APPELL LIFE SCIENCES

York College of Pennsylvania

Image Courtesy of RLPS, Ltd.

Joshua Martz | Dr. Srebric | April 11, 2011

- PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - □ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Project Background

York College of Pennsylvania RLPS, Ltd. Owner: Architect:

Kinsley Construction Structural: Macintosh Engineering LSC Design, Inc. Civil: MEP: JDB Engineering

102,000 SF Size: York, Pa \$16 million Location: Cost: 3/Basement Stories:

January 2010-August 2011 Construction Date: D-B-B/CM gives GMP Delivery Method:

Site Plan

- PROJECT BACKGROUND
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - □ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - ☐ RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Existing Mechanical Summary

- Mechanical Equipment Summary
 - ☐ 1 400 Ton Chiller
 - ☐ 3 Gas-fired Boilers
 - ☐ 2 Cooling Towers
 - ☐ Chilled/Hot/Condenser Water Pumps
 - ☐ 5 Air Handling Units
 - ☐ Fan Coil Units
 - ☐ VAV Boxes

- ☐ Office Spaces
 - ☐ AHU-1 and AHU-3
 - ☐ VAV Boxes

AHU-1 (1st Floor)

AHU-3 (2nd Floor)

AHU-3 (3rd Floor)

- ☐ PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - ☐ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - ☐ RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Existing Mechanical Summary

- ☐ Classroom/Laboratory Spaces
 - ☐ AHU-2, AHU-4, AHU-5
 - ☐ Pre-treated Outdoor Air
 - ☐ Fan Coil Units

- PROJECT BACKGROUND
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - □ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - ☐ RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Existing Mechanical Summary

- ☐ Greenhouse Building
 - Labs
 - ☐ Fan Coil Units (Direct Outdoor Air)
 - ☐ Other Spaces
 - ☐ Direct Outdoor Air
 - Greenhouses
 - ☐ Evaporative Coolers, Natural Ventilation
 - Wall Insert Heaters/Horizontal Unit Heaters

Basement (FCUs)

1st Floor (FCUs)

Outline **Design Objectives** ☐ Improve System Performance ☐ PROJECT BACKGROUND ■ EXISTING MECHANICAL SUMMARY ☐ Energy Consumption **□** DESIGN OBJECTIVES ☐ Total System Cost ☐ GROUND SOURCE HEAT PUMPS Emissions □ CONSTRUCTION MANAGEMENT BREADTH CHILLED BEAMS ☐ Comparison of Proposed System ☐ RUN-AROUND COIL SYSTEM Performance ■ SYSTEM COMPARISON ☐ ACKNOWLEDGEMENTS

Outline **Ground Source Heat Pumps** ■ PROJECT BACKGROUND ☐ Systems to be replaced: ■ EXISTING MECHANICAL SUMMARY ☐ Cooling: ☐ DESIGN OBJECTIVES ☐ Chiller ☐ Cooling Towers ☐ CONSTRUCTION MANAGEMENT BREADTH ☐ Chilled Water Pumps CHILLED BEAMS ☐ Sump Tank RUN-AROUND COIL SYSTEM ☐ Heating: ■ SYSTEM COMPARISON ■ Boilers ■ ACKNOWLEDGEMENTS ☐ Hot Water Pumps

- PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- DESIGN OBJECTIVES
- **□ GROUND SOURCE HEAT PUMPS**
 - CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Borehole Sizing

Cooling Length:

$$\begin{split} L_c = \underline{q_a * R_{ga} + (q_{lc} - 3.41 W_c)(R_b + PLF_m * R_{gm} + R_{gd} * F_{sc})} \\ t_g - \underline{t_{wi} - t_{wo}} - t_p \end{split}$$

Heating Length:

$$\begin{split} L_h = \underline{q_a * R_{ga} + (q_{lh} - 3.41 W_h) (R_b + PLF_m * R_{gm}} + R_{gd} * F_{sc}) \\ t_g - \underline{t_{wi} - t_{wo}} - t_p \\ 2 \end{split}$$

