THE COMMONWEALTH MEDICAL COLLEGE

BUILDING INTRODUCTION

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

- Medical College
- 185,000 SF
- 4 Story Building plus a Penthouse
- Maximum Height at 102'
- Cost $120 Million
- May 2009 to Oct 2011
- Design-Bid-Build
- Seeking LEED Silver

Photos From TCMC

Image from Google Map, edited by Xiao
THE COMMONWEALTH MEDICAL COLLEGE

PROJECT TEAM

- Owner: TCMC
- Architects: Highland Associates & HOK
- Structural/M.E.P. Engineers: Highland Associates
- Construction Management: Quandel Construction Group
- Landscape Architecture: McLane Associates
- Interior Architecture: Highland Associates & HOK

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements
THE COMMONWEALTH MEDICAL COLLEGE

- **EXISTING STRUCTURAL SYSTEM**
 - **West Wing**
 - Foundation: mat slab, 4'-0" thick, 3000 psf bearing pressure
 - Floor: composite steel deck, normal weight concrete topping, 7.5" thick
 - **East Wing**
 - Foundation: drilled caissons, 36" to 60" in diameters, carry loads to bedrock.
 - Floor: composite steel deck, lightweight concrete topping, 5.25" thick

BAY SIZES

- 20'-0" 30'-0" Bays
- 20'-0" 20'-0" Bays
- 10'-0" 20'-0" Bays
- 20'-0" 30'-0" Bays
- 20'-0" 26'-0" Bays

Image from Highland Associates, edited by Xian
THE COMMONWEALTH MEDICAL COLLEGE

EXISTING STRUCTURAL SYSTEM

• Framing System
 • Composite steel frame
 • W8x24 to W14x257, lightest to heaviest

• Lateral System
 • 15 moment frames (not including penthouse)

MOMENT FRAMES

Building Introduction
Existing Structural System
Problem Statement
Proposed Solution
New Lateral Loads
Lateral Frame Designs
Façade Design Breadth
Acknowledgements

Image from Highland Associates, edited by Xiao
THE COMMONWEALTH MEDICAL COLLEGE

ROOF HEIGHTS

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

ROOF HEIGHTS PLAN

Image from Highland Associates, edited by Xiao
THE COMMONWEALTH MEDICAL COLLEGE

PROBLEM STATEMENT

MIAMI, FL SITE

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

- Interest in Wind Design
- Interest in Steel Design
- Scenario Created for Thesis
 - TCMC is to be designed on a site in Miami, FL
 - Hurricane Prone region, with wind speed up to 150 mph in building code.
 - Geotechnical report obtained from site in Miami-Dade County, Florida

Image from Google Map, edited by Xiao
THE COMMONWEALTH MEDICAL COLLEGE

PROPOSED SOLUTION

PROJECT GOALS

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

- Two Lateral Systems Proposed
 - Code Minimum Steel Moment Frames
 - Code Minimum Chevron Braced Frames
- Foundation
 - MAT Foundation

- Comparison Between Designs
 - Moment Frames to Braced Frames
 - New Systems to the Original System
 - A Typical Braced Connection
Comparison of Seismic and Wind Forces

<table>
<thead>
<tr>
<th>Location</th>
<th>Wind, N-S</th>
<th>Wind, E-W</th>
<th>Seismic, N-S</th>
<th>Seismic, E-W</th>
<th>Seismic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miami, FL</td>
<td>560</td>
<td>730</td>
<td>136</td>
<td>300</td>
<td>970</td>
</tr>
<tr>
<td>Scranton, PA</td>
<td>200</td>
<td>270</td>
<td>130</td>
<td>110</td>
<td>350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base Shear (k)</th>
<th>200</th>
<th>270</th>
<th>130</th>
<th>110</th>
<th>350</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overturning Moment (k-ft)</td>
<td>10,000</td>
<td>12,900</td>
<td>7,600</td>
<td>5,230</td>
<td>17,100</td>
<td>7,000</td>
</tr>
</tbody>
</table>

Summary: Wind Loads on TCMC

<table>
<thead>
<tr>
<th></th>
<th>West Wing</th>
<th>East Wing</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS Base Shear</td>
<td>560.0 k</td>
<td>296 k</td>
</tr>
<tr>
<td>NS Overturning Moment</td>
<td>27,500.0 k-ft</td>
<td>14,500 k-ft</td>
</tr>
<tr>
<td>EW Base Shear</td>
<td>731.0 k</td>
<td>960 k</td>
</tr>
<tr>
<td>EW Overturning Moment</td>
<td>35,800.0 k-ft</td>
<td>47,220 k-ft</td>
</tr>
</tbody>
</table>

