

Daniel Goff I Structural Option Dr. Thomas Boothby I Faculty Advisor

A Medical Office Building For The Primary Health Network

Sharon, Pennsylvania

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - Columns
- Lateral System Redesign
 - **Design**
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- Conclusion
- Acknowledgements

Structural Engineer

Construction Dates

Primary Usage

Building Introduction

Architect John N. Gruitza Associates Taylor Structural Engineers

November 2014-January 2016 Height 79'-0" 78,000 GSF Size

Medical Office Building

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - Columns
- Lateral System Redesign
 - Design
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- o Conclusion
- Acknowledgements

Building Geometry

2nd Floor Plan

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - Columns
- Lateral System Redesign
 - o **Design**
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- \circ Conclusion
- Acknowledgements

Existing Gravity System

- Spread Footings
- Composite Floor deck
 - 19/32" 26 gage form deck
 - K series Bar Joists
- Wide Flange Members
- Masonry Bearing Walls

A Medical Office Building Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - Columns
- Lateral System Redesign
 - **Design**
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- Conclusion
- Acknowledgements

- - \bullet
 - \bullet
 - •

Existing Lateral System

Masonry Shear Walls Load Bearing Ivany Block f'm = 3000psi

Source: koltcz.com

2nd Floor Plan

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - o Columns
- Lateral System Redesign
 - **Design**
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- Conclusion
- Acknowledgements

Investigated Designs

- Non-Composite Beams
- Composite Beams
- Two-Way Flat Plate Slab

	Steel Joists	Non-Composite Steel	Composite Steel	Two-Way Flat Plate Slab
Cost	\$18.71/S.F.	\$16.29/S.F.	\$19.91/S.F.	\$15.59/S.F.
Weight	133psf	128psf	122psf	220psf
Max. Depth	24"	24"	18"	10"
Passive Fire Proofing	No	Yes	Yes	No
Active Fire Proofing	Yes	No	No	No
Fire Rating	1 hr.	2 hr.	2 hr.	4 hr.
Lateral System	Ivany Blockwall	Concrete Shearwall	Concrete Shearwall	Concrete Shearwall
Advantages	constructability	Lower square foot cost, higher fire rating	Lower weight, lower max. depth, higher fire rating	Lowest cost, lowest max. depth, higher fire rating
Disadvantages	High cost, high max. depth, low fire rating	Large max. depth	Highest cost	Highest weight, formwork required, low durability, low aesthetics
Feasible Redesign	N/A	Yes	Yes	Yes

Decision Matrix

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - Columns
- Lateral System Redesign
 - **Design**
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- Conclusion
- Acknowledgements

- Two-Way Concrete flat Slab Concrete Columns
- Gravity System \bullet
- Lateral
- Concrete Shear Walls

Proposed Alternate Solution

- No Change in Building Layout
- Reduced Structural Depth \bullet
- Reduced Cost •

Goals

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - Columns
- Lateral System Redesign
 - o **Design**
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- Conclusion
- Acknowledgements

Architecture \bullet

- **Construction Management** New Construction Timeline \bullet Cost estimate and comparison

Proposed Alternate Solution

Façade redesign

- Modern aesthetics
- \bullet
- Reduced Cost
- Feasibility of schedule \bullet

Goals

Integrate with existing architecture

Gravity System Design _____

Lateral System Design

Architecture

Gravity System Design

System Design

Architecture

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - Slabs
 - Columns
- Lateral System Redesign
 - o **Design**
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- Conclusion
- Acknowledgements

Design

 \bullet

- spSlab
- Drop panels
- Edge Beams
- Constructability

Loading

- Live load of 80psf Superimposed Dead load of 20psf

Geometry

- 10" thick slab •
- 9' square drop panels
- 8" thick •
- 18" square edge beams

Slab Design

Preliminary Design from CRSI

Typical Floor Plan

Sharon, Pa

- Building Introduction
- o **Proposal**
- Gravity System Redesign
 - o Slabs
 - o Columns
- Lateral System Redesign
 - o Design
 - Assumptions
- Architecture Breadth
 - o Background
 - o Façade
- Conclusion
- Acknowledgements

Deflections

ACI 318-11 Table 9.5(c) 10" → 30' span

ACI 318-11 Table 9.5(b) I/360 I/240

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - o Columns
- Lateral System Redesign
 - o Design
 - Assumptions
- Architecture Breadth
 - o Background
 - o Façade
- Conclusion
- Acknowledgements

TYPICAL FLOOR FRAMING PLAN SCALE: 1/8" = 1'-0"

PLAN NOTES:

- 1. SLAB CONSTRUCTION IS 10" NORMAL WEIGHT CONCRETE OF 4000 PSI COMPRESSIVE STRENGTH WITH 60,000 PSI REINFORCING STEEL.
- BOTTOM MAT OF REINFORCING WILL BE #5012" O.C. IN EACH DIRECTION CONTINUOUS. ADDITIONAL BOTTOM REINFORCING IN REINFORCING SCHEDULE AS NOTED ON PLAN AND SHALL RUN FROM COLUMN TO COLUMN.
- 3. TOP MAT OF REINFORCING WILL BE #5012" O.C. IN EACH DIRECTION ADDITIONAL TOP REINFORCING IN REINFORCING SCHEDULE AS NOTED ON PLAN

