

Abstract

NATIVE AMERICAN CULTURAL CENTER

The Native American Culfural Center is a place for both members and public to learn about the culture and heritage of the Arizona tribe. From classrooms to art studios, the facility includes spaces for learning a range of topics relating to the tribe. Additionally there is a museum, cafe, and gift shop for the enjoyment of anyone interested in gaining an understanding of the tribe.

THETEAM

OWNER: Arizona Native American Tribe
ARCHITECTURE/MEP ENGINEERING: SmithGroupJJR CIVIL ENGINEERING: Coe \& Van Loo Consultants Inc. STRUCTURAL ENGINEERING: Caruso Turley Scott Inc. CONSTRUCTION: Brignall Construction MUSEUM DESIGN: BRC Imagination Arts AUDIO VISUAL: Convergent Technologies LIGHTING DESIGN: SmithGroupJJR

THESYSTEMS

ARCHITECTURAL: The architectural design of the Cultural Center is inspired by nature, incorporating earthy tones and grounded geometry. The awning represents the weave of a basket as it provides an aesthetic appeal to the exterior. It is a 48,600 SF building with two levels. Only one story is above grade. It hasa mixed use occupancy with a museum, auditorium, classrooms, offices, and art rooms.

STRUCTURAL: The foundation is made up of strip, step and spread footings. The building is steel frame construction with concrete and masonry walls. It utilizes composite beam construction.

MECHANICAL: Two air handling units combine outside air and return air from the building. The system utilizes VAV (terminal) units that are controlled based on zone. Two boilers produce hot water for heating and a chiller produces chilled water cooling.

ELECTRICAL: The electrical system uses an Arizona public service utility transformer, thereby making it a secondary service. At the service entrance, there is a $1200 \mathrm{~A}, 277 / 408 \mathrm{~V}$ service connected to a switchboard which distributes the power to the rest of the building.

LIGHTING:

Most of the lighting in the building is fluorescent or LED. The existing lighting design is carefully calculated to provide appropriate lighting levels in a pleasant fashion that is neither glaring nor uncomfortable. Each space has thoughtfully placed luminaires in a very regular and uniform fashion that allows them to recede into the backdrop of the room.
SMITHGROUPJJR............ant

Executive Summary

The Native American Cultural Center in Arizona is a one story, 48,600 sf facility created for tribe members and visitors to learn about the culture and heritage of the Arizona tribe. It has a mixed-use occupancy with museum, auditorium, classrooms, offices, and art rooms. The following report details the redesign of portions of the lighting, electrical, mechanical, and architectural systems within the building.

The lighting design pertains to the entry lobby, promenade, classroom and museum, with an overarching concept to embrace: embrace nature, embrace culture, and embrace the world in which we live. The purpose of the cultural center is to bring both tribe and public together to learn, understand, and celebrate the tribe's culture and heritage. The lighting should be responsive and enhance this idea. The tribe values nature, wisdom, respect and genuineness, all of which should be taken into consideration throughout the building's lighting design. The interactive nature of the cultural center is enhanced with color changing ceiling panels and displays of the constellations while other elements of the design accent and mimic architectural features of the building.

The lighting depth is deeply integrated with the architectural depth in which the ceiling panels were designed. Like with the lighting design, there exist two goals for the architectural breadth, and those are to bring harmony between the education and public sides of the cultural center and to further create an interactive and immersive learning environment for visitors and tribe members alike. The redesign of the classroom involves a stretch fabric ceiling with LED's mounted behind them that depict the major constellations in the tribe's culture. Similarly, the museum employs the same stretch fabric while using the LED's to create a soft glow over the exhibit spaces to evoke the feeling of being taken in and possibly reliving the history of the tribe.

In the electrical depth, the branch circuiting of the electrical system has been modified appropriately in response to the lighting changes. The major change to the distribution system is the addition of a panelboard specifically dedicated to the museum track lighting, which has to be $120 / 208 \mathrm{~V}$ to feed the track. The electrical depth also determined that by switching to aluminum wiring, the owners could save 44% on material costs. Feasibility of a generator for emergency power was explored and deemed null as the $\$ 45,000$ cost cannot be justified for a building of this size and with this function.

The mechanical breadth explores the effects of different glass types on the mechanical loads in the classroom and lobby spaces using COMFEN and Carrier HAP. It was determined that for performance $1 / 4$ inch bronze tinted glass would be the best choice for the lobby while for aesthetics and short-term economic purposes grey tinted glass would be more appropriate. In the classrooms Carrier HAP showed that there was not much of a disparity between glass types and the effect on the total coil load. COMFEN's results on the lowest overall energy usage swayed the result that double pane clear glass was the best choice for the classroom.

Please note that this project has been placed on indefinite hold by the Owner. For this reason, project name, location, tribe name, construction data, and cost data have been omitted from this document.
Table of Contents
Executive Summary 3
Project Overview 6
Project Team 7
Proposal Overview 7
Mechanical Breadth 7
Entry Lobby 8
COMFEN and Carrier Results 8
Classroom 9
COMFEN and Carrier Results 9
Cost Analysis 10
Aesthetics 10
Architectural Breadth 10
Classroom 11
Daylight Study 11
Museum 12
Lighting Depth 13
Concept 13
Entry Lobby Lighting Design 14
Entry Lobby 14
Promenade Lighting Design 16
112 Classroom 20
Museum 22
Electrical Depth 25
Panelboard and Distribution System Design 25
Aluminum Wiring Replacement Study 25
Alternate Emergency Power Study 25
Appendix A 27
Lighting Equipment Schedule 27
Lighting Calculations 28
Entry Lobby 28
Promenade 28
Classroom 29
Museum 30
Appendix B - Electrical 31
Panelboard Schedules 31
Electrical Calculations 34
Appendix C - Mechanical Calculations 36
Lobby COMFEN 36
Lobby Carrier 37
Classroom COMFEN 37
Classroom Carrier 38
Classroom Eighth Inch Clear Glass 39
Classroom Quarter Inch Low-E 39
Classroom Eighth Inch Grey Tint 40
Lobby Quarter Inch Bronze Tint 40
Lobby Eighth Inch One Pane Tint 41
Lobby Eighth Inch Bronze Tint 41
Lobby Eighth Inch Clear 42
Lobby Eighth Inch Grey Tint 42
Lobby Quarter Inch Low-E 43
Appendix D - Architectural Breadth Daylighting Calculations 43
Original Classroom Design Calculations 43
Useful Daylight - Spatial Daylight Autonomy at 400 Iux 43
Daylight Autonomy at 400 lux 44
New Classroom Calculations - Daysim Output. 44
Useful Daylight - Spatial Daylight Autonomy at 400 Iux 44
Daylight Autonomy at 400 lux 45
Appendix E - Lighting Equipment Specification Sheets 46

Project Overview

The Native American Cultural Center in Arizona is a one story, 48,600 sf facility created for tribe members and visitors to learn about the culture and heritage of the Arizona tribe. It has a mixed-use occupancy with museum, auditorium, classrooms, offices, and art rooms.

As if emerging from the hillside, the architecture is designed to welcome visitors to learn about the Arizona tribe's culture by telling the story of their history. The cultural center houses educational spaces, a museum, and a gift shop. The materials used in the design are natural and neutral, using wood and stone. The contemporary style also makes use of steel, metals, and glass. Large shading devices shaped like a basket weave were implemented throughout as a daylight control technique as well as aesthetic element. The site plan and landscape architecture is also an integral component in the architectural design because it is of the tribe's culture to enjoy and respect the land.

The curved shape draws you into the heart of the ground level, where the entry lobby is. To the left is the educational component with classrooms, craft centers, workshops and offices. To the right is the museum component where tribe members and the public can come and learn about the tribe's culture and heritage. Mechanical rooms, archive storage, and receiving areas are housed on the basement level of the building.

Native American Cultural Center $1^{\text {st }}$ Floor Plan with Wing Designations

Project Team

Architecture/Engineering: SmithGroupJJR

Project Manager: Kent Willcox
Design Architect: Mark Roddy
Architect: Eric Watson
Architect: Ben Ayers
Electrical Engineer: Mark Greenawalt
Mechanical Engineer: Jon Silhol
Interiors: Kai Ekbundit
Landscape: Rick Jones
Civil Engineering: Coe \& Van Loo Consultants Inc.
Structural Engineering: Caruso Turley Scott Inc.
Construction: Brignall Construction
Museum Design: BRC Imagination Arts
Audio Visual: Convergent Technologies

Proposal Overview

The focus of my Senior Capstone Project is based on the lighting and electrical systems within the Native American Cultural Center. The following topics discuss the lighting re-design of four spaces, as well as the integrated design decisions involving the electrical, architectural, and mechanical systems.

Mechanical Breadth

An important factor to take into consideration with this project, due to its location in Arizona, is the positive and negative effects of sunlight that occur in the building. While sunlight can be very beneficial, being that it is a natural light source and can decrease the load otherwise caused by electric light and heating, it is a major contribution in the form of cooling load to the mechanical systems. This breadth explores the effects of different glass types on the mechanical loads in two spaces: the 112 Classroom and the Entry Lobby. The goal of the study is to determine the ideal glass type to reduce mechanical loads and maintain the useful daylight in the space. The 112 Classroom has an 8' tall by 12' long window facing east, while the Entry Lobby has two exterior glass facades facing East and West and two interior glass walls. The nature of having more glass in the lobby suggests that the glass type will be more critical from a mechanical load standpoint than in the classroom; but, being that the cultural center is located in Arizona, I was interested in exploring how much glass type made a difference, mechanically, for both spaces. In this study, I used, both, COMFEN and Carrier's Hourly Analysis Program (HAP). The two programs are intended to compare energy loads based on the parameters specified by the designer, yet they both differ in their own ways. For instance, COMFEN has limitations in that it cannot specify two facades with windows, but rather it calculates one façade's contribution to the loads. Unlike HAP, however, COMFEN generates estimates for electric, in the form of heating, cooling, fans, and lighting and compares gas versus electric demand and CO_{2} emissions. For these reasons, I chose to use both programs and to compare the results against each other to determine the best choice of glass type for the Native American Cultural Center.

Entry Lobby

The entry lobby is a 900sf space that has all glass walls as mentioned in the breadth introduction: exterior windows facing East and West, with two interior glass walls. The room dimensions are shown below. Due to the large amount of glass in this space, direct sunlight can cause issues for the cooling loads, so choosing an appropriate glass type can really make a difference. A limitation for these calculations is the inability to weigh the effects of the shadow cast by the rest of the building at low sun angles, for instance, on the west side of the building.

Entry Lobby Plan and Dimensions with Key Plan

There is an additional limitation with the use of COMFEN: this software only allows the user to analyze one façade at a time. In the case of the lobby, there are two exterior facades, East and West, which will experience direct sunlight. It was also necessary to ignore the intermediate wall that separates the vestibule for the use of COMFEN. Both software have varying inputs and varying specificity, so there are some discrepancies between some of the glass types.

COMFEN and Carrier Results

In COMFEN, five trials were run: double pane clear glass, double pane gray/clear glass, double pane low-e glass, double pane bronze/clear glass, and double pane bronze tinted glass. The results show that the double pane gray/clear glass has the lowest energy use, with double pane bronze/clear glass and double pane bronze tinted glass following closely behind.

The following chart lists the glass types and corresponding coil loads as estimated by Carrier HAP. The smallest estimated coil load occurs with the quarter inch bronze tinted glass, which is significantly less than all of the other choices.

Based on the results, I would choose quarter inch double pane bronze tint glass.

Output data sheets can be found in Appendix C.

Classroom

Floor Plan with Dimensions

COMFEN and Carrier Results

In COMFEN, five trials were run: double pane clear glass, double pane low-e glass, double pane gray/clear glass, PPG's double pane clear glass, and double pane bronze tinted glass.

For the least total energy use, the best two results were the double pane low-e glass and PPG's double pane clear glass. As far a heat gain, these two were moderate while the double pane gray/clear glass had the lowest heat gain. Conversely, the double pane gray/clear option had the highest heating and lighting energy estimate.

Through the Carrier Hourly Analysis Program with three options: $1 / 8^{\text {th }}$ inch clear, $1 / 4$ inch low-e, and $1 / 8^{\text {th }}$ inch grey tint, similar to COMFEN. The chart below lists the Total Estimated Coil Load with the respective glass type. The results did not vary as much in this space; in fact, I questioned them due to
the face that the lowest was the thinner clear glass. After re-running the calculations, I got the same results.

With the results from two programs, the glass I would choose is the PPG double pane clear glass.

Output data sheets can be found in Appendix C.
Note that this breadth and the architectural breadth are integrated specifically in the classroom with a common goal of optimizing useful daylight.

Cost Analysis

RSMeans Building Cost Data provides glazing cost for the following categories: 1/8" clear, 1/8" tinted, and $1 / 4 "$ film (Low-E). The costs are as follows:

$$
\begin{aligned}
& 1 / 8^{\prime \prime} \text { clear }=\$ 9.65 / \mathrm{sf} \\
& 1 / 8^{\prime \prime} \text { Tinted }=\$ 13.50 / \mathrm{sf} \\
& 1 / 4^{\prime \prime} \text { Tinted }=\$ 19.00 / \mathrm{sf} \\
& 1 / 4^{\prime \prime} \text { Film clear }=\$ 19.30 / \mathrm{sf}
\end{aligned}
$$

For the lobby, the selection was the bronze tinted glass which would be $\$ 19.00 /$ sf. Given the amount of energy saved by using this glass is so significant, 1.9 tons vs. 3.3 tons (clear), it would benefit the owners to spend the extra money up front and save in the energy costs.

For the classroom, all of the loads were very similar so it would benefit the owners to go with the clear glass type, simply for the cost savings.

Aesthetics

Both, the lobby and classroom scenarios yielded different results for the best glazing types for their respective rooms. For aesthetic purposes it may be desired to keep all of the glass types the same; this would ultimately be the decision of the architect and owner. Having bronze tinted glass can also affect the views from inside the lobby to the outside, which could be undesirable; in this case it would be better to choose the grey tint or Low-E options. Noting, again, the costs grey tint would be the more economical choice, since the difference in peak coil load is insignificant between the two.

Architectural Breadth

There exist two goals for the architectural breadth, and those are to bring harmony between the education and public sides of the cultural center and to further create an interactive and immersive learning environment for visitors and tribe members alike.

The goals set by the museum designers on the project, BRC, were to "create an emotional connection, "offer a life-changing experience", and to "make the guest part of the story." This architectural breadth embraces these concepts and attempts to apply them and fulfill them in both the museum and the classroom.

The solution involves the redesign of the classroom and museum ceilings with similar technologies that augment the two learning environments in different ways.

Classroom

There are multiple aspects to the classroom ceiling redesign. The initial ceiling, as designed by the architects at SmithGroupJJR, includes three large ceiling panels that span from the front of the room to the rear. They are each constructed of a tectum material and mounted 10' above finished floor. The first concept for the new ceiling was to slant the ceiling up and away from the windows and create an LED display of the constellations on the new surface. By separating the ceiling plane into multiple sections, it provides the opportunity to recess lighting fixtures to be flush against the ceiling plane. The new ceiling surface is created by using a translucent stretch fabric on a rigid frame, specifically the Barrisol brand material.

The ceiling design integrates with the lighting by incorporating suspended slot fixtures that fit in between the ceiling planes to provide the ambient light. The design of the ceiling panels themselves is inspired by astronomy which has played a major role in the tribe's history, as the stars are the source of many legends and myths within the culture. It gives visitors and tribe members the opportunity to learn and understand the starts and the stories behind them in a classroom setting. The lighting design specifics are discussed in the Classroom Lighting Design section of the Lighting Depth.

Original Ceiling Panel and New Ceiling Panel designs, respectively

Daylight Study

The study of the diagonal ceiling was to determine whether or not more useful daylight could be achieved by angling the ceiling away from the window rather than leaving it parallel with the floor. This study of useful daylight was conducted using the Daysim software. The results and comparison can be found in Appendix D. The study results concluded that there is no benefit to re-orienting the ceiling, but rather that the amount of useful daylight decreased as a result. Because of this, I chose to maintain the level ceiling at 10ft, while following through with the other changes as proposed.

Museum

The original design for the museum ceiling includes an exposed structure that is sloped from 18^{\prime} to 23^{\prime} above finished floor and a dropped ceiling on the north end where the roof height is 16^{\prime}, pushing the dropped ceiling to a height of 10 ' above finished floor to accommodate the mechanical equipment above. The redesign for the ceiling is to create a dropped ceiling at 15' above finished floor with the same Barrisol stretch fabric as in the classroom space. Note that this will only be in the area where there was originally an exposed ceiling and that the north end will maintain the dropped ceiling. By lowering the ceiling to 15^{\prime}, the separate sections become more intimate without feeling too enclosed. There is a grid of LED sources above the ceiling plane that can be controlled to create a wide range of displays on the ceiling. For my design, the ceilings will display colors based on the season of the corresponding section. For instance, the ceiling above the winter section of the museum will display a gray/white glow to portray gloominess, because the displays in this section involve the March of Tears, one of the most tragic events in the tribe's history. The ceiling hovers over the 12' partition walls, which means there will be angles at which the visitors can see the ceiling over the next section which works to the advantage of the museum because it sparks interest in the visitors before the visitors can even see the next displays.

As a side note, I had to take the mechanical systems into consideration where the new dropped ceiling is going to be. Originally there were round diffusers throughout the main exhibit space. A possible solution to this could be moving the diffusers to the edges of the room with flexible pipe, which may require further changes to equipment and duct sizing to moderate the flow velocity out of the diffusers.

Lighting Depth

The lighting depth encompasses the redesign of the Entry Lobby, the Promenade, the 112 classroom, and the museum. The main design goals were to provide interactive elements and to complement the architectural features throughout the cultural center.

Native American Cultural Center $1^{\text {st }}$ Floor Plan with Room Designations

Concept

The purpose of the cultural center is to bring both tribe and public together to learn, understand, and celebrate the tribe's culture and heritage. The lighting should be responsive and enhance this idea. The tribe values nature, wisdom, respect and genuineness, all of which should be taken into consideration throughout the building's lighting design. The concept for the lighting is to embrace: embrace all aspects of the world we live in, from nature to the people. The Tribe feels that it is important to provide information to the neighboring communities in order to promote a better understanding and harmony among all inhabitants of the area.

Architecturally, the Native American Cultural Center is divided into two sides: education and public. The lighting concept should help bring these two differentiated elements together. For my design, I chose elements throughout the cultural center and mirrored or applied them in other manners to create a visual overlap, as well as incorporated interactive elements to create an immersive learning environment.

Entry Lobby Lighting Design

The Entry Lobby is the heart-center of the museum, the pivot point between the public and educational sides. The Lobby is 625 sf of transition area that can lead a visitor to three other main areas of the cultural center: the public side, the learning side, or the promenade directly ahead. It's a place for first impressions and way-finding.

Entry Lobby in Overall Floor Plan

Entry Lobby

In the Entry Lobby, the walls are painted white and the ceiling is metal panel. The flooring is a combination of both ground concrete and stained concrete, with the stained concrete running in a stripe through the space, from the entry
 doors to the doors leading directly to the promenade area.

For the aforementioned reasons of the lobby's main purpose of being a transition space, I chose to go with a more simple design that incorporates the architectural element of the east façade awning/shading device that mocks the weave of a basket. This will add an element of interest in the space while permitting the visitors' attention to move to the other areas of the cultural center. There are twelve indirect linear fluorescent fixtures which are pendant-mounted at a diagonal in the fashion of the exterior awning. Specifically for calculations I chose the

East Façade Awning
Page | 14

Peerless Lightline Indirect T8 fixture. The finish on the luminaires is a custom champagne color, similar to that of the awning.

According to the Illuminating Engineering Society, the average horizontal illuminance for a lobby space should be 100 lux during the day and 50 lux at night. These discrepancies appeal to the adaptation issues between exterior and interior light levels. The achieved average horizontal illuminance value is approximately 45 lux which is within an acceptable ten percent of the recommended value for the evening.

Entry Lobby Lighting Plan and Key Plan
Because the lobby is all glass, the design takes advantage of the natural light. The lighting will be controlled via a photosensor integrated with the luminaire, meaning that for most of the day the lighting will be off as long as there is sufficient daylight into the space. As designed, the lobby consumes $0.67 \mathrm{~W} / \mathrm{sf}$, below the allowable power density of $1.1 \mathrm{~W} / \mathrm{sf}$.