Wind Pressure and Wind Force acting on West Wing, EW Direction

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements
THE COMMONWEALTH MEDICAL COLLEGE

LATERAL FRAME LAYOUTS

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
 - Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

Moment Frame Layout

Braced Frame Layout

- Moment Frame
- Braced Frame
THE COMMONWEALTH MEDICAL COLLEGE

MOMENT FRAME DESIGN

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

STAAD Model for Frame A

1.2D + 1.6W + L + 0.5Lr

ETABS Model

AE 530

Computer Modeling

Etabs Models
THE COMMONWEALTH MEDICAL COLLEGE

MOMENT FRAME DESIGN

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements
Building Introduction

Existing Structural System

Problem Statement

Proposed Solution

New Lateral Loads

Lateral Frame Designs

Façade Design Breadth

Acknowledgements
THE COMMONWEALTH MEDICAL COLLEGE

ETABS Model

AE 530

Computer Modeling

BRACED FRAME DESIGN

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements

STAAD Model for Frame A

0.9D + 1.6W

1.2D + 1.6L + 0.5Lr

1.2D + 1.6W + L + 0.5Lr

0.9D + 1.6W

Etabs Models
Building Introduction

Existing Structural System

Problem Statement

Proposed Solution

New Lateral Loads

Lateral Frame Designs

Façade Design Breadth

Acknowledgements
Comparisons

Estimated Cost Analysis For Frame A

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$186,281.00</td>
<td>$567,043.00</td>
<td>$202,572.00</td>
</tr>
<tr>
<td>Percent</td>
<td>100%</td>
<td>304%</td>
<td>109%</td>
</tr>
</tbody>
</table>

Building Height Change

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>93'</td>
<td>98'</td>
<td>92'</td>
</tr>
<tr>
<td>Difference</td>
<td>N/A</td>
<td>5'</td>
<td>-1'</td>
</tr>
</tbody>
</table>
Comparisons

Typical Member Size between 1st and 2nd Floor on Frame A

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam in NS</td>
<td>W24x68</td>
<td>W36x256</td>
<td>W21x68</td>
</tr>
<tr>
<td>Beam in EW</td>
<td>W30x99</td>
<td>W40x372</td>
<td>W24x76</td>
</tr>
<tr>
<td>Column</td>
<td>W14x257</td>
<td>W14x605</td>
<td>W14x176</td>
</tr>
<tr>
<td>Bracing</td>
<td>N/A</td>
<td>N/A</td>
<td>W14x90</td>
</tr>
</tbody>
</table>

Weight Comparison

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral Resisting Members</td>
<td>330 k</td>
<td>1220 k</td>
<td>256 k</td>
</tr>
<tr>
<td>Total Building Weight</td>
<td>18400 k</td>
<td>19290 k</td>
<td>18600 k</td>
</tr>
<tr>
<td>Percentage</td>
<td>100%</td>
<td>105%</td>
<td>101%</td>
</tr>
</tbody>
</table>

Estimated Cost Analysis For Frame A

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$186,281.00</td>
<td>$567,043.00</td>
<td>$202,572.00</td>
</tr>
<tr>
<td>Percent</td>
<td>100%</td>
<td>304%</td>
<td>109%</td>
</tr>
</tbody>
</table>

Building Height Change

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>93'</td>
<td>98'</td>
<td>92'</td>
</tr>
<tr>
<td>Difference</td>
<td>N/A</td>
<td>5'</td>
<td>-1'</td>
</tr>
</tbody>
</table>

Building Introduction

Existing Structural System

Problem Statement

Proposed Solution

New Lateral Loads

Lateral Frame Designs

Facade Design Breadth

Acknowledgements
Building Introduction

Existing Structural System

Problem Statement

Proposed Solution

New Lateral Loads

Lateral Frame Designs

Facade Design Breadth

Acknowledgements

Typical Member Size between 1st and 2nd Floor on Frame A

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam in NS</td>
<td>W24x68</td>
<td>W36x256</td>
<td>W21x68</td>
</tr>
<tr>
<td>Beam in EW</td>
<td>W30x99</td>
<td>W40x372</td>
<td>W24x76</td>
</tr>
<tr>
<td>Column</td>
<td>W14x257</td>
<td>W14x605</td>
<td>W14x176</td>
</tr>
<tr>
<td>Bracing</td>
<td>N/A</td>
<td>N/A</td>
<td>W14x90</td>
</tr>
</tbody>
</table>

