PRESENTATION OUTLINE

- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
 - Variable Primary Flow (MAE)
 - Latent Thermal Storage (MAE)
- Construction Breadth – Thermal Storage Changes
- Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements
BUILDING INFORMATION

Project Information

- **Size**: 133,847 Square Feet
- **Stories**: 5 Stories Above Grade
- **Level**: 6th-Level Mechanical Penthouse
- **Basement**: Partial Basement
- **Occupancy**: Educational & Research Laboratory
- **Cost**: $52.1 million
- **Schedule**: October 2009 - July 2011
- **Delivery Method**: Design-Bid-Build

Architecture

- LEED Gold Certification
- 5-Story Bio Wall
- 240-Seat Auditorium
- Laboratories & Science Classrooms
- Ground Floor Café
- Recycled Stone Exterior Cladding

PROJECT TEAM

- **Owner**: Information not for Publication
- **Architect**: Diamond + Schmitt Architects, Inc.
- **Associate Architect**: H2L2 Architects & Planners, LLC
- **General Contractor**: Turner Construction Company
- **MEP Engineer**: Crosse Engineering, Ltd.
- **MEP Engineer**: Spotts, Stevens, & McCoy, Inc.
- **Structural Engineer**: Halcrow Yolles Ltd.
- **Associate Structural Engineer**: Keast & Hood Co.
- **Civil/Landscape**: Stantec Consulting Services, Inc.

PRESENTATION OUTLINE

- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
 - Variable Primary Flow (MAE)
 - Latent Thermal Storage (MAE)
- Electrical Breadth - Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements
PRESENTATION OUTLINE

- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
 - Variable Primary Flow (MAE)
 - Latent Thermal Storage (MAE)
- Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements

EXISTING MECHANICAL SYSTEMS

- **9 Air Systems**
 - VAV Systems w/ Hydronic Reheat
 - (4) Laboratory – 100% OA w/ Runaround Heat Recovery
 - (4) Offices/Classrooms/Atrium
- CAV System
 - (1) Electrical & Data Closets

Run-Around Heat Recovery Coil Schematic
PRESENTATION OUTLINE
• Building Information
• Existing Mechanical Systems
• Building Energy Consumption
• Re-Design Goals
• Mechanical Upgrades
 • Variable Primary Flow (MAE)
 • Latent Thermal Storage (MAE)
• Electrical Breadth – Solar Photovoltaic System
• Conclusion & Summary
• Acknowledgements

EXISTING MECHANICAL SYSTEMS

• 9 Air Systems
 • VAV Systems w/ Hydronic Reheat
 • (4) Laboratory – 100% OA w/ Runaround Heat Recovery
 • (4) Offices/Classrooms/Atrium
 • CAV System w/ Hydronic Reheat
 • (1) Electrical & Data Closets

• Chilled Water System
 • (2) 620-ton Centrifugal Water-Cooled Chillers
 • (2) 620-ton Direct, Induced Draft Cooling Towers
 • Primary/Secondary Pumping System

Primary/Secondary Chilled Water System
PRESENTATION OUTLINE
• Building Information
• Existing Mechanical Systems
• Building Energy Consumption
• Re-Design Goals
• Mechanical Upgrades
 • Variable Primary Flow (MAE)
 • Latent Thermal Storage (MAE)
• Electrical Breadth – Solar Photovoltaic System
• Conclusion & Summary
• Acknowledgements

EXISTING MECHANICAL SYSTEMS

• 9 Air Systems
 • VAV Systems w/ Hydronic Reheat
 • (4) Offices/Classrooms/Atrium
 • CAV System w/ Hydronic Reheat
 • (1) Electrical & Data Closets

• Chilled Water System
 • (2) 620-ton Centrifugal Water-Cooled Chillers
 • (2) 620-ton Direct, Induced Draft Cooling Towers
 • Primary/Secondary Pumping System

• Hot Water System
 • 200 psig District Steam Supply
 • Two Pressure Reducing Stations to 12psig
 • (2) 5105 lb/hr HXs – 30% Glycol 180°F
 • (2) 4500 lb/hr HXs – Water at 180°F