Lobby Final Lighting Design

Promenade Lighting Design

The Promenade is approximately 3000 square feet of sanctuary, a place for tribe members and guests to enjoy the outdoors and admire nature. Admiring and respecting nature is something that is an integral part of the tribe's culture. From below the trellis, individuals can view down over the hillside and take in the Arizona landscape. The trellis is more of an architectural feature than a shading device as it is on the west and north-west side of the building. It is suggestive of a basket weave which is an art form of the tribe, and thereby symbolizes who they are. The exterior promenade is not only a place for visitors to enjoy the outdoors, but it is also a key façade that overlooks the adjacent city from the hillside.

The exterior wall of the building is boardform concrete in an adobe brown. The floor is a stained concrete with metal grating near the exterior wall. The trellis is made of aluminum and steel.

Exterior Promenade in Overall Floor Plan
The new lighting is designed to complement the materials and architectural features while allowing visitors to enjoy the surrounding nature. The design provides an emphasis on the "heart" which is the pre-function space that leads to the entry lobby; it creates balance and symmetry; and it maintains an over-all subdued effect which will invite visitors to enjoy the scenery and nature that surrounds them.

The walkway along the west façade includes recessed CFL wall fixtures that light up the ground below visitors' feet, removing light and glare from the view of the individuals looking out over the hill and across the landscape. The fixture chosen for the calculations is the ERCO CFL Visor series, with a recessed wall mounting type. The design decision for CFL fixture was made because the CFL fixtures provide the appropriate amount of lighting, while LED's could be glaring in this setting. Due to the location in Arizona, the effect of cold weather on compact fluorescents is less of a concern. The lookout at the edge of the pre-function is highlighted with Philips ColorKinetics eW Fuse in 1 ft sections to follow the curve. These fixtures are aimed down to highlight the wall and ground by the lookout to draw people while also keeping the lighting out of the eyes so that the visitors can more easily enjoy the nature. They are also 2700 K to accent the warm tones in the stone. The two walkways merge at the pre-function area where social gatherings can be held. Here the stone façade is grazed by ingrade linear LED sources. For calculation purposes, I chose the Phillips ColorKinetics eW Graze fixtures which are also at 2700K. Their intensity gradually increases from 50% to full output as they near the lobby entrance.

The recommended illuminance in the outdoors space is 2 lux. This was the criteria used for the walkways which have approximately 10 lux at the hottest spot from the wall fixtures and this decreases to 2 lux in between fixtures. Because the pre-function space is a more social place for visitors, slightly higher horizontal and vertical illuminance values are maintained at 15 horizontal lux at, both, the entry lobby doors and the overlook, and these values decrease to 2 lux at the bottom of the steps. Because of the location in Arizona, the cultural center is considered to be in a Lighting

Zone III with a curfew and low activity. Consequently, there must be considerations for light pollution. As discussed, the new lighting design includes uplighting that grazes the walls to either side of the pre-function space.

Most of the exterior lighting is governed by Arizona's Title 49. Arizona Title 49-1103: Nonconforming light fixtures states the following, "in addition to other exemptions provided in this article, outdoor light fixtures not meeting the provisions of this article shall be allowed provided such fixtures are extinguished between the hours of midnight and sunrise by an automatic shutoff device." Therefore, all exterior fixtures must be turned off when the building is not occupied at night, or, for special occasions, the owner will have to be granted special permission by the local municipality to have the lights operating after the established curfew.

Promenade Lighting Plan; Luminaire Schedule in Appendix A

Pre-function Lighting Render

Promenade Walkway and Lookout Render

112 Classroom

The 112 Classroom is a space designed for functionality as well as interactive learning. In order to make the space an immersive learning environment, as discussed in the architectural breadth, the ceiling has been reconfigured with an LED lighting system to display major constellations. Astronomy has played a major role in the tribe's history, and the stars are the source of many legends and myths within the culture. It gives visitors and tribe members the opportunity to learn and understand the starts and the stories behind them in a classroom setting.

The classroom has been designed with functional, suspended fluorescent/metal halide combination luminaires that create linear divisions in the ceiling surface. For design calculations, I chose the RSA Combolight, employing 28W T5 fluorescent and 20W ceramic metal halide options. The spacing between ceiling panels also provides the opportunity to incorporate the mechanical and audio systems within the gap to create a clean ceiling surface. The whiteboard will be illuminated by linear fluorescent wall washers mounted from the ceiling above. The chosen whiteboard fixture is Litecontrol's Mod44 Recessed Wall/Wash with a T8 linear fluorescent.

Classroom Functional Lighting Render
The ceiling panels are made of a white stretch fabric on a rigid frame. Above the panels there will be sixty LED's arranged such that they resemble the major constellations. By varying the distance from LED to fabric, the intensity and size of the light on the surface will change, allowing for a more realistic display of the different sizes of the stars. These LED's differ from those in the museum because these are a smaller diameter allowing for a more precise point on the fabric. The fabric used for this installation must have a higher transmissivity than in the museum. Whereas in the museum it is desired to have a more diffuse look, here it is more important to be able to distinguish the separate points of light. In relation, it is also important for some of the light to be diffused; this way the students will not be able to view the direct source or receive too much glare. The feature lighting is intended for learning purposes and not to provide ambient or task lighting in the classroom.

Classroom 112 Reflected Ceiling Plans: functional and feature lighting, respectively
The constellation display would only be operating when switched to "on" by the teacher, when all of the other lights are off. This can easily be accomplished when controlled with a scene selector panel. Controls will be important in the classroom from a code standpoint. The lighting will be turned on to 50 percent power by an occupancy sensor that will recognize when people have entered the room, and turn the lights off when the room is vacated. A photosensor will control dimming of the dim zone which will include the six luminaires in the back right corner of the space, closest to the windows. There will also be a manual scene controller for the instructor to turn the lights up to full bright or to off, in addition to enabling $A V$ and feature lighting settings. The allowable LPD for the classroom is 1.3 W/sf. As designed the classroom uses $1.25 \mathrm{~W} /$ sf. The recommended illuminance for the space is 300 lux on the task plane for reading and writing, 50 lux on the task plane for AV settings, and 300 lux on the white board. The as designed values are 302 lux on the task plane, and 312 lux on the whiteboard. AV settings on the task plane can be achieved through dimming.

Museum

The Arizona Tribe believes that it is very important to pass on information of its culture and heritage to the younger generations for both tribe and non-tribe individuals. They want more than just to spread knowledge, however; they want to create an emotional connection with visitors. One of the ways they want to do this in their new cultural center is through a museum the progresses through the seasons, instilling the importance of nature while also telling the story of the Tribe's traditions and hardships.

The museum is a 6000 sf space separated into five sections by 6 " two-sided-assembly partition walls. There are displays including items like a faux stone partition for petroglyphs and display cases for items such as baskets and bows. The museum will also have portable and temporary displays for community members to have their own

exhibits from time to time. Additionally, the each section has its own projector to display images and videos.

Materials in the museum consist of a lighter brown carpet, white paint walls, plastic laminate casework with a light wood finish, and tectum ceiling tiles.

As designed, the museum provides an interactive environment for visitors to learn about the tribe's history. The architectural design for the museum involves five sections. The first section is where visitors enter and can either move into the show room or into the exhibit space. This section has suspended track lighting for any initial displays as people enter. Once in the main exhibit spaces, there are four other sections that the museum designers metaphorically designated as summer, fall, winter, and spring. These four sections have their own personalities as they each present a period of time in the tribe's history, e.g. winter is the period known as the March of Tears. The museum space is the one in which I explored employing psychological impressions, specifically somber and/or festive space as they progress through the rooms and in order to tell the story of the suffered hardships and celebrate their great traditions. Visual attention, created through increased and/or decreased contrast is a way to promote visual cues for way finding and to establish focal points (levels of hierarchy, as previously
 the conditions promote a "more relaxed, introspective attitude in the occupants," which is very important when the idea of the museum is for individuals to reflect on what they are learning as they pass through the space ${ }^{2}$. By doing the reverse and adding a higher contrast and general lighting level, an individual will be prompted to communicate more with others around them, creating a higher energy level for the space: festive, as interpreted from Flynn's Article 6 on the psychology of light.

Schematic Drawing of Museum; Fall on left, Winter onRight
The lighting for these spaces is designed to enhance the experience by not only providing the functional lighting for the displays but also by creating an immersive environment as the ceiling is lit

[^0]up by color changing LED's to portray the corresponding season. These fixtures are ColorKinetics iColor Flex LMX. The ceiling in the museum, as in the classroom, is also a stretch fabric panel. In this instance, the LED's are larger, spaced 12" apart in a grid fashion, and set back further from the panels to create a softer glow from the ceiling. The ceiling is intended to augment the environment so it's important not to create a distraction with the ceiling. The north end of the museum has a change in roof height and consequentially a change in ceiling height, as the mechanical system runs above. Because of this change in ceiling height, the color changing ceiling cannot be continued through to this section.

The illuminance criteria are variable depending on the goal of the lighting, and can be modified when the displays change. Much of the lighting in this space is considered except or as a part of an allowance through code.

Museum Reflected Ceiling Plan
The track lighting set back 5' from the wall and spaced approximately 4.5^{\prime} apart, corresponding to the gaps in the ceiling panels. The track is used for both decorative and ambient lighting. The emergency lighting in this space is a series of strip lighting placed above the fabric panels that will only operate in the case of an emergency. They will be operated by an inverter system that is placed in the museum electrical closet.

I also want to mention that because I created a dropped ceiling across the entire museum, this is going to affect the mechanical system. The original mechanical system was exposed; therefore with the changes to the architecture, the diffusers will have to be moved to the edges of the room where slot diffusers can be used.

Electrical Depth

The following electrical depth involves the adjustments to the panel boards and distribution system due to the modifications in the lighting system; the calculation of the cost savings for switching to aluminum wiring; and the analysis cost and benefits of installing a generator for emergency power.

Panelboard and Distribution System Design

For the most part, only minor changes occurred on the panelboard schedules, as shown in the following pages, and required no change in panelboard size. The most significant change required a new 120/208V panelboard dedicated to the museum track lighting which is low voltage. The new track lighting panelboard connects to a transformer which branches from the museum lighting panel board. See Appendix B for Panelboard schedules. Please note that final amperage was calculated using a demand factor of 1.25 for continuous lighting loads.

Aluminum Wiring Replacement Study

An easy way to cut costs in a building is to replace copper wiring with aluminum. Because aluminum wire only comes in sizes \#8 and up, I conducted this study with the distribution wiring and did not include branch wiring in the calculation. Please refer to Appendix B for calculation charts. By switching to aluminum wiring, the owner can save approximately 55% on the wire, according to the RSMeans Electrical Cost Data 2013. Because switching to aluminum also requires larger wire sizes, it's also important to factor in the increased cost for larger conduit. The final savings factoring in the increased cost of conduit is 44% or approximately $\$ 8,724.68$.

Alternate Emergency Power Study

The original design for the emergency power involves solely battery back-up power. In this analysis, I determined the added cost and potential benefits for having a generator as back-up power for the museum.

There are a couple downsides to using battery power as the back-up source in the case of an emergency. The first is that each lighting fixture or piece of life safety equipment that is used in the case of emergency will require a battery which increases the price of each fixture and piece of equipment. Another factor is that batteries must be tested and maintained on a regular basis to be sure that they are always in operating condition. The batteries will also have to be replaced if they are ever used.

There are also downsides to using a generator for power. First there will need to be a place in the building to house the generator, or there will need to be a structure outside of the building to house the generator. A generator needs a distribution system, meaning that there will need to be at least one panel board, a transfer switch, and separate wiring to all of the life-safety equipment. In the case of this building it is required that there be two panel boards, one at 120/208V and one at $277 / 480 \mathrm{~V}$ due to the low voltage ambient lighting in the museum space. This also requires a transformer.

In the Native American Cultural Center, emergency lighting accounts for approximately 18000 VA. The elevator adds 13815 VA. Assuming another 20000 VA for security and fire alarm systems, back-up power would need to support 60kVA at a voltage of 277/480V.

The total cost for the diesel generator, two panel boards, a transformer, and a transfer switch, based on the RSMeans Electrical Cost Data is approximately $\$ 43,000$. Note that this number does not include the wiring and conduit nor the labor for installing the wiring and conduit. This number also cannot include the qualitative loss of possible storage space or the quantitative loss if there was a separate foundation and structure built for the generator itself.

To determine the cost vs. benefits of changing the emergency power system, it is important to look at the larger picture. This is a cultural center where, in the case of an emergency, visitors will simply leave, and there isn't, for instance, a major data system that would require back-up. The lighting, fire alarm system, card access, and elevators are going to be the only items that require emergency back-up. By not having a generator, the only loss that there will be is the ability to use the elevator in the case of an emergency, but it is a one story building, so this issue become less relevant. The only other benefit would be that there would no longer be a maintenance cost for the battery back-up power. Because of these reasons, I have deemed this an extra cost that is not needed for the project. Batteries would cost approximately $\$ 70$ more per lighting fixture according to the RSMeans Electrical Cost Data.

Conclusion

The tribe values nature, wisdom, respect and genuineness and feels that it is important to provide information to the neighboring communities in order to promote a better understanding and harmony among all inhabitants of the area. The design for the Native American Cultural Center in Arizona is all about embracing the harmony with and becoming a part of the tribe's culture. The goals are to create an immersive environment for learning and engaging in what the tribe has to offer. The design is meant to embody the values of the tribe, from the glass types used to create the optimal views out to nature to the constellations displayed in the electric lighting design. The purpose of the cultural center is to bring both tribe and public together to learn, understand, and celebrate the tribe's culture and heritage. The lighting should be responsive and enhance this idea. The tribe values nature, wisdom, respect and genuineness. The Tribe feels that it is important to provide information to the neighboring communities in order to promote a better understanding and harmony among all inhabitants of the area.

Appendix A

TYPE	DESCRIPTION	MANUFACTURER	MODEL	LOAD	LAMP	VOLT	MOUNTING	Quantity
L1	8' suspended, 78 linear fluorescent, indirect, rectangular, extruded aluminum fixture with custom champagne finish	Peerless	LLIM 132 8FT R8 277 ADZT SCT LP830 F2/XX CO99 ACG OJB SLP ADC	35W	18	277	Special Mounting	12
P1	CFL Visor Floor washlight; circular housing with safety glass lens; asymmetric reflector system.	ERCO	$\begin{aligned} & 33301000 \text { 1xTC DEL } \\ & \text { 10W } \end{aligned}$	10W	CFL	277	Wall recessed, 3^{\prime} AFF	17
P2	eW Graze Power Core 1' fixture, 2700K, dimmable	Color Kinetics	523-000030-08	15W	LED	277	In Grade	80
P3	1' LED 2700K eW Fuse Powercore with 10×60 degree beam angle, end to end connectors for flexibility	Color Kinetics	523-000065-08	12W	LED	277	Special Mounting	44
Cl	Part of a continuous lighting system, T5 linear fluorescent fixture with silver finish, LED downlights, 4000K	RSA	CCF 1 03278L CS 2	36 W	T5, LED	277	10' AFF	12
C2	iColor Flex MX, 60 nodes, indiv idually operable, clear dome lens	Color Kinetics	101-000068-05	0.5W	LED	277	Varies	60
C3	4' recessed linear fluorescent wall washer, 4000K; for drywall ceiling	Litecontrol	R-WWD-44-14T5	28W	T5, LED	277	Ceiling	3
M 1	iColor Flex LMX, 12" spacing, clear flat lens	Color Kinetics	101-000067-01	0.5 W	LED	277	16' AFF	2000
M2	Stella; T4 50W 12V 950Im Track head with spot reflector; includes low voltage transformer, cross baffle and anti-glare cap, includes 0-90 yoke, and 360 rotation, dimming capable; white finish	ERCO	73504.023	50W	Low Voltage Halogen	12	Track	80
M 2 a	UV filter for Stella track heads	ERCO	70688.000	n/a	n/a	n/a	n/a	80
M2b	Line Voltage Track, 2-20A circuit, 12^{\prime} length; white finish, separate neutrals for dimming	ERCO	12033.023	n/a	n/a	120	at Ceiling plane	19
M3	Utility Fluorescent T8 Strip Light	Cooper Metalux	SNF-132-277-EB8	35W	T8	277	16'6" AFF	16

