Technical Report Two

Building and Plant Energy & Emissions Analysis

APPELL LIFE SCIENCES

York College of Pennsylvania

York, PA

Joshua R Martz Mechanical Option 10/27/2010 Dr. Srebric-Faculty Advisor

Table of Contents

Executive Summary	2
Design Load Estimation	3
Energy Modeling Program Selection	3
Assumptions	3
Load Sources and Scheduling	4
Design Conditions	5
Design Document vs. Computed Load	6
Annual Energy Consumption and Operating Costs	7
Annual Energy Consumption	7
Cost to Run Systems	12
Professional Energy Analysis	13
Comparison to Energy Information Administration	13
Annual Emissions Footprint	15
Conclusion	16
References	17
Appendix A: Sample Carrier HAP Inputs	18
Appendix B: Emission Factor Tables	23

Executive Summary

The purpose of this report is to design and analyze an energy model of the Appell Life Sciences Building. The Life Sciences Building is a university building that contains labs, classrooms and offices that have varying electrical equipment loads.

To determine airflows, design load to the systems, and other energy values a model was created in the Carrier HAP analysis program. Room dimensions, space occupancies, window areas, and wall exposures were all input into the building simulation. This model was done as a block load calculation to simply compare to the design documents.

The Carrier HAP's results were very similar to the figures in the design documents. In terms of accuracy: Cooling was within 2%, Air supply was within 6%, Ventilation rate was within 25%, and heating was within 31%. The heating load computed was lower than the design document mostly because the greenhouses were most likely not modeled accurately in the Carrier program. The ventilation rate is higher because AHU-3 was computed to have more ventilation than that of the design documents.

The Carrier HAP model was also used to calculate the building's total energy use which is approximately 8.59 million kWh per year. Heating was found to be the largest energy user at 33% of the total. This can be attributed to the building's location, orientation, and the three 2640 MBH boilers.

Overall, there are some minor deviations from the design document and comparison figures from the Energy Information Administration. However, the model was successful at approximating the life sciences building's energy use to that of a comparatively similar building.

Design Load Estimation

Energy Modeling Program Selection

For my analysis of the Life Sciences Building I chose to model the building in Carrier HAP. This program was chosen because of my familiarity with it from this past summer. I believe it is also more user friendly than Trane Trace. These reasons will help my energy model to be as accurate as possible.

Assumptions

For effective modeling purposes, the building spaces and elements were simplified into blocks.

- The wall was modeled as a CMU wall with face brick, which is the same as the existing life sciences wall (the R-values and U-values were obtained from the design documents)
- The roof was modeled as steel deck with board insulation and a membrane. (the values for this roof were obtained from the design documents)
- Area temperature setpoints for the Life Sciences building are 74° F and 71 ° F for summer and winter respectively.
- The buildings location is York, Pa, however the design conditions used are from the Harrisburg International Airport.
- Lighting and Miscellaneous loads have been approximated. Table 1 below shows these assumed values.

Electrical Load Assumptions						
Space Type	Lighting (W/SF)	Miscellaneous (W/SF)				
Office	1.1	1.2				
Laboratory	1.4	1.2				
General Classroom	1.4	1.5				
Computer Classroom	1.4	5				
Mechanical/Electrical	1.5	2				
Conference Room /Student Lounge	1.3	1				
Restroom	0.9	0				
Corridor	0.5	0				

Table 1: Electrical Load Assumptions

The miscellaneous loads for the computer labs are higher than the rest because of their smaller square footage but having about 30 computers and a couple printers each. The offices have a high miscellaneous value as well because of their small square footage.

Load Sources and Scheduling

Since this building is a university building it has a different schedule than a normal school building. The schedule used to remain consistent with the loads was 100% for lighting, people, and miscellaneous because the university schedule varies day by day. The thermostat schedules were also run at 100% to remain consistent with the rest of the schedules. Loads from the laboratories will be coming from the lab equipment that is provided in each room. There will also be a large load from the lab fume hoods when they are being used. Because of the number of offices and computer labs in this building there will be a large load from computers and printers. In the workroom/mail facilities there will be a large load from copiers and printers.

Design Conditions

The outdoor design conditions used for the Life Sciences Building are the Harrisburg International Airport, which are given below.

