Presentation Outline

- Project Background
- Analysis #1: Bringing BIM into the Field
 - Vico Software and Trimble
 - Vela Systems
 - Impacts of Implementing New Technology
- Analysis #2: Alternative Curtain Wall Systems
 - System Design
 - Architectural Impacts
 - Schedule/Cost Impacts
- Analysis #3: Feasibility of PV Curtain Wall
 - Electrical Breadth Design
 - Energy/Electrical Impacts
 - Feasibility Analysis
- Lesson Learned
- Acknowledgments
PROJECT BACKGROUND

Project Data

<table>
<thead>
<tr>
<th>Occupant</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>265,000 SF</td>
</tr>
<tr>
<td>Total Height</td>
<td>4 floors</td>
</tr>
<tr>
<td>Function</td>
<td>Research Labs and Offices</td>
</tr>
</tbody>
</table>
PROJECT BACKGROUND

Project Data
- Occupant: University
- Size: 265,000 SF
- Total Height: 4 Floors
- Function: Research Labs and Offices

Project Team
- CM Agency: Turner Construction
- Design Architect: Hopkins Architects
- Executive Architect: Payette Associates
- Engineer: ARUP

Michael Gallagher
AE Senior Thesis 2011

Construction Management Advisor: Dr. Riley
Project Background
- Analysis #1: Bringing BIM Into the Field
- Analysis #2: Alternative Curtain Wall Systems
- Analysis #3: Feasibility of PV Curtain Wall System
- Lessons Learned
- Acknowledgments & Questions

Building Design / Layout
Project Background

Analysis #1: Bringing BIM Into the Field
- Vico Software and Trimble
- Vela Systems
- Impacts of Implementing New Technology

Analysis #2: Alternative Curtain Wall Systems

Analysis #3: Feasibility of PV Curtain Wall System

Lessons Learned

Acknowledgments & Questions

Bringing BIM Into the Field

Problem Identification
- BIM model only used for 3D MEP Coordination

Research Goal
- Show the benefits of BIM and how it can be utilized more on a project
Bringing BIM Into the Field

Problem Identification
- BIM model only used for 3D MEP Coordination

Research Goal
- Show the benefits of BIM and how it can be utilized more on a project

Potential Areas to Implement
- Steel, Concrete and MEP Layout
- Commissioning
- Punchlist
- Tracking Progress
- Tracking Materials
- Safety
- QA/QC
- Turnover / Maintenance / Warranty
Project Background

Analysis #1: Bringing BIM Into the Field
- Vico Software and Trimble
- Vela Systems
- Impacts of Implementing New Technology

Analysis #2: Alternative Curtain Wall Systems

Analysis #3: Feasibility of PV Curtain Wall System

Lessons Learned

Acknowledgments & Questions

New Technology

Bringing BIM Into the Field

Problem Identification
- BIM model only used for 3D MEP Coordination

Research Goal
- Show the benefits of BIM and how it can be utilized more on a project

Potential Areas to Implement
- Commissioning
- Punchlist
- Tracking Progress
- Tracking Materials
- Safety
- OA/QC
- Turnover / Maintenance / Warranty
- Steel, Concrete, Wall, and MEP Layout
Vico Software and Trimble

- Vico and Trimble have a Partnership
- Allows you to export information from Vico Software and 3D model to Trimble Field Layout Solution
- Can use GPS, Laser, and a Total Station to layout steel, concrete, MEP, and walls all based on coordinates from the 3D Model
Vico Software and Trimble

- Vico and Trimble have a Partnership
- Allows you to export information from Vico Software and 3D model to Trimble Field Layout Solution
- Can use GPS, Laser, and a Total Station to layout steel, concrete, MEP, and walls all based on coordinates from the 3D Model

Benefits
- Reduces errors during construction
- Improves QA/QC
- Improved Coordination
- Insures MEP is placed in correct locations
Vela Systems

- Vela’s goal is to help better manage construction projects
- Program that contains all the documents pertaining to project such as drawings, ASI’s, RFI’s, Specs, etc.
- Everyone has access and anyone can upload information to it
Project Background

Analysis #1: Bringing BIM Into the Field
- Vico Software and Trimble
- Vela Systems
- Impacts of Implementing New Technology

Analysis #2: Alternative Curtain Wall Systems

Analysis #3: Feasibility of PV Curtain Wall System

Lessons Learned

Acknowledgments & Questions

Vela Systems

- Vela’s goal is to help better manage construction projects
- Program that contains all the documents pertaining to project such as drawings, ASIs, RFI’s, Specs, etc.
- Everyone has access and anyone can upload information to it