Lighting Calculations

Entry Lobby

Entry Lobby Pseudo-Color Rendering

Promenade

Promenade Pseudo Color at 2 lux max to show it meets code

Promenade Pseudo Color at 8 lux

Classroom


```
Statistics
Project 1
Calc Pts
Classroom Desk Plane
Illuminance (Lux)
Average=302.76 Maximum=459
Minimum=140 Avg/Min=2.17
Max/Min=3.28
Front of Room
Illuminance (Lux)
Average=334.52 Maximum=666
Minimum=108 Avg/Min=3.09
Max/Min=6.15
White Board
Illuminance (Lux)
Average=416.52 Maximum=569
Minimum=279 Avg/Min=1.49
Max/Min=2.04

\section*{Museum}


In-uniformity in Museum, specific to space and desired look. This will be constantly changing.

\section*{Appendix B - Electrical}

Panelboard Schedules
Panelboard - 1HB


Panelboard - 1HA

\begin{tabular}{llll} 
Total Load on Phase A: & 64,416 & VA & \\
Total Load on Phase B: & 65,845 & VA & Total Load on Panel: \(\frac{240}{280}\) kVA Demand \\
Total Load on Phase C: & 61,814 & &
\end{tabular}

Panelboard - 1LA3
Voltage: 208Y/120 Main Breaker: \(\qquad\) A

Feeder: 4 -500kanil, \#3g, 3.5 cond (\#, size wire \& conduit)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Description} & \multicolumn{3}{|c|}{LOAD (VA)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Brk. \\
Trip \\
(A)
\end{tabular}} & \multicolumn{4}{|c|}{LP} & \multicolumn{3}{|c|}{LOAD (VA)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Brk. \\
Trip \\
(A)
\end{tabular}} & \multirow[b]{2}{*}{Description} \\
\hline & A & B & C & & \begin{tabular}{l}
Cond. \\
Size
\end{tabular} & & & \begin{tabular}{l}
Cond. \\
Size
\end{tabular} & A & B & C & & \\
\hline Museum Track Lighting & 1920 & & & 20 & \#12 & 1 & 2 & \#12 & 1920 & & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & 1920 & & 20 & \#12 & 3 & 4 & \#12 & & 1920 & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & & 1920 & 20 & \#12 & 5 & 6 & \#12 & & & 1920 & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & 1920 & & & 20 & \#12 & 7 & 8 & \#12 & 1920 & & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & 1920 & & 20 & \#12 & 9 & 10 & \#12 & & 1920 & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & & 1920 & 20 & \#12 & 11 & 12 & \#12 & & & 1920 & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & 1920 & & & 20 & \#12 & 13 & 14 & \#12 & 1920 & & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & 1920 & & 20 & \#12 & 15 & 16 & \#12 & & 1920 & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & & 1920 & 20 & \#12 & 17 & 18 & \#12 & & & 1920 & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & 1920 & & & 20 & \#12 & 19 & 20 & \#12 & 1920 & & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & 1920 & & 20 & \#12 & 21 & 22 & \#12 & & 1920 & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & & 1920 & 20 & \#12 & 23 & 24 & \#12 & & & 1920 & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & 1920 & & & 20 & \#12 & 25 & 26 & \#12 & 1920 & & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & 1920 & & 20 & \#12 & 27 & 28 & \#12 & & 1920 & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & & 1920 & 20 & \#12 & 29 & 30 & \#12 & & & 1920 & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & 1920 & & & 20 & \#12 & 31 & 32 & \#12 & 1920 & & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & 1920 & & 20 & \#12 & 33 & 34 & \#12 & & 1920 & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & & 1920 & 20 & \#12 & 35 & 36 & \#12 & & & 1920 & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & 1920 & & & 20 & \#12 & 37 & 38 & \#12 & 1920 & & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & 1920 & & 20 & \#12 & 39 & 40 & \#12 & & 1920 & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & & 1920 & 20 & \#12 & 41 & 42 & \#12 & & & 1920 & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & 1920 & & & 20 & \#12 & 43 & 44 & \#12 & 1920 & & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & 1920 & & 20 & \#12 & 45 & 46 & \#12 & & 1920 & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & & 1920 & 20 & \#12 & 47 & 48 & \#12 & & & 1920 & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & 1920 & & & 20 & \#12 & 49 & 50 & \#12 & 1920 & & & 20 & Museum Track Lighting \\
\hline Museum Track Lighting & & 1920 & & 20 & \#12 & 51 & 52 & & & & & & \\
\hline Museum Track Lighting & & & 1920 & 20 & \#12 & 53 & 54 & & & & & & \\
\hline & 17280 & 17280 & 17280 & & & & & & 17280 & 15360 & 15360 & & \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { Total Load on Phase A: } & 34,560 & \text { VA } \\ \text { Total Load on Phase B: } & 32,640 & \text { VA } \\ \text { Total Load on Phase C: } & 32,640 & \text { VA }\end{array}\)
Total Load on Panel: \(\frac{125}{346.4101615}\) AVA Demand

Electrical Calculations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Panel & Dist. & Copper Wire Size & Copper wires & Alum Wire Size & \# Alum wires & \begin{tabular}{l}
\$Copper \\
/If
\end{tabular} & \$Alum/If & \$Copper (Total) & \$Alum (Total) & Savings \\
\hline South & 1HB & 250 & 350kcmil & 4 & 4/0 & 8 & \$8.30 & \$1.56 & \$8,300.00 & \$3,120.00 & \$5,180.00 \\
\hline Electrical & 1LB1 & 4 & 350kcmil & 4 & 4/0 & 8 & \$8.30 & \$1.56 & \$132.80 & \$49.92 & \$82.88 \\
\hline Closet & 1LB2 & 6 & 350kcmil & 4 & 4/0 & 8 & \$8.30 & \$1.56 & \$199.20 & \$74.88 & \$124.32 \\
\hline & 1LB3 & 90 & \#3 & 4 & \#1 & 4 & \$1.25 & \$0.80 & \$450.00 & \$288.00 & \$162.00 \\
\hline & 1HA & 100 & 350kcmil & 4 & 4/0 & 8 & \$8.30 & \$1.56 & \$3,320.00 & \$1,248.00 & \$2,072.00 \\
\hline North & ILAIG & 4 & \#3 & 4 & \# 1 & 4 & \$1.25 & \$0.80 & \$20.00 & \$12.80 & \$7.20 \\
\hline Electrical & 1LA1 & 4 & 4/0 & 4 & 300 kcmil & 4 & \$4.95 & \$2.63 & \$79.20 & \$42.08 & \$37.12 \\
\hline Closet & 1LA2 & 6 & 4/0 & 4 & 300 kcmil & 4 & \$4.95 & \$2.63 & \$118.80 & \$63.12 & \$55.68 \\
\hline & 1LA3 & 8 & 4/0 & 4 & 300kcmil & 4 & \$4.95 & \$2.63 & \$158.40 & \$84.16 & \$74.24 \\
\hline & BHA & 8 & 350kcmil & 4 & 4/0 & 8 & \$8.30 & \$1.56 & \$265.60 & \$99.84 & \$165.76 \\
\hline Level & ILK & 90 & 4/0 & 4 & 300kcmil & 4 & \$4.95 & \$2.63 & \$1,782.00 & \$946.80 & \$835.20 \\
\hline Electrical & 1LK2 & 210 & \#3 & 4 & \#1 & 4 & \$1.25 & \$0.80 & \$1,050.00 & \$672.00 & \$378.00 \\
\hline Room & BLAI & 4 & 4/0 & 4 & 300kcmil & 4 & \$4.95 & \$2.63 & \$79.20 & \$42.08 & \$37.12 \\
\hline & BLA3 & 6 & 4/0 & 4 & 300kcmil & 4 & \$4.95 & \$2.63 & \$118.80 & \$63.12 & \$55.68 \\
\hline LL Corr & BLA2 & 160 & 4/0 & 4 & 300kcmil & 4 & \$4.95 & \$2.63 & \$3,168.00 & \$1,683.20 & \$1,484.80 \\
\hline & & & & & & & & Totals: & \$19,242.00 & \$8,490.00 & \$10,752.00 \\
\hline
\end{tabular}

Phase and Neutral Wire Calculation Using RSMeans 2013 Electrical Cost Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Grnd} & \multicolumn{3}{|c|}{\$Copper} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\$Copper \$Alum (Total) (Total)}} & \multirow[b]{2}{*}{Savings} \\
\hline & Panel & Dist. & Size & Alum & \# Grnd & /If & \$Alum/If & & & \\
\hline South & 1 HB & 250 & \#4 & \#2 & 1 & \$1.01 & \$0.55 & \$252.50 & \$137.50 & \$115.00 \\
\hline Electrical & 1LB1 & 4 & \#4 & \#2 & 1 & \$1.01 & \$0.55 & \$4.04 & \$2.20 & \$1.84 \\
\hline Closet & 1LB2 & 6 & \#4 & \#2 & 1 & \$1.01 & \$0.55 & \$6.06 & \$3.30 & \$2.76 \\
\hline & 1LB3 & 90 & \#8 & \#6 & 1 & \$0.37 & \$0.33 & \$33.30 & \$29.70 & \$3.60 \\
\hline & 1HA & 100 & \#4 & \#2 & 1 & \$1.01 & \$0.55 & \$101.00 & \$55.00 & \$46.00 \\
\hline North & 1LAIG & 4 & \#8 & \#6 & 1 & \$0.37 & \$0.33 & \$1.48 & \$1.32 & \$0.16 \\
\hline Electrical & 1LA1 & 4 & \#6 & \#4 & 1 & \$0.63 & \$0.40 & \$2.52 & \$1.60 & \$0.92 \\
\hline Closet & 1LA2 & 6 & \#6 & \#4 & 1 & \$0.63 & \$0.40 & \$3.78 & \$2.40 & \$1.38 \\
\hline & 1LA3 & 8 & \#6 & \#4 & 1 & \$0.63 & \$0.40 & \$5.04 & \$3.20 & \$1.84 \\
\hline & BHA & 8 & \#4 & \#2 & 1 & \$1.01 & \$0.55 & \$8.08 & \$4.40 & \$3.68 \\
\hline Level & 1LK & 90 & \#6 & \#4 & 1 & \$0.63 & \$0.40 & \$56.70 & \$36.00 & \$20.70 \\
\hline Electrica & 1LK2 & 210 & \#8 & \#6 & 1 & \$0.37 & \$0.33 & \$77.70 & \$69.30 & \$8.40 \\
\hline Room & BLA1 & 4 & \#6 & \#4 & 1 & \$0.63 & \$0.40 & \$2.52 & \$1.60 & \$0.92 \\
\hline & BLA3 & 6 & \#6 & \#4 & 1 & \$0.63 & \$0.40 & \$3.78 & \$2.40 & \$1.38 \\
\hline LL Corr & BLA2 & 160 & \#6 & \#4 & 1 & \$0.63 & \$0.40 & \$100.80 & \$64.00 & \$36.80 \\
\hline & & & & & & & Totals: & \$659.30 & \$413.92 & \$245.38 \\
\hline
\end{tabular}

Ground Wire Calculation


Conduit Calculation

\section*{Appendix C - Mechanical Calculations}

\section*{Lobby COMFEN}

1. double pane clear glass
2. double pane gray/clear glass
3. double pane low-e glass
4. double pane bronze/clear glass
5. double pane bronze tinted glass

Classroom COMFEN

1. double pane clear glass
3. double pane low-e glass
4. double pane gray/clear glass
5. PPG's double pane clear glass
6. double pane bronze tinted glass.

Classroom Carrier

(48) \(\frac{\text { PLAN DETALL }}{\text { Wan E }}\)

POAE TITAFTV
Wall Detail used to determine inputs for Carrier


Sample Screenshot of Carrier HAP

\section*{Classroom Eighth Inch Clear Glass}
\begin{tabular}{|c|c|}
\hline ir System Information & fault System \\
\hline Equipment Class & -.......... UNDEF \\
\hline Air System Type & VAV \\
\hline
\end{tabular}

Sizing Calculation Information
Zone and Space Sizing Method:
Zone CFM .......................... Peak zone sensible load
Space CFM ................ Individual peak space loads

\section*{Central Cooling Coil Sizing Data}
\begin{tabular}{|c|c|}
\hline Total coil load & 1.6 Tons \\
\hline Total coil load & 19.7 MVBT \\
\hline Sensible coil load & 19.7 MBH \\
\hline Coil CFM at Jul 1500 & 620 CFM \\
\hline Max block CFM at Jul 1500 & 760 CFM \\
\hline Sum of peak zone CFM & 760 CFM \\
\hline Sensible heat ratio & 1.000 \\
\hline \(\mathrm{ft}^{2} / \mathrm{T}\) on & 547.5 \\
\hline \(\mathrm{BTU} /\left(\mathrm{hr}-\mathrm{ft}^{2}\right)\) & 21.9 \\
\hline Water flow @ \(10.0{ }^{\circ} \mathrm{F}\) rise & 3.95 gpm \\
\hline
\end{tabular}

\section*{Preheat Coil Sizing Data}
\begin{tabular}{|c|c|c|}
\hline Max coil load & 14.2 & MBH \\
\hline Coil CFM at Des Htg & 620 & CFM \\
\hline Max coil CFM & 760 & CFM \\
\hline Water flow @ \(20.0^{\circ} \mathrm{F}\) drop & 1.42 & gpm \\
\hline
\end{tabular}

\section*{Supply Fan Sizing Data}
Actual max CFM at Jul 1500 ................................... 760 CFM
Standard CFM ............................................ 631 CFM
Actual max CFMft ............................... 0.84 CFM/ft
Outdoor Ventilation Air Data

\section*{Classroom Quarter Inch Low-E}
\begin{tabular}{|c|c|}
\hline Air System Information & \\
\hline Air System Name & Default System \\
\hline Equipment Cl & ......................... UNDEF \\
\hline Air System Type & VAV \\
\hline
\end{tabular}

Sizing Calculation Information
Zone and Space Sizing Method:
Zone CFM .......................... Peak zone sensible load
Space CFM ............... Individual peak space loads

\section*{Central Cooling Coil Sizing Data}
\begin{tabular}{|c|c|}
\hline Total coil load & 1.7 Tons \\
\hline Total coil load & 20.4 MBET \\
\hline Sensible coil load & 20.4 MBH \\
\hline Coil CFM at Jul 1500 & 620 CFM \\
\hline Max block CFM at Jul 1600 & 701 CFM \\
\hline Sum of peak zone CFM & 701 CFM \\
\hline Sensible heat ratio & 1.000 \\
\hline \(\mathrm{ft}^{2} / \mathrm{T} 80\) & 529.8 \\
\hline BTU/(hr-ft \({ }^{\text {a }}\) ) & 22.7 \\
\hline Water flow @ \(10.0^{\circ} \mathrm{F}\) rise & 4.08 gRm \\
\hline
\end{tabular}

\section*{Preheat Coil Sizing Data}
\begin{tabular}{|c|c|c|}
\hline Max coil load & 16.2 & MBH \\
\hline Coil CFM at Des Htg & 620 & CFM \\
\hline Max coil CFM & 701 & CFM \\
\hline Water flow @ \(20.0^{\circ} \mathrm{F}\) drop & 1.62 & gRm \\
\hline
\end{tabular}

\section*{Supply Fan Sizing Data}
Actual max CFM at Jul 1600 ................................... 701 CFM
Standard CFM ........................................... 582 CFM
Actual max CFMfft ................................ 0.78 CFM/ft \({ }^{2}\)
Outdoor Ventilation Air Data

Calculation Months ......................................... Jan to Dec
Sizing Data ....................................... Calculated
\begin{tabular}{|c|c|c|}
\hline Load occurs a & Jul 1500 & \\
\hline OA DB/WB & 94.0 / 60.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Entering DB / WB & 90.5 / 59.7 & \({ }^{\circ} \mathrm{F}\) \\
\hline Leaving DB / WB & 55.0 / 46.5 & \({ }^{\circ} \mathrm{F}\) \\
\hline Coil ADP & 51.1 & \({ }^{\circ} \mathrm{F}\) \\
\hline Bypass Factor & 0.100 & \\
\hline Resulting RH & .. 40 & \% \\
\hline Design supply temp. & 55.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Zone T-stat Check & 1 of 1 & OK \\
\hline Max zone temperature deviation. & ..... 0.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
Load occurs at ............................................... Des Htg
Ent. DB / Lvg DB ................................... 24.4 / \(50.0{ }^{\circ} \mathrm{F}\)
\begin{tabular}{|c|c|c|}
\hline Fan motor BHP & 0.00 & BHP \\
\hline Fan motor kW & 0.00 & kW \\
\hline Fan static & 0.00 & in wg \\
\hline CFM/person & 20.00 & CFM/ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Calculation Months & Jan to Dec \\
\hline Sizing Data . & Calculated \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Load occurs at & Jul 1500 & \\
\hline OA DB/WB & 94.0 / 60.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Entering DB / WB & 91.6 / 59.7 & \({ }^{\circ} \mathrm{F}\) \\
\hline Leaving DB / WB & 55.0 / 46.1 & \({ }^{\circ} \mathrm{F}\) \\
\hline Coil ADP & 50.9 & \({ }^{\circ} \mathrm{F}\) \\
\hline Bypass Factor & 0.100 & \\
\hline Resulting RH & 40 & \% \\
\hline Design supply temp. & 55.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Zone T-stat Check & 1 of 1 & OK \\
\hline Max zone temperature deviation & 0.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
Load occurs at ............................................... Des Htg. \(20.9 / 50.0{ }^{\circ} \mathrm{F}\)
Ent. DB / Lyg DB ...............................
\begin{tabular}{|c|c|c|}
\hline Fan motor BHP & 0.00 & BHP \\
\hline Fan motor kW . & 0.00 & kW \\
\hline Fan static & 0.00 & in wg. \\
\hline CFM/person & 0.00 & CFM \\
\hline
\end{tabular}

\section*{Classroom Eighth Inch Grey Tint}


Sizing Calculation Information
Zone and Space Sizing Method:
Zone CFM ......................... Peak zone sensible load
Space CFM ............... Individual peak space loads

\section*{Central Cooling Coil Sizing Data}
\begin{tabular}{|c|c|}
\hline Total coil load & 1.7 Tons \\
\hline Total coil load & 20.2 MBH \\
\hline Sensible coil load & 20.2 MBH \\
\hline Coil CFM at Jul 1500 & 620 CFM \\
\hline Max block CFM at Jul 1600 & 714 CFM \\
\hline Sum of peak zone CFM & 714 CFM \\
\hline Sensible heat ratio & 1.000 \\
\hline \(\mathrm{ft}^{2} / \mathrm{Ton}\) & 534.2 \\
\hline BTU/(hr-fl \({ }^{\text {c }}\) ) & 22.5 \\
\hline Water flow @ 10.0 & 4.05 gpm \\
\hline
\end{tabular}

Preheat Coil Sizing Data
\begin{tabular}{|c|c|}
\hline Max coil load & 15.7 \\
\hline Coil CFM at Des Htg & 620 \\
\hline Max coil CFM & 714 \\
\hline Water flow @ 20.0 \({ }^{\circ} \mathrm{F}\) drop & 1.57 \\
\hline
\end{tabular}

Supply Fan Sizing Data
\begin{tabular}{|c|c|c|}
\hline Actual max CFM at Jul 1600 & 714 & CFM \\
\hline Standard CFM ................... & 593 & CFM \\
\hline Actual max CFM/ft & 0.79 & CFM/ft \({ }^{2}\) \\
\hline Outdoor Ventilation Air Data & & \\
\hline Design airflow CFM & 620 & CFM \\
\hline CFM/ff & 0.69 & CFMfft \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Fan motor BHP & 0.00 & BHP \\
\hline Fan motor kW . & 0.00 & kW \\
\hline Fan static & 0.00 & in wg \\
\hline CFMperson & 20.00 & CFM \\
\hline
\end{tabular}

\section*{Lobby Quarter Inch Bronze Tint}


\section*{Sizing Calculation Information \\ Zone and Space Sizing Method: \\ Zone CFM .......................... Peak zone sensible load
Space CFM............... Individual peak space loads}

\section*{Central Cooling Coil Sizing Data}

\begin{tabular}{|c|c|c|}
\hline Load occurs at & Jul 1700 & \\
\hline OA DB/WB & 91.5/59.2 & \({ }^{\circ} \mathrm{F}\) \\
\hline Entering DB / WB . & 76.3 / 53.9 & \({ }^{\circ} \mathrm{F}\) \\
\hline Leaving DB / WB & 55.0 / 45.4 & \({ }^{\circ} \mathrm{F}\) \\
\hline Coil ADP & 52.6 & \({ }^{\circ} \mathrm{F}\) \\
\hline Bypass Factor & 0.100 & \\
\hline Resulting RH & .. 24 & \% \\
\hline Design supply temp & 55.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Zone T-stat Check & . 1 of 1 & OK \\
\hline Max zone temp & 0.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}

\section*{Preheat Coil Sizing Data}

No heating coil loads occurred during this calculation.

\section*{Supply Fan Sizing Data}
\begin{tabular}{|c|c|c|}
\hline Actual max CFM at Jul 1600 & 1327 & CFM \\
\hline \multicolumn{2}{|l|}{Standard CFM ............................................. 1103} & \\
\hline Actual max CFM/ff & 1.47 & CFM/ft \({ }^{2}\) \\
\hline \multicolumn{3}{|l|}{Outdoor Ventilation Air Data} \\
\hline Design airflow CFM & 0 & CFI \\
\hline CFM/ff & 0.00 & CFM fft \(^{2}\) \\
\hline
\end{tabular}

\section*{Lobby Eighth Inch One Pane Tint}
\begin{tabular}{|c|c|}
\hline , & \\
\hline Air System & Default System \\