2005 AS	HRAE Hand	dbook - Fi	undamenta	ls (IP)									©	2005 ASH	RAE, Inc.
				Design	conditio	ns for MI	DDLET	OWN HA	RRISBU	IRG INT,	PA, USA	4			
Station Inf	formation														
Station nam	me			WMO#	Lat	Long	Elev	StdP	Hours +/- UTC	Time zone code	Period]			
1a				1b	1c	1d	10	1f	1g	1h	1i	1			
MIDDLE	TOWN HAP	RRISBUR	G INT	725115	40.20N	76.77W	302	14.536	-5.00	NAE	8201				
Annual He	ating and Hu	midificatio	n Design Co	onditions											
Coldest	Heatin	ng DB		Hu 99.6%	midification E	P/MCDB and	99%		0	Coldest mon 4%	th WS/MCD	8	to 99.6	% DB	
2	99.6% 3a	99% 3b	4a	4b	4c	DP 4d	HR 4e	4f	5a	MCDB 5b	5c	MCDB 5d	6a	6b	
1	10.4	14.8	-4.1	4.5	15.1	0.5	5.7	18.2	29.0	25.3	27.4	26.8	9.9	300	
Annual Co	ooling, Dehun	nidification	, and Entha	lpy Design	Conditions										
Hottest	Hottest	0	4%	Cooling	DB/MCWB	2	%	0.4	4%	Evaporation 1	WB/MCDB	2	16	MCWS/ to 0.4	PCWD % DB
7	DB range 8	DB 9a	MCWB 90	DB 9c	MCWB 9d	DB 9e	MCWB 9/	10a	MCDB 100	10c	MCDB 10d	WB 10e	MCDB 10f	MCWS 11a	PCWD 11b
7	17.5	92.8	74.7	90.0	73.8	87.3	72.6	78.1	87.9	76.5	85.5	75.0	83.4	10.5	270
	0.4%		Dehumidific	ation DP/M	CDB and HR	2	214		0	40/	Enthalg	y/MCDB	2	0.C	
DP 12a	HR 12b	MCDB 12c	DP 12d	HR 12e	MCDB 12f	DP 12g	HR 12h	MCDB 12i	Enth 13a	MCDB 13b	Enth 13c	MCDB 13d	Enth 13e	MCDB 13/	
75.2	133.8	83.2	73.5	126.1	81.3	72.3	121.1	80.1	34.0	88.3	32.3	85.7	30.9	83.6	
Extreme A	Annual Design	o Condition	15					1995.000 G		5.0007.		271-2415			
Ext	treme Annual	WS	Extreme Max	M	Extreme	Annual DB Standard	deviation	n=5	vears	n-Year R	eturn Period vears	Values of Ex	treme DB years	n=50	vears
1% 14a	2.5% 14b	5% 14c	1 WB 15	Max 16a	Min 16b	Max 16c	Min 16d	Max 17a	Min 17b	Max 17c	Min 17d	Max 17e	Min 17f	Max 17g	Min 17h
25.6	23.3	19.2	86.4	98.0	3.4	3.9	8.1	100.8	-2.4	103.1	-7.2	105.3	-11.7	108.1	-17.6
Monthly D	lesign Dry Bu	lb and Mea	an Coincider	nt Wet Bulb	Temperatu	res									
%	Ja DB	MCWB	DB	MCWB	DB	Mar MCWB	DB A	Apr MCWB	DB	May MCWB	DB	lun MCWB			
	18a	18b	18c	18d	18e	18/	18g	18h	18/	18j	18k	18/			
0.4%	62.1 58.6	57.1 54.2	64.8 60.5	51.3 50.1	79.7 74.3	63.8 58.9	84.7 80.7	64.5 63.4	90.3 88.3	72.3	94.7 92.6	74.3			
2%	53.4	49.6	56.0	47.6	70.0	57.2	76.8	61.5	86.0	69.1	90.5	73.5			
%	DB 18m	MCWB 18n	DB 180	MCWB 18p	DB 18g	MCWB 18r	DB 18s	Dct MCWB 18t	DB 18u	MCWB 18v	DB 18w	MCWB 18x			
0.4%	98.7	76.2	94.7	76.2	91.0	73.5	82.1	68.5	72.2	61.4	67.1	59.8			
1%	96.5	75.3	92.5	75.8	88.1	72.3	79.5	67.3	69.3	59.4	62.4	56.9			
A Monthly D	esian Wet Bu	Ib and Me	an Coincide	nt Dry Bult	Temperatu	71.5	70.0	05.7	00.4	30.4	50.0	53.3			
	Ja	in	F	əb	N N	Aar	A	Apr	h	lay	J	lun			
%	19a	19b	19c	MCDB 19d	19e	MCDB 19f	19g	MCDB 19h	19i	MCDB 19j	19k	19/			
0.4%	58.8	61.9	55.3	61.8	64.2	75.7	68.1	79.0	75.2	84.6	78.4	88.4			
1% 2%	54.3 49.7	57.2 52.4	52.3 48.7	57.2 54.9	61.9 58.5	74.1 67.5	66.0 64.0	75.9 74.4	73.3	83.2 82.2	77.5	87.4 85.8			
%	UNB 10m	MCDB	A WB	MCDB	WB floa	MCDB	WB	Oct MCDB	WB	NCDB	WB	Dec MCDB			
0.4%	80.2	90.6	80.1	91.0	76.5	84.6	795	78.1	64.5	68.3	60.8	66.1			
1%	79.1	89.9	78.9	88.4	75.3	83.2	69.2 68.0	75.9	62.8	66.6	57.7	62.2 57 9			
Monthly M	lean Daily Ter	mperature	Range		1.110	0110						0110			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]			
13.2	15.0	16.6	18.6	18.8	18.6	17.5	17.4	17.5	207 18.5	15.6	12.9				
WMO#	Model Mar		maniaation	umber	Lat	Latitude 2				Long	Longitude				
Elev	Elevation, ft	norogical O	ryanication n	unititer	StdP	Standard pr	essure at st	ation elevatio	on, psi	Long	Longitude,	measure 14			
WS	Wind speed,	mph mph	h temperati	» *E	Enth	Enthalpy, B	mperature, tu/lb	n n	· *F	HR	Humidity ra	tio, grains of	moisture per	Ib of dry air	
MCWS	Mean coinci	dent wind s	peed, mph	e, r	PCWD	Prevailing c	oincident wi	ind direction,	°, 0 = North	, 90 = East	mean coinc	Juent wet bui	o temperatu	ie, F	