Steam Distribution System
Building Energy Consumption

<table>
<thead>
<tr>
<th>Function</th>
<th>Electricity (kWh)</th>
<th>Steam (kBtu)</th>
<th>kBtu/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Heating</td>
<td>-</td>
<td>4,537,606</td>
<td>4548466</td>
</tr>
<tr>
<td>Chiller Energy</td>
<td>349,031</td>
<td>-</td>
<td>1191243</td>
</tr>
<tr>
<td>Cooling Tower</td>
<td>121,524</td>
<td>-</td>
<td>414761</td>
</tr>
<tr>
<td>Condenser Pump</td>
<td>147,250</td>
<td>-</td>
<td>502564</td>
</tr>
<tr>
<td>HVAC Fans</td>
<td>561,366</td>
<td>-</td>
<td>191542</td>
</tr>
<tr>
<td>HVAC Pumps</td>
<td>67,930</td>
<td>-</td>
<td>231845</td>
</tr>
<tr>
<td>Lighting</td>
<td>368,045</td>
<td>-</td>
<td>1256137</td>
</tr>
<tr>
<td>Receptacle Loads</td>
<td>1,375,321</td>
<td>-</td>
<td>4693970</td>
</tr>
<tr>
<td>Total Consumption</td>
<td>2,993,701</td>
<td>4,537,606</td>
<td>14755108</td>
</tr>
</tbody>
</table>

Annual Building Energy Consumption

- **Primary Heating**: 31%
- **Chiller Energy**: 8%
- **Cooling Tower**: 3%
- **Condenser Pump**: 3%
- **HVAC Fans**: 13%
- **HVAC Pumps**: 2%
- **Lighting**: 8%
- **Receptacle Loads**: 32%

- **Total Consumption**: 100%

PRESENTATION OUTLINE

- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
 - Variable Primary Flow (MAE)
 - Latent Thermal Storage (MAE)
- Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements
MECHANICAL RE-DESIGN GOALS

● Overall Goals
 ● Minimize Maintenance
 ● Reduce Emissions
 ● Reduce Costs – Capital & Operating

● Evaluation
 ● Electrical Bills
 ● Life Cycle Cost
 ● Emissions Impact
VARIABLE PRIMARY FLOW SYSTEM (MAE)

Immediate Benefits
- Fewer Pumps
- Less Pumping Energy
- Reduced Annual Electrical Consumption
- Low ΔT Tolerance

Drawbacks
- Control Stability & Reliability
- Open Loop Control Based on Inlet temperature
- Variable Flow Chiller Capability
- New Chillers can Handle ΔV
- Typically Overhyped
- Proven with Parametric Study
Original Primary/Secondary System

• Primary Pumps – Bell & Gossett 1510-3BC
 ▪ (2) Duty Pumps + (1) Standby Pump
 ▪ 50 ft Head
 ▪ 15 HP
 ▪ 625 GPM
 ▪ $\eta_{\text{Primary Pump}} = 73\%$
 ▪ $\eta_{\text{Motor}} = 95\%$

$WHP = \frac{(Q \times H)}{(3960 \times \eta_{\text{Primary}})}$

$kW = 0.746 \times \frac{WHP}{\eta_{\text{Motor}}} = 8.5kW$
Original Primary/Secondary System

- **Secondary Pumps** – Bell & Gossett 1510-4BC
 - (2) Duty Pumps + (1) Standby Pump
 - \(H_{\text{secondary}} = f(Q_{\text{Actual}}, N_{\text{Actual}}) \)
 - \(P_{\text{Nameplate}} = 15 \text{ HP} \)
 - \(Q_{\text{Design}} = 625 \text{ GPM} \)
 - \(\eta_{\text{Secondary Pump}} = f(Q_{\text{Actual}}, N_{\text{Actual}}) \)
 - \(\eta_{\text{Motor}} = f(P_{\text{Shaft}}, P_{\text{Nameplate}}) \)
 - \(\eta_{\text{VFD}} = f(N_{\text{Actual}}, N_{\text{Secondary}}) \)
 - \(H_{\text{system}} = H_{\text{fixed}} + (H_{\text{Design}} + H_{\text{fixed}}) Q_{\text{Actual}}/Q_{\text{Design}} \)
 - \(\text{WHP} = (Q_{\text{Actual}} \times H_{\text{system}})/(3960 \times \eta_{\text{Secondary}}) \)
 - \(kW = 0.746 \times \text{WHP}/(\eta_{\text{Motor}} \times \eta_{\text{VFD}}) \)
VARIABLE PRIMARY FLOW SYSTEM (MAE)

