Great Lakes Region, USA



AE Senior Thesis April 13<sup>th</sup>, 2015

Mary Julia Haverty

Structural Option

Advisor H. Sustersic

Introduction Problem Statement and Solution Structural Depth Gravity System Lateral System Green Roof Breadth Enclosures Breadth Conclusion



#### **Introduction**

#### Project Team

**RTKL:** Architect, Structural Engineer, Mechanical Engineer, Electrical Engineer, Plumbing, Telecommunications

Mark G. Anderson Consultants: Project Management

**Neff and Associates:** Civil Engineer

Keith Davis Group, LLC: Roof and Waterproofing Consultant Building Height: 83.33'

**Number of Stories:** 5

**Size:** 659,554 GSF

Occupancy: Office and Retail

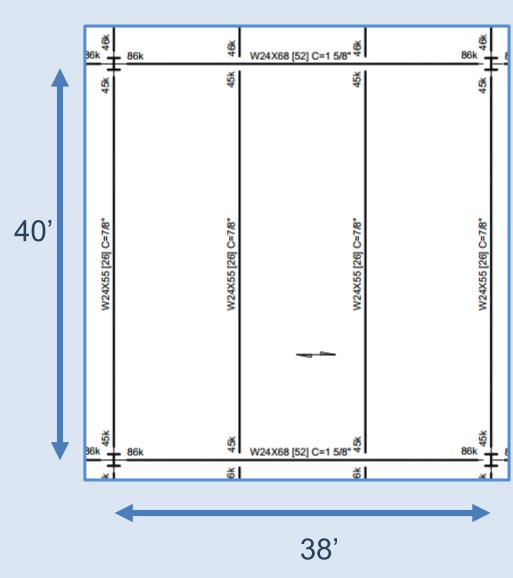
Location: Great Lakes Region



**Cost:** Withheld at owner's request

**Dates of Construction:** August 2014- Spring 2016

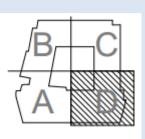
**Project Delivery Type:** Design-Bid Build


Introduction Existing Structural System Gravity System Lateral System Problem Statement and Solution Structural Depth Gravity System Lateral System Green Roof Breadth **Enclosures Breadth** Conclusion

#### **Gravity System**


- Composite Steel Beams and Girders
  - beams spaced at 12.67'
  - average camber 1"
  - Average beam size W24x55
  - Average girder size W24x68
- Wide Flange Columns
  - spliced at level 3
  - Average column size W14x90

#### **Existing Structural System**


| Design Loads         |       |       |  |  |
|----------------------|-------|-------|--|--|
| Dead Load Live Load  |       |       |  |  |
|                      | (PSF) | (PSF) |  |  |
| Office Areas         | 61    | 65    |  |  |
| Public Areas         | 61    | 100   |  |  |
| Libraries            | 61    | 150   |  |  |
| Main Server Room     | 76    | 250   |  |  |
| Courtyard Grass Area | 201   | 100   |  |  |
| Courtyard Tree Area  | 441   | 100   |  |  |
| Typical Roof         | 18    | 25    |  |  |
| RTU Roof             | 117   | 25    |  |  |
| Kitchen              | 144   | 150   |  |  |
| A/V Suite            | 100   | 221   |  |  |







Ν



Introduction Existing Structural System **Gravity System** Lateral System Problem Statement and Solution Structural Depth Gravity System Lateral System Green Roof Breadth **Enclosures Breadth** Conclusion

