UNIVERSITY HEALTH BUILDING
LOCATED IN THE MID-ATLANTIC REGION

THESIS FINAL PRESENTATION
EVAN LANDIS || STRUCTURAL OPTION
ADVISOR || HEATHER SUSTERISIC
PROJECT INFO

- Cost: $56 Million
- Size: 161,000 SF
- Floors: 7

STRUCTURAL OVERVIEW

FOUNDATION
- Spread footings
- Grade beam tie ins for basement retaining walls

FLOOR SLABS
- Two-way post tensioned slabs
 - $f'c = 6-8ksi$

LATERAL SYSTEM
- Concrete Moment Frames
- One Shear wall

ROOF SYSTEM
- Green roof on post tensioned slab
- White PVC membrane on post tensioned concrete slab

OUTLINE

- Introduction
- Structural Overview
- Proposal
- Lateral System Redesign
- Lateral System Cost
- Foundation Redesign
- Foundation Cost/Schedule
- Building Envelope
- Conclusion
STRUCTURAL OVERVIEW

FOUNDATION
- Spread footings
- Grade beam tie ins for basement retaining walls

FLOOR SLABS
- Two-way post tensioned slabs
 - $f'c = 6-8$ksi

LATERAL SYSTEM
- Concrete Moment Frames
- One Shear wall

ROOF SYSTEM
- Green roof on post tensioned slab
- White PVC membrane on post tensioned concrete slab
PROJECT INFO

Cost: $56 Million
Size: 161,000 SF
Floors: 7

STRUCTURAL OVERVIEW

FOUNDATION
- Spread footings
- Grade beam tie ins for basement retaining walls

FLOOR SLABS
- Two-way post tensioned slabs
 - $c = 6-8 ksi$

LATERAL SYSTEM
- Concrete Moment Frames
- One Shear wall

ROOF SYSTEM
- Green roof on post tensioned slab
- White PVC membrane on post tensioned concrete slab
PROJECT INFO
- Cost: $56 Million
- Size: 161,000 SF
- Floors: 7

STRUCTURAL OVERVIEW

FOUNDATION
- Spread footings
- Grade beam tie ins for basement retaining walls

FLOOR SLABS
- Two-way post tensioned slabs
- $f'_c = 6\text{-}8\text{ksi}$

LATERAL SYSTEM
- Concrete Moment Frames
- One Shear wall

ROOF SYSTEM
- Green roof on post tensioned slab
- White PVC membrane on post tensioned concrete slab
Thesis Proposal

Structural Depth
- Owners want to open a branch campus in Orlando, Florida

Scope
- Lateral System Analysis
- Foundations check

Cost/Schedule Analysis Breadth
- To determine the cost associated with the changes to the lateral and foundation systems
- Determine the increase to the building schedule due to changes

Building Envelope Analysis
- Determine the condensation point in a typical wall section
- Determine if the R-Value meets minimum standards for new location

MAE Requirements
- AE 530 Computer Modeling of Building Structures
- AE 542 Building Enclosure Science and Design
Structural Depth

ETABS Model
- All structural elements were modeled
- Modulus of Elasticity was halved to allow for the inelastic response of concrete members
- Live Loads and Superimposed Dead Loads were placed on the model
- Floor Slabs modeled as rigid diaphragms
- Shear walls modeled as membrane elements
OUTLINE

Introduction
Structural Overview
Thesis Proposal
Lateral System Redesign
Lateral System Cost
Foundation Redesign
Foundation Cost/Schedule
Building Envelope
Conclusion

ORIGINAL LATERAL SYSTEM
- Designed for seismic loading
- Very few moment frames due to column discontinuities