Design Documents vs. Computed Load

As seen from Table 2 below, the computed loads and the design document loads are relatively similar. The computed cooling load is within 2% of the documented cooling load. The computed heating load is much lower than the documented load, being within 31%. This could be due to the fact that the systems that I ran for the greenhouses could be much different than the systems that were run for the design documents. The greenhouses were most likely modeled inaccurately because it was difficult to model wall hung radiation units and horizontal unit heaters in Carrier HAP. The heating load from the greenhouses should have made the overall heating load larger, because they are enclosed in glass and the area the building is located normally has a large heating load for the winter months. The computed supply air rate is within 6% of the documented supply air rate. The computed ventilation rate is within 25% of the documented ventilation rate. This is most likely from AHU-3 which serves the second and third floor offices. The ventilation rate from the design documents is lower than the computed rate. The model for this system that was computed was taken from the design documents saying that AHU-3 needed the same amount of outdoor air as total supply cfm. This value was input into the system for ventilation cfm so this could be why they are different.

Load and Ventilation Comparison						
Cooling (ft ² /ton) Heating (BTU/hr-ft ²) Supply Air (cfm/ft ²) Ventilation						
Design Document	325.9	32.75	0.61	0.41		
Computed	320.6	22.4	0.65	0.55		

Table 2: Load and \	/entilation	Comparison
---------------------	-------------	------------

Annual Energy Consumption and Operating Costs

Annual Energy Consumption

The annual energy consumption was calculated using the same model that was used for the load calculations. With the exception of the gas-fired boilers, the rest of the building is powered by delivered electric power.

Table 3 below shows the energy usage for the entire year separated into different loads for the building.

	Annual Energy Consumption							
Load	Electricity (kWh)	Natural Gas (kWh)	Total (kWh)	% of Total				
Heating								
Gas-Fired		2637639	2637639	31				
Electric Heaters	190608		190608	2				
Cooling								
Chiller	1991808		1991808	23				
Cooling Tower	727097		727097	8				
Condenser Pump	56390		56390	1				
Auxiliary								
Supply Fans	221632		221632	3				
Pumps	1573235		1573235	18				
Lighting	703482		703482	8				
Receptacles	487998		487998	6				
		Total	8589889	100				

Table 3: Annual Energy Consumption

The values above were computed using the energy model with equipment inputs taken from the design documents for the building.

From this analysis it can be seen that the largest load is from heating at 31%. This could be due to a number of things including, the buildings location, orientation, and boilers being the main supply for hot water to all the various systems in this project.

The buildings location is in York, PA, which can have very cold winters. The orientation of the building is mostly north, which is not the best for winter solar gain. The boilers supply a large amount of hot water to ahu's, fan coil units, horizontal unit heaters, wall hung radiation units, vav boxes, and cabinet unit heaters.

The second largest load is from cooling at 23%. This is most likely because of the large amounts of various equipment in the computer labs, office, laboratories, and workroom/mail facilities.

As seen in Chart 1 and Chart 2 below, the energy usage for natural gas and electricity changes throughout the year with the seasons. For electric energy consumption the highest peaks are during the warmer months. This is most likely because the chilled water pumps are working much harder to supply chilled water. The natural gas consumption is peaked during the winter months because of the boilers.

Chart 1: Monthly Electrical Energy Consumption

Chart 2: Monthly Natural Gas Consumption

The costs per unit of electricity and fuel are listed in Table 4 below. Due to the lack of information, Met-ED and Columbia Gas rates were used for this analysis. These two companies are two of the largest for electric and natural gas service in the York area.

Table 4: Utility Cost Information

Utility Cost Information					
Electricity (cents/kWh)	Natural Gas (\$/1000ft ³)				
9.35	7.31				

This cost data was used to determine the cost per month for electricity and natural gas in Chart 3 and 4, respectively. As seen in the charts the cost for both electricity and natural gas fluctuate the same as the monthly energy consumption for each. This is most likely because the energy consumption for each was just multiplied by a price factor.