Chapter 32: 2007 AHSRAE Handbook-HVAC Applications

Design Information

Cooling Design Information						
	Leaving Water Temperature (F)		Borehole Length (ft)			
75	85	1,594,800	14,801			

Heating Design Information						
	Leaving Water Temperature (F)	Heating Load (Btu/hr)	Borehole Length (ft)			
50	40	1,260,563	16,905			

- PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- ☐ DESIGN OBJECTIVES
- GROUND SOURCE HEAT PUMPS
 - □ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- □ ACKNOWLEDGEMENTS

Borehole Optimization

Assumptions:

Pipe: 1-1/4" High Density Polyethylene (HDPE)

\$ 0.69/ft (40 ft lengths)

- □ Welding
 □ \$4.79/weld
 - □ \$40.25/day per machine
- ☐ Grout:
 - □ Cooling: \$2,775
 - ☐ Heating: \$3,125

Ea	rth Auger Data	
Length Feet	Daily Output Feet/day	Rental \$/week
L _{bore} <225	1,800	12,190
225 <l<sub>bore<325</l<sub>	1,200	14,840
L _{bore} >325	900	16,960

Cooling:

	Drill A: Depths less than 225'								
Calculated	#	Length	Actual	Drilling	Pipe	Welding	Grouting	Miscellaneous	Total
Length	Boreholes	per Bore	Length	Cost	Cost	Cost	Cost	Cost	Cost
14,801	70	212	14,840	25,820	10,240	1,858	3,256	23,500	64,673

Heating:

Drill A: Depths less than 225'									
Calculated	#	Length	Actual	Drilling	Pipe	Welding	Grouting	Miscellaneous	Total
Length I	Boreholes	per Bore	Length	Cost	Cost	Cost	Cost	Cost	Cost
16,905	80	212	16,960	25,820	11,702	2,111	3,720	24,500	67,854

Outline Life Cycle Cost Cooling: Heating: ☐ PROJECT BACKGROUND ☐ 20 Year Equipment Lifetime EXISTING MECHANICAL SUMMARY ☐ 20 Year Equipment Lifetime ☐ \$221,904 First Cost ☐ \$246,673 First Cost ☐ DESIGN OBJECTIVES ☐ \$30,456/year Energy Cost ☐ \$58,330/year Energy Cost ■ GROUND SOURCE HEAT PUMPS ☐ \$10,200/year Maintenance Cost ☐ \$10,200/year Maintenance Cost □ CONSTRUCTION MANAGEMENT BREADTH ☐ Based off \$0.10/SF ☐ Based off \$0.10/SF CHILLED BEAMS ■ RUN-AROUND COIL SYSTEM ☐ Life Cycle Cost: ☐ Life Cycle Cost: \$724,799 SYSTEM COMPARISON \$1,104,478 □ ACKNOWLEDGEMENTS

- PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - ☐ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - ☐ RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Borehole Layout

Cooling: (layout of pipes per AHU)

Heating: (layout of pipes per AHU)

- PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- ☐ DESIGN OBJECTIVES
- GROUND SOURCE HEAT PUMPS
 - CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Pump Selection

- ☐ Ground Source Heat Pumps
 - ☐ Sized by sensible load required
- ☐ Circulation (Supply) Pumps
 - ☐ Sized by gpm required and head loss
 - ☐ 3 gpm/ton
 - ☐ Head loss calculated from longest run

GSHP Cooling System Pumps						
Unit	AHU#	Manufacturer	Size			
GCW180	Greenhouse	McQuay	15 tons			
GCW180	AHU-1	McQuay	15 tons			
GCW300	AHU-2	McQuay	25 tons			
GCW300	AHU-3	McQuay	25 tons			
GCW360	AHU-4	McQuay	30 tons			
GCW360	AHU-5	McQuay	30 tons			
Series 1510	Circ.	Bell&Gossett	400gpm/1750rpm			

GSHP Heating System Pumps						
Unit	AHU#	Manufacturer	Size			
GHW420	Greenhouse	McQuay	35 tons			
GHW072	AHU-1	McQuay	6 tons			
GHW240	AHU-2	McQuay	20 tons			
GHW150	AHU-3	McQuay	12.5 tons			
GHW300	AHU-4	McQuay	25 tons			
GHW240	AHU-5	McQuay	20 tons			
Series 1510	Circ.	Bell&Gossett	315gpm/1750rpm			

