

Milton S. Hershey Medical Center Biomedical Research Building

Introduction

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- The Biomedical Research Building (BMR) is located in Hershey, Pennsylvania.
- 245000 sq. ft, in 7 stories above grade
- Built between 1991-1993
- Cost \$49 million
- Used a Bid-Build project delivery method
- Used for Education and Laboratory space

Architecture

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Façade of the BMR consists of long horizontal concrete and limestone slabs, and black glazing
- Façade designed to relate to buildings already existing on campus
- Cylinder and Planar wall on corners add to the otherwise flat building

Structure

- Introduction

- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- The BMR is a monolithic concrete structure, using a one-way flat plate system with the average column size about $22^{\prime \prime}$ by $22^{\prime \prime}$
- Building sits on a deep foundation system of caissons 3 to 7 feet in diameter

Structure

- Introduction

- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Analysis shows that columns have an extra 35\% capacity for applied loads
- Design of the lateral system maintained symmetry, resulting in only a 6" eccentricity.

Process

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Based on extra capacity of columns, goal was to be adding 3 extra stories to top of building, top story floor to floor height to be 24.6^{\prime} instead of the average 12.3^{\prime}
- This extra space would serve for a studio or recreational setting for students.

Process

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Assumed gravity loads were to be:
- 150 PSF dead
- 40 PSF snow
- 15 PSF superimposed
- 80 PSF live
- Self weight of the columns and bracing beams factored in as well

Typical Column Section

Typical Column Axial Load
Table of Contents

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Axial Loads calculated for a typical column over a 21^{\prime} by 35^{\prime} bay area.
- As loads increase, they approach total capacity
- This does not allow much room for applied moments from lateral or asymmetrical loading

Floor	Load	Capacity
10th	143.4 K	2230 K
9th	435.4 K	2230 K
8th	652.7 K	2230 K
7 th	870 K	2000 K
6th	1164 K	2000 K
5th	1458 K	2242 K
4th	1752 K	2242 K
3rd	2046 K	2855 K
2nd	2340 K	2855 K
1st	2634 K	2855 K
Ground	2928 K	4708 K

Table of Contents

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

Process

- Loads were calculated again for the $1^{\text {st }}$, $2^{\text {nd }}$ and $3^{\text {rd }}$ floors, using live load reduction of 53\%
- Exceptions were used for live loads over 100 PSF, per IBC, at 20\%
- Allows more room for moments

Table of Contents

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

Process

Example Calculation

- Loads were calculated again for the $1^{\text {st, }}$, $2^{\text {nd }}$ and $3^{\text {rd }}$ floors, using live load reduction of 53\%
- Exceptions were used for live loads over 100 PSF, per IBC, at 20\%
- Allows more room for moments
- Minimum allowance: 32\% for 31\%

$$
.25+\frac{15}{\sqrt{4(735)}}=.53
$$

Adjust Axial Load		
Floor	Load	Capacity
3rd	1782 K	2855 K
2nd	1855 K	2855 K
1st	1928 K	2855 K

Process

Bracing Beam Section

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Bracing beams were necessitated through exceptionally long columns, about 22 ' in height
- Beams were chosen to be $24^{\prime \prime}$ by $24^{\prime \prime}$ to match column sizes
- Would allow for an architectural feature on the top floor.

Process

Bracing Beam Section

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Assumed a 15 PSF superimposed load for mechanical and electrical equipment
- 600 PLF dead load.
- 66 and $96 \mathrm{ft} *$ kip moments necessitate 4 \#7 rebar
- Torsion and shear reinforcement was found to be negligible according to ACI

Process

RAM Model

Table of Contents

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- A RAM Model was developed to analyze the effect of controlling wind and earthquake forces.
- Addition was designed maintaining symmetry and negligible eccentricity as rest of building, minimizing unusual torsional effect and forces

