

Milton S. Hershey Medical **Center Biomedical** Research Building

Joshua Zolko, Structural Option

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

Cost \$49 million

Introduction

• The Biomedical Research Building (BMR) is located in Hershey, Pennsylvania. • 245000 sq. ft, in 7 stories above grade • Built between 1991-1993 Used a Bid-Build project delivery method • Used for Education and Laboratory space

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

and black glazing

Architecture

• Façade of the BMR consists of long horizontal concrete and limestone slabs, • Façade designed to relate to buildings already existing on campus • Cylinder and Planar wall on corners add to the otherwise flat building

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

about 22" by 22" diameter

Structure

- The BMR is a monolithic concrete structure, using a one-way flat plate system with the average column size
- Building sits on a deep foundation system of caissons 3 to 7 feet in

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

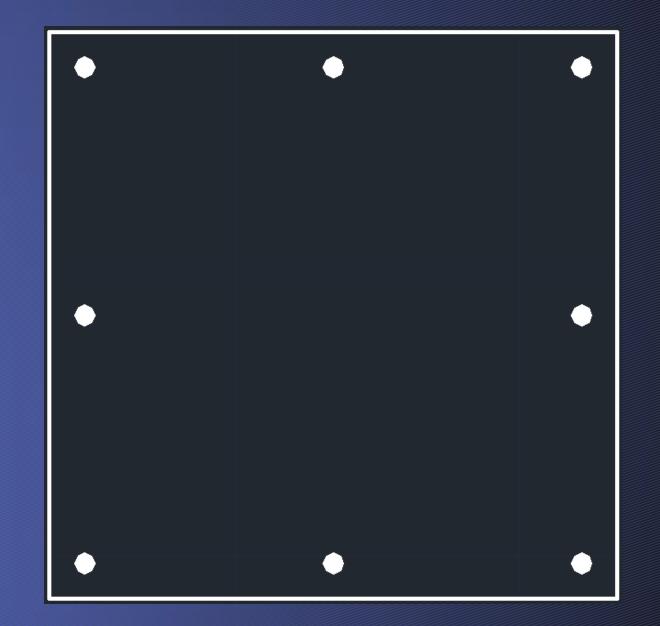
Analysis shows that columns have an extra 35% capacity for applied loads
Design of the lateral system maintained symmetry, resulting in only a 6" eccentricity.

Structure

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

 Based on extra capacity of columns, goal was to be adding 3 extra stories to top of building, top story floor to floor height to be 24.6' instead of the average 12.3' • This extra space would serve for a studio or recreational setting for students.

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics


• 150 PSF dead • 40 PSF snow • 80 PSF live

Process

- Assumed gravity loads were to be:

 - 15 PSF superimposed
- Self weight of the columns and bracing beams factored in as well

Typical Column Section

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

capacity

- Axial Loads calculated for a typical column over a 21' by 35' bay area.
 As loads increase, they approach total
- This does not allow much room for applied moments from lateral or asymmetrical loading

Typical	Typical Column Axial Load						
Floor	Load	Capacity					
10th	143.4K	2230K					
9th	435.4K	2230K					
8th	652.7K	2230K					
7th	870K	2000K					
6th	1164K	2000K					
5th	1458K	2242K					
4th	1752K	2242K					
3rd	2046K	2855K					
2nd	2340K	2855K					
1st	2634K	2855K					
Ground	2928K	4708K					

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

reduction of 53%

- Loads were calculated again for the 1st, 2nd and 3rd floors, using live load
- Exceptions were used for live loads over 100 PSF, per IBC, at 20%
- Allows more room for moments

Adjust Axial Load					
Floor	Load Capacity				
3rd	1782K	2855K			
2nd	1855K	2855K			
1st	1928K	2855K			

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

reduction of 53%

Process

- Loads were calculated again for the 1st, 2nd and 3rd floors, using live load
- Exceptions were used for live loads over 100 PSF, per IBC, at 20%
- Allows more room for moments
- Minimum allowance: 32% for 31%

Example Calculation

Adjust Axial Load						
Floor	Load	Capacity				
3rd	1782K	2855K				
2nd	1855K	2855K				
1st	1928K	2855K				

 $.25 + \frac{15}{\sqrt{4(735)}} = .53$

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

on the top floor.