Chart 3: Monthly Cost of Electrical Energy

Chart 4: Monthly Cost of Natural Gas

Table 5 below shows the equipment inputs used for the major systems in the building from the design documents.

Equipment Inputs			
Ch	iller		
	kW/ton - 0.57		
	400 tons		
	960 gpm		
Boi	ilers		
	2640 MBH each		
	Exit Temp - 180 F		
AH	IU's		
	4200 cfm		
A LI I 1	1300 OA cfm		
Anori	7.5 hp Supply Fan		
	2 hp Exhaust Fan		
	6900 cfm		
ΔH11-2	6900 OA cfm		
AITO-2	15 hp SF		
	7.5 hp EF		
	8000 cfm		
AHU-3	8000 OA cfm		
/110-5	15 hp SF		
	5 hp EF		
	8100 cfm		
ΔΗΙΙ-4	8100 OA cfm		
	15 hp SF		
	5 hp EF		
	7550 cfm		
AHU-5	7550 OA cfm		
	15 hp SF		
	5 hp EF		

Table 5: Equipment Inputs

Cost to Run Systems

The specific costs to run each of the systems has been specified in Table 6 below, the purpose being to show the total energy cost of running the building. It can be seen that the largest cost is for cooling the building. Some reasons for this include the location of the building and the various equipment loads from offices, labs, computer labs, and workrooms being high.

The second largest energy cost is for the pumps. This is most likely because of the larger cooling load, so the chilled water pumps have more work to do. It could also be because there are a number of hot water pumps to supply the systems with hot water during the winter heating months.

With this information it can be concluded that the cost to heat the building is about 61 cents per square foot. The cost to cool the building is about \$1.8 per square foot. From the EIA, (Energy Information Administration), universities spend an average of \$1.95 per square foot on electricity and 15 cents per square foot on natural gas. The cost for natural gas could be much larger than the national average because there are three boilers that each output 2640 MBH.

System Specific Annual Energy Cost							
Load	Load Electricity (\$) Natural Gas (% of Total			
Heating							
Gas-Fired		62480	62480	10			
Electric Heaters	17822		17822	3			
Cooling							
Chiller	186234		186234	30			
Cooling Tower	67984		67984	11			
Condenser Pump	5272		5272	1			
Auxiliary							
Supply Fans	20723		20723	3			
Pumps	147097		147097	24			
Lighting	65776		65776	11			
Receptacles	45628		45628	7			
		Total	619015	100			

Table 6:	System	Specific	Annual	Energy	Cost
----------	--------	----------	--------	--------	------

Professional Energy Analysis

The design engineer chose not to run an energy analysis simply because the envelope and HVAC systems were not in question. Since this is the case the energy analysis run for this report will be compared to the average numbers from the Energy Information Administration for Pennsylvania.

Comparison to Energy Information Administration

The annual cost of electricity for the Carrier HAP model is \$556,535. The annual cost of natural gas for the model is \$62,480. The cost for electricity from the EIA is \$614,272. The cost for natural gas from the EIA is \$103,730. The average cost values used to compare to the model's cost can be found below in Table 7 and 8. The cost from the EIA is much larger for natural gas most likely because Columbia Gas rates are lower than most other natural gas companies in PA.

Show Data By:						
Data Series	2004	2005	2006	2007	2008	2009
Wellhead Price	NA	NA	NA	NA	NA	
Pipeline and Distribution Use Price	-					
Citygate Price	7.56	9.98	10.30	9.35	10.39	7.81
Residential Price	12.27	14.21	16.45	14.66	16.22	14.77
Percentage of Total Residential Deliveries	100.00	100.00	100.00	100.00	100.00	
Commercial Price	10.60	13.04	14.30	12.77	14.30	12.01
Percentage of Total Commercial Deliveries	100.0	100.0	100.0	100.0	100.0	100.0
Industrial Price	8.97	11.25	12.30	10.64	12.09	9.51
Percentage of Total Industrial Deliveries	6.4	7.0	5.5	5.4	5.7	4.2
Vehicle Fuel Price	9.30	9.95	13.53	10.83	8.30	
Electric Power Price	7.49	10.30	7.76	8.01	10.46	4.60