Variable Primary Flow System

- **Secondary Pumps** – Bell & Gossett 1510-3G
 - (2) Duty Pumps + (1) Standby Pump
 - \(H_{\text{system}} = H_{\text{fixed}} + \left[H_{\text{Design}} + H_{\text{fixed}} \right] \frac{Q_{\text{Actual}}}{Q_{\text{Design}}} \)
 - \(H_{\text{primary}} = H_{\text{fixed}} + \left[H_{\text{Design}} + H_{\text{fixed}} \right] \frac{Q_{\text{Actual}}}{Q_{\text{Design}}} \)
 - \(W_{\text{HP}} = \frac{Q_{\text{Actual}} \times H_{\text{System}}}{3960 \times \eta_{\text{Secondary}}} \)
 - \(kW = 0.746 \times W_{\text{HP}} \div \eta_{\text{Motor}} \)
Variable Primary Flow System

- **Secondary Pumps – Bell & Gossett 1510-4GB**
 - 30HP Motor
 - $\eta_{\text{Design Flow}} = 68\%$
 - $\eta_{150 \text{ GPM}} = 45\%$

- **Bell & Gossett 1510-3G**
 - 25HP Motor
 - $\eta_{\text{Design Flow}} = 80\%$
 - $\eta_{150 \text{ GPM}} = 58\%$

- **B&G 1510-4GB**

- **B&G 1510-3G**

PRESENTATION OUTLINE

- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
 - Variable Primary Flow (MAE)
 - Latent Thermal Storage (MAE)
- Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements
Presentation Outline

- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
 - Variable Primary Flow (MAE)
 - Latent Thermal Storage (MAE)
- Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements

Variable Primary Flow System (MAE)

VPF vs. P/S Energy Consumption

![Graph showing annual consumption kWh for P/S System, VPF - 3G, and VPF - 4GB.]

Chilled Water Pumping Configuration

![Graph showing percentage of hours exceeded per year.]

Cooling Water Flow Demand

- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
 - Variable Primary Flow (MAE)
 - Latent Thermal Storage (MAE)
- Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements
VARIABLE PRIMARY FLOW SYSTEM (MAE)

VPF vs. P/S Cost Analysis
- Lower First Cost – 3 Fewer Pumps
- Larger VFD Replacement costs
- Lower Electricity Costs
- 30-Year Cost Savings of $46,069.00

Annual Consumption Cost Breakdown

<table>
<thead>
<tr>
<th></th>
<th>P/S System</th>
<th>VPF - 3G</th>
<th>VPF - 4GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Consumption (kWh)</td>
<td>77154.67</td>
<td>54529</td>
<td>44910</td>
</tr>
<tr>
<td>Savings over P/S (kWh)</td>
<td>-</td>
<td>22626</td>
<td>32245</td>
</tr>
<tr>
<td>Savings Over P/S</td>
<td>29%</td>
<td>42%</td>
<td></td>
</tr>
<tr>
<td>Total Plant Savings</td>
<td>2.78%</td>
<td>3.97%</td>
<td></td>
</tr>
<tr>
<td>Annual Consumption Cost</td>
<td>$3,718.86</td>
<td>$2,628.30</td>
<td>$2,164.66</td>
</tr>
<tr>
<td>Annual Dollar Savings</td>
<td>-</td>
<td>$1,090.56</td>
<td>$1,554.20</td>
</tr>
</tbody>
</table>