Process

• Bracing beams were necessitated through exceptionally long columns, about 22' in height • Beams were chosen to be 24" by 24" to match column sizes • Would allow for an architectural feature

Bracing Beam Section

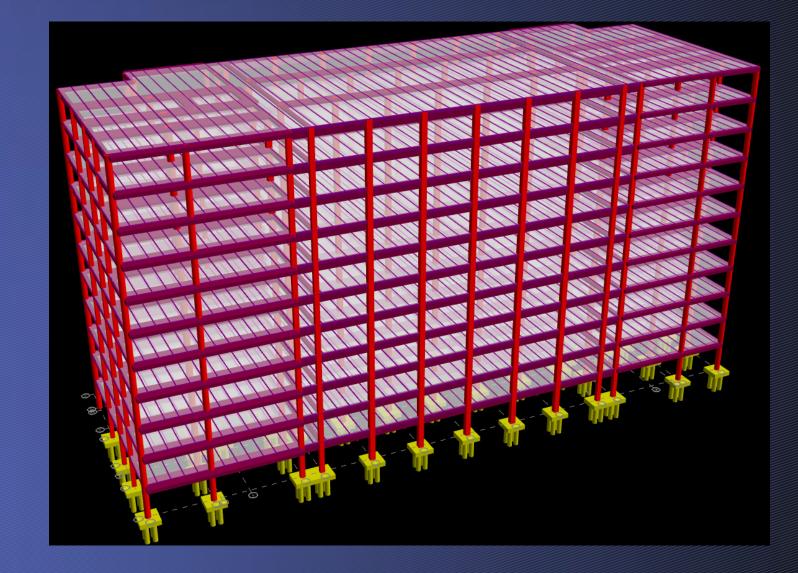

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

• 600 PLF dead load. #7 rebar

Process

- Assumed a 15 PSF superimposed load for mechanical and electrical equipment
 600 PLF dead load.
- 66 and 96 ft*kip moments necessitate 4
- Torsion and shear reinforcement was found to be negligible according to ACI

Bracing Beam Section



- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

RAM Model

Process

• A RAM Model was developed to analyze the effect of controlling wind and earthquake forces. Addition was designed maintaining symmetry and negligible eccentricity as rest of building, minimizing unusual torsional effect and forces

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

loads

Story Drifts

Process

 Distributing story shear forces across all columns on a story by a factor of 1.5%, lead to a shear force of 9 kips Moment of 111 ft*kips per column • Story and Total drifts are well within acceptable H/400 limits • Overturning is controlled by gravity

	Story Drift						
		Controlli	ng Wind		Seismic		
Floor		Х	γ	Allowable	Х	γ	Allowable
	10	0.04	0.003	0.74	0.04	0.02	5.94
	9	0.14	0.010	0.37	0.14	0.03	2.97
	8	0.17	0.012	0.37	0.17	0.04	2.97
	7	0.22	0.016	0.37	0.22	0.06	2.97
	6	0.26	0.020	0.37	0.26	0.07	2.97
	5	0.30	0.024	0.37	0.30	0.08	2.97
	4	0.35	0.029	0.37	0.35	0.10	2.97
	3	0.38	0.031	0.37	0.38	0.12	2.97
	2	0.39	0.032	0.38	0.39	0.14	3.04
	1	0.25	0.027	0.41	0.25	0.12	3.28

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

loads

Story Drifts

Process

 Distributing story shear forces across all columns on a story by a factor of 1.5%, lead to a shear force of 9 kips • Moment of 111 ft*kips per column • Story and Total drifts are well within acceptable H/400 limits • Overturning is controlled by gravity