Weight Comparison

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral Resisting Members</td>
<td>330 k</td>
<td>1220 k</td>
<td>256 k</td>
</tr>
<tr>
<td>Total Building Weight</td>
<td>18400 k</td>
<td>19290 k</td>
<td>18600 k</td>
</tr>
<tr>
<td>Percentage</td>
<td>100%</td>
<td>105%</td>
<td>101%</td>
</tr>
</tbody>
</table>

Estimated Cost Analysis For Frame A

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$186,281.00</td>
<td>$567,043.00</td>
<td>$202,572.00</td>
</tr>
<tr>
<td>Percent</td>
<td>100%</td>
<td>304%</td>
<td>109%</td>
</tr>
</tbody>
</table>

Building Height Change

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>93'</td>
<td>98'</td>
<td>92'</td>
</tr>
<tr>
<td>Difference</td>
<td>N/A</td>
<td>5'</td>
<td>-1'</td>
</tr>
</tbody>
</table>

Moment Frames have more Architectural Freedom
MAT Foundation Design

- Great for Soil with Low Bearing Capacity
- Great for Large Column Loads
- Soil Bearing Capacity of 2500 psf
- Design is Very Complex

<table>
<thead>
<tr>
<th>Foundation Summary</th>
<th>Original</th>
<th>Moment</th>
<th>Braced</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.S. Bearing</td>
<td>N/A</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>F.S. Uplift</td>
<td>N/A</td>
<td>Not an issue</td>
<td>4.4</td>
</tr>
<tr>
<td>F.S. Strength</td>
<td>N/A</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Depth into Earth</td>
<td>8'-8"</td>
<td>10'</td>
<td>11'-6"</td>
</tr>
<tr>
<td>Thickness of MAT</td>
<td>4'</td>
<td>6'</td>
<td>7'-6"</td>
</tr>
</tbody>
</table>
THE COMMONWEALTH MEDICAL COLLEGE

MAE REQUIREMENT

ETABS Model
- AE 530, Computer Modeling

Typical 2nd Floor Brace Connection
- AE 534, Steel Connections

FAÇADE BREADTH

- AE 542, Building Enclosures
FAÇADE DESIGN

Rain Screen Wall Cladding System

- TerraClad Rain Screen manufactured by Boston Valley Terra Cotta
 - Simple to Install
 - Shield from wind driven rain
 - LEED credit opportunities
 - Abundant colors and sizes, match original
 - 6” additional thickness to exterior wall

TerraClad RAIN SCREEN

- Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements
Rain Screen Wall Cladding System

- TerraClad Rain Screen manufactured by Boston Valley Terra Cotta
 - Simple to Install
 - Shield from wind driven rain
 - LEED credit opportunities
 - Abundant colors and sizes, match original
 - 6” additional thickness to exterior wall

Building Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- New Lateral Loads
- Lateral Frame Designs
- Façade Design Breadth
- Acknowledgements
Windows/Glazing

- LGUs with the concept of Sacrificial Ply

<table>
<thead>
<tr>
<th>Width x Height</th>
<th>Outer Ply Thickness</th>
<th>Inner Ply Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>2’x4’</td>
<td>1/8”</td>
<td>3/16”</td>
</tr>
<tr>
<td>6’x10’</td>
<td>1/8”</td>
<td>5/8”</td>
</tr>
</tbody>
</table>
Penn State Architectural Engineering Faculty
 • Heather Sustersic
Highland Associates
 • Eric McAndrew
TCMC
Family and Friends
Appendix
The Bechtler Museum of Modern Arts

HIT Power 220A Photovoltaic Module, by Panasonic
- Withstand 60 psf
- Top Energy Producer
- Highest Output on Cloudy Days

Estimated Life-Cycle Cost for 20 years = $279,086
Estimated Total Savings = $10,000
Estimated Payback Period = 27 years
Reduced in Number of Steam Boilers
Number of McQuay Chillers for Cooling stayed the same
Main Problem – High Humidity
 ▪ RLNL-G Dehumidifier by Rheem
 • Money – Saving Efficiency
 • Quiet Operation
 • Quality
 • Remote Monitoring and Control

Grid-Tied System
 ▪ Net-metering
High-Velocity Hurricane Zones

The High-Velocity Hurricane Zones (HVHZ) are specifically defined as Miami-Dade and Broward Counties. As in previous editions of the FBCB, a single wind speed is used for the HVHZ for each Risk Category Map. The design wind speeds in the HVHZ are as follows:

Miami-Dade County
- Risk Category I Buildings and Structures: 165 mph
- Risk Category II Buildings and Structures: 175 mph
- Risk Category III and IV Buildings & Structures: 185 mph

Did not check for Compression Force