30-Year Life Cycle Cost Breakdown

<table>
<thead>
<tr>
<th></th>
<th>Primary/Secondary</th>
<th>VPF (1510-4GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Costs</td>
<td>$70,725</td>
<td>$51,050</td>
</tr>
<tr>
<td>Overhauls</td>
<td>$8,966</td>
<td>$14,671</td>
</tr>
<tr>
<td>Maintenance</td>
<td>$20,383</td>
<td>$20,383</td>
</tr>
<tr>
<td>Electricity Consumption</td>
<td>$76,806</td>
<td>$44,707</td>
</tr>
<tr>
<td>Total 30-year Life Cycle Cost</td>
<td>$176,880</td>
<td>$130,811</td>
</tr>
</tbody>
</table>

30-year Savings: $46,069.00
PRESENTATION OUTLINE
- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
 - Variable Primary Flow (MAE)
 - Latent Thermal Storage (MAE)
- Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements

LATENT THERMAL STORAGE (MAE)
- Immediate Benefits
 - Smaller Chillers
 - Reduced Electrical Demand
 - Increased Short-Term Redundancy

Cooling Load vs. Hour of Day (Peak Day Aug 14th)

Partial Storage-Load Leveling

Chiller Cooling Load [ton]
Hour of Day
Latent Thermal Storage (MAE)

Latent (Ice) Storage

- **Benefits** –
 - High Capacity to Volume Ratio
 - Cost Effective for Smaller Systems
- **Disadvantages** –
 - Lower Chiller Efficiency & Capacity
 - Dynamic Heat Transfer Properties

Chiller Sizing

- **Original System**
 - 730-ton Peak Cooling Load
 - (2) 370-ton “Duty” Chillers
 - (1) 370-ton “Standby” Chiller
- **Ice Storage Chiller**
 - 400-ton Peak Cooling Load
 - (2) 200-ton “Duty” Chillers [130-ton Ice Capacity]
 - (1) 200-ton “Standby” Chiller [130-ton Ice Capacity]
 - 2900 ton-hour Storage System
Presentation Outline
- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
 - Variable Primary Flow (MAE)
 - Latent Thermal Storage (MAE)
- Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements

Latent Thermal Storage (MAE)

System Operation – “Charge” Mode

- Automatic Diverting Valve Sends Water to Bypass
- Chillers Operate at Low Temperature ~25°F
- 25% Glycol Solution goes to Storage Tanks
- Water in Tanks Freezes
- Water Returns to Primary Loop at ~30°F

[Diagram showing system operation and components]
LATENT THERMAL STORAGE (MAE)

System Operation – “Discharge” Mode
- Automatic Diverting Valve Sends Water to Secondary
- Chillers Operate at Higher Temperature ~46°F
- 25% Glycol Solution goes to Storage Tanks
- Mixing Valve Regulates flow from Storage based on \(T_{CHWS} \)
- Diverting Valve Regulates flow through to Secondary
PRESENTATION OUTLINE

- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
 - Variable Primary Flow (MAE)
- Latent Thermal Storage (MAE)
- Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements

LATENT THERMAL STORAGE (MAE)

- **Energy Analysis**
- **Variables Include**
 - Wet Bulb Temperature (Night vs. Day)
 - Chiller Efficiency
 - Chiller Capacity
 - Discharge Strategy
 - Optimized
 - Storage Priority
 - Chiller Priority
 - Peak Daily Load
 - Daily ton-hours required
- **Demand Reduction**
- **Consumption Increase**

Chart: TES and Non-TES Billable Demand By Month

- **TES Billable Demand (kW)**
- **Non-TES Billable Demand (kW)**

Line Graph: TES and Non-TES Billable Demand By Month

- **X-axis:** Month
- **Y-axis:** Billable Demand, kW
Energy Analysis Results

Demand [kW]
- Lower Demand Charges During Cooling Months
- Higher Demand During Winter
- Would not Operate Storage during Winter

Consumption [kWh]
- Annual Increase of 22%
- Ice Efficiency Penalty
- Not Offset by Lower Nighttime T_{WB}

Latent Thermal Storage (MAE)