Drift						
	Controlli	ng Wind		Seismic		
Floor	X	γ	Allowable	X	γ	Allowable
10	2.50	0.204	4.12	2.50	0.78	33.05
9	2,46	0.201	3.38	2,46	0,76	27.11
8	2.32	0.191	3.01	2.32	0.73	24.14
7	2.15	0.179	2.64	2.15	0.69	21.17
6	1.93	0.163	2.27	1.93	0.63	18.2
5	1.67	0.143	1.90	1.67	0.56	15.23
4	1.37	0.119	1.53	1.37	0.48	12.26
3	1.02	0.090	1.16	1.02	0.38	9.29
2	0.64	0.059	0.79	0.64	0.26	6.32
1	0.25	0.027	0.41	0.25	0.12	3.28

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

• Distributing story shear forces across all columns on a story by a factor of 1.5%, lead to a shear force of 9 kips Moment of 111 ft*kips per column • Story and Total drifts are well within acceptable H/400 limits • Overturning is controlled by gravity loads

Story Drifts

X Direction Overturning							
						Resisting	Moment
	Wind	Seismic	Arm	Mon	nent	Self Wt	Arm
1	33.39	53.89	13.7	457.4	738.3	38300	47.5
2	129.7	56.12	26.3	3411.1	1476.0		
3	127.16	56.12	38.7	4921.1	2171.8		
4	124.36	56.12	51	6342.4	2862.1		
5	121.28	56.12	63.3	7677.0	3552.4		
6	58.9	56.13	75.7	4458.7	4249.0		
7	113.78	56.12	88	10012.6	4938.6		
8	108.96	56.12	100.3	10928.7	5628.8		
9	104.28	56.19	112.6	11741.9	6327.0		
10	51.65	56,43	124.9	6451.1	7048.1		
Total				66402	38992	1819250	Good

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

• Distributing story shear forces across all columns on a story by a factor of 1.5%, lead to a shear force of 9 kips Moment of 111 ft*kips per column • Story and Total drifts are well within acceptable H/400 limits • Overturning is controlled by gravity loads

Story Drifts

Y Direction Overturning							
						Resisting	Moment
	Wind	Seismic	Arm	Mon	nent	Self Wt	Arm
-	L 10.25	53.89	13.7	140.4	738.3	38300	140
-	2 19.77	56.12	26.3	520.0	1476.0		
	3 19.29	56.12	38.7	746.5	2171.8		
-	4 18.77	56.12	51	957.3	2862.1		
Ę	5 18.19	56.12	63.3	1151.4	3552.4		
6	5 17.54	56.13	75.7	1327.8	4249.0		
-	7 16.79	56.12	88	1477.5	4938.6		
8	3 15.89	56.12	100.3	1593.8	5628.8		
9	9 14.95	56.19	112.6	1683.4	6327.0		
10) 14.52	56.43	124.9	1813.5	7048.1		
Total				11412	38992	5362000	Good

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

ft at .06 CFM

HVAC (Breadth 1)

• Calculated CFM requirements for the addition were found to be 86000 CFM • 4050 people at 20 CFM and 81000 sq

• BTU Loads for CFM and people and insulation were found to be 5 million BTU/HR for both heating and cooling

Enclosure					
Insulation:	Thickness	R-Value			
Limestone	4.5"	0.8			
Insulation	2"	8			
CMU	7.625"	1.11			
Insulation	2"	8			
GWB	.625"	0.56			
Total:	16.75"	18.47			

Insulation

Lighting (Breadth 2)

Table of Contents

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

• For a recommended 500 lux for a work space, the total room of 90' by 210' with its 12 bays requires 200 luminaries, allowing 18 per bay • Two systems were developed, one at 12.3' high, and one at ceiling for the top story, but ceiling height would cast shadows

Typical Luminaire

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

was used.

Acoustics (Breadth 3)

- Acoustical tile was initially placed on ceiling, beams, columns, and carpeting
- Created a "dead space" which would have been disconcerting to occupants Toned back acoustical insulation to just beams and columns, as well as carpeting

19660 + 40010 log -400 11223 + 400<u> 1010g -</u> 400

Calculations = 17 dB $= 15 \, dB$

Questions?