1776 WILSON BOULEVARD

ARLINGTON VIRGINIA

1776 SKANSKA

Penn State University Senior Thesis 2012

aculty Advisor: Thomas Boothby

Joshua Urban Etmotural Ontion

PRESENTATION OVERVIEW

BUILDING INTRODUCTION AND EXISTING INFORMATION PROPOSAL OVERVIEW

STRUCTURAL DEPTH

CONSTRUCTION MANAGEMENT BREADTH SUMMARY SUSTAINABILITY BREADTH

Penn State Universit

Faculty Advisor: Thomas Boothby

Joshua Urban Structural Ontion

BUILDING STATISTICS

- *LOCATED IN ARLINGTON COUNTY, VIRGINIA
- ❖ CLASS A OFFICE WITH RETAIL
- **♦**249,000 SF

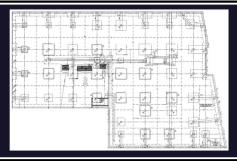
- ❖\$63.5 MILLION CONTRACT VALUE
- ❖DESIGN-BID-BOND
- ❖ C-O-2.5 ZONING DISTRICT
- ♦ SEPARATE MIXED USE

ARCHITECTURE AND SUSTAINABILITY

- ❖4 FLOORS OF OPEN OFFICE SPACE
- *PRECAST CONCRETE PANELS
- ♦GENEROUS GLAZING AND CURTAIN WALLS
- ❖REDUCED TRAFFIC IMPACT
- ♦PUBLIC PARK AREA AND ROOF TERRACE
- ♦BROWNFIELD REDEVELOPMENT
- ❖GREEN ROOF AND SOLAR PV PANELS

- N T R O D U C T - O N

Stratum	Name	Description
ı	Fill/Possible Fill	17-36 feet below site grades consisting of various amounts of sand, gravel, and clay
П	Natural Alluvial/Marine Solids	28-52 feet below site grades and under stratum 1, this stratum consists of poorly graded sand, clayey sand, and low plasticity clay with varying gravel content
III	Residual Soils/Weathered Rock	Below stratum 2 and consists of Micaceous silty sand with rock fragments.