STORY FORCES

<table>
<thead>
<tr>
<th>Force (kN)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>80.26</td>
<td></td>
</tr>
<tr>
<td>194.84</td>
<td></td>
</tr>
<tr>
<td>105.00</td>
<td></td>
</tr>
<tr>
<td>83.32</td>
<td></td>
</tr>
<tr>
<td>68.17</td>
<td></td>
</tr>
<tr>
<td>53.21</td>
<td></td>
</tr>
<tr>
<td>37.89</td>
<td></td>
</tr>
<tr>
<td>22.32</td>
<td></td>
</tr>
</tbody>
</table>

Foundation

- 48,000 ft
- $650,000

BUILDING ENVELOPE

Legend:
- NS Moment Frames
- EW Moment Frames
- EW Shear Wall
LATERAL SYSTEM ADDITIONS
- Designed for wind velocity of 145mph (Orlando Building Code)
- Addition of (7) 12” thick shear walls of varying lengths
- Alterations to existing shear wall
- h/400 = 3.3”

STORY FORCES

<table>
<thead>
<tr>
<th>Story</th>
<th>Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>283k</td>
</tr>
<tr>
<td>204</td>
<td>294k</td>
</tr>
<tr>
<td>230</td>
<td>304k</td>
</tr>
<tr>
<td>241</td>
<td>310k</td>
</tr>
<tr>
<td>227</td>
<td>322k</td>
</tr>
<tr>
<td>341</td>
<td>341k</td>
</tr>
</tbody>
</table>

113,000ft - 2000k

Building Envelope

Conclusion
STRUCTURAL DEPTH

LATERAL SYSTEM ADDITIONS
- Designed for wind velocity of 145mph (Orlando Building Code)
- Addition of (7) 12” thick shear walls of varying lengths
- Alterations to existing shear wall
- \(h/400 = 3.3" \)

<table>
<thead>
<tr>
<th>Original System</th>
<th>New System</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>3.6"</td>
</tr>
<tr>
<td>South</td>
<td>3.0"</td>
</tr>
<tr>
<td>East</td>
<td>13.5"</td>
</tr>
<tr>
<td>West</td>
<td>3.2"</td>
</tr>
</tbody>
</table>

STORY FORCES

EAST-WEST

Foundation Redesign
Foundation Cost/Schedule
Building Envelope
Conclusion
SHEAR WALL DESIGN
- Designed with boundary elements
- Walls of same length designed with same rebar configuration for ease of construction
- Typ. (6) or (8) #9’s or #10’s in boundary element
- #5’s @ 12” Vertical
- #5’s @ 12” Horizontal

Boundary Element
Temperature/Shrinkage and Shear Reinforcing
SHEAR WALL PLACEMENT
- Main goal was to not disrupt the architectural flow of the building
- Could not be avoided entirely
SHEAR WALL PLACEMENT
- Main goal was to not disrupt the architectural flow of the building
- Could not be avoided entirely
SHEAR WALL PLACEMENT
- Main goal was to not disrupt the architectural flow of the building
- Could not be avoided entirely
SHEAR WALL PLACEMENT
- Main goal was to not disrupt the architectural flow of the building
- Could not be avoided entirely
COST/SCHEDULE BREADTH

SHEAR WALL COST INCLUDES
- 4-10ksi concrete
- Rebar
- Formwork
- Pumping

SHEAR WALL SCHEDULE: Negligible

<table>
<thead>
<tr>
<th>Wall</th>
<th>Length (ft)</th>
<th>Thickness (ft)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,6,7</td>
<td>11</td>
<td>1</td>
<td>$51,005.72</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1</td>
<td>$14,924</td>
</tr>
<tr>
<td>8,5</td>
<td>10</td>
<td>1</td>
<td>$37,308.76</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1</td>
<td>$15,456</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$119,000</td>
</tr>
</tbody>
</table>

119,000

OUTLINE

Introduction
Structural Overview
Thesis Proposal
Lateral System Redesign
Lateral System Cost
Foundation Redesign
Foundation Cost/Schedule
Building Envelope
Conclusion
STRUCTURAL DEPTH

ORIGINAL FOUNDATION
- Spread footings
- Soil Bearing Capacity: 30ksf bedrock
- Typical sizes: 6x6, 5x4, 9x9
- $f'_c = 5$ksi