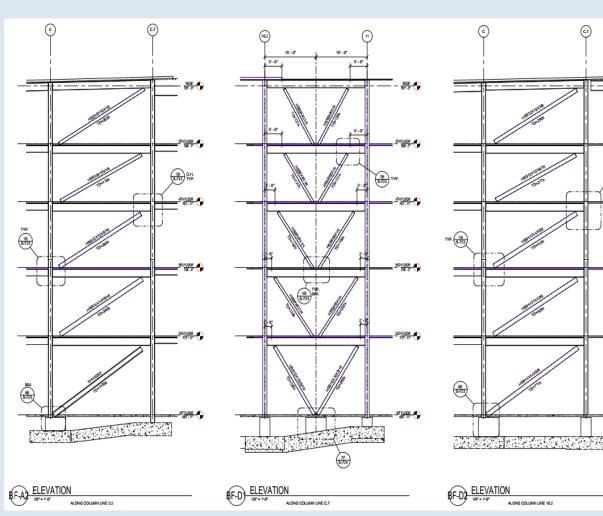
#### Lateral System

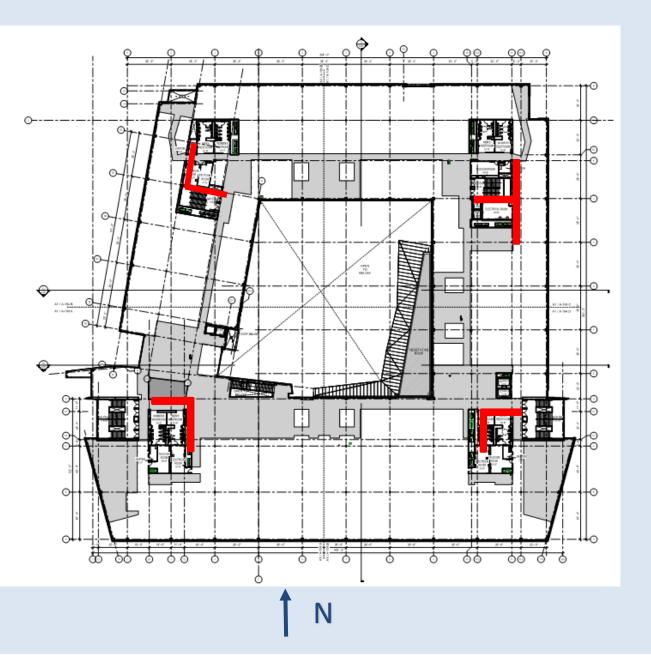
- Steel braced frames

Wind Loading

- V=90 mph

Seismic Loading


- Site Class C


#### **Existing Structural System**

# • Two in each corner of the building, eight total

• Base shear East-West= 423.16 kips • Base shear North-South= 353.62 kips

• Seismic Design Category A • Base shear 572.35 kips





Introduction Problem Statement and Solution Structural Depth Gravity System Lateral System Green Roof Breadth Enclosures Breadth Conclusion

#### **Problem Statement**

Scenario:

Goals:

1. Reshape courtyard green roof • Aid in design process, more regular bays • Remove tree area to reduce dead load • Gain office space on upper three floors

Owner has requested more office space



Introduction Problem Statement and Solution Structural Depth **Gravity System** Lateral System Green Roof Breadth **Enclosures Breadth** Conclusion

#### **Problem Statement**

Scenario:

Goals:

- 1. Reshape courtyard green roof • Aid in design process, more regular bays • Remove tree area to reduce dead load • Gain office space on upper three floors

Owner has requested more office space

2. Redesign structural system to support new dead load • Utilize open web steel joists and joist girders



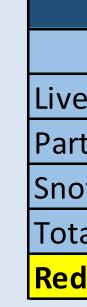
Introduction Problem Statement and Solution Structural Depth Gravity System Lateral System Green Roof Breadth **Enclosures Breadth** Conclusion

#### **Problem Statement**

Scenario: Owner has requested more office space

Goals:

1. Reshape courtyard green roof • Aid in design process, more regular bays • Remove tree area to reduce dead load • Gain office space on upper three floors 2. Redesign structural system to support new dead load • Utilize open web steel joists and joist girders 3. Explore new planting options and watertight systems • Redesign garden to focus on local plants • Select new waterproofing membrane




Introduction Problem Statement and Solution Structural Depth Gravity System Lateral System Green Roof Breadth Enclosures Breadth Conclusion

# **Gravity System**



Introduction Problem Statement and Solution Structural Depth Gravity System Gravity Loads Typical Roof Bay Typical Floor Bay Columns Vibration Considerations Lateral System Green Roof Breadth **Enclosures Breadth** Conclusion



#### **Gravity Loads**

| Live Loading  |    |                  |  |  |  |
|---------------|----|------------------|--|--|--|
| Office Roof   |    |                  |  |  |  |
| e Load (PSF)  | 50 | 20               |  |  |  |
| titions (PSF) | 15 | _                |  |  |  |
| ow (PSF)      | -  | 17               |  |  |  |
| al Load (PSF) | 65 | 20               |  |  |  |
| duced LL      | 41 | 20 (unreducable) |  |  |  |

| Concrete Slab (PSF |
|--------------------|
| Metal Deck (PSF)   |
| MEP (PSF)          |
| Ceiling (PSF)      |
| Flooring (PSF)     |
| Sprinklers (PSF)   |
| Framing Allowance  |
| Adhered Membra     |
| Roof Board (PSF)   |
| Insulation (PSF)   |
| Vapor Retarder (P  |
| Total Load (PSF)   |

| Dead Loads |        |      |  |  |  |
|------------|--------|------|--|--|--|
|            | Office | Roof |  |  |  |
| )          | 31     | 50   |  |  |  |
|            | 3      | 3    |  |  |  |
|            | 5      | 10   |  |  |  |
|            | 2      | 2    |  |  |  |
|            | 3      | -    |  |  |  |
|            | 3      | 3    |  |  |  |
| (PSF)      | 5      | 10   |  |  |  |
| e (PSF)    | -      | 1    |  |  |  |
|            | -      | 1    |  |  |  |
|            | -      | 3    |  |  |  |
| F)         | -      | 1    |  |  |  |
|            | 52     | 84   |  |  |  |