<table>
<thead>
<tr>
<th>Month</th>
<th>Non Storage kW</th>
<th>Non Storage Demand Fee</th>
<th>Storage kW</th>
<th>Storage Demand Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>108.4</td>
<td>$972.35</td>
<td>208</td>
<td>$1,865.76</td>
</tr>
<tr>
<td>February</td>
<td>121.8</td>
<td>$1,092.55</td>
<td>216</td>
<td>$1,937.52</td>
</tr>
<tr>
<td>March</td>
<td>125.7</td>
<td>$1,127.53</td>
<td>216</td>
<td>$1,937.52</td>
</tr>
<tr>
<td>April</td>
<td>242.1</td>
<td>$2,171.64</td>
<td>229.2</td>
<td>$2,015.92</td>
</tr>
<tr>
<td>May</td>
<td>476.0</td>
<td>$4,269.32</td>
<td>302.4</td>
<td>$2,712.53</td>
</tr>
<tr>
<td>June</td>
<td>539.6</td>
<td>$4,840.21</td>
<td>316.4</td>
<td>$2,838.11</td>
</tr>
<tr>
<td>July</td>
<td>582.0</td>
<td>$5,220.54</td>
<td>319.4</td>
<td>$2,865.02</td>
</tr>
<tr>
<td>August</td>
<td>594.8</td>
<td>$5,335.36</td>
<td>326.8</td>
<td>$2,931.40</td>
</tr>
<tr>
<td>September</td>
<td>518.4</td>
<td>$4,650.05</td>
<td>316.4</td>
<td>$2,838.11</td>
</tr>
<tr>
<td>October</td>
<td>479.5</td>
<td>$4,301.12</td>
<td>299.9</td>
<td>$2,690.10</td>
</tr>
<tr>
<td>November</td>
<td>266.5</td>
<td>$2,390.51</td>
<td>230.3</td>
<td>$2,070.28</td>
</tr>
<tr>
<td>December</td>
<td>125.6</td>
<td>$1,126.63</td>
<td>22.4</td>
<td>$200.93</td>
</tr>
</tbody>
</table>

Annual Billing Demand kW

<table>
<thead>
<tr>
<th>Month</th>
<th>Non Storage</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>4180.4</td>
<td>2795.7</td>
</tr>
<tr>
<td>July</td>
<td>37,498.19</td>
<td>26,943.19</td>
</tr>
<tr>
<td>October</td>
<td>2795.7</td>
<td>299.9</td>
</tr>
<tr>
<td>June</td>
<td>37,498.19</td>
<td>316.4</td>
</tr>
<tr>
<td>March</td>
<td>4180.4</td>
<td>2795.7</td>
</tr>
<tr>
<td>November</td>
<td>2795.7</td>
<td>230.3</td>
</tr>
<tr>
<td>December</td>
<td>37,498.19</td>
<td>22.4</td>
</tr>
<tr>
<td>Annual</td>
<td>26,943.19</td>
<td>22.4</td>
</tr>
</tbody>
</table>

Energy Consumption [kWh]

<table>
<thead>
<tr>
<th>Category</th>
<th>Original Energy Consumption</th>
<th>TES Electricity Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Energy Consumption</td>
<td>685,734 kWh</td>
<td>875,578 kWh</td>
</tr>
<tr>
<td>Increase Over Original</td>
<td>189,844 kWh</td>
<td></td>
</tr>
<tr>
<td>Consumption Costs</td>
<td>$33,052.36</td>
<td>$42,202.85</td>
</tr>
<tr>
<td>Net Loss</td>
<td>$9150.49</td>
<td></td>
</tr>
</tbody>
</table>

Net Benefit

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Benefit</td>
<td>$10,555.00</td>
</tr>
</tbody>
</table>

Presentation Outline
- Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
- Variable Primary Flow (MAE)
- Latent Thermal Storage (MAE)
- Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements
LATENT THERMAL STORAGE (MAE)

Cost Analysis

- $1400.00 per year Savings on Energy Bills
- Lower Initial Cost Due to Chiller Plant
- Reduced Chiller Maintenance
- Very Low Storage System Maintenance
- 30-Year Savings $448,152.00