\hline Equipment & UNDEF \\
\hline ir System & \\
\hline
\end{tabular}

Sizing Calculation Information
Zone and Space Sizing Method:
Zone CFM ......................... Peak zone sensible load
Space CFM............... Individual peak space loads

Central Cooling Coil Sizing Data
\begin{tabular}{|c|c|c|}
\hline Total coil load & 2.8 & Tons \\
\hline Total coill load & 33.8 & MBH \\
\hline Sensible coil load & 33.8 & MBH \\
\hline Coil CFM at Jul 1700 & 1762 & CFM \\
\hline Max block CFM at Jul 1700 & 1942 & CFM \\
\hline Sum of peak zone CFM ...... & 1942 & CFM \\
\hline Sensible heat ratio & 1.000 & \\
\hline \(\mathrm{ft}^{2} / \mathrm{Ton}\) & 320.6 & \\
\hline BTU/(hr-ft \({ }^{\text {c }}\) & 37.4 & \\
\hline Water flow @ \(10.0{ }^{\circ} \mathrm{F}\) rise & 6.76 & gpm \\
\hline
\end{tabular}

Preheat Coil Sizing Data
No heating coil loads occurred during this calculation.

\section*{Supply Fan Sizing Data}
\begin{tabular}{|c|c|c|}
\hline Actual max CFM at Jul 1700 & 1942 & CFM \\
\hline Standard CFM & 1613 & CFM \\
\hline Actual max CFM/ft & 2.15 & CFM/ft \({ }^{2}\) \\
\hline Outdoor Ventilation Air Data & & \\
\hline Design airflow CFM & 0 & CFM \\
\hline CFM/ff & 0.00 & CFM ft \(^{2}\) \\
\hline
\end{tabular}

\section*{Lobby Eighth Inch Bronze Tint}

Air System Information
\begin{tabular}{|c|c|}
\hline Air System Name & Default System \\
\hline Equipment C & UNDEF \\
\hline Air System Type. & .. VAV \\
\hline
\end{tabular}

Sizing Calculation Information
Zone and Space Sizing Method:
Zone CFM ......................... Peak zone sensible load
Space CFM ................ Individual peak space loads

Central Cooling Coil Sizing Data
\begin{tabular}{|c|c|}
\hline Total coil load & 2.8 Tons \\
\hline Total coil load & 33.1 MBH \\
\hline Sensible coil load & 33.1 MBH \\
\hline Coil CFM at Jul 1700 & 1727 CFM \\
\hline Max block CFM at Jul 1700 & 1904 CFM \\
\hline Sum of peak zone CFM & 1904 CFM \\
\hline Sensible heat ratio & 1.000 \\
\hline \(\mathrm{ft}^{2} /\) Ton & 327.2 \\
\hline \(\mathrm{BTU} /\left(\mathrm{hr}-\mathrm{ft}^{2}\right)\) & 36.7 \\
\hline Water flow @ \(10.0{ }^{\circ} \mathrm{F}\) rise & 6.62 gpm \\
\hline
\end{tabular}

Preheat Coil Sizing Data
No heating coil loads occurred during this calculation.
Supply Fan Sizing Data
\begin{tabular}{|c|c|c|}
\hline Actual max CFM at Juil 1700 .. & 1904 & CFM \\
\hline \multicolumn{2}{|l|}{Standard CFM ............................................. 1582} & CFM \\
\hline Actual max CFM/ff & 2.11 & CFM/ft \({ }^{2}\) \\
\hline Outdoor Ventilation Air Data & & \\
\hline Design airflow CFM & 0 & CFM \\
\hline CFM/ft & 0.00 & CFM/ft \({ }^{2}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Calculation Months & Jan to Dec \\
\hline Sizing Data & Calculated \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Load occurs at & Jul 1700 & \\
\hline OA DB/WB & 91.5/59.2 & \({ }^{\circ} \mathrm{F}\) \\
\hline Entering DB / WB & 76.4 / 53.9 & \({ }^{\circ} \mathrm{F}\) \\
\hline Leaving DB / WB & 55.0 / 45.4 & \({ }^{\circ} \mathrm{F}\) \\
\hline Coil ADP & 52.6 & \({ }^{\circ} \mathrm{F}\) \\
\hline Bypass Factor & 0.100 & \\
\hline Resulting RH & 24 & \% \\
\hline Design supply tem & 55.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Zone T-stat Check & 1 of 1 & OK \\
\hline Max zone temperatur & 0.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Fan motor BHP & 0.00 & BHP \\
\hline Fan motor kW & 0.00 & kW \\
\hline Fan static & 0.00 & in wg \\
\hline CFM/person & 0.00 & CFM/person \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Calculation Months & Jan to Dec \\
\hline Sizing Data ......... & Calculated \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Load occurs at & Jul 1700 & \\
\hline OA DB/WB & 91.5/59.2 & \({ }^{\circ} \mathrm{F}\) \\
\hline Entering DB / WB & 76.3 / 53.9 & \({ }^{\circ} \mathrm{F}\) \\
\hline Leaving DB /WB & 55.0 / 45.4 & \({ }^{\circ} \mathrm{F}\) \\
\hline Coil ADP & 52.6 & \({ }^{\circ} \mathrm{F}\) \\
\hline Bypass Factor & 0.100 & \\
\hline Resulting RH & 24 & \% \\
\hline Design supply temp. & 55.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Zone T-stat Check & .. 1 of 1 & OK \\
\hline Max zone temperature deviation & 0.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}


\section*{Lobby Eighth Inch Clear}


Sizing Calculation Information
Zone and Space Sizing Method:
Zone CFM ......................... Peak zone sensible load
Space CFM ............... Individual peak space loads

\section*{Central Cooling Coil Sizing Data}
\begin{tabular}{|c|c|}
\hline Total coil load & 3.3 Tons \\
\hline Total coil load & 59.0 |V107 \\
\hline Sensible coil load & 208 MRH \\
\hline Coil CFM at Jul 1700 & 2079 CFM \\
\hline Max block CFM at Jui 1700 & 2281 CFM \\
\hline Sum of peak zone CFM & 2281 CFM \\
\hline Sensible heat ratio & 1.000 \\
\hline \(\mathrm{ft}^{2} /\) Ton & 271.7 \\
\hline BTU/(hr-ftr) & 44.2 \\
\hline Water flow @ \(10.0{ }^{\circ} \mathrm{F}\) ris & 7.97 gpm \\
\hline
\end{tabular}

Preheat Coil Sizing Data
No heating coil loads occurred during this calculation.
Supply Fan Sizing Data
\begin{tabular}{|c|c|c|}
\hline Actual max CFM at Jul 1700 & 2281 & CFM \\
\hline Standard CFM & 1895 & CFM \\
\hline Actual max CFM/ft & 2.53 & CFM/ft \({ }^{2}\) \\
\hline \multicolumn{3}{|l|}{Outdoor Ventilation Air Data} \\
\hline Design airflow CFM & . 0 & CFM \\
\hline CFM/ft & 0.00 & CFM/ft \({ }^{2}\) \\
\hline
\end{tabular}

\section*{Lobby Eighth Inch Grey Tint}
\begin{tabular}{|c|c|}
\hline Air System Information & \\
\hline Air System Name ........... & Default System \\
\hline Equipment Class & UNDE \\
\hline Air System Type & VAV \\
\hline
\end{tabular}

Sizing Calculation Information
Zone and Space Sizing Method:

\section*{Zone CFM Space CFM}
\(\qquad\) Peak zone sensible load Individual peak space loads

\section*{Central Cooling Coil Sizing Data}
\begin{tabular}{|c|c|}
\hline Total coil load & 2.7 Tons \\
\hline Total coil load & 32.9 MBE \\
\hline Sensible coil load & 32.9 MBH \\
\hline Coil CFM at Jul 1700 & 1715 CFM \\
\hline Max block CFM at Jui 1700 & 1891 CFM \\
\hline Sum of peak zone CFM & 1891 CFM \\
\hline Sensible heat ratio & 1.000 \\
\hline \(\mathrm{ft}^{2} / \mathrm{T}\) on & 329.5 \\
\hline \(\mathrm{BTU} /\left(\mathrm{hr}-\mathrm{ft}^{2}\right)\) & 36.4 \\
\hline Water flow @ \(10.0{ }^{\circ} \mathrm{F}\) rise & 6.57 gpm \\
\hline
\end{tabular}

Preheat Coil Sizing Data
No heating coil loads occurred during this calculation.
Supply Fan Sizing Data
\begin{tabular}{|c|c|c|}
\hline Actual max CFM at Jul 1700 & 1891 & CFM \\
\hline Standard CFM ................... & 1571 & CFM \\
\hline Actual max CFM/ft & 2.10 & CFM/ft \({ }^{2}\) \\
\hline Outdoor Ventilation Air Data & & \\
\hline Design airflow CFM .......... & 0 & CFM \\
\hline CFM/ffr & 0.00 & CFM/ft \({ }^{2}\) \\
\hline
\end{tabular}


Calculation Months ........................................ Jan to Dec Sizing Data ......................................................... Calculated
\begin{tabular}{|c|c|c|}
\hline Load occurs at & Jul 1700 & \\
\hline OA DB/WB & 91.5 / 59.2 & \({ }^{\circ} \mathrm{F}\) \\
\hline Entering DB / WB & 76.4 / 53.9 & \({ }^{\circ} \mathrm{F}\) \\
\hline Leaving DB / WB & 55.0 / 45.4 & \({ }^{\circ} \mathrm{F}\) \\
\hline Coil ADP & 52.6 & \({ }^{\circ} \mathrm{F}\) \\
\hline Bypass Factor & 0.100 & \\
\hline Resulting RH & 24 & \% \\
\hline Design supply temp & 55.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Zone T-stat Check & . 1 of 1 & OK \\
\hline Max zone temperat & ...... 0.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Fan motor BHP & 0.00 & BHP \\
\hline Fan motor KW & 0.00 & kW \\
\hline Fan static & 0.00 & in wg \\
\hline CFM/person & 0.00 & CFM/ \\
\hline
\end{tabular}

Calculation Months ........................................ Jan to Dec
Sizing Data ....................................
\begin{tabular}{|c|c|c|}
\hline Load occurs at & Jul 1700 & \\
\hline OA DB/WB & 91.5/59.2 & \({ }^{\circ} \mathrm{F}\) \\
\hline Entering DB / WB & 76.3 / 53.9 & \({ }^{\circ} \mathrm{F}\) \\
\hline Leaving DB / WB & 55.0 / 45.4 & \({ }^{\circ} \mathrm{F}\) \\
\hline Coil ADP & 52.6 & \({ }^{\circ} \mathrm{F}\) \\
\hline Bypass Factor & 0.100 & \\
\hline Resulting RH & ... 24 & \% \\
\hline Design supply temp & 55.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Zone T-stat Check & . 1 of 1 & OK \\
\hline Max zone tempera & 0.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Fan motor BHP & 0.00 & BHP \\
\hline Fan motor kW & 0.00 & kW \\
\hline Fan static & 0.00 & in wg \\
\hline CFM/person & 0.00 & CFM \\
\hline
\end{tabular}

Lobby Quarter Inch Low-E
\begin{tabular}{|c|c|}
\hline Air System Information & \\
\hline Air System Name ............ & Default System \\
\hline Equipment Class ............ & UNDEF \\
\hline Air System Typ & .... VAV \\
\hline
\end{tabular}


Sizing Calculation Information
Zone and Space Sizing Method:



Central Cooling Coil Sizing Data
\begin{tabular}{|c|c|}
\hline Total coil load & 2.6 Tons \\
\hline Total coil load & 31.1 M108 \\
\hline Sensible coil load & 31.7 MBH \\
\hline Coil CFM at Jul 1700 & 1657 CFM \\
\hline Max block CFM at Jul 1700. & 1825 CFM \\
\hline Sum of peak zone CFM & 1825 CFM \\
\hline Sensible heat ratio & 1.000 \\
\hline \(\mathrm{ft}^{2} / \mathrm{T}\) on & 341.0 \\
\hline BTU/(hr-ftr) & 35.2 \\
\hline Water flow@ \(10.0^{\circ} \mathrm{F}\) rise & 6.35 gp \\
\hline
\end{tabular}

Preheat Coil Sizing Data
No heating coil loads occurred during this calculation.
Supply Fan Sizing Data
\begin{tabular}{|c|c|c|}
\hline Actual max CFM at Jul 1700 & 1825 & CFM \\
\hline Standard CFM & 1516 & CFM \\
\hline Actual max CFM/ft & 2.02 & CFM/ft \({ }^{2}\) \\
\hline Outdoor Ventilation Air Data & & \\
\hline Design airflow CFM .............. & 0 & CFM \\
\hline CFM/ft & 0.00 & CFM \\
\hline
\end{tabular}

\section*{Appendix D - Architectural Breadth Daylighting Calculations}

\section*{Original Classroom Design Calculations}

Useful Daylight - Spatial Daylight Autonomy at 400 lux


Daylight Autonomy at 400 lux


\section*{New Classroom Calculations - Daysim Output}

Useful Daylight - Spatial Daylight Autonomy at 400 lux
Annual Daylight Metrics
Useful Dayli
Cal


Daylight Autonomy at 400 lux


\section*{Appendix E - Lighting Equipment Specification Sheets}


\section*{LAMPING OPTIONS}

LL1M1


\section*{SPECIFICATIONS}

\section*{Construction}

Housing is extruded aluminum forming a \(23 / 4^{\prime \prime} \times 2 \frac{1}{2} 2^{\prime \prime}\) rectangular profile. Die-cast end plate mechanically attaches with no exposed fasteners.

\section*{Reflectors}

Die-formed, pre-finished white reflector with hammertone specular aluminum.

\section*{Electrical}

Specify \(120 \mathrm{~V}, 277 \mathrm{~V}\) or 347 V . Pre-wired with 16 AWG fixture wires. For special circuiting or wire gauge, consult factory. Plug-in electrical connectors included. UL and C-UL listed.

\section*{Finish}

Standard colors include satin anodized aluminum, and white white (low gloss).

Luminaire Length
\(4^{\prime}, 8^{\prime}\), and \(12^{\prime}\) lengths in a single section for suspension spacing of \(4^{\prime}, 8^{\prime}\), and \(12^{\prime}\). For total luminaire length, add \(3 / 4^{\prime \prime}\) for each end plate. Using internal joiners, \(4^{\prime}, 8^{\prime}\), and \(12^{\prime}\) sections can be joined to form longer rows.

\section*{CATALOG NUMBER}

Examples: LL1M1 32 12FT R12 120 GEB10 SCT LP835 F1/12 C100 - LL1M1132 12FT R8 120 GEB10 SCT LP841 F1/24 C041 ACG


\section*{Notes}

1 Not available in 347V
2 Emergency type is installed in last 4' of luminaire sections.
Separate feed required unless ELS or ELS2 is specified

\section*{INTEGRATED NLIGHT MICRO SENSOR}

Determine the appropriate sensor type, network type and sensor power source for your application. Enter the code in the Options section of the Catalog Number.

\section*{EXAMPLE: PDT1}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Sensor Type (choose one)} & \multicolumn{2}{|r|}{Network Type \& Sensor Power Source (choose one)} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
ADC \\
nLight model nES ADCX
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Daylight Dimming \\
Specify 0-10V dimming ballast \\
No occupancy sensing
\end{tabular}} & 1* & nLight-Enabled (Network-Ready) with Luminaire-Integrated Power Pack 10' Cat-5e cable provided \\
\hline & & 2 & Standalone Operation (No Networking) with Luminaire Integrated Power Pack No Cat-5e cable provided \\
\hline \begin{tabular}{l}
PDT \\
nLight model nES PDT7 ADCX
\end{tabular} & Daylight Dimming and/or Occupancy Detection Specify 0-10v dimming ballast for daylight dimming Specify fixed-output ballast for occupancy detection only (daylight dimming disabled) & 3* & \begin{tabular}{l}
nLight-Enabled (Network-Ready) with Remote nLight Power Pack or nPanel \\
10' Cat-5e cable provided \\
Order required remote nLight Power Pack or nPanel \\
separately through nLight (Acuity Brands Controls)
\end{tabular} \\
\hline
\end{tabular}

For more information about the Integrated nLight Micro Sensor, its capabilities and options, download the PDF guide at: PeerlessLighting.com/nLight-Sensor-Guide *nLight-Enabled (network-ready) options include one RJ-45 connector on the luminaire and 10 feet of Cat-5e cable to control the entire luminaire row (depending on wattage/voltage limitations). The Cat-5e cable drop is located in the same section as the sensor. For multiple zones, please contact techsupport@peerlesslighting.com.

\section*{WEIGHTS \& SUPPORT SPACING}

Suspension spacing equals section length. Consult factory for stem mounting suspension spacing.

\section*{STANDARD SECTIONS}


\section*{CONFIGURATIONS}


Mitered " \(L\) ", " \(X\) " and " \(T\) " connectors available for suspended configurations.
Reference Pattern Connector Guide for additional details.

PHOTOMETRICS Actual performance may difer as a result of end-user environment and application.


\section*{for compact fluorescent lamps}


\subsection*{33301.023}

CFO 9W G23-2 525Im

\section*{Product description}

Housing for recessed mounting in brickwork and dry-wall partitions: corrosion-resistant, cast aluminum, Norinse surface treatment. Black double powder-coated.
Mounting by means of an adjustable bar. Clamp extension 1/32"-25/32" | \(1-20 \mathrm{~mm}\). Pre-drilled holes in the base of the housing.
Control gear 120V, 60Hz. 2 cable entries. Through-wiring possible. 5-pole terminal block.
Asymmetric reflector system: aluminum, silver, satin matt anodized. Screw-fastened cover with sculpture lens as safety glass: corrosion resistant stainless steel. Optimized surface for reduced accumulation of dirt. Suitable for wet location (IP65): dustproof and water jet-proof.
Weight \(7.28 \mathrm{lbs} / 3.30 \mathrm{~kg}\)
Temperature on the cover glass \(105^{\circ} \mathrm{F}\) / \(40^{\circ} \mathrm{C}\)

ERCO Lighting Inc.
160 Raritan Center Parkway
Suite 10
Edison, NJ 08837
USA
Tel.: +1 7322258856
Fax: +1 7322258857
info.us@erco.com

Technical region: \(120 \mathrm{~V} / 60 \mathrm{~Hz}\) We reserve the right to make technical and design changes.
Edition: 25.10.2012
Current version under
www.erco.com/33301.023

\section*{Visor Floor washlight}

\section*{Accessories}

33977.000

Concrete housing
Metal, galvanized.
Recommended aggregate grain size of
the concrete is \(0-5 / 16^{\prime \prime} / 0-8 \mathrm{~mm}\).
Weight \(9.92 \mathrm{lbs} / 4.50 \mathrm{~kg}\)

33971.000

Plaster ring
Metal, white.

\subsection*{33984.000}

Surface-mounted housing
Corrosion-resistant aluminum, No-
Rinse surface treatment. Graphit \(m\)
double powder-coated.
Weight \(1.94 \mathrm{lbs} / 0.88 \mathrm{~kg}\)

\(\qquad\) Type: \(\qquad\)
\(\qquad\) Project:

\section*{eW Graze Powercore}

\section*{\(2700 \mathrm{~K}, 10^{\circ} \times 60^{\circ}\) beam angle}

Linear exterior LED wall grazing fixture with solid white light
eW Graze Powercore Powercore linear LED lighting fixtures are ideal for surface grazing and wall-washing applications that require high-quality white light. Featuring Powercore technology, eW Graze Powercore processes power directly from line voltage, eliminating the need for external power supplies. Fixtures are available in seven color temperatures, ranging from a warm 2700 K to a cool 6500 K , including standard color temperatures of 2700 K and 4000 K . eW Graze Powercore offers superior illumination quality and dramatic energy savings for new installations and retrofit upgrades. A space-efficient, low-profile aluminum housing and flexible mounting options allow discreet placement within a wide range of compact architectural details.
- Tailor light output to specific applications eW Graze Powercore is available in standard 1 ft and 4 ft exterior-rated housings, and standard \(10^{\circ} \times 60^{\circ}\) and \(30^{\circ} \times 60^{\circ}\) beam angles.
- High-performance illumination and beam quality - Superior beam quality offers striation-free saturation as close as 6 in ( 152 mm ) from fixture placement with no visible light scalloping between fixtures.