 Table 7: EIA Average Natural Gas Cost per Year

Census Division	Reside	Residential		Commercial ¹		Industrial ¹		Transportation[1]		All Sectors	
and State	July-10	July-09	July-10	July-09	July-10	July-09	July-10	July-09	July-10	July-09	
New England	16.12	17.32	14.68	16.42	13.45	11.42	8.64	7.57	15	15.56	
Connecticut	19.03	20.44	16.51	16.73	14.54	15.4	11.29	10.03	17.44	18.02	
Maine	15.44	15.2	12.18	12.15	9.21	9.54			12.62	12.54	
Massachusetts	14.71	16.69	14.92	18.63	14.41	10.87	6.78	6.08	14.65	15.53	
New Hampshire	16.11	16.4	14.13	15.3	12.75	13.74			14.74	15.46	
Rhode Island	15.11	14.55	11.54	13.02	15.5	9.88	13.46		13.55	13.13	
Vermont	15.27	14.88	13.21	12.89	9.35	9.14			13.06	12.69	
Middle Atlantic	16.72	16.29	15.1	14.34	9.11	8.37	13.7	13	14.78	13.98	
New Jersey	17.37	17.86	15.17	16.18	13.17	11.34	12.94	18.3	15.99	16.39	
New York	19.58	19.13	17.88	16.16	10.27	11.27	15.27	13.95	17.89	16.7	
Pennsylvania	13.34	12.44	10.32	9.7	8.03	6.97	8.29	7.69	10.83	9.81	

The EIA has done research into energy use by system for commercial buildings. According to Chart 5 below, 36% of commercial building energy use comes from space heating. A total of 33% from the model run is used for space heating. The chart also has lighting at 21%. The lighting energy usage from the HAP model is 8%. Cooling energy usage from EIA is about 8% of a commercial building. The lighting for the life sciences is much lower than the average commercial building, most likely because the building used more energy efficient fixtures. The energy usage for cooling from the model is about 24%. This is much higher than an average commercial building, most likely because of the various electrical equipment loads throughout the building being high.

Source: U.S. Energy Information Administration, 2003 Commercial Building Energy Consumption Survey, Table E1A (September 2008).

Annual Emissions Footprint

Table 9 and 10 below show the emissions from delivered electricity and on-site combustion for the values from the Carrier HAP model. The electricity has a high emission of CO₂ and solid waste. The natural gas also has a high emission of CO₂. The emissions from the natural gas are most likely elevated during the winter months because of the heating load required. The emissions from the electricity are most likely elevated during the warmer months because of the cooling load and other electrical equipment.

Emission Factors for Delivered Electricity									
Pollutant (lb)	Factors (Ib of pollutant/kWh)	Electricity (kWh/year)	Emissions (Ib of pollutant/year)						
CO _{2e}	1.55	5952250	9225987.5						
CO ₂	1.48	5952250	8809330.0						
CH_4	0.0027	5952250	16071.1						
N ₂ O	0.0000322	5952250	191.7						
NO _x	0.00291	5952250	17321.0						
SO _x	0.00888	5952250	52856.0						
CO	0.000601	5952250	3577.3						
TNMOC	0.0000546	5952250	325.0						
Lead	0.00000117	5952250	0.7						
Mercury	0.00000027	5952250	0.2						
PM10	0.0000714	5952250	425.0						
Solid Waste	0.178	5952250	1059500.5						

Table 9: Emissions from Delivered Electricity

Table 10: Emissions from On-site Combustion

	Emission Factors for On-Site Combustion									
Pollutant (lb)	Factors (Ib of pollutant/1000 ft ³)	Natural Gas (1000 ft3/year)	Emissions (Ib of pollutant/year)							
CO _{2e}	123	8763	1077849.000							
CO ₂	122	8763	1069086.000							
CH ₄	0.0025	8763	21.908							
N ₂ O	0.0025	8763	21.908							
NO _x	0.111	8763	972.693							
SO _x	0.000632	8763	5.538							
CO	0.0933	8763	817.588							
TNMOC	0.00613	8763	53.717							
Lead	0.000005	8763	0.004							
Mercury	0.0000026	8763	0.002							
PM10	0.0084	8763	73.609							

The emission factor values used for this analysis can be found in the appendix.

Conclusion

The Life Sciences Building is a typical university building, but with a high amount of laboratory equipment and computer labs. After modeling the building with the design document values, the output values of the Carrier HAP model are close to the values from the design documents. Although the final number is only an approximate energy usage, it was close to a comparison of cost with the EIA. This model was used more as a check to see that the simulation was close to that of a similar building. Some of the main energy usage areas such as cooling and lighting were not close to the average commercial building usage. The cooling value was much larger because of the high miscellaneous loads from the laboratories, offices and computer labs. The lighting value was much lower because more efficient fixtures were used in this building. Overall the energy analysis was close to a typical university building.

References

ASHRAE Handbook of Fundamentals

Source Energy and Emission Factors for Energy Use in Buildings, M. Deru and P. Torcellini (2007)

JDB Engineering. <u>Mechanical Specifications.</u> JDB Engineering, York, PA.

JDB Engineering. <u>Mechanical Construction Documents.</u> JDB Engineering, York, PA.

JDB Engineering. <u>Electrical Construction Documents.</u> JDB Engineering, York, PA.