<table>
<thead>
<tr>
<th></th>
<th>Original System</th>
<th>TES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiller Plant</td>
<td>$1,642,500.00</td>
<td>$800,000.00</td>
</tr>
<tr>
<td>Tanks (Includes Slab, Glycol, Controls, Local Piping)</td>
<td>$0.00</td>
<td>$437,400.00</td>
</tr>
<tr>
<td>3-Way Valve</td>
<td>$0.00</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>A/G Piping & Insulation</td>
<td>$0.00</td>
<td>$13,090.00</td>
</tr>
<tr>
<td>U/G Piping & Insulation</td>
<td>$0.00</td>
<td>$62,400.00</td>
</tr>
<tr>
<td>U/G Piping Excavation</td>
<td>$0.00</td>
<td>$936.00</td>
</tr>
<tr>
<td>U/G Piping Fill</td>
<td>$0.00</td>
<td>$982.80</td>
</tr>
<tr>
<td>Concrete Pad Excavation (4-foot tank burial)</td>
<td>$0.00</td>
<td>$2,755.50</td>
</tr>
<tr>
<td>Privacy Fence</td>
<td>$0.00</td>
<td>$6,620.00</td>
</tr>
<tr>
<td>Total First Cost</td>
<td>$1,642,500.00</td>
<td>$1,427,184.30</td>
</tr>
</tbody>
</table>

30-Year Life Cycle Cost Breakdown

<table>
<thead>
<tr>
<th></th>
<th>Non-Storage</th>
<th>Thermal Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Costs</td>
<td>$1,642,500</td>
<td>$3,427,184</td>
</tr>
<tr>
<td>Maintenance</td>
<td>$509,572</td>
<td>$305,743</td>
</tr>
<tr>
<td>Electricity Costs</td>
<td>$1,457,096</td>
<td>$1,428,088</td>
</tr>
<tr>
<td>Total 30-Year Life Cycle Cost</td>
<td>$3,609,168</td>
<td>$3,161,016</td>
</tr>
<tr>
<td>Total 30-years Savings</td>
<td>$448,152</td>
<td></td>
</tr>
</tbody>
</table>
Solar Photovoltaic System – Electrical Depth

System Parameters
- **80 kW**
- **10° Fixed Tilt**
- **348 BP3230T Panels**
- **77% DC to AC Efficiency**

10° Fixed Tilt NREL Data

<table>
<thead>
<tr>
<th>Month</th>
<th>Peak Sun Hours (kWh/m²-day)</th>
<th>Days/month</th>
<th>kWh/month</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.41</td>
<td>31</td>
<td>4604</td>
</tr>
<tr>
<td>2</td>
<td>3.18</td>
<td>28</td>
<td>5488</td>
</tr>
<tr>
<td>3</td>
<td>4.65</td>
<td>31</td>
<td>8884</td>
</tr>
<tr>
<td>4</td>
<td>5.26</td>
<td>30</td>
<td>9725</td>
</tr>
<tr>
<td>5</td>
<td>5.98</td>
<td>31</td>
<td>11425</td>
</tr>
<tr>
<td>6</td>
<td>6.36</td>
<td>30</td>
<td>11759</td>
</tr>
<tr>
<td>7</td>
<td>6.02</td>
<td>31</td>
<td>11502</td>
</tr>
<tr>
<td>8</td>
<td>5.67</td>
<td>31</td>
<td>10833</td>
</tr>
<tr>
<td>9</td>
<td>4.91</td>
<td>30</td>
<td>9078</td>
</tr>
<tr>
<td>10</td>
<td>3.8</td>
<td>31</td>
<td>7260</td>
</tr>
<tr>
<td>11</td>
<td>2.6</td>
<td>30</td>
<td>4807</td>
</tr>
<tr>
<td>12</td>
<td>2.18</td>
<td>31</td>
<td>4165</td>
</tr>
</tbody>
</table>

Year
- **4.42**
- **365**
- **99429**

Component De-Rate Value
- **PV Module Nameplate DC Rating**
 - **95%**
- **Inverter and Transformer**
 - **97%**
- **Mismatch**
 - **98%**
- **Diodes and Connections**
 - **100%**
- **DC Wiring**
 - **98%**
- **AC Wiring**
 - **99%**
- **Soiling**
 - **95%**
- **System Availability**
 - **98%**
- **Shading**
 - **100%**
- **Sun Tracking**
 - **100%**
- **Age**
 - **95%**

Overall De-Rate Factor
- **77%**
Financial Incentives

- **MACRS (Modified Accelerated cost Recovery System)**
 - Depreciation Tax Deductions: $123,885.00

