THESIS PRESENTATION OUTLINE

Presentation Outline and Sample Slides

BRIANNE KYLE
Construction Management
Thesis Advisor: Dr. Chimay J. Anumba

RIVER VUE APARTMENTS | NEW LUXURY APARTMENTS RENOVATION | PITTSBURGH, PA

March 26, 2012
Table of Contents

Table of Contents...2
Thesis Presentation Outline.................................3
Introduction Sample Slide..................................4
Photovoltaic Glass Window System Implementation Sample Slide............................5
Renewable Energy/Electrical Breadth Sample Slide...6
Green Roof System Implementation Sample Slide...7
Thesis Presentation Outline

I. Introduction (2 screens)
 a. Self
 b. Project
 c. Outline of presentation/technical analysis and breadth topics

II. Project Background (2 screens)
 a. Location
 b. Building type and function
 c. General building statistics
 i. Contract type and overall cost
 ii. Project schedule
 iii. Systems

III. Technical Analysis #1: Photovoltaic Glass Window System Implementation (10 screens)
 a. Problem identification and research goal
 b. System design
 c. Renewable energy/Electrical breadth (Only Breadth presented in detail = 3 screens)
 i. Introduction
 ii. Energy production
 iii. Electrical system tie-in
 iv. Results
 d. Feasibility analysis
 i. System Cost
 ii. Rebates/Incentives
 iii. Payback Period
 e. Recommendation and conclusion

IV. Technical Analysis #2: Green Roof System Implementation (4 screens)
 a. Problem identification and research goal
 b. System design
 c. Structural Impact
 d. Feasibility analysis
 i. System cost
 ii. Rent comparison
 e. Recommendation and conclusion

V. Technical Analysis #3: 3D Laser Technology Implementation (5 screens)
 a. Problem identification and research goal
 b. Summary of issues caused by as-built drawing inconsistencies
 c. Overview of quality control
 d. Cost comparison
 e. Recommendation and conclusion

VI. Technical Analysis #4: Critical Industry Issue – Energy Management (Sensor System) (10 screens)
 a. Problem identification and research goal
 b. Overview of energy management
 c. Overview of occupant behavior
 d. System design
 e. Energy reduction
 f. Feasibility analysis
 i. System cost
 ii. Rebates and incentives
 iii. Payback period
 g. Recommendation and conclusion

VII. Summary of All Recommendations and Conclusions (1 screen)

VIII. Acknowledgements (1 screen)
PRESENTATION OUTLINE:

I. Project Background
II. Analysis #1: Photovoltaic Glass Window System
 I. System Design
 II. Renewable Energy/Electrical Impact
 III. Feasibility Analysis
III. Analysis #2: Green Roof System
 I. System Design
 II. Structural Impact
 III. Feasibility Analysis
IV. Analysis #3: BIM Laser Scanning Technology
 I. As-uilt Drawing Issues
 II. Quality Control
 III. Cost Comparison
V. Appendix #4: Energy Management (Linear System)
 I. System Design
 II. Simulation
 III. Feasibility Analysis
VI. Recommendations and Final Conclusions
VII. Acknowledgements

PROBLEM IDENTIFICATION:

• Project achieving LEED certification through sustainable construction methods
• Few sustainable design techniques pursued in project
• High building electrical energy consumption

RESEARCH GOAL:

• Perform preliminary design of photovoltaic glass window system
• Determine financial feasibility of system
• Reduce electrical energy consumption
PRESENTATION OUTLINE:

I. Project Background
II. Analysis #1: Photovoltaic Glass Window System
 I. System Design
 II. Renewable Energy/Electrical Impact
 III. Feasibility Analysis
III. Analysis #2: Green Roof System
 I. System Design
 II. Structural Impact
 III. Feasibility Analysis
IV. Analysis #3: 3D Laser Scanning Technology
 I. As-Built Drawing Issues
 II. Quality Control
 III. Cost Comparison
V. Analysis #4: Energy Management (Renewable Systems)
 I. System Design
 II. Standards
 III. Feasibility Analysis
VI. Recommendations and Final Conclusions
VII. Acknowledgements

EXISTING GRID CONNECTION:
- PV glass window system too large for load-side interconnection
- Use supply-side interconnection

ELECTRICAL COMPONENTS REQUIRED:
- DC wire-run
- DC disconnect switch
- Inverter
- AC disconnect switch
- AC wire-run
- Service-tap meter box

Diagram:
- Photovoltaic glass units supply (DC Power)
- Grid power supply
- Power supply to loads
- Inverter
- DC disconnect switch
- AC disconnect switch
- Meter box
- Main distribution panel
- PV supply from inverters (AC Power)
PRESENTATION OUTLINE:
I. Project Background
II. Analysis #1: Photovoltaic Glass Window System
 I. System Design
 II. Energy/Electrical Impact
 III. Feasibility Analysis
III. Analysis #2: Green Roof System
 I. System Design
 II. Structural Impact
 III. Feasibility Analysis
IV. Analysis #3: 3D Laser Scanning Technology
 I. As-Built Drawing Issues
 II. Quality Control
 III. Cost Comparison
V. Analysis #4: Energy Management (Green System)
 I. System Design
 II. Substations
 III. Feasibility Analysis
VI. Recommendations and Final Conclusions
VII. Acknowledgements

PROBLEM IDENTIFICATION:
• Project is achieving LEED certification through sustainable construction methods
• Few sustainable design techniques pursued in project

RESEARCH GOAL:
• Perform preliminary resident-accessible design of green roof system
• Determine structural impact on existing roof system
• Determine financial feasibility of system