Benefits
- Helps track progress
- Two week look aheads
- Reduces time to complete punchlist, closeout, and commission
- Safety checks
- Improves QA/QC
- Improves Coordination
Project Background

Analysis #1: Bringing BIM Into the Field
- Vico Software and Trimble

Analysis #2: Vela Systems

Analysis #3: Impacts of Implementing New Technology

Analysis #2: Alternative Curtain Wall Systems

Analysis #3: Feasibility of PV Curtain Wall System

Lessons Learned

Acknowledgments & Questions

Impacts of Implementing New Technology

Vela Systems - Case Studies
- Skanska – New Meadowlands Stadium
- Turner Construction – 10 Rittenhouse Square Philadelphia, PA and Hampton Roads Naval Housing Norfolk, VA
- Barton Malow – Maryland General Hospital in Baltimore
- Cianbro – Destiny USA, Syracuse, New York

Michael Gallagher
AE Senior Thesis 2011

Construction Management Advisor: Dr. Riley
Impacts of Implementing New Technology

Vela Systems - Case Studies

- Skanska – New Meadowlands Stadium
- Turner Construction – 10 Rittenhouse Square Philadelphia, PA and Hampton Roads Naval Housing Norfolk, VA
- Barton Malow – Maryland General Hospital in Baltimore
- Cianbro – Destiny USA, Syracuse, New York

Bob Wunderlich, Quality Control Manager for Turner Construction Company said “We pick up a day of time on schedule every week or so. You continue to pick up a day here and there and pretty soon it adds up.”
Project Background

Analysis #1: Bringing BIM Into the Field
- Vico Software and Trimble
- Vela Systems
- Impacts of Implementing New Technology

Analysis #2: Alternative Curtain Wall Systems
- Analysis #3: Feasibility of PV Curtain Wall System
- Lessons Learned
- Acknowledgments & Questions

Impacts of Implementing New Technology

Potential Benefits
- Cost Savings
- Schedule Reduction
- Improved Communication
- Everyone has the newest drawings / information

Vela Systems - Case Studies
- Skanska – New Meadowlands Stadium
- Turner Construction – 10 Rittenhouse Square Philadelphia, PA and Hampton Roads Naval Housing Norfolk, VA
- Barton Malow – Maryland General Hospital in Baltimore
- Cianbro – Destiny USA, Syracuse, New York

Bob Wunderlich, Quality Control Manager for Turner Construction Company said “We pick up a day of time on schedule every week or so. You continue to pick up a day here and there and pretty soon it adds up.”

Michael Gallagher
AE Senior Thesis 2011
Construction Management
Advisor: Dr. Riley
Alternative Curtain Wall Systems

Problem Identification
• $40+ million dollar curtain wall system
• Size of the glass did not allow to be manufactured in the U.S.
• Egress stair tower glass breaking
• Scope was so large – almost no bidders

Research Goal
• Find another system that costs less and/or is able to incorporate PV into it
System Design

Scenario #1
- Maintain large glass size and implement PV glass where fritted glass is currently located on exterior façade

Scenario #2
- Reduce glass size and implement PV where fritted glass is currently located on exterior façade

Scenario #3
- Reduce glass size and maintain fritted glass where currently located – no PV
Schuco E² Façade – Scenario #1
- Maintain large glass size and implement PV glass where fritted glass is currently located on exterior façade
Project Background

Analysis #1: Bringing BIM Into the Field

Analysis #2: Alternative Curtain Wall Systems
 - System Design
 - Architectural Impacts
 - Schedule/Cost Impacts

Analysis #3: Feasibility of PV Curtain Wall System

Lessons Learned

Acknowledgments & Questions

System Design

Schuco E² Façade – Scenario #2
 - Reduce glass size and implement PV glass where fritted glass is currently located on exterior façade

Michael Gallagher
AE Senior Thesis 2011

Construction Management
Advisor: Dr. Riley
Architectural Impacts

Minimal Changes
- Largest PV glass size is 8' x 7'
- Sizes of glass being replaced
 - 5.5' x 5.5'
 - 3' x 10.5'
 - 5.5' x 10.5'
- Proposed New Sizes
 - 5.5' x 5.5'
 - 3' x 5.25'
 - 5.5' x 5.25'
- Non-Stair tower Glass – Interior Mullion is behind Aluminum Panel on the inside
Schedule / Cost Impacts