STRUCTURE EXISTING

FOUNDATION

SITE CONDITIONS

♦BELOW GROUND STRATA ♦HIGH GROUNDWATER FLOW ❖ 45,500 SF FOOTPRINT AREA ONE AND TWO STORY BUILDINGS

- ❖ SHALLOW FOUNDATION
- ♦BEARING CAPACITY OF 10,000 PSF
- SLAB ON GRADE AND FOOTINGS

STRUCTURE EXISTING

FOUNDATION

❖ SHALLOW FOUNDATION

♦BEARING CAPACITY OF 10,000 PSF SLAB ON GRADE AND FOOTINGS

FLOOR SYSTEM

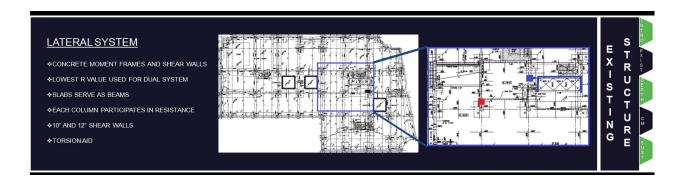
- ♦FLAT SLAB WITH DROPS

<u>COLUMNS</u>

- ♦GROUND FLOOR 24" X 24" COLUMNS
- ♦22" X 22" TYPICAL COLUMNS ABOVE

STRUCTURE EXISTING

FOUNDATION

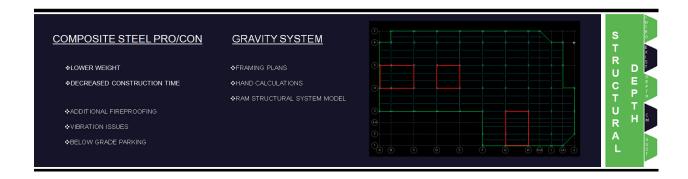

FLOOR SYSTEM

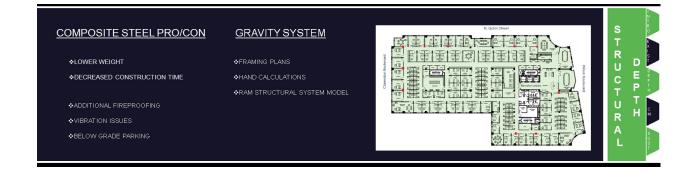
<u>ROOF</u>

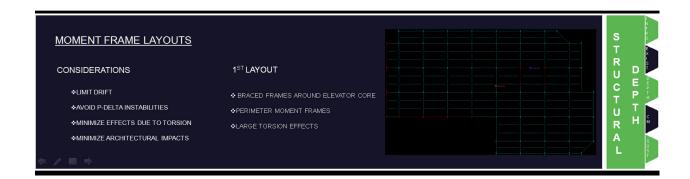
- **❖** SHALLOW FOUNDATION
- ♦BEARING CAPACITY OF 10,000 PSF
- SLAB ON GRADE AND FOOTINGS
- ♦FLAT SLAB WITH DROPS
- ❖30' X 30' AND 30' X 45' BAYS

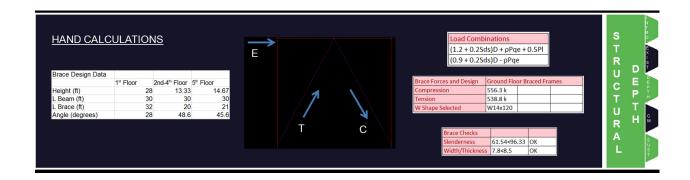
- SOLAR PANELS ADD 6.6 8 PSF TO DEAD LOAD
- *ROOF COVERAGE IS VEGETATION, ROOF PAVERS, OR WEARING SLAB

STRUCTURE EXISTING

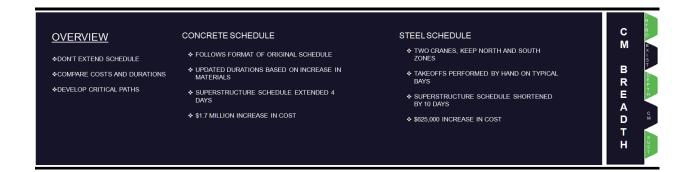


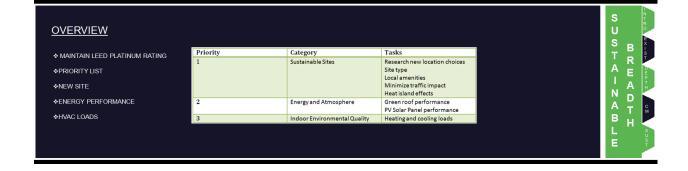






RAM STRUCTURAL SYSTEM	Beam Design and Check Criteria AISC 360-05 LRFD Deck perpendicular to composite beam braces	Column Design and Check Criteria AISC 360-05 LRFD for columns and base plates Trial groups of W14, W12, and W10 used	s
♦ HAND CALCULATION RESULTS USED TO ASSIGN SIZES	the flange Camber included in design if necessary Max stud spacing follows code Stud Placement: e mid-ht. < 2"	Deck braces the column	R U D
◆CRITERIA SET FOR BEAM/ COLUMN CHECKS AND BEAM DEFLECTION	Beam Deflection Criteria		C E
◆ECONOMIZE LAYOUTS	Composite Unshored	Live Load = L/360 Superimposed = L/240 Total = L/240	UH
	Composite Shored	Live Load = L/360 Total = L/240	R
	Noncomposite	Live Load = L/360 Total = L/240	L





NEW SITE LOCATION

❖CENTRAL DISTRICT OAKLAND❖BROWNFIELD OPPORTUNITIES

*REDUCE TRAFFIC IMPACT

♦HEAT ISLAND

	Richmond Virginia	San Francisco California
Energy Savings Compared to White Roof	\$863	-\$160
Energy Savings Compared to Dark Roof	\$1409	\$957
Summer Peak Daily Average Sensible Heat Flux	-53.3 W/m^2	132.4 W/m^2
Summer Peak Daily Average Latent Heat Flux	124.4 W/m^2	0.2 W/m^2