- **Federal Renewable Energy Production Incentive (REPI)**
 - $0.013/kWh (Adjusted 1993 USD) for first 10 years
 - Approximately $2,500/year x 10 years = $25,000

MACRS (Modified Accelerated Cost Recovery System) Depreciation Tax Deductions

<table>
<thead>
<tr>
<th>Depreciation Year</th>
<th>Net System Cost</th>
<th>MACRS Depreciation Tax Deduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>$13,765.08</td>
<td>$393,288.00</td>
</tr>
<tr>
<td>2012</td>
<td>$44,048.26</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>$26,428.95</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>$15,857.37</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>$15,857.37</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>$7,928.69</td>
<td></td>
</tr>
</tbody>
</table>

- **Pennsylvania Sunshine Solar Rebate Program**
 - First 10kW: Rebate $/kW: $0.75, Rebate Amount: $7,500.00
 - Next 70kW: Rebate $/kW: $0.50, Rebate Amount: $35,000.00
 - Total Rebate: $42,500.00

- **Pennsylvania Public Utilities Commission – Solar Alternative Energy Credits (SEAC)**
 - Up to $39,772.00 Annually

- **Federal Energy Investment Tax Credit (ITC)**
 - 30% of Initial Investment
 - $191,000.00

Building Information
- Existing Mechanical Systems
- Building Energy Consumption
- Re-Design Goals
- Mechanical Upgrades
- Variable Primary Flow (MAE)
- Latent Thermal Storage (MAE)

Electrical Breadth – Solar Photovoltaic System
- Conclusion & Summary
- Acknowledgements

Solar Photovoltaic System – Electrical Depth

Pennsylvania Sunshine Solar Rebate Program

<table>
<thead>
<tr>
<th>Pennsylvania Sunshine Solar Rebate Program</th>
<th>Rebate $/kW</th>
<th>Rebate Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 10kW</td>
<td>$0.75</td>
<td>$7,500.00</td>
</tr>
<tr>
<td>Next 70kW</td>
<td>$0.50</td>
<td>$35,000.00</td>
</tr>
<tr>
<td>Total</td>
<td>$42,500.00</td>
<td></td>
</tr>
</tbody>
</table>

Pennsylvania Public Utilities Commission – Solar Alternative Energy Credits (SEAC)
- Up to $39,772.00 Annually

Federal Energy Investment Tax Credit (ITC)
- 30% of Initial Investment
- $191,000.00
SOLAR PHOTOVOLTAIC SYSTEM – ELECTRICAL DEPTH

- **System Cost Estimate**
 - **Panel Cost**
 - $680.00 per Module x 348 Modules = $236,400.00
 - **Installation Cost**
 - $5.00 per Watt x 80,000 Watts = $400,200.00
 - **Total System Cost**
 - $636,840.00

- **Total Payback Period**
 - 5 Years

- **Total 15-Year Benefit**
 - $401,248.71
SUMMARY & CONCLUSION

- **Variable Primary Flow System**
 - Saves $1,554.00 Annually
 - Lower Capital Cost
 - 30-Year LCC Reduction of $46,069.00
 - Decreases Electrical Consumption & Emissions

- **Latent Thermal Storage System**
 - Saves $1404.51 Annually
 - Lower Capital Cost
 - 30-Year LCC Reduction of $448,152.00
 - Increases Electrical Consumption & Emissions

- **Solar Photovoltaic System**
 - 5-Year Payback Period
 - 15-Year LCC Return of $401,248.00
 - Decreases Electrical Consumption & Emissions

