- Decrease in insulation layer checked for condensation concerns.
- Dew points occur on outside of water vapor barrier — ACCEPTABLE
Building Enclosure Breadth

ASHRAE R-Value Recommendations

- Climate Zone 4 (New York, NY)
 - Walls R-Value of 22.5
- Climate Zone 1 (Miami, FL)
 - Walls R-Value of 13.5

- R-Value Provided in Wall Redesign is 13.53 - ACCEPTABLE

ASHRAE Climate Zone 4
New York, NY

ASHRAE Climate Zone 1
Miami, FL
Building Enclosure Breadth

Air Leakage Analysis – (New York, NY versus Miami, FL)
• Large difference in energy loss due to air leakage during the winter.
• 184,000,000 BTUs/Year Difference (New York, NY Greater Energy Loss)
• Equivalent to burning approximately 200,000 gallons of natural gas.
• Analysis supports reduction in insulation layer for Miami, FL.

Bare Material Cost Analysis – (RS Means)
• $185,900 bare material cost savings due to reduction in insulation layer.
Architectural Breadth

Architectural Breadth Goal

• Redesign building exterior appearance to be representative of Miami architectural culture.

 o Mediterranean Revival Style
 o Art Deco Style
 o Streamline Modern Style

US Bacardi Headquarters – Miami, FL
Streamline Modern Style
• Natural Forms
 • Pronounced Vertical Features

Freedom Tower – Miami, FL
Mediterranean Revival Style
• Stucco Color Wall

Park Central Hotel – Miami, FL
Art Deco Style
• Symmetrical Massing
 • Geometric Patterns

Miami architectural culture.

- Mediterranean Revival Style
- Art Deco Style
- Streamline Modern Style

EXISTING
THESIS PROPOSAL
GOALS
EXISTING LATERAL
LATERAL REDESIGN
BUILDING ENCLOSURE
ARCHITECTURE
CONCLUSION

ARCHITECTURE
CONCLUSION

THE PENNSYLVANIA STATE UNIVERSITY
Architectural Breadth

Proposed Architecture – North Façade
- Aluminum Cladding Coloring (Yellow-Bronze & Gray)
 - Diamond Color Pattern Exemplifies Lateral Exterior Frame
 - Color Cladding Represents Art Deco Style Architecture

Existing North Façade
- Park Central Hotel – Miami, FL
 - Art Deco Style

North Façade Redesign
- Clear Glass with Clear Anodized Backpan Shadowbox
- Aluminum Clad Curtain Wall Panels (Gray)
- Painted CMU

Existing North Façade
- Clear Glass with Clear Anodized Backpan Shadowbox
- Aluminum Clad Curtain Wall Panels (Yellow-Bronze)
Proposed Architecture – South Façade
- Aluminum Cladding Coloring (Yellow-Bronze & Gray)
 - Diamond Color Pattern Exemplifies Lateral Exterior Frame
 - Color Cladding Represents Art Deco Style Architecture

Existing South Façade

Architectural Breadth

South Façade Redesign

Clear Glass with Clear Anodized Backpan

Aluminum Cladded Curtain Wall Panels (Yellow-Bronze)

Painted CMU

Park Central Hotel – Miami, FL
Art Deco Style
Architectural Breadth

Proposed Architecture – West Façade
- Aluminum Cladding (Yellow-Bronze) Wrapped at Corner
- Façade Design Inspired by Sailboat (Miami Culture)
Architectural Breadth

Proposed Architecture – East Façade

- Aluminum Cladding (Yellow-Bronze) Wrapped at Corner
- Façade Design Inspired by Sailboat (Miami Culture)
Architectural Breadth

Architectural Breadth Conclusions
- Design Incorporates Mix of Miami Modern Architectural Styles
 - Mediterranean Revival
 - Art Deco
 - Streamline Modern
Senior Thesis Conclusions

Lateral System Redesign for Miami, FL Winds
- Miami Wind Force Calculations
- ETABS Model Assistance
- Drift, Story Drift, Strength, and Overturning Moment Checks
- $205,000 Steel Bare Material Additional Cost

Building Enclosure Modified for Miami, FL Climate
- Reduction in Insulation Layer (4" to 2.5")
- $185,900 Bare Material Cost Savings

Exterior Architecture Redesign for Miami, FL
- Includes Elements of Mediterranean Revival, Art Deco, & Streamline Modern Architectural Styles

Proposed Goals:
- Redesign building's lateral system to meet code requirements.
- Provide analysis of lateral system through means of ETABS and hand calculations.
- Research, analyze, and modify building enclosure appropriately for water condensation and heat transmission concerns.
- Redesign exterior architecture of building.
Thank You

Thesis Advisor
Dr. Ali Memari

Thesis Course Administrators
Professor Parfitt
AE Advisor
Dr. Linda Hanagan

Turner Construction
Charles Whitney
Ildar Istariki

ARUP
Joshua Yacknowitz

AE Faculty
AE Classmates
Family & Friends

Columbia University Northwest Science Building
New York, NY

Jonathan R. Torch
Structural Option
B.A./M.A.E Candidate
Faculty Adviser: Dr. Ali Memari