APPENDIX A: Sample Carrier HAP Inputs

Typical Office

Space Propert	ies - [A135 Office]				×
General Interna	als Walls, Windows, Do	oors R	oofs, Skylights	Infiltration F	loors Partitions
- Overhead Light	ing		People		
Eixture Type	Recessed, unvented	-	Occupancy	2.0	People 💌
<u>W</u> attage	1.10 W/f8	-	Activity Level	Office Work	
Ballast Multiplier	1.00	_	Sensi <u>b</u> le	245.0	BTU/hr/person
Schedule	100%	-	<u>L</u> atent	205.0	BTU/hr/person
- Task Lighting-		-	Schedule	100%	. –
Wattage	0.00 W/ft ^e	•	- Miscellaneou:	s Loads	
Schedule	(none)	•	Sensjble	0	BTU/hr
- Electrical Equip	ment		Sche <u>d</u> ule	(none)	-
Wa <u>t</u> tage	1.2 W/ft²	•	Late <u>n</u> t	0	BTU/hr
Sc <u>h</u> edule	100%	•	Schedule	(none)	•
4			OK	Cancel	

Typical Laboratory

Space Properties - [A216 Molecular Lab]	
General Internals Walls, Windows, Doors R	oofs, Skylights Infiltration Floors Partitions
Overhead Lighting	People
Enclose Processed unvented ▼ Wattage 1.40 W/ft [®] ▼	Activity Level Office Work
Ballast Multiplier 1.00	Sensible 245.0 BTU/hr/person
Task Lighting	Schedule 100%
Wattage 0.00 W/ft ▼	Miscellaneous Loads
Electrical Equipment	Schedule 100%
Wattage 1.2 W/ft ^e	Latent 0 BTU/hr
	OK Cancel <u>H</u> elp

Typical Classroom

Space Properties - [A358 Classroom]								
General Internals Walls, Windows, Doors Roofs, Skylights Infiltration Floors Partitions								
Overhead Lighting Eixture Type Recessed, unvented Wattage 1.40 Ballast Multiplier 1.00 Schedule 100%	People Occupancy 41.0 People ▼ Activity Level Office Work Sensible 245.0 Latent 205.0							
Task Lighting Wattage 0.00 W/ft² Schedule (none)	Schedule 100% Miscellaneous Loads Sensible 0 BTU/hr							
Electrical Equipment Wattage 1.5 W/ft ²	Schedule (none) Latent 0 Schedule (none)							
[OK Cancel <u>H</u> elp							

Typical Computer Lab

Space Properties - [A320 Computer Lab]	×
General Internals Walls, Windows, Doors R	oofs, Skylights Infiltration Floors Partitions
Overhead Lighting Fixture Type Recessed, unvented Wattage 1.40 Ballast Multiplier 1.00 Schedule 100% Vattage 0.00 Wattage 0.00	People Occupancy 33.0 People Activity Level Office Work Sensible 245.0 BTU/hr/person Activity Level Office Work Total Sensible Comparison Sensible Comparison Sensible Comparison Sensible Comparison BTU/hr
Electrical Equipment	Schedule (none)
Schedule 100%	Schedule (none)
	OK Cancel <u>H</u> elp

Typical Conference Room/Student Lounge

Space Properties - [A364 Conference]	
General Internals Walls, Windows, Doors I	Roofs, Skylights Infiltration Floors Partitions
Overhead Lighting Eixture Type Recessed, unvented Wattage 1.30 Ballast Multiplier 1.00 Schedule 100%	People <u>O</u> ccupancy 22.0 People Activity Level Office Work Sensible 245.0 BTU/hr/person Latent 205.0 BTU/hr/person Schedule 100%
Wattage 0.00 W//tt° Schedule (none) ▼ Electrical Equipment Wattage 1.00 W//tt°	Miscellaneous Loads Sensible 0 BTU/hr Sche <u>d</u> ule (none)
Schedule 100%	OK Cancel Help

Typical Restroom

Space Properti	es - [A345 Restroom]				×
General Interna	s Walls, Windows, Do	oors Ri	oofs, Skylights	Infiltration F	loors Partitions
- Overhead Lightin	ng		People		
<u>F</u> ixture Type	Recessed, unvented	-	Occupancy	0.0	People 💌
<u>W</u> attage	0.90 W/ft ²	•	Acti <u>v</u> ity Level	Office Work	-
Ballast Multiplier	1.00		Sensi <u>b</u> le	245.0	BTU/hr/person
<u>S</u> chedule	100%	-	<u>L</u> atent	205.0	BTU/hr/person
- Task Lighting -	,	_	Sch <u>e</u> dule	(none)	•
W <u>a</u> ttage	0.00 W/ft²	-	- Miscellaneou:	s Loads	
<u>Sc</u> hedule	(none)	-	Sensible	0	BTU/hr
- Electrical Equipr	nent		Sche <u>d</u> ule	(none)	•
Wa <u>t</u> tage	0.00 W/ft²	•	Late <u>n</u> t	0	BTU/hr
Sc <u>h</u> edule	(none)	•	Sched <u>u</u> le	(none)	•
			OK	Cancel	