Annual Emissions for Electrical Consumption

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>VPF Emissions Savings Per Year (lb)</th>
<th>Solar PV Emissions Savings Per Year (lb)</th>
<th>Latent Thermal Storage Increase per Year (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Use</td>
<td>32245 kWh</td>
<td>99429 kWh</td>
<td>189844 kWh</td>
</tr>
<tr>
<td>CO₂</td>
<td>56106</td>
<td>173006</td>
<td>330329</td>
</tr>
<tr>
<td>CH₄</td>
<td>52881</td>
<td>163064</td>
<td>311344</td>
</tr>
<tr>
<td>N₂O</td>
<td>116</td>
<td>357</td>
<td>682</td>
</tr>
<tr>
<td>NO₂</td>
<td>97</td>
<td>298</td>
<td>570</td>
</tr>
<tr>
<td>SO₂</td>
<td>276</td>
<td>852</td>
<td>1627</td>
</tr>
<tr>
<td>CO</td>
<td>28</td>
<td>85</td>
<td>162</td>
</tr>
<tr>
<td>TNMOC</td>
<td>2</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Lead</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mercury</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PM10</td>
<td>3</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>6610</td>
<td>20383</td>
<td>38918</td>
</tr>
</tbody>
</table>
Summary & Conclusion

- **Variable Primary Flow System**
 - Saves $1,554.00 Annually ✓
 - Lower Capital Cost
 - 30-Year LCC Reduction of $46,069.00
 - Decreases Electrical Consumption & Emissions

- **Latent Thermal Storage System**
 - Saves $1404.51 Annually ✓
 - Lower Capital Cost
 - 30-Year LCC Reduction of $448,152.00
 - Increases Electrical Consumption & Emissions

- **Solar Photovoltaic System**
 - 5-Year Payback Period ✓
 - 15-Year LCC Return of $401,248.00
 - Decreases Electrical Consumption & Emissions

Annual Emissions for Electrical Consumption

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>VPF Emissions</th>
<th>Solar PV Emissions</th>
<th>Latent Thermal Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Use</td>
<td>32245 kWh</td>
<td>99429 kWh</td>
<td>189844 kWh</td>
</tr>
<tr>
<td>CO₂</td>
<td>56106 lb</td>
<td>173006 lb</td>
<td>330329 lb</td>
</tr>
<tr>
<td>CO₂</td>
<td>52881 lb</td>
<td>163064 lb</td>
<td>311344 lb</td>
</tr>
<tr>
<td>CH₄</td>
<td>116 lb</td>
<td>357 lb</td>
<td>682 lb</td>
</tr>
<tr>
<td>N₂O</td>
<td>1 lb</td>
<td>4 lb</td>
<td>7 lb</td>
</tr>
<tr>
<td>NO₂</td>
<td>97 lb</td>
<td>298 lb</td>
<td>570 lb</td>
</tr>
<tr>
<td>SO₂</td>
<td>276 lb</td>
<td>852 lb</td>
<td>1627 lb</td>
</tr>
<tr>
<td>CO</td>
<td>28 lb</td>
<td>85 lb</td>
<td>162 lb</td>
</tr>
<tr>
<td>TNMOC</td>
<td>2 lb</td>
<td>7 lb</td>
<td>14 lb</td>
</tr>
<tr>
<td>Lead</td>
<td>0 lb</td>
<td>0 lb</td>
<td>0 lb</td>
</tr>
<tr>
<td>Mercury</td>
<td>0 lb</td>
<td>0 lb</td>
<td>0 lb</td>
</tr>
<tr>
<td>PM10</td>
<td>3 lb</td>
<td>9 lb</td>
<td>18 lb</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>6610 lb</td>
<td>20383 lb</td>
<td>38918 lb</td>
</tr>
</tbody>
</table>

Additional Notes

- Variable Primary Flow System saves $1,554.00 annually with lower capital cost and a 30-year LCC reduction of $46,069.00.
- Latent Thermal Storage System saves $1,404.51 annually with lower capital cost and a 30-year LCC reduction of $448,152.00.
- Solar Photovoltaic System has a 5-year payback period with a 15-year LCC return of $401,248.00.
ACKNOWLEDGEMENTS

• Dr. William Bahnfleth, Faculty Advisor
• Dr. Jim Freihaut, Penn State AE Faculty
• Dr. Jelena Srebric, Penn State AE Faculty
• Dr. Stephen Treado, Penn State AE Faculty
• Earl Rudolph, CALMAC Manufacturing Corporation
• Scott Kincaid, Tozour Energy Services
• Turner Construction
• Amy Cavanaugh, Turner Construction
• Fellow AE Students
THANK YOU
QUESTIONS & COMMENTS