- Current System for the purpose of this analysis is roughly $20 million dollars
- This price only includes the following
 - Price of the glass
 - Aluminum Extrusions
 - Steel Structure supports
 - Gaskets and Silicone
 - Hoisting
 - Installation
Schedule / Cost Impacts

- Current System for the purpose of this analysis is roughly $20 million dollars
- This price only includes the following
 - Price of the glass
 - Aluminum Extrusions
 - Steel Structure supports
 - Gaskets and Silicone
 - Hoisting
 - Installation
Schedule / Cost Impacts

- Current System for the purpose of this analysis is roughly $20 million dollars
- This price only includes the following
 - Price of the glass
 - Aluminum Extrusions
 - Steel Structure supports
 - Gaskets and Silicone
 - Hoisting
 - Installation
Schedule / Cost Impacts

- Current System for the purpose of this analysis is roughly $20 million dollars
 - This price only includes the following
 - Price of the glass
 - Aluminum Extrusions
 - Steel Structure supports
 - Gaskets and Silicone
 - Hoisting
 - Installation
Analysis #1: Bringing BIM Into the Field

Analysis #2: Alternative Curtain Wall Systems
- System Design
- Architectural Impacts

Analysis #3: Feasibility of PV Curtain Wall System

Schedule / Cost Impacts

- Current System for the purpose of this analysis is roughly $20 million dollars
- This price only includes the following
 - Price of the glass
 - Aluminum Extrusions
 - Steel Structure supports
 - Gaskets and Silicone
 - Hoisting
 - Installation

- Scenario #1 is approximately $3,713,480 more expensive than the current system
- Scenario #1 is Proposed system because it has the least amount of Architectural Impacts
- Smaller glass size should be considered though
 - Reduce Current $2.65 million dollar cost for packaging and shipping
 - Reduce lead time by about 2 weeks
Feasibility of PV Curtain Wall
Feasibility of PV Curtain Wall

- Requires
 - (3) – 68.4 kW Inverters
 - (1) – 49.6 kW Inverter
 - 900’ of DC wire
 - 345’ of AC wire

Michael Gallagher
AE Senior Thesis 2011
Advisor: Dr. Riley
Feasibility of PV Curtain Wall

<table>
<thead>
<tr>
<th>Year</th>
<th>Hourly Clay</th>
<th>Total Savings</th>
<th>Total Savings To Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1312</td>
<td>60,791.55</td>
<td>72,607.63</td>
</tr>
<tr>
<td>1</td>
<td>0.1325</td>
<td>60,791.55</td>
<td>72,725.79</td>
</tr>
<tr>
<td>2</td>
<td>0.1338</td>
<td>60,791.55</td>
<td>73,459.99</td>
</tr>
<tr>
<td>3</td>
<td>0.1351</td>
<td>60,791.55</td>
<td>74,106.20</td>
</tr>
<tr>
<td>4</td>
<td>0.1364</td>
<td>60,791.55</td>
<td>74,785.38</td>
</tr>
<tr>
<td>5</td>
<td>0.1377</td>
<td>60,791.55</td>
<td>75,499.21</td>
</tr>
<tr>
<td>6</td>
<td>0.1390</td>
<td>60,791.55</td>
<td>76,258.43</td>
</tr>
<tr>
<td>7</td>
<td>0.1403</td>
<td>60,791.55</td>
<td>77,058.85</td>
</tr>
<tr>
<td>8</td>
<td>0.1416</td>
<td>60,791.55</td>
<td>77,899.17</td>
</tr>
<tr>
<td>9</td>
<td>0.1429</td>
<td>60,791.55</td>
<td>78,780.27</td>
</tr>
<tr>
<td>10</td>
<td>0.1442</td>
<td>60,791.55</td>
<td>79,693.75</td>
</tr>
<tr>
<td>11</td>
<td>0.1456</td>
<td>60,791.55</td>
<td>80,649.38</td>
</tr>
<tr>
<td>12</td>
<td>0.1470</td>
<td>60,791.55</td>
<td>81,648.73</td>
</tr>
<tr>
<td>13</td>
<td>0.1483</td>
<td>60,791.55</td>
<td>82,691.22</td>
</tr>
<tr>
<td>14</td>
<td>0.1497</td>
<td>60,791.55</td>
<td>83,777.39</td>
</tr>
<tr>
<td>15</td>
<td>0.1511</td>
<td>60,791.55</td>
<td>84,897.79</td>
</tr>
<tr>
<td>16</td>
<td>0.1524</td>
<td>60,791.55</td>
<td>86,053.46</td>
</tr>
<tr>
<td>17</td>
<td>0.1538</td>
<td>60,791.55</td>
<td>87,244.35</td>
</tr>
<tr>
<td>18</td>
<td>0.1552</td>
<td>60,791.55</td>
<td>88,472.62</td>
</tr>
<tr>
<td>19</td>
<td>0.1565</td>
<td>60,791.55</td>
<td>89,739.08</td>
</tr>
<tr>
<td>20</td>
<td>0.1579</td>
<td>60,791.55</td>
<td>91,045.13</td>
</tr>
<tr>
<td>21</td>
<td>0.1593</td>
<td>60,791.55</td>
<td>92,391.53</td>
</tr>
<tr>
<td>22</td>
<td>0.1606</td>
<td>60,791.55</td>
<td>93,779.03</td>
</tr>
<tr>
<td>23</td>
<td>0.1620</td>
<td>60,791.55</td>
<td>95,219.07</td>
</tr>
<tr>
<td>24</td>
<td>0.1634</td>
<td>60,791.55</td>
<td>96,703.34</td>
</tr>
<tr>
<td>25</td>
<td>0.1647</td>
<td>60,791.55</td>
<td>98,234.69</td>
</tr>
</tbody>
</table>
Justification for Cost
- Current PV Trays above atrium skylight cost about $2 million dollars
- Produce 85 kV or 68 kWh
- Schuco Esp system produces just over 3.6 times as much energy
- Schuco system only costs 13.8% more money