- Supports new applications for white lightLong useful source life ( 50,000 hours at \(70 \%\) lumen maintenance) significantly reduces or eliminates maintenance problems, allowing the use of white lighting in spaces where lamp maintenance may be limited or unfeasible.
- Universal power input range - eW Graze Powercore accepts line voltage input of 100, 120, \(220-240\), and 277 VAC.
- Versatile installation options - Constant torque locking hinges offer simple position control from various angles without special tools. The low-profile extruded aluminum housing accommodates installation within architectural niches of many different shapes and sizes.
- Support for installations requiring conduit to fixtures - eW Graze Powercore Conduit fixtures have flying leads and threaded openings for \(1 / 2\) in NPT conduit to support installations in North America where conduit is required.


For detailed product information, please refer to the eW Graze Powercore Product Guide at www.philipscolorkinetics.com/Is/essentialwhite/ ewgraze/

Specifications
Due to continuous improvements and innovations, specifications may change without notice.
\begin{tabular}{|c|c|c|c|}
\hline Item & Specification & 1 ft ( 305 mm ) & 4 ft (1.2 m) \\
\hline \multirow{5}{*}{Output} & Lumens \(\dagger\) & 437 & 1748 \\
\hline & Efficacy (lm / W) & 34.1 & \\
\hline & CRI & 83 & \\
\hline & Mixing Distance & \multicolumn{2}{|l|}{6 in ( 152 mm ) to uniform beam saturation} \\
\hline & Lumen Maintenance \(\ddagger\) & \multicolumn{2}{|l|}{100,000+hours L70 @ \(25^{\circ} \mathrm{C}\) 50,000 hours L70 @ \(50^{\circ} \mathrm{C}\)} \\
\hline \multirow[b]{2}{*}{Electrical} & Input Voltage & \multicolumn{2}{|l|}{100 / 120 / 220-240 / 277 VAC, 50 / 60 Hz} \\
\hline & Power Consumption & 15 W maximum at full output, steady state & 60 W maximum at full output, steady state \\
\hline Control & Dimming & \multicolumn{2}{|l|}{Compatible with selected commercially available reverse-phase ELV-type dimmers§} \\
\hline \multirow{8}{*}{Physical} & \begin{tabular}{l}
Dimensions \\
(Height x Width x Depth)
\end{tabular} & \[
\begin{aligned}
& 2.7 \times 12 \times 2.8 \mathrm{in} \\
& (69 \times 305 \times 71 \mathrm{~mm})
\end{aligned}
\] & \[
\begin{aligned}
& 2.7 \times 48 \times 2.8 \text { in } \\
& (69 \times 1219 \times 71 \mathrm{~mm})
\end{aligned}
\] \\
\hline & Weight & \(2.7 \mathrm{lb}(1.2 \mathrm{~kg})\) & \(10.8 \mathrm{lb}(4.9 \mathrm{~kg})\) \\
\hline & Housing & \multicolumn{2}{|l|}{Extruded anodized aluminum, cool gray hinge color} \\
\hline & Lens & \multicolumn{2}{|l|}{Clear polycarbonate} \\
\hline & Fixture Connectors & \multicolumn{2}{|l|}{Integral male / female waterproof connectors} \\
\hline & Humidity & \multicolumn{2}{|l|}{\(0-95 \%\), non-condensing} \\
\hline & Temperature Ranges & \multicolumn{2}{|l|}{\[
\begin{aligned}
& -40^{\circ}-122^{\circ} \mathrm{F} \quad\left(-40^{\circ}-50^{\circ} \mathrm{C}\right) \text { Operating } \\
& -4^{\circ}-122^{\circ} \mathrm{F} \quad\left(-20^{\circ}-50^{\circ} \mathrm{C}\right) \text { Startup } \\
& -40^{\circ}-176^{\circ} \mathrm{F}\left(-40^{\circ}-80^{\circ} \mathrm{C}\right) \text { Storage }
\end{aligned}
\]} \\
\hline & Fixture Run Lengths & \multicolumn{2}{|l|}{To calculate fixture run lengths and total power consumption for your specific installation, download the Configuration Calculator from www.philipscolorkinetics.com/support/ install_tool/} \\
\hline \multirow[t]{2}{*}{Certification and Safety} & Certification & \multicolumn{2}{|l|}{UL / cUL, FCC Class B (120 VAC), CE, C-Tick, CCC} \\
\hline & Environment & \multicolumn{2}{|l|}{Dry / Damp / Wet Location, IP66} \\
\hline
\end{tabular}

\section*{\(2700 \mathrm{~K}, 1 \mathrm{ft}, 10^{\circ} \times 60^{\circ}\) beam angle}

\section*{Polar Candela Distribution}


Illuminance at Distance

\(39.5 \mathrm{ft}(12.0 \mathrm{~m}) \square\) Vert. Spread: \(9.2^{\circ}\) 1 fc maximum distance Horiz. Spread: 67.1 \({ }^{\circ}\)
\begin{tabular}{ll} 
Lumens & 437 \\
Efficacy & \(34.1 \mathrm{~lm} / \mathrm{W}\)
\end{tabular}

For lux multiply fc by 10.7
* Color temperatures conform to nominal CCTs as defined
in ANSI Chromaticity Standard C78.377A.
\(\dagger\) Lumen measurement complies with IES LM-79-08 testing procedures.
\(\ddagger \mathrm{L}_{70}=70 \%\) lumen maintenance (when light output drops below \(70 \%\) of initial output). Ambient luminaire temperatures specified. Lumen maintenance calculations are based on lifetime prediction graphs supplied by LED source manufacturers. Calculations for white-light LED fixtures are based on measurements that comply with IES LM-80-08 testing procedures. Refer to www.philipscolorkinetics. com/support/appnotes/ for more information.
§ See www.philipscolorkinetics.com/support/appnotes/notes/ for specific details.
\begin{tabular}{|c|c|c|c|}
\hline Fixtures & \multicolumn{3}{|l|}{See the eW Graze Powercore Ordering Specification Sheet for a complete list of standard and custom configurations.} \\
\hline Fixture & Length & Item Number & Philips 12NC \\
\hline \multirow[t]{2}{*}{eW Graze Powercore, \(2700 \mathrm{~K}, 10^{\circ} \times 60^{\circ}\) Beam Angle 100 VAC} & \(1 \mathrm{ft}(305 \mathrm{~mm})\) & 523-000030-24 & 910503700585 \\
\hline & 4 ft (1.2 m) & 523-000030-26 & 910503700302 \\
\hline \multirow[t]{2}{*}{eW Graze Powercore, \(2700 \mathrm{~K}, 10^{\circ} \times 60^{\circ}\) Beam Angle 120 VAC} & \(1 \mathrm{ft}(305 \mathrm{~mm})\) & 523-000030-00 & 910503700276 \\
\hline & 4 ft (1.2 m) & 523-000030-02 & 910503700278 \\
\hline \multirow[t]{2}{*}{eW Graze Powercore, \(2700 \mathrm{~K}, 10^{\circ} \times 60^{\circ}\) Beam Angle 220 - 240 VAC} & \(1 \mathrm{ft}(305 \mathrm{~mm})\) & 523-000030-16 & 910503700292 \\
\hline & 4 ft (1.2 m) & 523-000030-18 & 910503700294 \\
\hline \multirow[t]{2}{*}{eW Graze Powercore, \(2700 \mathrm{~K}, 10^{\circ} \times 60^{\circ}\) Beam Angle 277 VAC} & \(1 \mathrm{ft}(305 \mathrm{~mm})\) & 523-000030-08 & 910503700284 \\
\hline & 4 ft (1.2 m) & 523-000030-10 & 910503700286 \\
\hline \multirow[t]{2}{*}{eW Graze Powercore, \(2700 \mathrm{~K}, 10^{\circ} \times 60^{\circ}\) Beam Angle Conduit / 120VAC} & \(1 \mathrm{ft}(305 \mathrm{~mm})\) & 523-000061-03 & 910503701849 \\
\hline & 4 ft (1.2 m) & 523-000061-48 & 910503701894 \\
\hline \multirow[t]{2}{*}{eW Graze Powercore, \(2700 \mathrm{~K}, 10^{\circ} \times 60^{\circ}\) Beam Angle Conduit / 277 VAC} & \(1 \mathrm{ft}(305 \mathrm{~mm})\) & 523-000062-03 & 910503701515 \\
\hline & 4 ft (1.2 m) & 523-000062-48 & 910503701560 \\
\hline
\end{tabular}


\section*{Accessories}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & Type & Size & Item Number & Philips 12NC \\
\hline \multirow[t]{2}{*}{Leader Cable} & \[
\begin{aligned}
& \text { UL/ / } \\
& \text { cUL }
\end{aligned}
\] & \multirow[t]{2}{*}{\(50 \mathrm{ft}(15.2 \mathrm{~m})\)} & 108-000041-00 & 910503700320 \\
\hline & CE & & 108-000041-01 & 910503700320 \\
\hline \multirow{6}{*}{Jumper Cable} & \multirow{3}{*}{\[
\begin{aligned}
& \text { UL/ } \\
& \text { cUL }
\end{aligned}
\]} & End-to-End & 108-000039-00 & 910503700314 \\
\hline & & \(1 \mathrm{ft}(305 \mathrm{~mm})\) & 108-000039-01 & 910503700315 \\
\hline & & \(5 \mathrm{ft}(1.5 \mathrm{~m})\) & 108-000039-02 & 910503700316 \\
\hline & \multirow{3}{*}{CE} & End-to-End & 108-000040-00 & 910503700317 \\
\hline & & \(1 \mathrm{ft}(305 \mathrm{~mm})\) & 108-000040-01 & 910503700318 \\
\hline & & 5 ft (1.5 m) & 108-000040-02 & 910503700319 \\
\hline \multicolumn{2}{|l|}{\multirow{4}{*}{Glare Shield}} & \(1 \mathrm{ft}(305 \mathrm{~mm})\) & 120-000081-00 & 910503700745 \\
\hline & & \(2 \mathrm{ft}(610 \mathrm{~mm})\) & 120-000081-01 & 910503700746 \\
\hline & & 3 ft (914 mm) & 120-000081-02 & 910503700747 \\
\hline & & \(4 \mathrm{ft}(1.2 \mathrm{~m})\) & 120-000081-03 & 910503700748 \\
\hline \multicolumn{2}{|l|}{Additional Terminators} & Quantity 10 & 120-000074-00 & 910503700580 \\
\hline \multicolumn{2}{|l|}{Additional Hinge} & Quantity 1 & 120-000098-00 & 910503700772 \\
\hline
\end{tabular}

\footnotetext{
Copyright © 2008-2012 Philips Solid-State Lighting Solutions, Inc. All rights reserved.
Chromacore, Chromasic, CK, the CK logo, Color Kinetics, the Color Kinetics logo, ColorBlast, ColorBlaze, ColorBurst, eW Fuse, ColorGraze, ColorPlay, ColorReach, iW Reach, eW Reach, DIMand, EssentialWhite, eW, iColor, iColor Cove, IntelliWhite, iW, iPlayer, Optibin, and Powercore are either registered trademarks or trademarks of Philips Solid-State Lighting Solutions, Inc. in the United States and / or other countries. All other brand or product names are trademarks
or registered trademarks of their respective owners. Due to continuous improvements and
} innovations, specifications may change without notice. DAS-000009-01 R08 07-12
\(\qquad\) Type: \(\qquad\)

With narrow and medium beams of intense white light, eW Fuse Powercore is an excellent choice for a full range of surface grazing and wall-washing applications. Its ultra-compact form factor permits installation in tight spaces too small to accommodate conventional grazing fixtures. Meets or exceeds the performance of comparable linear fluorescent fixtures while lowering installation, energy, and maintenance costs. Offers environmentally-conscious buyers a green, energy-efficient grazing fixture with industry-leading light quality and quantity.
- Cost-effective alternative - Long useful source life and low-maintenance operation represent a cost-effective alternative to traditional grazing fixtures.
- High-performance beam quality - Available narrow \(10^{\circ} \times 60^{\circ}\) or medium \(30^{\circ} \times 60^{\circ}\) beam angle. Superior beam quality delivers striation-free light as close as 6 in ( 152 mm ) from fixture placement. Interlocking connectors for end-to-end installation with no light scalloping between fixtures.
- Two lengths and multiple color temperatures for design and application flexibility - 1 ft (305 mm ) and \(4 \mathrm{ft}(1.2 \mathrm{~m})\) fixtures are available in \(2700 \mathrm{~K}, 3000 \mathrm{~K}, 3500 \mathrm{~K}\), and 4000 K for applications calling for warm, neutral, or cool white light.
- Optibin advanced binning algorithm Exceeds the recognized standards for color quality to guarantee uniformity and consistency of hue and color temperature across LED sources, fixtures, and manufacturing runs.
- Integrates patented Powercore technology Powercore rapidly, efficiently, and accurately controls power directly from line voltage,
eliminating the need for an external power supply, dramatically simplifying installation, and lowering total system cost.
- Support for multiple voltages - Accepts power input of \(100-277\) VAC for consistent installation and operation from line voltage in most locations.
- Dimming capability — Patented DIMand technology offers smooth dimming capability with selected commercially available reversephase ELV-type dimmers.
- Simple installation - Contractor-friendly installation with long product runs. Easy-toinstall mounting tracks for linear applications.

- Easy mounting and positioning -With end-toend locking power connectors that can make \(180^{\circ}\) turns, eW Fuse Powercore fixtures are easy to position in even the most challenging mounting circumstances. Fixtures rotate in \(10^{\circ}\) increments through \(180^{\circ}\) for precise aiming and color mixing. Optional mounting tracks support vertical and overhead positioning. 1 ft ( 305 mm ) and \(5 \mathrm{ft}(1.5 \mathrm{~m}\) ) jumper cables can add extra space between fixtures.

For detailed product information, please refer to the eW Fuse Powercore Product Guide at www.philipscolorkinetics.com/Is/essentialwhite/ ewfusepd/

\section*{Specifications}

Due to continuous improvements and innovations, specifications may change without notice.
 Chromaticity Standard C78.377A.
\(\dagger\) Lumen measurement complies with IES LM-79-08 testing procedures.
\(\ddagger \mathrm{L} 70=70 \%\) lumen maintenance (when light output drops below \(70 \%\) of initial output). \(\mathrm{L} 50=50 \%\) lumen maintenance (when light output drops below \(50 \%\) of initial output). Ambient luminaire temperatures specified. Lumen maintenance calculations are based on lifetime prediction graphs supplied by LED source manufacturers. Calculations for white-light LED fixtures are based on measurements that comply with IES LM-80-08 testing procedures. Refer to www.philipscolorkinetics.com/support/appnotes/lm-8008.pdf for more information.
§ Refer to www.philipscolorkinetics.com/support/appnotes/ for specific details.

\section*{Accessories}
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{2}{|l|}{Type} & Item Number & Philips 12NC \\
\hline \multirow[t]{2}{*}{Leader Cable with terminator and strain relief} & UL / cUL & \(10 \mathrm{ft}(3 \mathrm{~m})\) & 108-000047-00 & 910503700972 \\
\hline & CE / CCC & \(10 \mathrm{ft}(3 \mathrm{~m})\) & 108-000047-01 & 910503700973 \\
\hline Wiring Compartment with terminator & \multicolumn{2}{|l|}{UL / cUL} & 120-000077-01 & 910503700994 \\
\hline \multirow{4}{*}{Jumper Cable} & \multirow{2}{*}{UL / cUL} & 1 ft ( 305 mm ) & 108-000048-00 & 910503700974 \\
\hline & & \(5 \mathrm{ft}(1.5 \mathrm{~m})\) & 108-000048-01 & 910503700975 \\
\hline & \multirow[t]{2}{*}{CE / CCC} & \(1 \mathrm{ft}(305 \mathrm{~mm})\) & 108-000048-02 & 910503700976 \\
\hline & & 5 ft (1.5 m) & 108-000048-03 & 910503700977 \\
\hline Terminators & 10 / box & & 120-000099-00 & 910503701120 \\
\hline Mounting Track, White & Quantity 1 & \(4 \mathrm{ft}(1219 \mathrm{~mm})\) & 120-000124-00 & 910503701787 \\
\hline
\end{tabular}

\section*{Photometrics}
\(1 \mathrm{ft}(305 \mathrm{~mm}), 2700 \mathrm{~K}, 10^{\circ} \times 60^{\circ}\) beam angle


Illuminance at Distance

\begin{tabular}{rl}
\(32.9 \mathrm{ft}(10.0 \mathrm{~m})\) & \begin{tabular}{l} 
Vert. Spread: 11.6 \\
1 fc maximum distance
\end{tabular} \\
& Horiz. Spread: \(63.8^{\circ}\)
\end{tabular}

For lux multiply fc by 10.7


\section*{Fixtures}
\begin{tabular}{|c|c|c|c|}
\hline Type & \begin{tabular}{l}
Beam \\
Angle
\end{tabular} & Item Number & Philips 12NC \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \mathrm{ft}(305 \mathrm{~mm}) \\
& 2700 \mathrm{~K}
\end{aligned}
\]} & \(10^{\circ} \times 60^{\circ}\) & 523-000065-08 & 910503701717 \\
\hline & \(30^{\circ} \times 60^{\circ}\) & 523-000065-12 & 910503701721 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \mathrm{ft}(305 \mathrm{~mm}) \\
& 3000 \mathrm{~K}
\end{aligned}
\]} & \(10^{\circ} \times 60^{\circ}\) & 523-000065-09 & 910503701718 \\
\hline & \(30^{\circ} \times 60^{\circ}\) & 523-000065-13 & 910503701722 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \mathrm{ft}(305 \mathrm{~mm}) \\
& 3500 \mathrm{~K}
\end{aligned}
\]} & \(10^{\circ} \times 60^{\circ}\) & 523-000065-10 & 910503701719 \\
\hline & \(30^{\circ} \times 60^{\circ}\) & 523-000065-14 & 910503701723 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 1 \mathrm{ft}(305 \mathrm{~mm}) \\
& 4000 \mathrm{~K}
\end{aligned}
\]} & \(10^{\circ} \times 60^{\circ}\) & 523-000065-11 & 910503701720 \\
\hline & \(30^{\circ} \times 60^{\circ}\) & 523-000065-15 & 910503701724 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 4 \mathrm{ft}(1.2 \mathrm{~m}) \\
& 2700 \mathrm{~K}
\end{aligned}
\]} & \(10^{\circ} \times 60^{\circ}\) & 523-000065-16 & 910503702617 \\
\hline & \(30^{\circ} \times 60^{\circ}\) & 523-000065-20 & 910503702621 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 4 \mathrm{ft}(1.2 \mathrm{~m}) \\
& 3000 \mathrm{~K}
\end{aligned}
\]} & \(10^{\circ} \times 60^{\circ}\) & 523-000065-17 & 910503702618 \\
\hline & \(30^{\circ} \times 60^{\circ}\) & 523-000065-21 & 910503702622 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 4 \mathrm{ft}(1.2 \mathrm{~m}) \\
& 3500 \mathrm{~K}
\end{aligned}
\]} & \(10^{\circ} \times 60^{\circ}\) & 523-000065-18 & 910503702619 \\
\hline & \(30^{\circ} \times 60^{\circ}\) & 523-000065-22 & 910503702623 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 4 \mathrm{ft}(1.2 \mathrm{~m}) \\
& 4000 \mathrm{~K}
\end{aligned}
\]} & \(10^{\circ} \times 60^{\circ}\) & 523-000065-19 & 910503702620 \\
\hline & \(30^{\circ} \times 60^{\circ}\) & 523-000065-23 & 910503702624 \\
\hline
\end{tabular}

Use Item Number when ordering in North America.

Philips Color Kinetics
3 Burlington Woods Drive
Burlington, Massachusetts 01803 USA
Tel 888.385.5742
Tel 617.423.9999
Fax 617.423.9998
www.philipscolorkinetics.com

\footnotetext{
Copyright © 2011-2012 Philips Solid-State Lighting Solutions, Inc. All rights reserved. Chromacore, Chromasic, CK, the CK logo, Color Kinetics, the Color Kinetics logo, ColorBlast, ColorBlaze, ColorBurst, ColorGraze, ColorPlay, ColorReach, iW Reach, eW Reach, eW Fuse, DIMand, EssentialWhite, eW, iColor, iColor Cove, IntelliWhite, iW, iPlayer, Optibin, and Powercore are either registered trademarks or trademarks of Philips Solid-State Lighting Solutions, Inc. in the United States and / or other countries. All other brand or product names are trademarks or registered trademarks of their respective owners. Due to continuous improvements and innovations, specifications may change without notice. DAS-000079-01 R04 07-12