- ☐ PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - ☐ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Energy Usage and Cost

Cooling:

Heating:

- ☐ PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Chilled Beams

- Advantages
 - ☐ Low Operating Cost
 - ☐ High-Efficiency
 - ☐ Low Maintenance
 - ☐ Low Amount of Noise
 - ☐ Reduce Supply Air
- Disadvantages
 - ☐ Not Great at Heating Spaces/Supplementary Heating
 - ☐ Not Well Known Systems
 - ☐ Formation of Condensation on Unit

Outline Energy Consumption Chilled Beam Amount

- PROJECT BACKGROUND
- **EXISTING MECHANICAL SUMMARY**
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - ☐ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Chilled Beams vs. Fan Coil Units							
Chilled Beams			Fan Coil Units				
Tag	CFM	kwh Energy	Tag	CFM	kwh Energy		
AHU-2	10,052	43,387	AHU-2	10,450	48,314		
AHU-4	11,661	52,141	AHU-4	13,700	55,192		
AHU-5	12,092	47,187	AHU-5	13,000	61,633		
Total	33,805	142,715	Total	37,150	165,139		
Differences	3,345	22,424	22				

Chilled Beams per AHU						
Capacity Linear # Chilled (BTU/hr) Feet Beams						
AHU-2	407,137	407.1	68			
AHU-4	476,759	476.8	79			
AHU-5	469,223	469.2	78			

- PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Life Cycle Cost

- ☐ 20 Year Equipment Lifetime
- ☐ \$297,686 First Cost
- ☐ \$13,344/year Energy Cost
- ☐ \$10,200/year Maintenance Cost
 - ☐ Based off \$0.10/SF
- ☐ Life Cycle Cost:
 - \$587,328

- ☐ PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - ☐ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - □ RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Run-around Coil System

- Advantages
 - ☐ Airstreams not Adjacent
 - ☐ Relatively Space Efficient
 - ☐ Heating/Cooling Equipment Size Reduced
 - ☐ No Cross-contamination between Airstreams
- Disadvantages
 - Adds to First Cost
 - ☐ Adds pump, piping, expansion tank
 - ☐ Airstreams must be clean/Filtration Required

Energy Consumption

- PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - ☐ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - ☐ RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

	Run-around Co	il vs. Heat V	Vheel	
Run-around Coil		Heat Wheel		
	kwh Energy		kwh Energy	
AHU-2	3,802	AHU-2	2,775	
AHU-4	3,875	AHU-4	2,833	
AHU-5	3,770	AHU-5	2,936	
Total	11,447	Total	8,544	
Differences	2,903			

- ☐ PROJECT BACKGROUND
- **EXISTING MECHANICAL SUMMARY**
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - ☐ CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- □ ACKNOWLEDGEMENTS