Feasibility of PV Curtain Wall

<table>
<thead>
<tr>
<th>Year</th>
<th>Year Energy Cost</th>
<th>Energy Produced per Hour</th>
<th>Hours per Year</th>
<th>Total Savings Per Year</th>
<th>Total Savings To Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1312</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>72,607.63</td>
</tr>
<tr>
<td>2</td>
<td>0.1325</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>72,725.79</td>
</tr>
<tr>
<td>3</td>
<td>0.1338</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>73,459.99</td>
</tr>
<tr>
<td>4</td>
<td>0.1351</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>74,058.89</td>
</tr>
<tr>
<td>5</td>
<td>0.1364</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>74,569.53</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>0.1508</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>74,749.67</td>
</tr>
<tr>
<td>16</td>
<td>0.1523</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>74,874.66</td>
</tr>
<tr>
<td>17</td>
<td>0.1538</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>74,999.64</td>
</tr>
<tr>
<td>18</td>
<td>0.1554</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>75,124.62</td>
</tr>
<tr>
<td>19</td>
<td>0.1569</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>75,249.60</td>
</tr>
<tr>
<td>20</td>
<td>0.1585</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>75,374.58</td>
</tr>
<tr>
<td>21</td>
<td>0.1601</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>75,499.56</td>
</tr>
<tr>
<td>22</td>
<td>0.1617</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>75,624.54</td>
</tr>
<tr>
<td>23</td>
<td>0.1633</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>75,749.52</td>
</tr>
<tr>
<td>24</td>
<td>0.1649</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>75,874.50</td>
</tr>
<tr>
<td>25</td>
<td>0.1666</td>
<td>10.281</td>
<td>8,760.00</td>
<td>60,791.55</td>
<td>75,999.48</td>
</tr>
</tbody>
</table>
Lesson Learned

Analysis #1:
- Implementing new software and technology can save time, reduce costs, improve communication, and improve the overall construction process.

Analysis #2:
- There is a substantial premium for large glass sizes.
- Curtain wall systems are becoming more efficient and more feasible to implement components like PV into them.

Analysis #3:
- Tax rebates and incentives make PV glass affordable.

Lessons Learned

Analysis #1: Bringing BIM into the Field
- Alternative Curtain Wall Systems
- Feasibility of PV Curtain Wall System

Acknowledgments & Questions

Michael Gallagher
AE Senior Thesis 2011

Construction Management
Advisor: Dr. Riley
Acknowledgements

Academic Acknowledgements:
Penn State AE Faculty
Dr. Riley – CM Advisor

Industry Acknowledgements:
Turner Construction
Schuco USA
Veila Management Systems
Hopkins Architects

Special Thanks To:
Turner Construction Project Team
Project Architects and Engineers
PACE Industry Members
The Owner