S U S T A E A D T H

SOLAR PANEL ANALYSIS

176 PANELS

❖2 COMBINER BOXES

♦8 PER STRING, 22 STRINGS

♦TOTAL SYSTEM SIZE OF 38.72kW

SUSTAINABLE

SOLAR PANEL ANALYSIS

- ❖176 PANELS
- ❖2 COMBINER BOXES
- ♦8 PER STRING, 22 STRINGS
- ♦TOTAL SYSTEM SIZE OF 38.72KW
- ◆PEAK SUN HOURS DETERMINE
- ❖20% ASSUMED LOSSES TO AC

SUSTAINABLE

SOLAR PANEL ANALYSIS

•176 PANEL:

2 COMBINER BOXE

♦8 PER STRING, 22 STRINGS

♦TOTAL SYSTEM SIZE OF 38.72KV

♦PEAK SUN HOURS DETERMINED

❖20% ASSUMED LOSSES TO AC

♦ HAND CALCS VS PV WATTS

Peak Sun Hours	Winter	Summer	Fall/Spring
Oakland	3.75	6.25	5
Arlington	3.25	5	4.12
W			

Location	Hand Calc Value (kW-hr/year)	PV Watts Result (kW-hr/year)	% Difference
San Francisco	54,429	53,180	2.29%
Sterling	44,876	44,954	0.17%

SUSTAINABLE

SOLAR PANEL ANALYSIS

CONSIDERATIONS

♦ITC GRANT

♦ANNUAL UTILITY RATE INCREASES

❖OPERATION AND MAINTENANCE

♦METER AND INVERTER REPLACEMENTS

❖PRODUCTION DECREASES

	Utility Rates	Annual Increase	Production Decrease
Oakland	12.5 cents/kW-hr	5%	0.70%
Arlington	8.0 cents/kW-hr	6.70%	0.70%

Costs		
Installation	\$166,000	After ITC Grant
O&M	2%	Annual Increase
Meters	\$2,500	Every 5 years
Inverters	\$7,000	Every 10 years

Payback Period	
Oakland	18 Years
Arlington	30 Years

SUSTAINABLE

SOLAR PANEL ANALYSIS

GREEN ROOF INTEGRATION

SOLAR PANELS INSTALLED OVER EXTENSIVE GREEN ROOF

❖PANELS SHADE VEGETATION

♦GREEN ROOF COOLS SOLAR PANELS

❖UP TO 6% MORE EFFICIENT

 Panel Area
 1.26 m^2

 100%
 1260 W

 Efficiency
 17.50%

New Efficiency	20.50%
Useful Energy	258.3 W
System Size	45.5 kW

CHECK EXISTING EFFICIENCY

♦USE 3% EFFICIENCY INCREASE

♦ CALCULATE NEW SYSTEM SIZE

MINCLLIDE GREEN PAGE ADDITION IN COST

PAYBACK PERIOD: 23 YEARS

31 YEARS TO PROVIDE COST SAVINGS OVER NON INTEGRATED SYSTEM

HEATING AND COOLING LOADS

*LOADS CALCULATED FOR SOUTH FACING OFFICE

♦FOLLOWED ASHRAE HANDBOOK FUNDAMENTALS (2009)

♦EXISTING ARLINGTON LOADS

♦COMPARISONS

Cooling Loads						
Oakland	Walls	Windows	Lights	People	Misc.	Total
	127	1242.44	614	450	1408	3841
Arlington						
						5916