CALLOUT	LAYER	REINFORCING DETAIL
BR1	BOTTOM	(4) #7 BARS
BR2	BOTTOM	(2) #7 BARS
BR3	BOTTOM	(2) #7 BARS
BR4	BOTTOM	(3) #7 BARS
BR5	BOTTOM	(3) #7 BARS
BR6	BOTTOM	(4) #7 BARS
BR7	BOTTOM	(4) #7 BARS
BR8	BOTTOM	(2) #7 BARS
BR9	BOTTOM	(1) #7 BARS
BR10	BOTTOM	(3) #7 BARS
BR11	BOTTOM	(3) #7 BARS
BR12	BOTTOM	(2) #7 BARS
BR13	BOTTOM	(2) #7 BARS
TC1	TOP	(2) #7 BARS
TC2	TOP	(1) #7 BARS
TC3	TOP	(3) #7 BARS

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - Slabs
 - o Columns
- Lateral System Redesign
 - **Design**
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- Conclusion
- Acknowledgements

- 18"x18" Throughout \bullet
- 15'-6" Floor to Floor height
- Four columns analyzed
- spColumn 0
- \bullet
- •

Column Design

- Two Designs selected
- f'c = 4000psi

Exterior Column

4 #9 Bars

Interior Column

16 #9 Bars

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - o Columns
- Lateral System Redesign
 - o Design
 - Assumptions
- Architecture Breadth
 - Background
 - o Façade
- Conclusion
- Acknowledgements

Column Locations

Lateral System Design

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - \circ Slabs
 - o Columns
- Lateral System Redesign
 - o Design
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- Conclusion
- Acknowledgements

- Layout \bullet

 \bullet

- ETABS 2013
- f'c = 4000psi
- 12" Thick \bullet

Shear Wall Design

Significant increase in building weight

🔋 Shear wall 1 (CW1)

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - o Columns
- Lateral System Redesign
 - o Design
 - Assumptions
- Architecture Breadth
 - o Background
 - o Façade
- Conclusion
- Acknowledgements

Shear Wall Reinforcement Layout

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - o Columns
- Lateral System Redesign
 - o Design
 - o Assumptions
- Architecture Breadth
 - Background
 - o Façade
- Conclusion
- Acknowledgements

P-Delta Effects

 \bullet

 \bullet

- Out of Plane Stiffness
- Drift Checks $\Delta \leq 0.23$ "
- Non-Sway assumption
- Rigid Diaphragm

Design Checks & Assumptions

$$\theta = \frac{P_x \Delta I_e}{V_x h_{sx} C_d}$$
$$Q = \frac{\Sigma P_u \Delta_o}{V_{us} \ell_c}$$

(10-10)

Lateral System Design

Architecture

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - \circ Slabs
 - o Columns
- Lateral System Redesign
 - o **Design**
 - Assumptions
- o Architecture Breadth
 - o Background
 - Façade
- Conclusion
- Acknowledgements

- First new project since 1969
- Surrounding architecture \bullet
- Existing façade

 \bullet

Background

Source: sharonherald.com

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - \circ Slabs
 - o Columns
- Lateral System Redesign
 - o **Design**
 - Assumptions
- Architecture Breadth
 - o Background
 - Façade
- Conclusion
- Acknowledgements

Case Studies

Tsinghua Law Library

Architect: KokaiStudios

www.archdaily.com

Architect: Weiss/Manfredi

Diana Center at Barnard College

www.flickr.com

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - Slabs
 - o Columns
- Lateral System Redesign
 - o **Design**
 - Assumptions
- o Architecture Breadth
 - Background
 - Façade
- Conclusion
- Acknowledgements

New Façade

North East View

North View

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - Slabs
 - Columns
- Lateral System Redesign
 - o **Design**
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- o Conclusion
- Acknowledgements

- 40% reduction in structural depth
- Met all requirements for strength & serviceability
- 12% increase in structural cost
- 127% increase in façade cost

Conclusions

Façade Redesign:

Structural Redesign: Viable Option Not Feasible

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - Slabs
 - Columns
- Lateral System Redesign
 - o **Design**
 - Assumptions
- Architecture Breadth
 - Background
 - Façade
- Conclusion
- Acknowledgements

Acknowledgements

Special Thanks to:

- Thomas Boothby
- Linda Hanagan
- Taylor Structural Engineers
- The AE Faculty
- My friends and family

Sharon, Pa

- Building Introduction
- Proposal
- Gravity System Redesign
 - o Slabs
 - o Columns
- Lateral System Redesign
 - o **Design**
 - Assumptions
- Architecture Breadth
 - o Background
 - o Façade
- Conclusion
- o Acknowledgements

Questions