Typical Corridor

Space Propert	ies - [A323 Corridor]					X
General Interna	ls Walls, Windows, Do	oors R	oofs, Skylights	Infiltration F	loors Parti	itions
- Overhead Lighti	ng		People			
<u>Fixture</u> Type	Recessed, unvented	-	Occupancy	0.0	People	-
<u>W</u> attage	0.50 W/ft²	-	Activity Level	Office Work		-
<u>B</u> allast Multiplier	1.00	_	Sensi <u>b</u> le	245.0	BTU/hr/pe	erson
<u>S</u> chedule	100%	-	<u>L</u> atent	205.0	BTU/hr/pe	rson
Task Lighting		_	Schedule	(none)		-
W <u>a</u> ttage	0.00 W/ft²	-	- Miscellaneou	s Loads		
Schedule	(none)	•	Sensjble	0	BTU/hr	
Electrical Equip	ment		Sche <u>d</u> ule	(none)		-
Wa <u>t</u> tage	0.00 W/ft²	•	Late <u>n</u> t	0	BTU/hr	
Sc <u>h</u> edule	(none)	•	Schedule	(none)		•
			ОК	Cancel	<u>H</u> elp	

Typical Mechanical/Electrical

Space Properties - [A001 Mechanical]	
General Internals Walls, Windows, Doors F	Roofs, Skylights Infiltration Floors Partitions
Overhead Lighting Fixture Type Recessed, unvented Wattage 1.50 W/th² Ballast Multiplier Ballast Multiplier 1.00 Schedule 100% Task Lighting V/th² Wattage 0.00 W/th² Schedule Inox V/th² Electrical Equipment Wattage Xattage 2.00 W/th² Schedule	People Occupancy 0.0 People Activity Level Office Work ▼ Sensible 245.0 BTU/hr/person Latent 205.0 BTU/hr/person Schedule [none) ▼ Miscellaneous Loads Sensible 0 Schedule [none) ▼ Latent 0 BTU/hr Schedule [none) ▼
	OK Cancel Help

Wall Construction

Wall Properties - [Life Sciences Existing Walls]									
W	Wall Assembly Name: Life Sciences Existing Walls								
00	itside Surface <u>C</u> olor:	Dark		-			<u>A</u> bsorptivity:	0.900	
	Layers: Inside to (Thickness in	Density Ib/ft³	Specific Ht. BTU/Ib/F	R-Value hr-ft ^e -F/BTU	Weight Ib/ft²		
	Inside surface res	sistance		0.000	0.0	0.00	0.68500	0.0	
	Gypsum board		•	0.750	50.0	0.26	0.67204	3.1	
	Air space		•	0.000	0.0	0.00	0.91000	0.0	
	8-in LW concrete	block	•	8.000	38.0	0.20	2.02020	25.3	
	R-14 board insula	ation	•	2.000	2.0	0.22	13.88889	0.3	
	Face brick		•	4.000	125.0	0.22	0.43286	41.7	
	Outside surface r	esistanc	e	0.000	0.0	0.00	0.33300	0.0	
	Totals			14.750			18.94	70.5	
					٥v	erall U-Value:	0.053	BTU/hr/ft²/F	
						DK	Cancel	<u>H</u> elp	

Roof Construction

Roof Properties - [Existing Life Science Roof]									
Roof Assembly <u>N</u> ame:	Existing Li	xisting Life Science Roof							
Outside Surface <u>C</u> olor:	Dark	-			<u>A</u> bsorptivity:	0.900			
Layers: Inside to 0	Thickness in	Density Ib/ft³	Specific Ht. BTU/Ib/F	R-Value hr-ft ^e -F/BTU	Weight Ib/ft²				
Inside surface res	Inside surface resistance			0.00	0.68500	0.0			
Steel deck	Steel deck 🗸			0.12	0.00011	1.4			
R-7 board insulati	R-7 board insulation 👻		2.0	0.22	41.66667	1.0			
Built-up roofing	-	0.376	70.0	0.35	0.33298	2.2			
Outside surface re	Outside surface resistance			0.00	0.33300	0.0			
Totals	Totals				43.02	4.6			
	0١	Overall U-Value: 0.023							
OK Cancel Help									