Ground Source Heat Pumps

	Annual Energy	Consumption Gani	Cooming	
Load	Electricity (kWh)	Natural Gas (kWh)	Total (kWh)	% of Total
Heating				
Gas-Fired		2637639	2637639	49%
Electric Heaters	190608		190608	4%
Cooling				
GSHP	623833		623833	12%
Auxiliary				
Supply Fans	207084		207084	4%
Pumps	487056		487056	9%
Lighting	703482		703482	13%
Receptacles	487998		487998	9%
	Annual Energy	Total Consumption GSHF	P Heating	10
Load		74101	Heating	
Load Heating		Consumption GSH	Heating	% of Total
		Consumption GSH	Heating	
Heating	Electricity (kWh)	Consumption GSH	P Heating Total (kWh)	% of Tota
Heating GSHP	Electricity (kWh)	Consumption GSH	P Heating Total (kWh)	% of Total
Heating GSHP Cooling	Electricity (kWh)	Consumption GSH	P Heating Total (kWh)	% of Tota
GSHP Cooling Chiller	Electricity (kWh) 325723 1991808	Consumption GSH	P Heating Total (kWh) 325723 1991808	% of Tota
GSHP Cooling Chiller Cooling Tower	Electricity (kWh) 325723 1991808 727097	Consumption GSH	P Heating Total (kWh) 325723 1991808 727097	% of Tota 6% 35% 13%
GSHP Cooling Chiller Cooling Tower Condenser Pump	Electricity (kWh) 325723 1991808 727097 56390 207084	Consumption GSH	P Heating Total (kWh) 325723 1991808 727097 56390 207084	% of Tota 6% 35% 13% 1%
Heating GSHP Cooling Chiller Cooling Tower Condenser Pump Auxiliary	Electricity (kWh) 325723 1991808 727097 56390 207084 1249056	Consumption GSH	P Heating Total (kWh) 325723 1991808 727097 56390 207084 1249056	% of Tota 6% 35% 13% 1% 4% 22%
Heating GSHP Cooling Chiller Cooling Tower Condenser Pump Auxiliary Supply Fans Pumps Lighting	Electricity (kWh) 325723 1991808 727097 56390 207084 1249056 703482	Consumption GSH	P Heating Total (kWh) 325723 1991808 727097 56390 207084 1249056 703482	% of Total 6% 35% 13% 1% 4% 22% 12%
Heating GSHP Cooling Chiller Cooling Tower Condenser Pump Auxiliary Supply Fans Pumps	Electricity (kWh) 325723 1991808 727097 56390 207084 1249056	Consumption GSH	P Heating Total (kWh) 325723 1991808 727097 56390 207084 1249056	% of Tota 6% 35% 13% 1% 4% 22%

As Designed

Annual Energy Consumption						
Electricity (kWh)	Natural Gas (kWh)	Total (kWh)	% of Total			
11.000000	2637639	2637639	31			
190608		190608	2			
1991808		1991808	23			
727097		727097	8			
56390		56390	1			
221632		221632	3			
1573235		1573235	18			
703482		703482	8			
487998		487998	6			
	Total	8589889	100			
	190608 1991808 727097 56390 221632 1573235 703482	19008 2637639 190108 727097 56380 221632 1373235 70482 487998	190008 2637639 2637639 190008 1991808 1991808 1991808 272097 727097 56330 56330 56330 1591822 221632 1573235 157235 7703482 475798 487598			

Outline Annual Energy Cost Savings Simple Payback ☐GSHP Cooling ☐ PROJECT BACKGROUND ☐ Savings: \$137,495/year ■ EXISTING MECHANICAL SUMMARY ☐ Includes Chilled Beams ☐ DESIGN OBJECTIVES Simple Payback Initial Cost Annual Energy Savings Years ☐ GROUND SOURCE HEAT PUMPS GSHP Cooling/ ☐ GSHP Heating \$544,359 \$137,495 3.96 ☐ CONSTRUCTION MANAGEMENT BREADTH Chilled Beams ☐ Savings: \$78,436/year GSHP Heating/ CHILLED BEAMS \$519,590 \$78,436 6.62 Chilled Beams ☐ Includes Chilled Beams ■ RUN-AROUND COIL SYSTEM ■ SYSTEM COMPARISON

ACKNOWLEDGEMENTS

- PROJECT BACKGROUND
- EXISTING MECHANICAL SUMMARY
- ☐ DESIGN OBJECTIVES
- ☐ GROUND SOURCE HEAT PUMPS
 - CONSTRUCTION MANAGEMENT BREADTH
- CHILLED BEAMS
 - RUN-AROUND COIL SYSTEM
- SYSTEM COMPARISON
- ACKNOWLEDGEMENTS

Annual Emissions

GSHP Cooling:

Emission Factors for Delivered Electricity					
Pollutant (lb)	Factors (lb of pollutant/kWh)	Electricity (kWh/year)	Emissions (lb of pollutant/year)		
CO _{2e}	1.55	2700061	4185094.6		
CO ₂	1.48	2700061	3996090.3		
CH ₄	0.0027	2700061	7290.2		
N ₂ O	0.0000322	2700061	86.9		
NO _x	0.00291	2700061	7857.2		
SOx	0.00888	2700061	23976.5		
CO	0.000601	2700061	1622.7		
TNMOC	0.0000546	2700061	147.4		
Lead	0.00000117	2700061	0.3		
Mercury	0.00000027	2700061	0.1		
PM10	0.0000714	2700061	192.8		
Solid Waste	0.178	2700061	480610.9		