}

\section*{DESCRIPTION}

An adjustable multi-lamp horizontally suspended fixture with all aluminum grid construction suitable for accent applications. Integral power supplies. Compatible with 8W LED heads mixed with compact or linear fluorescent lamps.



\section*{SPECIFICATION FEATURES}
A... Fixture

A horizontally suspended fixture with aircraft cable suspension. Lamps in adjustable double gimbal lamp holders mounted in aluminum grid with \(0^{\circ}-90^{\circ}\) adjustability. Fixture grid is made of .75 " square aluminum tubing with .062" wall thickness.
B... Electrical

Integral electronic LED drivers. Drivers housed in perforated mesh compartments on fixture body. Includes coverplate for powerfeed from ceiling mounted junction box.
C... LED Heads

Can accept up to three optical accessories (i.e. lens + hex louver + snoot, optional media holder required). \(90^{\circ} \times 90^{\circ}\) lamp adjustment. LEDs are provided.
D... Fluorescent Module

Module to accomodate various compact and linear fluorescent lamps. Includes internal reflector, power supply, and diffuser.
E... Mounting

Includes one 6' length of aircraft cable for each fixture corner (four total cables) with locking adjustable fasteners. Ceiling mounting toggle bolts included. Adjustable cable suspension fasteners at four corners of fixture.

F ... Labels
cÜLus listed for use in damp locations.

Fully dimmable to 10\% with electronic low voltage equipment (ELV dimmers need a neutral connection in the wall box and are 120 V only). Recommended ELV Dimmers:


COMBOLIGHT. SURFACE MOUNT Horizontal Suspended Fixture

Medium Size Integral Power Supply

8W LED Stasis w/ Fluorescent Lamp Module

\section*{Configuration 2}

Configuration 4


ORDERING INFORMATION
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CSH & & & & E & U & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline Fixture & Configuration & Accent Lamping / Wattage & Fluorescent Lamping & Power Supply & Power Supply & Finish & Fluorescent Shielding \\
\hline CSH = Horizontal & \(2=2\) Accent/ & N30SML \(=8 \mathrm{~W} 3000 \mathrm{~K}\) LED \(9^{\circ}\) Beam & 1 = 40W BIAX 6=42W PLT & E = Integral Electronic & Voltage & W = White & 2 = Parabolic Louver \\
\hline Suspended Fixture & One Fluorescent & N40SML \(=8 \mathrm{~W}\) 4000K LED \(9^{\circ}\) Beam & 2=50W BIAX 7 \(=28 \mathrm{~W}\) T5 & LED Drivers & U = Universal 120, & B \(=\) Black & T = Textured White \\
\hline \multirow[t]{4}{*}{Mixed Lamps} & \multirow[t]{4}{*}{4= 4 A Accent /} & M30SML \(=8 \mathrm{~W}\) 3000K LED \(25^{\circ}\) Beam & 3 = 80W PLL 8 = 35W T5 & \multirow[t]{4}{*}{(Fluorescent module has integral ballast)} & \multirow[t]{4}{*}{240, or 277 V} & \multirow[t]{4}{*}{\[
\begin{gathered}
\mathbf{S}=\begin{array}{c}
\text { Starlight } \\
\text { Silver }
\end{array}
\end{gathered}
\]} & \multirow[t]{4}{*}{Diffuser} \\
\hline & & M40SML \(=8 \mathrm{~W} 4000 \mathrm{~K}\) LED \(25^{\circ}\) Beam & \(4=26 \mathrm{~W}\) PLT \(\quad 9=39 \mathrm{~W}\) T5H0 & & & & \\
\hline & & W30SML \(=8 \mathrm{~W} 3000 \mathrm{~K}\) LED \(40^{\circ}\) Beam & 5=32W PLT 0=54W T5H0 & & & & \\
\hline & & W40SML \(=8 \mathrm{~W} 4000 \mathrm{~K}\) LED \(40^{\circ}\) Beam & & & & & \\
\hline
\end{tabular}



Date: \(\qquad\) Type: \(\qquad\)

\section*{iColor Flex MX}

\section*{Flexible strands of high-intensity LED nodes with intelligent color light}
iColor Flex MX is a multi-purpose, high-intensity strand of 50 full-color LED nodes for generating extraordinary effects without the constraints of fixture size or shape. iColor Flex MX enables patterns and video on almost any interior or exterior surface, including ceilings, floors, threedimensional objects, sculptures, and more. Its small node size allows installation in tighter spaces than the larger iColor Flex SLX and iColor Flex LMX strands.
- Superior light output - iColor Flex MX strands consist of 50 individually controllable, high-intensity LED nodes. Each node produces full-color light output of up to 1.44 candela.
- Supports cost-effective video displays Flexible form factor, offering maximum lighting control at 25 W per strand, accommodates unique lighting installations, including two- and three-dimensional video displays.
- Multiple lens options - Clear dome and translucent dome lenses are standard. Clear flat and translucent flat lenses are also available.
- Adaptable mounting - Strands can be mounted directly to a surface, like traditional string lights. Detachable leader cables in multiple lengths allow you to install strings at the appropriate distance from power / data supplies. Optional mounting tracks ensure straight linear runs, while snap-on spacers hide cabling and mounting hardware. Single node mounts can be positioned individually as anchor points for installations with uneven node spacing or complex geometries.
- Standard and custom lengths and node spacing - iColor Flex MX strands are available with standard on-center node spacing of 4 in (102 mm ) or 12 in ( 305 mm ) along a three-wire, 18 AWG cable. Custom on-center node spacing from 2 in ( 51 mm ) to 24 in ( 610 mm ) supports virtually any lighting or video design and offers finer pixel pitch than the larger Flex strands. Standard 50 -node lengths can be shortened in the field. Custom lengths of 5 to 72 nodes are also available.

- Custom Leader Cables - Custom Leader Cable lengths are available in addition to standard cables of \(25 \mathrm{ft}(7.6 \mathrm{~m}), 50 \mathrm{ft}\) ( 15.2 m ), and \(100 \mathrm{ft}(30.5 \mathrm{~m})\).
- Industry-leading controls - iColor Flex MX works seamlessly with the complete Philips line of controllers, including Video System Manager Pro, Light System Manager, and iPlayer 3, as well as third-party DMX controllers.
- Durable and weather-resistant - Fully sealed for maximum fixture life and IP66-rated for outdoor applications.

For detailed product information, please refer to the iColor Flex MX Product Guide at www.philipscolorkinetics.com/ls/rgb/flexmx/

\section*{Specifications}

Due to continuous improvements and innovations, specifications may change without notice.
\begin{tabular}{|c|c|c|}
\hline Item & Specification & Details \\
\hline \multirow{2}{*}{Output} & Lumen Maintenance* & \(50,000+\) hours L50@ \(50^{\circ} \mathrm{C}\) (full output) \\
\hline & LED Channels & Red / Green / Blue \\
\hline \multirow{3}{*}{Electrical} & Input Voltage & 7.5 VDC via PDS-60ca and sPDS-480ca \\
\hline & Power Consumption & . 5 W max. per node at full output, steady state \\
\hline & Power Factor & . 98 @ 120VAC \\
\hline \multirow[b]{2}{*}{Control} & Interface & \begin{tabular}{l}
sPDS-480ca 7.5V (Ethernet) \\
PDS-60ca 7.5V (Pre-programmed or DMX / Ethernet)
\end{tabular} \\
\hline & Control System & Philips full range of controllers, including Video System Manager Pro, Light System Manager, and iPlayer 3, or third-party DMX controllers \\
\hline \multirow{8}{*}{Physical} & Node Dimensions (Height x Width \(x\) Depth) & \(.63 \times .63 \times .75\) in \((16 \times 16 \times 19 \mathrm{~mm})\) \\
\hline & Weight & 13.4 oz ( 381 g ) 50 -node strand, 4 in on-center node spacing \\
\hline & Housing & White or black polycarbonate \\
\hline & Lens & Clear or translucent plastic \\
\hline & Fixture Connections & Integrated watertight 3-pin connector \\
\hline & Temperature Ranges & \begin{tabular}{l}
\(-40^{\circ}-122^{\circ} \mathrm{F} \quad\left(-40^{\circ}-50^{\circ} \mathrm{C}\right)\) Operating \(\geq 32^{\circ} \mathrm{F}\left(\geq 0^{\circ} \mathrm{C}\right)\) Handling \\
\(-4^{\circ}-122^{\circ} \mathrm{F} \quad\left(-20^{\circ}-50^{\circ} \mathrm{C}\right)\) Startup \\
\(-22^{\circ}-185^{\circ} \mathrm{F}\left(-30^{\circ}-85^{\circ} \mathrm{C}\right)\) Storage
\end{tabular} \\
\hline & Humidity & \(0-95 \%\), non-condensing \\
\hline & Maximum Fixtures Per Power / Data Supply & sPDS-480ca 7.5V: 16 strands PDS-60ca 7.5V: 2 strands \\
\hline \multirow[t]{2}{*}{Certification and Safety} & Certification & UL / cUL, FCC Class A, CE \\
\hline & Environment & Dry / Damp / Wet Location, IP66 \\
\hline
\end{tabular}
* \(\mathrm{L} 50=50 \%\) lumen maintenance (when light output drops below \(50 \%\) 〔(4) us \(\mathbb{C}\) of initial output). Ambient luminaire temperatures specified. Lumen maintenance calculations are based on lifetime prediction graphs supplied by LED source manufacturers. Calculations for white-light LED fixtures are based on measurements that comply with IES LM-80-08 testing procedures. Refer to www. philipscolorkinetics.com/support/appnotes/lm-80-08.pdf for more information.

Fixtures and Accessories
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{2}{|l|}{Type} & Item Number & Philips 12NC \\
\hline \multirow{4}{*}{\begin{tabular}{l}
iColor Flex MX \\
4 in on-center node \\
spacing
\end{tabular}} & \multirow[b]{2}{*}{White} & Clear Dome Lens & 101-000068-04 & 910503700712 \\
\hline & & Translucent Dome Lens & 101-000068-00 & 910503700708 \\
\hline & \multirow{2}{*}{Black} & Clear Dome Lens & 101-000068-06 & 910503700714 \\
\hline & & Translucent Dome Lens & 101-000068-02 & 910503700710 \\
\hline \multirow{4}{*}{iColor Flex MX 12 in on-center node spacing} & \multirow{2}{*}{White} & Clear Dome Lens & 101-000068-05 & 910503700713 \\
\hline & & Translucent Dome Lens & 101-000068-01 & 910503700709 \\
\hline & \multirow{2}{*}{Black} & Clear Dome Lens & 101-000068-07 & 910503700715 \\
\hline & & Translucent Dome Lens & 101-000068-03 & 910503700711 \\
\hline \multirow{3}{*}{Leader Cables} & \multirow{3}{*}{Black} & \(25 \mathrm{ft}(7.6 \mathrm{~m})\) & 108-000045-00 & 910503700696 \\
\hline & & \(50 \mathrm{ft}(15.2 \mathrm{~m})\) & 108-000045-01 & 910503700697 \\
\hline & & \(100 \mathrm{ft}(30.5 \mathrm{~m})\) & 108-000045-02 & 910503700698 \\
\hline \multirow[t]{2}{*}{Mounting Track Qty 1} & White & \multirow[b]{2}{*}{\(4 \mathrm{ft}(1.2 \mathrm{~m})\)} & 101-000024-00 & 910503700015 \\
\hline & Black & & 101-000024-01 & 910503700016 \\
\hline \multirow{4}{*}{Spacers Qty 50} & White & \multirow{2}{*}{4 in ( 102 mm )} & 101-000047-00 & 910503700030 \\
\hline & Black & & 101-000047-01 & 910503700031 \\
\hline & White & \multirow{2}{*}{12 in ( 305 mm )} & 101-000048-00 & 910503700032 \\
\hline & Black & & 101-000048-01 & 910503700033 \\
\hline \multirow[t]{2}{*}{Single Node Mounts Qty 50} & White & & 101-000039-00 & 910503700025 \\
\hline & Black & & 101-000039-01 & 910503700026 \\
\hline
\end{tabular}

Power / Data Supplies
\begin{tabular}{|l|l|c|c|}
\hline Item & Type & Item Number & Philips 12NC \\
\hline PDS-60ca 7.5V & Pre-programmed & \(109-000015-00\) & 910503700093 \\
\hline & DMX / Ethernet & \(109-000015-03\) & 910503700094 \\
\hline sPDS-480ca 7.5V & Ethernet & \(109-000022-00\) & 910503700107 \\
\hline
\end{tabular}

Use Item Number when ordering in North America.
\(\underset{\text { CKTECHNOLOGY }}{\text { CHROMACORE }}\left|\begin{array}{l|l}\text { CKTECHNOLOGY }\end{array}\right| \underset{\text { CKTECHNOLOGY }}{\text { CKI }}\)

\section*{Photometrics}

Brightness Per Node
\begin{tabular}{|l|l|l|}
\hline Lensing & On-Axis Candela & Viewing Angle \\
\hline Clear flat lens & 1.44 & \(104^{\circ}\) \\
\hline Clear dome lens & 1.23 & \(110^{\circ}\) \\
\hline Translucent flat lens & 0.81 & \(109^{\circ}\) \\
\hline Translucent dome lens & 0.52 & \(149^{\circ}\) \\
\hline
\end{tabular}

Luminance of \(1 \mathrm{~m}^{2}\) Grid
\begin{tabular}{|l|l|l|l|}
\hline All figures in nits \(\left(\mathrm{cd} / \mathrm{m}^{2}\right)\) & \multicolumn{3}{|l|}{ On-Center Node Spacing } \\
\hline Lensing & 2 in & 4 in & 12 in \\
\hline Clear flat lens & 520 & 144 & 23 \\
\hline Clear dome lens & 444 & 123 & 20 \\
\hline Translucent flat lens & 292 & 81 & 13 \\
\hline Translucent dome lens & 188 & 52 & 8 \\
\hline
\end{tabular}

Philips Color Kinetics
3 Burlington Woods Drive
Burlington, Massachusetts 01803 USA
Tel 888.385.5742
Tel 617.423.9999
Fax 617.423.9998
www.philipscolorkinetics.com

Copyright © 2009 - 2012 Philips Solid-State Lighting Solutions, Inc. All rights reserved. Chromacore, Chromasic, CK, the CK logo, Color Kinetics, the Color Kinetics logo, ColorBlast, ColorBlaze, ColorBurst, eW Fuse, ColorGraze, ColorPlay, ColorReach, iW Reach, eW Reach, DIMand, EssentialWhite, eW, iColor, iColor Cove, IntelliWhite, iW, iPlayer, Optibin, and Powercore are either registered trademarks or trademarks of Philips Solid-State Lighting Solutions, Inc. in the United States and / or other countries. All other brand or product names are trademarks or registered trademarks of their respective owners. Due to continuous improvements and innovations, specifications may change without notice. DAS-000049-01 R05 07-12


Wall Reference

\section*{Mod 44 Recessed Wall/Wash}

R-WWD-4400, RP-WWD-4400
Plaster, Drywall, Concealed Spline Ceilings Recessed Flanged Wall Wash Direct

\section*{Product Description}

A recessed flanged fixture with an optical system designed to provide uniform wall wash lighting. The WWD-4400 has a low-profile housing (nominally 4" x 4") and uses T8, T5 or T5HO lamping. The fixture can be row-configured for continuous run installations along a wall, and has an optional regressed lens that completely shields the lamp from view. UL Listed. This fixture is Cradle to Cradle Silver Certified \({ }^{\text {CM }}\) by MBDC.

\section*{Ordering Guide}


R-WWD-4414T8-CWM-ELB10-F-120 is a typical catalog number for a 1-lamp, 4-foot long T8 fixture, Matte White finish, with an electronic ballast, optional fuse, 120 volts.


\section*{Diffuser}

SGL Soft Glow Lens. Extruded, frosted acrylic lens regressed at an angle above the ceiling to soften view of lamp from directly below while minimizing visibility from normal viewing angles.


\section*{Ballast}

Specify in place of LP/ELB, contact factory for availability/compatibility with lamping:
DA/MK7 Advance Mark VII dimming ballast.
DL/ECO Lutron ECO-10 dimming ballast.
DO/HEL Osram Sylvania dimming ballast.

\section*{Other Options}

F
CCEA City of Chicago Environmental Air Modification.

\section*{Questions to Ask}
1. Row information, including desired fixture length?
2. Diffuser type? 3. Other options? 4.120 or 277 volt?

\section*{Specifications}

HOUSING. Die-formed and welded steel, with \(3 / 8\) " regression at housing bottom for rigidity and appearance, furnished with 6 " long, steel splines for insertion at each side of housing at junction of fixtures in rows for precise alignment. End headers have clearance holes for easy row installation.
SPACKLE TRIM. (RP-WWD only) Continuous Spackle Trim with beaded edge welded to housing sides. Spackle trim allows plaster coat up to fixture edge for clean ceiling appearance.
REFLECTOR. Formed semi-specular high reflectance aluminum primary optic. Formed steel wall-side reflector painted gray. Painted, extruded aluminum room-side reflector shield extends below the ceiling and includes a pre-installed alignment spline that is slid between adjoining fixtures in the field.
END CAPS. Steel, finished to match housing. Two mounting holes on each end cap allow tight attachment to ends of individual fixtures and ends of rows. BALLAST. Electronic Ballast (ELB10- for T8 lamping) or Low-profile Electronic Ballast (LP/ELB - for T5 or T5HO lamping), high power factor, thermally protected Class P, Sound Rated A, less than 10\% THD, manufactured by a UL Listed manufacturer, as available, determined by Litecontrol. Ballasts with a voltage range of 120 to 277 will be used when fixture configuration and ballast availability allow. The minimum number of ballasts will be used.
BALLAST DISCONNECT. Fixture supplied with a ballast disconnect device to enable compliance with the NEC.
LAMPING. Available in one-lamp T8, T 5 , or T 5 HO in cross-section.
MOUNTING. Two 1/4-20 threaded rods (by others) installed in the ceiling provide simple fixture attachment with a washer and 1/4-20 flange nut.
CERTIFICATION. Fixture and electrical components are UL and/or CUL Listed ©uste, and bear the I.B.E.W., A.F. of L. label. This fixture is Cradle to Cradle
Certified \({ }^{\text {CM }}\) Silver by MBDC. Note: Litecontrol reserves the right to change specifications without notice for product development and improvement.

\section*{General notes for specifiers and contractors}
1. Fixtures may be mounted in plaster, drywall, or concealed spline ceilings,individually, or in rows. Each fixture is supported by two 1/4-20 threaded rods.
2. Prior to fixture installation (2) \(1 / 4-20\) threaded rods per fixture must be located and installed in the ceiling. Note: threaded rods must end 3" above finished ceiling.
3. Electrical and ceiling contractors should both understand that this system is not a standard troffer construction (due to continuous light feature), so coordination between the two trades is essential.
4. Installation instructions for this fixture and all Litecontrol fixtures are available from your Litecontrol representative or by contacting the factory. Instructions are also provided with every fixture shipment.