APPENDIX B: Emission Factor Tables

Delivered Energy Emission Factors

Table B-10 (page 2) Total Emission Factors for Delivered Electricity by State (lb of pollutant per kWh of electricity)													
Pollutant (lb)	MT	NC	ND	NE	NH	NJ	NM	NV	NY	OH	ок	OR	PA
CO _{2e}	1.99E+00	1.47E+00	2.68E+00	1.81E+00	8.60E-01	9.31E-01	2.43E+00	1.88E+00	1.03E+00	2.20E+00	2.08E+00	4.85E-01	1.55E+00
CO ₂	1.87E+00	1.41E+00	2.61E+00	1.71E+00	8.05E-01	8.61E-01	2.29E+00	1.76E+00	9.61E-01	2.10E+00	1.93E+00	4.40E-01	1.48E+00
CH₄	4.17E-03	2.37E-03	2.41E-03	3.70E-03	2.19E-03	2.79E-03	5.38E-03	4.81E-03	2.59E-03	3.71E-03	5.67E-03	1.83E-03	2.70E-03
N ₂ O	5.29E-05	3.11E-05	5.92E-05	4.94E-05	1.53E-05	1.76E-05	6.50E-05	3.75E-05	1.68E-05	4.73E-05	5.09E-05	1.04E-05	3.22E-05
NOx	3.33E-03	2.83E-03	3.71E-03	3.09E-03	1.44E-03	1.32E-03	4.00E-03	2.89E-03	1.72E-03	4.14E-03	3.02E-03	5.21E-04	2.91E-03
SOx	5.88E-03	8.26E-03	1.00E-02	4.79E-03	5.47E-03	6.34E-03	7.30E-03	1.21E-02	6.23E-03	1.19E-02	8.88E-03	3.03E-03	8.88E-03
CO	7.40E-04	4.31E-04	1.07E-03	6.09E-04	1.13E-03	6.69E-04	8.66E-04	7.39E-04	1.75E-03	6.38E-04	8.67E-04	2.72E-04	6.01E-04
TNMOC	6.02E-05	5.25E-05	5.34E-05	5.23E-05	8.62E-05	6.92E-05	7.27E-05	6.23E-05	6.38E-05	5.41E-05	8.01E-05	3.90E-05	5.46E-05
Lead	1.99E-07	1.16E-07	4.23E-07	1.87E-07	4.57E-08	4.27E-08	2.37E-07	1.09E-07	5.59E-08	1.76E-07	1.61E-07	2.05E-08	1.17E-07
Mercury	4.08E-08	2.40E-08	7.52E-08	3.73E-08	2.60E-08	1.44E-08	4.75E-08	2.27E-08	3.99E-08	3.59E-08	3.27E-08	4.59E-09	2.70E-08
PM10	1.14E-04	6.55E-05	3.03E-04	1.01E-04	5.47E-05	5.14E-05	1.36E-04	8.97E-05	6.87E-05	9.87E-05	1.16E-04	2.87E-05	7.14E-05
Solid Waste	3.01E-01	1.78E-01	3.33E-01	2.88E-01	5.65E-02	6.23E-02	3.65E-01	1.68E-01	6.18E-02	2.71E-01	2.49E-01	3.25E-02	1.78E-01

On-Site Combustion Emissions

	Commercial Boiler										
Pollutant (lb)	Bituminous Coal *	Lignite Coal **	Natural Gas	Residual Fuel Oil	Distillate Fuel Oil	LPG					
	1000 lb	1000 lb	1000 ft ³ ***	1000 gal	1000 gal	1000 gal					
CO _{2e}	2.74E+03	2.30E+03	1.23E+02	2.56E+04	2.28E+04	1.35E+04					
CO ₂	2.63E+03	2.30E+03	1.22E+02	2.55E+04	2.28E+04	1.32E+04					
CH4	1.15E-01	2.00E-02	2.50E-03	2.31E-01	2.32E-01	2.17E-01					
N ₂ O	3.68E-01	ND [†]	2.50E-03	1.18E-01	1.19E-01	9.77E-01					
NO _X	5.75E+00	5.97E+00	1.11E-01	6.41E+00	2.15E+01	1.57E+01					
SO _X	1.66E+00	1.29E+01	6.32E-04	4.00E+01	3.41E+01	0.00E+00					
CO	2.89E+00	4.05E-03	9.33E-02	5.34E+00	5.41E+00	2.17E+00					
VOC	ND [†]	ND [†]	6.13E-03	3.63E-01	2.17E-01	3.80E-01					
Lead	1.79E-03	6.86E-02	5.00E-07	1.51E-06	ND [†]	ND [†]					
Mercury	6.54E-04	6.54E-04	2.60E-07	1.13E-07	NDŤ	ND [†]					
PM10	2.00E+00	ND [†]	8.40E-03	4.64E+00	1.88E+00	4.89E-01					

Table 8 Emission Factors for On-Site Combustion in a Commercial Boiler (Ib of pollutant per unit of fuel)

* from the U.S. LCI data module: Bituminous Coal Combustion in an Industrial Boiler (NREL 2005)

** from the U.S. LCI data module: Lignite Coal Combustion in an Industrial Boiler (NREL 2005)

*** Gas volume at 60°F and 14.70 psia.

[†] no data available