GOALS
- Design new spread footings for single shear walls and typ. column
- To determine percent increase to size
STRUCTURAL DEPTH

FOUNDATION DESIGN
- Trial 1: Spread footings on soil: 2-3ksf
 - Not suitable for loading
- Trial 2: Spread footings on structural fill: 8ksf
 - Typ. Column: 12x12
 - Typ. Shear Wall: no good
- Trial 3: 50ft Caissons: 20ksf bedrock

<table>
<thead>
<tr>
<th>Caisson Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft Dia (ft)</td>
</tr>
<tr>
<td>Column</td>
</tr>
<tr>
<td>Shear Wall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caisson Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaft Dia (ft)</td>
</tr>
<tr>
<td>Column</td>
</tr>
<tr>
<td>Shear Wall</td>
</tr>
</tbody>
</table>

Sandy Soil

Structural Fill

Bedrock
COST/SCHEDULE BREADTH

FUNDAMENTAL COST INCIHDES
- 3ksi concrete caisson
- 5ksi concrete cap
- Casing and Pumping
- Excavation
- Mobilization
- Haul excess excavation
- Inspection
- Equipment

FOUNDATION SCHEDULE
- 1 caisson per column
- 2 caissons per shear wall
- Original number of spread footings

<table>
<thead>
<tr>
<th>Type</th>
<th>Amount</th>
<th>No. Completed per Day</th>
<th>Days Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caisson</td>
<td>63</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>Spread Footing</td>
<td>48</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Cost/Schedule Breadth

Outline
Introduction
Structural Overview
Thesis Proposal
Lateral System Redesign
Lateral System Cost
Foundation Redesign
Foundation Cost/Schedule
Building Envelope
Conclusion
BUILDING ENVELOPE BREADTH

CONDENSATION ANALYSIS

To determine if typical wall section will work in the humid Orlando Climate
Building Envelope Breadth

R-Value Analysis
- ASHRAE 90.1 Energy Standard for Buildings
- R-Value does not include Terra Cotta

<table>
<thead>
<tr>
<th>Location</th>
<th>Climate Zone</th>
<th>Required R-value (hft^2F/BTU)</th>
<th>R-value of wall assembly (hft^2F/BTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Atlantic</td>
<td>4</td>
<td>9.5</td>
<td>25.4</td>
</tr>
<tr>
<td>Orlando, Florida</td>
<td>2</td>
<td>5.7</td>
<td>25.4</td>
</tr>
</tbody>
</table>

R-Values
CONCLUSION

LATERAL SYSTEM
- 7 new shear walls
- 1 updated shear wall

FOUNDATION
- Change from spread footings to caissons

BUILDING ENVELOPE
- No changes necessary

COST
- Shear Walls $119,000
- Foundations $571,000
 Total $690,000
QUESTIONS?

Special Thanks to the ones that made this possible:

PENN STATE
ae
WT
PAYETTE
Appendix

West Wall

<table>
<thead>
<tr>
<th>Story</th>
<th>Story Height</th>
<th>Thr. Height</th>
<th>Thr. Length</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>v</th>
<th>u</th>
<th>Total Story Force</th>
<th>Moment (kips)</th>
<th>Lateral System</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.9</td>
<td>13.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>25.9</td>
<td>25.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>37.9</td>
<td>37.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>49.9</td>
<td>49.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>61.9</td>
<td>61.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
</tbody>
</table>

South Wall

<table>
<thead>
<tr>
<th>Story</th>
<th>Story Height</th>
<th>Thr. Height</th>
<th>Thr. Length</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>v</th>
<th>u</th>
<th>Total Story Force</th>
<th>Moment (kips)</th>
<th>Lateral System</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.9</td>
<td>13.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>25.9</td>
<td>25.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>37.9</td>
<td>37.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>49.9</td>
<td>49.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>61.9</td>
<td>61.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Wind Drift: North-East