\section*{Planning for installation}


Lamp Position



Individual Fixture


RP-WWD-4400


Row Diagram


Fixture Lengths: 24", 36", 48", 72", and 96"
- 7/8" diameter knockout, electrical feed
- 5/8" knockout for \(1 / 4\) " diameter threaded rod locations

\section*{Photometric data}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ ZONAL LUMEN SUMMARY } \\
\hline ZONE & LUMENS & \begin{tabular}{c}
\(\%\) \\
LAMP
\end{tabular} & \begin{tabular}{c}
\(\%\) \\
LUMINAIRE
\end{tabular} \\
\hline \(180-90^{\circ}\) & 0 & 0 & 0 \\
\hline \(90-0^{\circ}\) & 3093 & 69 & 100 \\
\hline \(180-0^{\circ}\) & 3093 & 69 & 100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ LUMINANCE SUMMARY (cd/m } \\
\\
\(\mathbf{2})\) \\
\hline ANGLE & \(\mathbf{0}^{\circ}\) & \(\mathbf{4 5}\) & \(\mathbf{9 0}^{\circ}\) \\
\hline \(45^{\circ}\) & 1464 & 1704 & 4309 \\
\hline \(55^{\circ}\) & 1458 & 1927 & 4323 \\
\hline \(65^{\circ}\) & 1225 & 1508 & 4288 \\
\hline \(75^{\circ}\) & 1231 & 885 & 3963 \\
\hline \(85^{\circ}\) & 228 & 228 & 2856 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ ZONAL LUMEN SUMMARY } \\
\hline ZONE & LUMENS & LAMP & LUMINAIRE \\
\hline \(180-90^{\circ}\) & 0 & 0 & 0 \\
\hline \(90-0^{\circ}\) & 1880 & 65 & 100 \\
\hline \(180-0^{\circ}\) & 1880 & 65 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ LUMINANCE SUMMARY (cd/m } \\
\\
\hline ) \\
\hline ANGLE & \(\mathbf{0}^{\circ}\) & \(\mathbf{4 5}^{\circ}\) & \(\mathbf{9 0}^{\circ}\) \\
\hline \(45^{\circ}\) & 1296 & 1127 & 6576 \\
\hline \(55^{\circ}\) & 1319 & 1354 & 6267 \\
\hline \(65^{\circ}\) & 990 & 1319 & 5631 \\
\hline \(75^{\circ}\) & 654 & 846 & 4501 \\
\hline \(85^{\circ}\) & 0 & 0 & 1828 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ ZONAL LUMEN SUMMARY } \\
\hline ZONE & LUMENS & LAMP & LUMINAIRE \\
\hline \(180-90^{\circ}\) & 0 & 0 & 0 \\
\hline \(90-0^{\circ}\) & 1286 & 49 & 100 \\
\hline \(180-0^{\circ}\) & 1286 & 49 & 100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ LUMINANCE SUMMARY (cd/m } \\
\hline \(\mathbf{})\) \\
\hline ANGLE & \(\mathbf{0}^{\circ}\) & \(\mathbf{4 5}\) & \(\mathbf{9 0}^{\circ}\) \\
\hline \(45^{\circ}\) & 1141 & 1648 & 4653 \\
\hline \(55^{\circ}\) & 647 & 1228 & 4397 \\
\hline \(65^{\circ}\) & 273 & 515 & 4089 \\
\hline \(75^{\circ}\) & 0 & 148 & 3660 \\
\hline \(85^{\circ}\) & 147 & 147 & 2350 \\
\hline
\end{tabular}

Date: \(\qquad\) Type: \(\qquad\)
\(\qquad\)
Project: \(\qquad\)

\section*{iColor Flex LMX}

\section*{Flexible strands of large high-intensity LED nodes with intelligent color light}
iColor Flex LMX are flexible strands of large, high-intensity, full-color LED nodes designed for extraordinary effects and expansive installations without the constraints of fixture size, or shape. Each iColor Flex LMX strand consists of 50 individually addressable LED nodes, featuring dynamic integration of power, communication, and control. The flexible form factor accommodates two- and three-dimensional configurations, while high light output affords superior long-distance viewing for architectural perimeter lighting, largescale signage, and building-covering video displays.
- Superior light output - Each iColor Flex LMX node produces light output of up to 6.56 candela (full on).
- Multiple lens options - Clear flat and translucent dome lenses are standard. Optional marquee lenses, available in clear, translucent, and semi-frosted, snap onto flatlens nodes to create the appearance of bulbs on a traditional theatre marquee.
- Adaptable mounting - Strands can be mounted directly to a surface like traditional string lights. Detachable leader cables in multiple lengths allow you to install strings at the appropriate distance from power / data supplies. Optional mounting tracks ensure straight linear runs, while snap-on spacers hide cabling and mounting hardware. Single node mounts can be positioned individually as anchor points for installations with uneven node spacing or complex geometries.
- Standard and custom lengths and node spacing - Standard on-center node spacing of 4 in \((102 \mathrm{~mm})\) or 12 in \((305 \mathrm{~mm})\) and custom spacing from 3 in ( 76 mm ) to 24 in ( 610 mm ) support virtually any lighting or video design. Standard 50 -node strands can be fieldshortened. Custom lengths of 5 to 72 nodes are also available.
- Custom Leader Cables - Custom Leader Cable lengths are available in addition to standard cables of \(25 \mathrm{ft}(7.6 \mathrm{~m}), 50 \mathrm{ft}\) (15.2 m), and \(100 \mathrm{ft}(30.5 \mathrm{~m})\).

- Industry-leading controls - Works seamlessly with the complete Philips line of controllers, including Video System Manager Pro, Light System Manager, and iPlayer 3, as well as third-party controllers.
- Outdoor rated - Fully sealed for maximum fixture life and IP66-rated for outdoor applications.

For detailed product information, please refer to the iColor Flex LMX Product Guide at www. philipscolorkinetics.com/ls/rgb/flex/mx/

\section*{Specifications}

Due to continuous improvements and innovations, specifications may change without notice.
\begin{tabular}{|c|c|c|c|}
\hline Item & Specification & Clear Flat Lens & Translucent Dome Lens \\
\hline \multirow{2}{*}{Output} & Lumen Maintenance* & \multicolumn{2}{|l|}{\(50,000+\) hours L50@ \(50^{\circ} \mathrm{C}\) (full output)} \\
\hline & LED Channels & \multicolumn{2}{|l|}{Red / Green / Blue} \\
\hline \multirow{2}{*}{Electrical} & Input Voltage & \multicolumn{2}{|l|}{24 VDC via sPDS-480ca, PDS-60ca, sPDS-60ca} \\
\hline & Power Consumption & \multicolumn{2}{|l|}{1 W max. per node at full output, steady state} \\
\hline \multirow{2}{*}{Control} & Interface & \multicolumn{2}{|l|}{\begin{tabular}{l}
sPDS-60ca 24 V (DMX / Ethernet) \\
PDS-60ca 24V (Pre-programmed, DMX, or Ethernet) PDS-480ca 24V (Ethernet)
\end{tabular}} \\
\hline & Control System & \multicolumn{2}{|l|}{Philips full range of controllers, including Video System Manager Pro, Light System Manager, and iPlayer 3, or third-party controllers} \\
\hline \multirow{8}{*}{Physical} & Node Dimensions (Height x Width x Depth) & \[
\begin{aligned}
& 1.2 \times 1.25 \times .67 \mathrm{in} \\
& (31 \times 32 \times 17 \mathrm{~mm})
\end{aligned}
\] & \[
\begin{aligned}
& 1.2 \times 1.25 \times 1 \mathrm{in} \\
& (31 \times 32 \times 25 \mathrm{~mm})
\end{aligned}
\] \\
\hline & Weight & \multicolumn{2}{|l|}{\(2.2 \mathrm{lb}(1 \mathrm{~kg}) \quad 50\)-node strand, 4 in on-center node spacing} \\
\hline & Housing & \multicolumn{2}{|l|}{White or black polycarbonate} \\
\hline & Lens & \multicolumn{2}{|l|}{Clear or translucent plastic} \\
\hline & Fixture Connections & \multicolumn{2}{|l|}{Integrated watertight 3-pin connector} \\
\hline & Temperature Ranges & \multicolumn{2}{|l|}{\[
\begin{aligned}
& -40^{\circ}-122^{\circ} \mathrm{F} \quad\left(-40^{\circ}-50^{\circ} \mathrm{C}\right) \text { Operating } \\
& \geq 32^{\circ} \mathrm{F}\left(\geq 0^{\circ} \mathrm{C}\right) \text { Handling } \\
& -4^{\circ}-122^{\circ} \mathrm{F} \quad\left(-20^{\circ}-50^{\circ} \mathrm{C}\right) \text { Startup } \\
& -22^{\circ}-185^{\circ} \mathrm{F}\left(-30^{\circ}-85^{\circ} \mathrm{C}\right) \text { Storage }
\end{aligned}
\]} \\
\hline & Humidity & \multicolumn{2}{|l|}{\(0-95 \%\), non-condensing} \\
\hline & Maximum Fixtures Per Power / Data Supply & \multicolumn{2}{|l|}{sPDS-480ca 24V: 8 strands sPDS-60ca 24 V : 1 strand PDS-60ca 24V : 1 strand} \\
\hline \multirow[t]{2}{*}{Certification and Safety} & Certification & \multicolumn{2}{|l|}{UL / cUL, FCC Class A, CE} \\
\hline & Environment & \multicolumn{2}{|l|}{Dry / Damp / Wet Location, IP66} \\
\hline \multicolumn{4}{|l|}{\(\mathrm{L} 50=50 \%\) lumen maintenance (when light output drops below 50\% of initial output). Ambient luminaire temperatures specified. Lumen maintenance calculations are based on lifetime prediction graphs supplied by LED source manufacturers. Calculations for white-light LED fixtures are based on measurements that comply with IES LM-80-08 testing procedures. Refer to www.philipscolorkinetics.com/support/appnotes/lm-80-08.pdf for more information.} \\
\hline
\end{tabular}

\section*{Photometrics}

Brightness Per Node
\begin{tabular}{|l|l|l|}
\hline Lensing & On-Axis Candela & Viewing Angle \\
\hline Clear flat lens & 6.56 & \(105^{\circ}\) \\
\hline Translucent dome & 1.16 & \(172^{\circ}\) \\
\hline Clear marquee lens & 5.17 & \(105^{\circ}\) \\
\hline Semi-frosted marquee lens & 4.60 & \(92^{\circ}\) \\
\hline Translucent marquee lens & 0.62 & \(260^{\circ}\) \\
\hline
\end{tabular}

Luminance of \(1 \mathrm{~m}^{2}\) Grid
\begin{tabular}{|l|l|l|l|}
\hline All figures in nits \(\left(\mathrm{cd} / \mathrm{m}^{2}\right)\) & \multicolumn{3}{|l|}{ On-Center } \\
Node Spacing \\
\hline Lensing & 3 in & 4 in & 12 in \\
\hline Clear flat lens & 1109 & 656 & 105 \\
\hline Translucent dome & 196 & 116 & 19 \\
\hline Clear marquee lens & 874 & 517 & 83 \\
\hline Semi-frosted marquee lens & 777 & 460 & 74 \\
\hline Translucent marquee lens & 105 & 62 & 10 \\
\hline
\end{tabular}

Fixtures and Accessories
\begin{tabular}{|c|c|c|c|c|}
\hline Item & \multicolumn{2}{|l|}{Type} & Item Number & Philips 12NC \\
\hline \multirow{4}{*}{\begin{tabular}{l}
iColor Flex LMX \\
4 in on-center node spacing
\end{tabular}} & \multirow[b]{2}{*}{White} & Clear Flat Lens & 101-000067-02 & 910503700702 \\
\hline & & Translucent Dome Lens & 101-000067-06 & 910503700706 \\
\hline & \multirow[b]{2}{*}{Black} & Clear Flat Lens & 101-000067-00 & 910503700699 \\
\hline & & Translucent Dome Lens & 101-000067-04 & 910503700704 \\
\hline \multirow{4}{*}{\begin{tabular}{l}
iColor Flex LMX \\
12 in on-center node spacing
\end{tabular}} & \multirow[b]{2}{*}{White} & Clear Flat Lens & 101-000067-03 & 910503700703 \\
\hline & & \begin{tabular}{l}
Translucent \\
Dome Lens
\end{tabular} & 101-000067-07 & 910503700707 \\
\hline & \multirow[b]{2}{*}{Black} & Clear Flat Lens & 101-000067-01 & 910503700701 \\
\hline & & Translucent Dome Lens & 101-000067-05 & 910503700705 \\
\hline \multirow{3}{*}{Leader Cables} & \multirow{3}{*}{Black} & \(25 \mathrm{ft}(7.6 \mathrm{~m})\) & 108-000045-00 & 910503700696 \\
\hline & & 50 ft (15.2 m) & 108-000045-01 & 910503700697 \\
\hline & & \(100 \mathrm{ft}(30.5 \mathrm{~m})\) & 108-000045-02 & 910503700698 \\
\hline \multirow{6}{*}{Marquee Lens Kits Qty 50} & White & \multirow{2}{*}{Clear} & 999-007997-00 & 910503702308 \\
\hline & Black & & 999-007997-01 & 910503702309 \\
\hline & White & \multirow{2}{*}{Semi-frosted} & 999-007997-04 & 910503702312 \\
\hline & Black & & 999-007997-05 & 910503702313 \\
\hline & White & \multirow{2}{*}{Translucent} & 999-007997-02 & 910503702310 \\
\hline & Black & & 999-007997-03 & 910503702311 \\
\hline \multirow[t]{2}{*}{Mounting Track Qty 1} & White & \multirow{2}{*}{4 ft (1.2 m)} & 101-000057-00 & 910503700044 \\
\hline & Black & & 101-000057-01 & 910503700045 \\
\hline \multirow{4}{*}{Spacers Qty 50} & White & \multirow{2}{*}{4 in (102 mm)} & 101-000059-00 & 910503700048 \\
\hline & Black & & 101-000061-00 & 910503700052 \\
\hline & White & \multirow{2}{*}{\(12 \mathrm{in} \mathrm{(305} \mathrm{mm)}\)} & 101-000059-01 & 910503700049 \\
\hline & Black & & 101-000061-01 & 910503700053 \\
\hline \multirow[t]{2}{*}{Single Node Mounts Qty 50} & \multicolumn{2}{|l|}{White} & 101-000058-00 & 910503700046 \\
\hline & \multicolumn{2}{|l|}{Black} & 101-000058-01 & 910503700047 \\
\hline sPDS-480ca 24V & \multicolumn{2}{|l|}{Ethernet} & 109-000026-00 & 910503700110 \\
\hline \multirow{3}{*}{PDS-60ca 24V} & \multicolumn{2}{|l|}{Pre-programmed} & 109-000016-00 & 910503700095 \\
\hline & \multicolumn{2}{|l|}{DMX} & 109-000016-01 & 910503700333 \\
\hline & \multicolumn{2}{|l|}{Ethernet} & 109-000016-02 & 910503700334 \\
\hline sPDS-60ca 24 V & DMX / & thernet & 109-000021-02 & 910503700106 \\
\hline
\end{tabular}

Use Item Number when ordering in North America.



Philips Color Kinetics
3 Burlington Woods Drive
Burlington, Massachusetts 01803 USA
Tel 888.385.5742
Tel 617.423.9999
Fax 617.423.9998
www.philipscolorkinetics.com

\footnotetext{
Copyright © 2010-2012 Philips Solid-State Lighting Solutions, Inc. All rights reserved. Chromacore, Chromasic, CK, the CK logo, Color Kinetics, the Color Kinetics logo, ColorBlast, ColorBlaze, ColorBurst, eW Fuse, ColorGraze, ColorPlay, ColorReach, iW Reach, eW Reach, DIMand, EssentialWhite, eW, iColor, iColor Cove, IntelliWhite, iW, iPlayer, Optibin, and Powercore are either registered trademarks or trademarks of Philips Solid-State Lighting Solutions, Inc. in the United States and / or other countries. All other brand or product names are trademarks or registered trademarks of their respective owners. Due to continuous improvements and
} innovations, specifications may change without notice. DAS-000050-01 R07 07-12
for low-voltage halogen lamps


\subsection*{73504.023 Silver}

T4 50W 12V GY6.35 950lm
Spot reflector

\section*{Product description}

Housing and yoke: cast aluminum, powder-coated. \(0^{\circ}-90^{\circ}\) tiltable, on the mechanical adapter rotatable through \(360^{\circ}\). Calibration for setting of group alignment.
Only for ceiling mounting.
Turning transadapter with cable for ERCO 2-circuit track: plastic. Electronic transformer \(120 / 12 \mathrm{~V}, 60 \mathrm{~Hz}, 20-50 \mathrm{~W}\). Reflector: aluminum, silver anodized, specular. Anti-glare cap attached to the safety glass. Back part of housing can be rotated for lamp focusing.
Snoot: cast aluminum, silver powdercoated. Internal anti-glare ring with cross-baffle, rotatable, black lacquered. Un-clip snoot for lamp replacement. For service safety, all settings can be fixed with the Allen-key located in the bracket.
Use dimmers for electronic transformers (trailing edge).
Weight \(5.07 \mathrm{lbs} / 2.30 \mathrm{~kg}\)


T4 50W 12V GY6. 35 950lm
\begin{tabular}{lrr} 
h(ft) & \(\mathrm{E}(\mathrm{fc})\) & D \\
& & \(11^{\circ}\) \\
3 & 1736 & \(0^{\prime} 77^{\prime \prime}\) \\
6 & 434 & \(1^{\prime} 2^{\prime \prime}\) \\
9 & 193 & \(1^{\prime} 9^{\prime \prime}\) \\
12 & 109 & \(2^{\prime} 4^{\prime \prime}\) \\
15 & 69 & \(2^{\prime} 11^{\prime \prime}\)
\end{tabular}

\section*{Mounting}

ERCO 2-circuit track Hi-trac 2-circuit track Monopoll 2-circuit track

\section*{ERCO Lighting Inc.}

160 Raritan Center Parkway
Suite 10
Edison, NJ 08837
USA
Tel.: +1 7322258856
Fax: +1 7322258857
info.us@erco.com

Technical region: \(120 \mathrm{~V} / 60 \mathrm{~Hz}\)
We reserve the right to make technical and design changes.
Edition: 25.10.2012
Current version under
www.erco.com/73504.023

ERCO

\section*{Stella Spotlight}

\section*{Accessories}


\subsection*{70692.000 \\ Sculpture lens}


\subsection*{74481.000}

Flood lens



70688.000

UV filter

74455.000

Dichroic color filter Magenta

74456.000

Dichroic color filter Amber

\section*{Stella Spotlight}

\section*{Accessories}


\subsection*{74457.000}

Dichroic color filter
Sky blue


\subsection*{74458.000}

Dichroic color filter
Night blue


\subsection*{75857.000}

Attachment ring with honeycomb louver


\subsection*{75940.000}

Barn doors
Metal, powder-coated.
Black


\subsection*{12033.023 White}

Length 12 ft

\section*{Product description}

Extruded aluminum profile, powder-
coated.
4 isolated copper conductors and earth
conductor.
ERCO track have been tested and approved for 20A in accordance with
UL1598.
When connecting the track to a 120 V
system, a total load of 20A per circuit is
possible.
Weight \(11.68 \mathrm{lbs} / 5.30 \mathrm{~kg}\)

ERCO Lighting Inc.
160 Raritan Center Parkway
Suite 10
Edison, NJ 08837
USA
Tel.: +1 7322258856
Fax: +1 7322258857
info.us@erco.com

\section*{ERCO Monopoll 2－circuit track}

\section*{Accessories}


\subsection*{12612.023}

Monopoll Live end housing Cast aluminum，white（RAL9002） powder－coated．Rotatable graduated fixing ring．Monopoll profiles can be locked in position every \(15^{\circ}\) ．
Feeding to be ordered separately．
Weight \(0.77 \mathrm{lbs} / 0.35 \mathrm{~kg}\)
c（1）us 只＊ \(0<\) Indoor Dry Damp Wet

12617.023

Monopoll Coupler housing
Cast aluminum，white（RAL9002）
powder－coated．Rotatable graduated
fixing ring．Monopoll profiles can be
locked in position every \(15^{\circ}\) ．
Feeding and through－wiring to be
ordered separately．
Weight \(0.77 \mathrm{lbs} / 0.35 \mathrm{~kg}\)
c（1）Us 尽＊＊\(\triangle<\) Indoor
Dry Damp Wet

12527.023

Monopoll \(90^{\circ}\) connector
Cast aluminum，white（RAL9002）
powder－coated．Rotatable graduated
fixing ring．Monopoll profiles can be locked in position every \(15^{\circ}\) ．
Feeding and through－wiring to be ordered separately．
Weight 0．44lbs \(/ 0.20 \mathrm{~kg}\)
c（lU）us 尽＊＊ 0 \＆Indoor
Dry Damp Wet


\section*{ERCO Monopoll 2－circuit track}

\section*{Accessories}


\subsection*{12587.023}

Monopoll Wall and ceiling plate Cast aluminum，white（RAL9002） powder－coated．Rotatable graduated fixing ring．Monopoll profiles can be locked in position every \(15^{\circ}\) ． Feeding to be ordered separately． c（llus 否＊＊\(\triangle\)＜Indoor Dry Damp Wet

12597.000

Monopoll Wall／ceiling fixing
Cast aluminum，white（RAL9002）
powder－coated．