Heating Loads	
Oakland	Total
	438
Arlington	
	470

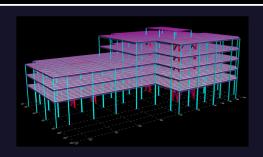
SIMPLIFYING ASSUMPTIONS

STEADY STATE CONDITIONS

SINGLE OUTSIDE TEMPERATURE

❖NO HEAT GAIN FROM SOLAR OR INTERNAL SOURCE

CONCLUSIONS


STRUCTURAL DEPTH

♦ CONCRETE STRUCTURE: INCREASED WEIGHT AND REINFORCEMENT

♦STEEL REDESIGN: 3 INTERIOR SPECIALLY BRACED FRAME CORES

♦MINIMIZED EFFECTS DUE TO TORSION

❖PERMISSIBLE DRIFT VALUES

CONCLUSIONS

CONSTRUCTION MANAGEMENT BREADTH

♦NORTH AND SOUTH CONSTRUCTION

★EASTED CONSTRUCTION TIME

LOWER COST

GF South Deck	4 days	Thu 1/19/12	Tue 1/24/12	
GF North Deck	6 days	Thu 1/19/12	Thu 1/26/12	
GF South Columns	2 days	Wed 1/25/12	Thu 1/26/12	
GF North Columns	3 days	Fri 1/27/12	Tue 1/31/12	
GF South Beams	6 days	Fri 1/27/12	Fri 2/3/12	
GF North Beams	10 days	Wed 2/1/12	Tue 2/14/12	
2nd South Deck	4 days	Mon 2/6/12	Thu 2/9/12	
2nd North Deck	6 days	Wed 2/15/12	Wed 2/22/12	
Mezzanine Slab	2 days	Thu 2/23/12	Fri 2/24/12	
2nd-3rd South Columns	3 days	Mon 2/13/12	Wed 2/15/12	
2nd-3rd North Columns	4 days	Thu 2/23/12	Tue 2/28/12	
3rd South Beams	6 days	Thu 2/16/12	Thu 2/23/12	
3rd North Beams	10 days	Wed 2/29/12	Tue 3/13/12	
Roof 1 Deck	4 days	Mon 2/27/12	Thu 3/1/12	
4th North Deck	6 days	Wed 3/14/12	Wed 3/21/12	
2nd South Beams	6 days	Mon 2/27/12	Mon 3/5/12	
2nd North Beams	10 days	Wed 3/14/12	Tue 3/27/12	
3rd South Deck	4 days	Tue 3/6/12	Fri 3/9/12	
3rd North Deck	6 days	Wed 3/28/12	Wed 4/4/12	
4th-5th North Columns	4 days	Thu 3/22/12	Tue 3/27/12	
5th North Beams	8 days	Wed 3/28/12	Fri 4/6/12	
Roof 2 Deck	5 days	Mon 4/9/12	Fri 4/13/12	
4th North Beams	8 days	Mon 4/9/12	Wed 4/18/12	
5th North Deck	6 days	Thu 4/19/12	Thu 4/26/12	
PH Columns	1 day	Thu 4/19/12	Thu 4/19/12	
PM Deck	1 day	Eri 4/20/12	Eri 4/20/12	

CONCLUSIONS

SUSTAINABILITY BREADTH

♦LEED SITE OPPORTUNITIES

*CREEN BOOK BEREARMAND

◆PHOTOVOLTAIC PANEL PERFORMANCE

♦HEATING AND COOLING LOADS

❖LEED RATING MAINTAINED

CONCLUSIONS

SUSTAINABILITY BREADTH

*LEED SITE OPPORTUNITIES

♦GREEN ROOF PERFORMANCE

♦PHOTOVOLTAIC PANEL PERFORMANC

• 112 11 110 7 112 0002 1110 20.

Penn State University

Faculty Advisor: Thomas Boothby

Joshua Urban Structural Option

CONNECTION CONSIDERATIONS

♦REQUIRED FLEXURAL STRENGTH : 1.1RyMp

♦REQUIRED COMPRESSIVE STRENGTH: 1.1RyPn

Penn State University Senior Thesis 2012

aculty Advisor: Thomas Boothby

Joshua Urban Structural Option

SEISMIC LOADS

1776 SKANSKA

Penn State University

Faculty Advisor: Thomas Boothby

Ioshua Urban Structural Optior

BRACED MOMENT FRAMES

1776 SKANSKA

Penn State Universit Senior Thesis 2012

Faculty Advisor: Thomas Boothby

Joshua Urban Structural Option