Process

Story Drifts
Table of Contents

- Introduction

- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Distributing story shear forces across all columns on a story by a factor of 1.5%, lead to a shear force of 9 kips
- Moment of 111 ft *kips per column
- Story and Total drifts are well within acceptable H/400 limits
- Overturning is controlled by gravity

Story Drift						
	Controlling Wind			Seismic		
Floor	\times	Y	Allowable	x	Y	Allowable
10	0.04	0.003	0.74	0.04	0.02	5.94
9	0.14	0.010	0.37	0.14	0.03	2.97
8	0.17	0.012	0.37	0.17	0.04	2.97
7	0.22	0.016	0.37	0.22	0.06	2.97
6	0.26	0.020	0.37	0.26	0.07	2.97
5	0.30	0.024	0.37	0.30	0.08	2.97
4	0.35	0.029	0.37	0.35	0.10	2.97
3	0.38	0.031	0.37	0.38	0.12	2.97
2	0.39	0.032	0.38	0.39	0.14	3.04
1	0.25	0.027	0.41	0.25	0.12	3.28

Process

Story Drifts
Table of Contents

- Introduction

- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Distributing story shear forces across all columns on a story by a factor of 1.5%, lead to a shear force of 9 kips
- Moment of 111 ft *kips per column
- Story and Total drifts are well within acceptable H/400 limits
- Overturning is controlled by gravity

Drift						
	Controlling Wind			Seismic		
Floor	\times	Y	Allowable	x	Y	Allowable
10	2.50	0.204	4.12	2.50	0.78	33.05
9	2.46	0.201	3.38	2.46	0.76	27.11
8	2.32	0.191	3.01	2.32	0.73	24.14
7	2.15	0.179	2.64	2.15	0.69	21.17
6	1.93	0.163	2.27	1.93	0.63	18.2
5	1.67	0.143	1.90	1.67	0.56	15.23
4	1.37	0.119	1.53	1.37	0.48	12.26
3	1.02	0.090	1.16	1.02	0.38	9.29
2	0.64	0.059	0.79	0.64	0.26	6.32
1	0.25	0.027	0.41	0.25	0.12	3.28

Process

Story Drifts
Table of Contents

- Introduction

- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Distributing story shear forces across all columns on a story by a factor of 1.5\%, lead to a shear force of 9 kips
- Moment of 111 ft *kips per column
- Story and Total drifts are well within acceptable H/400 limits
- Overturning is controlled by gravity
 loads

Process

Story Drifts
Table of Contents

- Introduction

- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- Distributing story shear forces across all columns on a story by a factor of 1.5%, lead to a shear force of 9 kips
- Moment of 111 ft *kips per column
- Story and Total drifts are well within acceptable H/400 limits
- Overturning is controlled by gravity
 loads

Table of Contents

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

HVAC (Breadth 1)

Insulation

- Calculated CFM requirements for the addition were found to be 86000 CFM
- 4050 people at 20 CFM and 81000 sq ft at . 06 CFM
- BTU Loads for CFM and people and insulation were found to be 5 million BTU/HR for both heating and cooling

Lighting (Breadth 2)

Typical Luminaire

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics
- For a recommended 500 lux for a work space, the total room of 90^{\prime} by 210^{\prime} with its 12 bays requires 200 luminaries, allowing 18 per bay
- Two systems were developed, one at 12.3^{\prime} high, and one at ceiling for the top story, but ceiling height would cast shadows

Table of Contents

- Introduction
- Architecture
- Structure
- Process
- HVAC
- Lighting
- Acoustics

Acoustics (Breadth 3)

- Acoustical tile was initially placed on ceiling, beams, columns, and carpeting was used.
- Created a "dead space" which would have been disconcerting to occupants
- Toned back acoustical insulation to just beams and columns, as well as carpeting

Calculations

$$
\begin{aligned}
& 10 \log \frac{19660+400}{400}=17 \mathrm{~dB} \\
& 10 \log \frac{11223+400}{400}=15 \mathrm{~dB}
\end{aligned}
$$

Questions?