Mounting device for connector or intermediate suspension to be ordered separately．
Load 44lbs／20kg．
c（lUUS 尽＊＊\(\quad\)＊Indoor
Dry Damp Wet
Only in conjunction with：
12567.000
12572.000
12602.000

\subsection*{12482.000}

Monopoll Wall／ceiling cantilever as end／intermediate fixing． Cast aluminum，white（RAL9002） powder－coated．One end plate：plas－ tic，white．
Feeding and through－wiring to be ordered separately．
Load 55lbs／ 25 kg ．
Weight \(1.81 \mathrm{lbs} / 0.82 \mathrm{~kg}\)
c（ll）us 足＊＊\(\triangle\)＜Indoor
Dry Damp Wet

\section*{ERCO Monopoll 2-circuit track}

\section*{Accessories}


\subsection*{12553.023}

Feeding and through-wiring for 2-circuit track.
Plastic, white.
Earth conductor right.
Must be used to energize track.
c(Ul)us 丕 * * \(0<\) Indoor
Dry Damp Wet
Only in conjunction with:
12527.023
12612.023
12617.023


\subsection*{12572.000}

Mounting device
for suspension on profile. Profile to be drilled on-site. Metal, white.


\subsection*{12567.000}

Mounting device
for suspension on connector.
Metal,white.
Only in conjunction with:
12527.023
12612.023
12617.023
12556.023

Electric coupler
for the through-wiring of connectors.
Plastic, white.
c(ll)us 否 * \(0<\) indoor
Dry Damp Wet
Only in conjunction with:
12527.023
12602.000

\subsection*{12657.000}

Mounting device
for suspension on connector.
Metal.
Only in conjunction with:
12527.023
12612.023
12617.023

\section*{ERCO Monopoll 2-circuit track}

\section*{Accessories}


\subsection*{12440.000}

Wire rope
Load 44lbs / 20kg.
Diameter 1/16" / 1.75 mm .
Length \(32.8 \mathrm{ft} / 10 \mathrm{~m}\).

\subsection*{12099.000}

Hole gauge
for on-site cutting of Monopoll track and profiles.
Cast aluminum, with hardened sleeve.


\subsection*{16910.000}

Turnbuckle with 2 clamps
Metal, galvanized.
Load 132lbs / 60kg.
Only in conjunction with: 12440.000

\subsection*{12499.000}

Monopoll Cable nippers
for shortening the copper conductors in Monopoll tracks.


\subsection*{79944.023}

Pendant tube suspension
Tube: metal, powder-coated, ø 1/2" | 13mm, L 40 15/16" / 1040mm. Canopy: plastic, \(\varnothing 45 / 8 " / 117 \mathrm{~mm}\), H 2 15/16" / 75mm.
Feeding possible.
Load 44 lbs / 20 kg .
White
c(lU) us 尽 * * \(\Delta<\) Indoor Dry Damp Wet
Only in conjunction with:
12567.000
12572.000
12083.023

Monopoll Cover profile
Aluminum, white (RAL9002) powder-
coated.
Length \(1.64 \mathrm{ft} / 500 \mathrm{~mm}\).
Width 1 1/2" / 32mm.
c(ll)us 尽 * \(0<\) Indoor Dry Damp Wet

\section*{ERCO Monopoll 2－circuit track}

\section*{Accessories}


\subsection*{12561.000}

Wire rope suspension
With rapid connector for adjustment levelling．
Wire rope：ø 1／16＂ 1.5 mm ，L 98 3／8＂｜ 2500mm．
Ceiling fixture：cast aluminum／metal， powder－coated．\(\varnothing 29 / 16^{\prime \prime} / 65 \mathrm{~mm}, \mathrm{H}\) 9／16＂／14mm．
Load 44lbs／20kg．
White
c（llus 卡＊\(\Delta<\) Indoor Dry Damp Wet
Only in conjunction with：
12567.000
12572.000
12602.000


\title{
ERCO Monopoll 2-circuit track
}

\section*{Accessories}

12557.000

Wire rope suspension
With single-point fixing and rapid
connector for adjustment levelling.
Wire rope: ø \(1 / 16^{\prime \prime}\) / 1.5 mm , L \(983 / 8^{\prime \prime}\) |
2500 mm
Ceiling fixture: cast aluminum/metal,
white powder-coated. ø 11/16" / 18mm,
L 1 15/16" / 49mm.
Load 44lbs / 20kg (with heavy load
dowel).
c(1)us 点 * \(0<\) Indoor
Dry Damp Wet


Only in conjunction with:
12567.000
12572.000
12602.000


The permissible load is limited by the permissible deflection of profiles and the permissible load of suspension devices. The load distribution consists of the weight of the system and evenly distributed point loads.
\(\mathrm{L}(\mathrm{ft} / \mathrm{m})\) Length of profile
\(\mathrm{f}_{\mathrm{e}}(\mathrm{ft} / \mathrm{m})\) Deflection due to weight -of profile
FD (lbs/kg) Maximum loading of suspension device
\(\mathrm{F}_{\mathrm{e}}(\mathrm{l} \mathrm{bs} / \mathrm{kg})\) Weight of profile
\(\mathrm{F}_{1}\) (lbs/kg) Permissible load (span L) for suspension at both ends \(F_{D}=132.28 \mathrm{lbs} / 60.00 \mathrm{~kg}\) within the permissible deflection of L/250
\(F_{2}\) (lbs/kg) Permissible load (span L)
for a series of suspensions within the permissible deflection L/250
\begin{tabular}{crrr}
\(\mathrm{L}(\mathrm{mm})\) & 1219 & 2438 & 3657 \\
\((\mathrm{ft})\) & 4 & 8 & 12 \\
& & & \\
\(\mathrm{Fe}_{\mathrm{e}}(\mathrm{kg})\) & 1.77 & 2.68 & 4.03 \\
(lbs) & 3.90 & 7.81 & 11.71 \\
\(\mathrm{fe}_{\mathrm{e}}(\mathrm{mm})\) & 1.00 & 4.90 & 15.50 \\
(inch) & 0.04 & 0.19 & 0.61
\end{tabular}
\(\mathrm{FD}_{\mathrm{D}}=44.09 \mathrm{lbs} / 20.00 \mathrm{~kg}\)
\begin{tabular}{crrr}
\(\mathrm{F}_{1}(\mathrm{~kg})\) & 22 & 6 & - \\
\((\mathrm{lbs})\) & 48.50 & 13.23 & - \\
\(\mathrm{F}_{2}(\mathrm{~kg})\) & 16 & 6 & - \\
\((\mathrm{lbs})\) & 35.27 & 13.23 & -
\end{tabular}
\(\begin{array}{lll}\mathrm{FD}_{\mathrm{D}}=132.28 \mathrm{lbs} / 60.00 \mathrm{~kg} \\ \mathrm{~F}_{1}(\mathrm{~kg}) & 22 & 6\end{array}\)
-
\begin{tabular}{lrr}
\((\mathrm{lbs})\) & 48.50 & 13.23 \\
\(\mathrm{~F}_{2}(\mathrm{~kg})\) & 16 & 6 \\
\((\mathrm{lbs})\) & 35.27 & 13.23
\end{tabular} (lbs) \(35.27 \quad 13.23\)


The SNF Series is a functional and multi-purpose narrow strip family that incorporates premium performance and construction durability. Designed with our easy-to-use Flip-Up socket design, the SNF significantly reduces installation time. The performance and application versatility of this series can be increased by incorporating symmetrical or asymmetrical reflectors. The SNF Series can be installed using various mounting methods and numerous options and accessories are available. The small size of the SNF makes it an ideal choice for size-restricted architectural applications. The SNF Series can be the illumination solution in commercial, industrial, retail and residential applications. Fixtures can be used in storage/utility areas, coves, display cases, shops, task and general area lighting.

\section*{SPECIFICATION FEATURES}

\section*{A…Construction}

Channel is die formed cold rolled steel with numerous KOs for ease of installation. Groove for Tong Hanger. End plate quickly converts to snap-in channel connector for continuous row alignment. Lamp holder bracket flips in place.
Channel/wireway cover secured with quarter-turn fasteners.

\section*{B…Electrical*}

Ballasts are CBM/ETL Class "P" and are positively secured by mounting bolts. Rotor Lock lampholders. UL/CUL listed. Suitable for damp locations.
C...Finish

Multistage iron phosphate pretreatment ensures maximum bonding and rust inhibitor. Lighting upgrade, baked white enamel finish. Prepainted material is standard, PAF optional.

\section*{D...Channel/Wireway Cover}

Die formed heavy gauge steel. Tight fit for ease of maintenance. Easily removed without use of tools. Optional reflector available incorporating silver technology enhancements (Silver Lining). Consult Pre Sales Technical Support.

\begin{tabular}{|l|c|c|}
\hline Catalog \# & Type \\
\hline Project & & M3 \\
\hline Comments & & Date \\
\hline Prepared by & & \\
\hline
\end{tabular}


\section*{ENERGY DATA}

Input Watts:
EB Ballasts Normal Ballast Factor 117 (20), 217 (34), 125 (23), 128 T 8 (28), 132 (31), 225 (53), 22878 (49), 232 (58) HB Ballasts Normal Ballast Factor 117 (18), 217 (31), 128T8 (25), 22878 (48), 132 (28), 232 (53) EB Ballasts Low Ballast Factor 125 (21), 128 T8 (22), 132 (25), 225 (40), 228T8 (44), 232 (48)

Luminaire Efficacy Rating LER = FS-85
Catalog Number: SNF-132
Yearly Cost of 1000 lumens, 3000 hrs at \(.08 \mathrm{KWH}=\$ 2.82\)
*Reference the lamp/ballast data in the Technical Section for specific lamp/ballast requirements. \({ }^{1}\) One lamp only.


COOPER LIGHTING


SNF-132 Electronic Ballast F32T8/35K Lamps 2900 Lumens

Spacing criterion: (II) \(1.2 \times\) mounting height, ( \(\perp\) ) \(1.5 \times\) mounting height Efficiency 93.4\%
Test Report:
SN132.IES
LER = FS-85
Yearly Cost of 1000 lumens, 3000 hrs at \(.08 \mathrm{KWH}=\$ 2.82\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|l|}{Effective floor cavity reflectance} & \multicolumn{3}{|l|}{20\%} & & & & & & & \\
\hline rc & \multicolumn{4}{|c|}{80\%} & \multicolumn{4}{|c|}{70\%} & \multicolumn{3}{|c|}{50\%} & \multicolumn{3}{|c|}{30\%} & \multicolumn{3}{|c|}{10\%} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0 \% \\
& \hline 0
\end{aligned}
\]} \\
\hline rw & 70 & 50 & 30 & 10 & 70 & 50 & 30 & 10 & 50 & 30 & 10 & 50 & 30 & 10 & 50 & 30 & 10 & \\
\hline \multicolumn{19}{|l|}{RCR} \\
\hline 0 & 107 & 107 & 107 & 107 & 1021 & 102 & 102 & 102 & 94 & 94 & 94 & 86 & 86 & 86 & 79 & 79 & 79 & 76 \\
\hline 1 & 94 & 89 & 84 & 79 & 90 & 85 & 80 & 76 & 77 & 74 & 70 & 71 & 68 & 65 & 64 & 62 & 60 & 57 \\
\hline 2 & 84 & 75 & 68 & 61 & 80 & 72 & 65 & 59 & 66 & 60 & 55 & 60 & 55 & 51 & 54 & 51 & 48 & 44 \\
\hline 3 & 76 & 65 & 57 & 50 & 72 & 62 & 55 & 48 & 57 & 51 & 45 & 52 & 47 & 42 & 47 & 43 & 39 & 36 \\
\hline 4 & 69 & 57 & 48 & 41 & 66 & 55 & 47 & 40 & 50 & 43 & 38 & 46 & 40 & 35 & 42 & 37 & 33 & 30 \\
\hline 5 & 63 & 50 & 41 & 34 & 60 & 48 & 39 & 33 & 44 & 37 & 31 & 40 & 34 & 29 & 37 & 31 & 27 & 25 \\
\hline 6 & 58 & 44 & 35 & 29 & 55 & 43 & 34 & 28 & 39 & 32 & 27 & 36 & 30 & 25 & 33 & 27 & 23 & 21 \\
\hline 7 & 53 & 40 & 31 & 25 & 50 & 38 & 30 & 24 & 35 & 28 & 23 & 32 & 26 & 21 & 29 & 24 & 20 & 18 \\
\hline 8 & 49 & 36 & 27 & 21 & 46 & 34 & 26 & 21 & 31 & 24 & 20 & 29 & 23 & 18 & 26 & 21 & 17 & 15 \\
\hline 9 & 45 & 32 & 24 & 18 & 43 & 31 & 23 & 18 & 28 & 21 & 17 & 26 & 20 & 16 & 24 & 19 & 15 & 13 \\
\hline 10 & 42 & 29 & 21 & 16 & 40 & 28 & 21 & 16 & 26 & 19 & 15 & 24 & 18 & 14 & 22 & 17 & 13 & 11 \\
\hline
\end{tabular}

Zonal Lumen Summary
\begin{tabular}{lccc} 
Zone & Lumens & \%Lamp & \%Fixture \\
\hline \(0-30\) & 391 & 13.5 & 14.4 \\
\hline \(0-40\) & 662 & 22.8 & 24.5 \\
\hline \(0-60\) & 1307 & 45.1 & 48.3 \\
\hline \(0-90\) & 2192 & 75.6 & 81.0 \\
\hline \(90-180\) & 515 & 17.8 & 19.0 \\
\hline \(0-180\) & 2708 & 93.4 & 100.0
\end{tabular}

Candela
\begin{tabular}{cccc} 
Angle & Along II & \(\mathbf{4 5}^{\circ}\) & Across \(\perp\) \\
\hline 480 & 481 & 481 & \\
\hline 10 & 474 & 478 & 479 \\
\hline 20 & 448 & 468 & 481 \\
\hline 30 & 405 & 447 & 479 \\
\hline 40 & 347 & 421 & 480 \\
\hline 50 & 278 & 393 & 481 \\
\hline 60 & 201 & 367 & 474 \\
\hline 70 & 120 & 332 & 449 \\
\hline 80 & 44 & 278 & 408 \\
\hline 90 & 2 & 237 & 368 \\
\hline 100 & 2 & 213 & 367 \\
\hline 110 & 2 & 120 & 259 \\
\hline 120 & 2 & 38 & 144 \\
\hline 130 & 3 & 2 & 42 \\
\hline 140 & 0 & 0 & 0 \\
\hline 150 & 0 & 0 & 0 \\
\hline 160 & 0 & 0 & 0 \\
\hline 170 & 0 & 0 & 0 \\
\hline 180 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Candela}
\begin{tabular}{cccc} 
Angle & Along II & \(\mathbf{4 5}^{\circ}\) & Across \(\perp\) \\
\hline \(\mathbf{0}\) & 989 & 989 & 989 \\
\hline \(\mathbf{1 0}\) & 974 & 986 & 991 \\
\hline \(\mathbf{2 0}\) & 924 & 958 & 989 \\
\hline \(\mathbf{3 0}\) & 835 & 918 & 995 \\
\hline \(\mathbf{4 0}\) & 716 & 868 & 982 \\
\hline \(\mathbf{5 0}\) & 572 & 797 & 921 \\
\hline \(\mathbf{6 0}\) & 413 & 689 & 829 \\
\hline \(\mathbf{7 0}\) & 248 & 563 & 715 \\
\hline \(\mathbf{8 0}\) & 92 & 412 & 566 \\
\hline \(\mathbf{9 0}\) & 1 & 272 & 420 \\
\hline \(\mathbf{1 0 0}\) & 1 & 304 & 490 \\
\hline \(\mathbf{1 1 0}\) & 0 & 240 & 410 \\
\hline \(\mathbf{1 2 0}\) & 1 & 179 & 325 \\
\hline \(\mathbf{1 3 0}\) & 1 & 121 & 235 \\
\hline \(\mathbf{1 4 0}\) & 2 & 66 & 149 \\
\hline \(\mathbf{1 5 0}\) & 2 & 18 & 69 \\
\hline \(\mathbf{1 6 0}\) & 3 & 2 & 9 \\
\hline \(\mathbf{1 7 0}\) & 3 & 2 & 0 \\
\hline \(\mathbf{1 8 0}\) & 2 & 2 & 2 \\
\hline \(\mathbf{y}\) & & & \\
\hline
\end{tabular}

SNF-232
Electronic Ballast
Two F32T8/35K Lamps 2800 Lumens
Spacing criterion: (II) \(1.2 \times\) mounting height, ( \(\perp\) ) 1.5 x mounting height Efficiency 90.1\%
Test Report:
SNF232.IES
LER = FS-
Yearly Cost of 1000 lumens, 3000 hrs at \(.08 \mathrm{KWH}=\$\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Effective floor cavity reflectance} & \multicolumn{10}{|l|}{20\%} \\
\hline rc & \multicolumn{4}{|c|}{80\%} & \multicolumn{4}{|c|}{70\%} & \multicolumn{3}{|c|}{50\%} & \multicolumn{3}{|c|}{30\%} & \multicolumn{3}{|c|}{10\%} & 0\% \\
\hline rw & 70 & 50 & 30 & 10 & 70 & 50 & 30 & 10 & 50 & 30 & 10 & 50 & 30 & 10 & 50 & 30 & 10 & 0 \\
\hline \multicolumn{19}{|l|}{RCR} \\
\hline 0 & 103 & 103 & 1031 & 103 & 99 & 99 & 99 & 99 & 90 & 90 & 90 & 83 & 83 & 83 & 76 & 76 & 76 & 72 \\
\hline 1 & 91 & 86 & 81 & 77 & 87 & 82 & 78 & 74 & 75 & 72 & 68 & 68 & 66 & 63 & 62 & 60 & 58 & 55 \\
\hline 2 & 82 & 73 & 66 & 60 & 78 & 70 & 64 & 58 & 64 & 59 & 54 & 58 & 54 & 50 & 53 & 50 & 47 & 44 \\
\hline 3 & 74 & 64 & 55 & 49 & 70 & 61 & 53 & 47 & 55 & 49 & 44 & 51 & 45 & 41 & 46 & 42 & 38 & 35 \\
\hline 4 & 67 & 56 & 47 & 41 & 64 & 53 & 45 & 39 & 49 & 42 & 37 & 44 & 39 & 35 & 41 & 36 & 32 & 30 \\
\hline 5 & 62 & 49 & 41 & 34 & 58 & 47 & 39 & 33 & 43 & 37 & 31 & 40 & 34 & 29 & 36 & 31 & 27 & 25 \\
\hline 6 & 57 & 44 & 36 & 30 & 54 & 42 & 34 & 29 & 39 & 32 & 27 & 36 & 30 & 25 & 33 & 28 & 24 & 22 \\
\hline 7 & 52 & 40 & 31 & 26 & 50 & 38 & 30 & 25 & 35 & 28 & 24 & 32 & 27 & 22 & 30 & 25 & 21 & 19 \\
\hline 8 & 49 & 36 & 28 & 23 & 46 & 35 & 27 & 22 & 32 & 25 & 21 & 29 & 24 & 20 & 27 & 22 & 19 & 17 \\
\hline 9 & 45 & 33 & 25 & 20 & 43 & 32 & 25 & 20 & 29 & 23 & 19 & 27 & 22 & 18 & 25 & 20 & 17 & 15 \\
\hline 10 & 42 & 30 & 23 & 18 & 40 & 29 & 22 & 18 & 27 & 21 & 17 & 25 & 20 & 16 & 23 & 18 & 15 & 13 \\
\hline \multicolumn{8}{|l|}{Zonal Lumen Summary} & & \multicolumn{10}{|l|}{Luminance Data} \\
\hline Zone & & mens & & \multicolumn{2}{|l|}{\%Lamp} & \multicolumn{3}{|l|}{\%Fixture} & \multicolumn{2}{|l|}{Angle in Deg} & & \multicolumn{2}{|l|}{Average 0-Deg cd/sm} & \multicolumn{2}{|l|}{Average 45-Deg cd/sm} & & \multicolumn{2}{|l|}{Average 90-Deg fcd/sm} \\
\hline 0-30 & & 805 & & 14.4 & & \multicolumn{3}{|c|}{16.0} & \multicolumn{3}{|l|}{45} & \multicolumn{2}{|l|}{13624} & \multicolumn{2}{|c|}{17577} & & \multicolumn{2}{|l|}{20140} \\
\hline 0-40 & & 364 & & 24.4 & & \multicolumn{3}{|c|}{27.0} & \multicolumn{3}{|l|}{55} & \multicolumn{2}{|l|}{12829} & \multicolumn{2}{|c|}{19375} & & \multicolumn{2}{|l|}{22766} \\
\hline 0-60 & & 638 & & 47.1 & & \multicolumn{3}{|c|}{52.3} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{65}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{11676}} & \multicolumn{2}{|c|}{22113} & & \multicolumn{2}{|l|}{27282} \\
\hline 0-90 & & 049 & & 72.3 & & \multicolumn{3}{|c|}{80.3} & & & & & & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{28523}} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{36952}} \\
\hline 90-180 & & 993 & & 17.7 & & & 9.7 & & \multicolumn{3}{|l|}{75} & \multicolumn{2}{|l|}{9619} & & & & & \\
\hline 0-180 & & 043 & & 90.1 & & \multicolumn{3}{|l|}{100.0} & \multicolumn{3}{|l|}{85} & \multicolumn{2}{|l|}{5173} & \multicolumn{2}{|c|}{56907} & & \multicolumn{2}{|l|}{82706} \\
\hline
\end{tabular}

\section*{ORDERING INFORMATION}

SAMPLE NUMBER: SNF-232-UNV-EB81-U


NOTES: \({ }^{(1)} 2\) lamps T8 only. \({ }^{(2)}\) Products also available in non-US voltages and frequencies for international markets. \({ }^{(3)}\) For SilverLining reflector add SS in Catalog Number, Example: SNF-ASY-SS-4. \({ }^{(4)}\) Not available for \(\mathbf{2}^{\text {( }}\)
NOTES:
version. \({ }^{(5)}\) Maximum width clearance for ballast in channel is \(2-7 / 32 "\). \({ }^{(6)}\) Socket brackets left uninstalled. \({ }^{(7)}\) When utilizing 28 WT8 lamps, HPT8 Ballast must be specified. Other ballast restrictions may apply. Consult your version.
Cooper Lighting Representative for availability and ordering information.

Specifications \& dimensions subject to change without notice. Consult your Cooper Lighting Representative for availability and ordering information.

\section*{ACCESSORIES}
(Order Separately)
AYC-Chain/Set=36" Chain Hanger (Use 1 Set Per Fixture)
SCF=Fixed Stem Set (Specify Length)
SCS=Swivel Stem Set (Specify Length)
SCA=Adjustable 48" Stem Set
EYE-CHAIN/SET-B=Eye Bolt Chain (Use 1 Set Per Fixture)
SNF-ASY-4 \({ }^{(3)}=3^{\prime \prime}\) Asymmetric Reflector (Specify \(2^{\prime}, 3^{\prime}\) or \(4^{\prime}\) )
SNF-SYM-4 \(\mathbf{4}^{(3)}=6^{\prime \prime}\) Symmetric Reflector (Specify \(2^{\prime}, 3^{\prime}\) or \(4^{\prime}\) )
SNF-REV-4 \(\mathbf{4}^{(3)}=\) Reverse Asymmetric Reflector (Specify 2', \(3^{\prime}\) or \(4^{\prime}\) )
WG/SNF-2FT=2' Wire Guard
WG/SNF-3FT=3' Wire Guard
WG/SNF-4FT=4' Wire Guard
A1B/Spacer-U=Spacer 1-1/2" to 2-1/2" from ceiling (Use 2 Per Fixture) TOGGLE=Single Toggle NO. 2 (Specify Length) Y-TOGGLE=YToggle NO. 2 (Specify Length)
(Additional Accessories Available. See Options and Accessories Section.)
\begin{tabular}{lc} 
SHIPPING INFORMATION \\
\hline Catalog No. & Wt. \\
\hline SNF-117 & 5 lbs. \\
SNF-217 & 5 lbs. \\
SNF-125 & 6 lbs. \\
SNF-225 & 6 lbs. \\
SNF-132 & 12 lbs. \\
SNF-232 & 12 lbs. \\
SNF-128T8 & 12 lbs. \\
SNF-228T8 & 12 lbs. \\
8TSNF-132 & 14 lbs. \\
8TSNF-232 & 14 lbs. \\
\hline
\end{tabular}```


[^0]:    ${ }^{1}$ Flynn Psychology of Light Study 1972, p 15
    2 Flynn Psychology of Light Study 1972, Article 6