Emission Factors for On-Site Combustion					
Pollutant (lb)	Factors (lb of pollutant/1000 ft3)	Natural Gas (1000 ft3/year)	Emissions (lb of pollutant/year)		
CO _{2e}	123	8763	1077849.000		
CO ₂	122	8763	1069086.000		
CH ₄	0.0025	8763	21.908		
N ₂ O	0.0025	8763	21.908		
NO _x	0.111	8763	972.693		
SO _x	0.000632	8763	5.538		
CO	0.0933	8763	817.588		
TNMOC	0.00613	8763	53.717		
Lead	0.000005	8763	0.004		
Mercury	0.00000026	8763	0.002		
PM10	0.0084	8763	73.609		

As Designed:

Emission Factors for Delivered Electricity						
Pollutant (lb)	Factors (lb of pollutant/kWh)	Electricity (kWh/year)	Emissions (lb of pollutant/year)			
CO _{2e}	1.55	5952250	9225987.5			
CO ₂	1.48	5952250	8809330.0			
CH ₄	0.0027	5952250	16071.1			
N ₂ O	0.0000322	5952250	191.7			
NO _x	0.00291	5952250	17321.0			
SO _x	0.00888	5952250	52856.0			
co	0.000601	5952250	3577.3			
TNMOC	0.0000546	5952250	325.0			
Lead	0.00000117	5952250	0.7			
Mercury	0.00000027	5952250	0.2			
PM10	0.0000714	5952250	425.0			
Solid Waste	0.178	5952250	1059500.5			

Emission Factors for On-Site Combustion					
Pollutant (lb)	Factors (lb of pollutant/1000 ft ³)	Natural Gas (1000 ft3/year)	Emissions (lb of pollutant/year)		
CO _{2e}	123	8763	1077849.000		
CO ₂	122	8763	1069086.000		
CH ₄	0.0025	8763	21.908		
N ₂ O	0.0025	8763	21.908		
NO _x	0.111	8763	972.693		
SO _x	0.000632	8763	5.538		
CO	0.0933	8763	817.588		
TNMOC	0.00613	8763	53.717		
Lead	0.0000005	8763	0.004		
Mercury	0.00000026	8763	0.002		
PM10	0.0084	8763	73.609		

Outline **Final Recommendations** ☐ Energy Consumption and Cost Savings ■ PROJECT BACKGROUND ☐ Cooling GSHP System ■ EXISTING MECHANICAL SUMMARY ☐ Lowest First Cost ☐ DESIGN OBJECTIVES ☐ Heating GSHP System ☐ GROUND SOURCE HEAT PUMPS ☐ Lowest Emissions ☐ CONSTRUCTION MANAGEMENT BREADTH ☐ Cooling GSHP System ☐ Chilled Beams vs. Fan Coil Units CHILLED BEAMS Chilled Beams ■ RUN-AROUND COIL SYSTEM ■ Run-around Coil vs. Heat Wheel ■ SYSTEM COMPARISON ☐ Heat Wheel ■ ACKNOWLEDGEMENTS

Outline Acknowledgements PROJECT BACKGROUND PROJECT BACKGROUND DESIGN OBJECTIVES DESIGN OBJECTIVES GROUND SOURCE HEAT PUMPS Acknowledgements Penn State University AE Faculty and Staff Dr. Srebric, Thesis Advisor Thomas Leary, P.E.; JDB Engineering Family and Friends

☐ CONSTRUCTION MANAGEMENT BREADTH

■ RUN-AROUND COIL SYSTEM

CHILLED BEAMS

SYSTEM COMPARISON

QUESTIONS?

Image Courtesy of RLPS, Ltd.

Joshua Martz | Dr. Srebric | April 11, 2011