<table>
<thead>
<tr>
<th>Story</th>
<th>Story Height</th>
<th>Thr. Height</th>
<th>Thr. Length</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>v</th>
<th>u</th>
<th>Total Story Force</th>
<th>Moment (kips)</th>
<th>Lateral System</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.9</td>
<td>13.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>25.9</td>
<td>25.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>37.9</td>
<td>37.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>49.9</td>
<td>49.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>61.9</td>
<td>61.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Wind Drift: South-West

<table>
<thead>
<tr>
<th>Story</th>
<th>Story Height</th>
<th>Thr. Height</th>
<th>Thr. Length</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>v</th>
<th>u</th>
<th>Total Story Force</th>
<th>Moment (kips)</th>
<th>Lateral System</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.9</td>
<td>13.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>25.9</td>
<td>25.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>37.9</td>
<td>37.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>49.9</td>
<td>49.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>61.9</td>
<td>61.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Wind Drift: East-West

<table>
<thead>
<tr>
<th>Story</th>
<th>Story Height</th>
<th>Thr. Height</th>
<th>Thr. Length</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>v</th>
<th>u</th>
<th>Total Story Force</th>
<th>Moment (kips)</th>
<th>Lateral System</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.9</td>
<td>13.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>25.9</td>
<td>25.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>37.9</td>
<td>37.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>49.9</td>
<td>49.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>61.9</td>
<td>61.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Wind Drift: North-West

<table>
<thead>
<tr>
<th>Story</th>
<th>Story Height</th>
<th>Thr. Height</th>
<th>Thr. Length</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>v</th>
<th>u</th>
<th>Total Story Force</th>
<th>Moment (kips)</th>
<th>Lateral System</th>
<th>Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.9</td>
<td>13.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>25.9</td>
<td>25.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>37.9</td>
<td>37.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>49.9</td>
<td>49.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>61.9</td>
<td>61.9</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2600</td>
<td>50.0</td>
<td>Original</td>
<td>Yes</td>
</tr>
</tbody>
</table>
APPENDIX

Appendix 1

<table>
<thead>
<tr>
<th>Level</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>156.4</td>
<td>139.4</td>
<td>128.5</td>
</tr>
<tr>
<td>2</td>
<td>46.86</td>
<td>45.43</td>
<td>41.35</td>
</tr>
<tr>
<td>3</td>
<td>3485.20</td>
<td>3491.24</td>
<td>257.65</td>
</tr>
</tbody>
</table>

Appendix 2

<table>
<thead>
<tr>
<th>Level</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>154.9</td>
<td>125.8</td>
<td>138.1</td>
</tr>
<tr>
<td>2</td>
<td>4.037</td>
<td>5.029</td>
<td>6.964</td>
</tr>
<tr>
<td>3</td>
<td>12093.46</td>
<td>12861.07</td>
<td>12985.95</td>
</tr>
</tbody>
</table>

Appendix 3

<table>
<thead>
<tr>
<th>Level</th>
<th>7th</th>
<th>8th</th>
<th>9th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>369.72</td>
<td>352.48</td>
<td>350.72</td>
</tr>
<tr>
<td>2</td>
<td>452.87</td>
<td>446.46</td>
<td>451.66</td>
</tr>
<tr>
<td>3</td>
<td>258.79</td>
<td>254.29</td>
<td>257.29</td>
</tr>
</tbody>
</table>

Appendix 4

<table>
<thead>
<tr>
<th>Level</th>
<th>10th</th>
<th>11th</th>
<th>12th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>134.2</td>
<td>135.4</td>
<td>135.5</td>
</tr>
<tr>
<td>2</td>
<td>0.1395</td>
<td>0.1395</td>
<td>0.1395</td>
</tr>
<tr>
<td>3</td>
<td>0.00978</td>
<td>0.00978</td>
<td>0.00978</td>
</tr>
</tbody>
</table>

[Diagram of a garden bed layout](image)