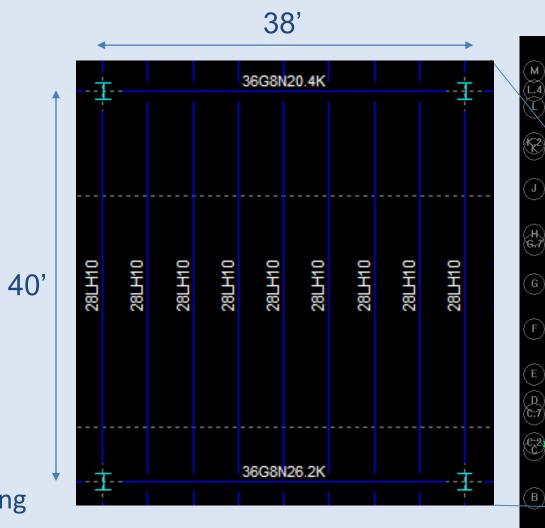
Introduction Problem Statement and Solution Structural Depth Gravity System **Gravity Loads** Typical Roof Bay Typical Floor Bay Columns Vibration Considerations Lateral System Green Roof Breadth **Enclosures Breadth** Conclusion

### **Gravity System- Typical Roof Bay**

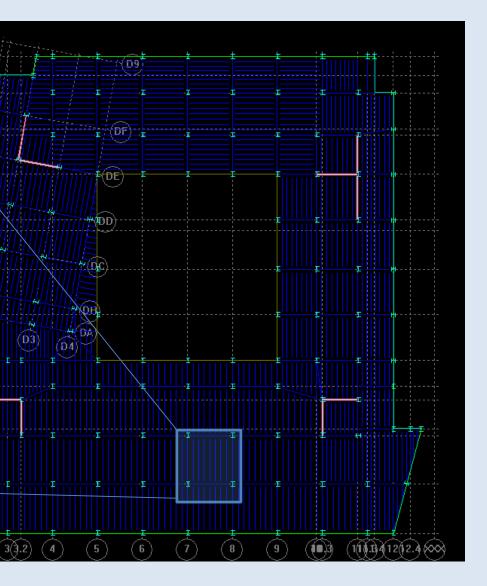
Typical Bay

- 4" normal weight topping
  - Achieves two hour fire rating
- Unshored, 2 span construction

#### Joists


- 28LH10
- 4.75' spacing

Joist Girders


- 36G8N26.2K
- Joists and girders to be fire proofed for a two hour fire rating • Deflection controlled depths
- Designed using RAM Structural System

### **Steel Joist System Roof Redesign**

1.5 VLR 18 gauge composite deck



Ν



Introduction Problem Statement and Solution Structural Depth Gravity System **Gravity Loads** Typical Roof Bay Typical Floor Bay Columns Vibration Considerations Lateral System Green Roof Breadth **Enclosures Breadth** Conclusion

### **Gravity System- Typical Floor Bay**

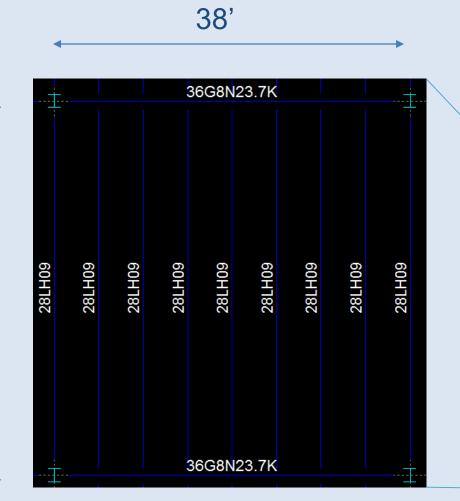
Typical Bay

- 1.5 VLR 18 gauge composite deck
- 3 ¼" lightweight topping
- Unshored, 2 span construction

Joists

- 28LH09
- 4.75' spacing

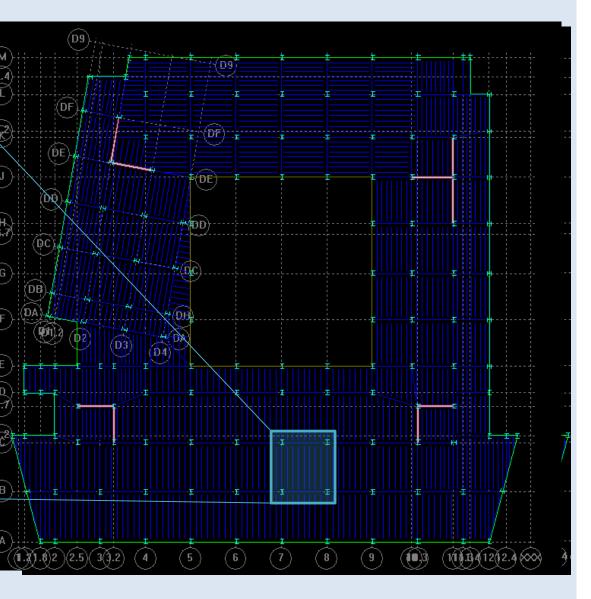
Joist Girders


• 36G8N23.7K

Deflection controlled depths

#### **Steel Joist System Floor Redesign**

• Achieves two hour fire rating


- Joists and girders to be fire proofed for a two hour fire rating







Ν

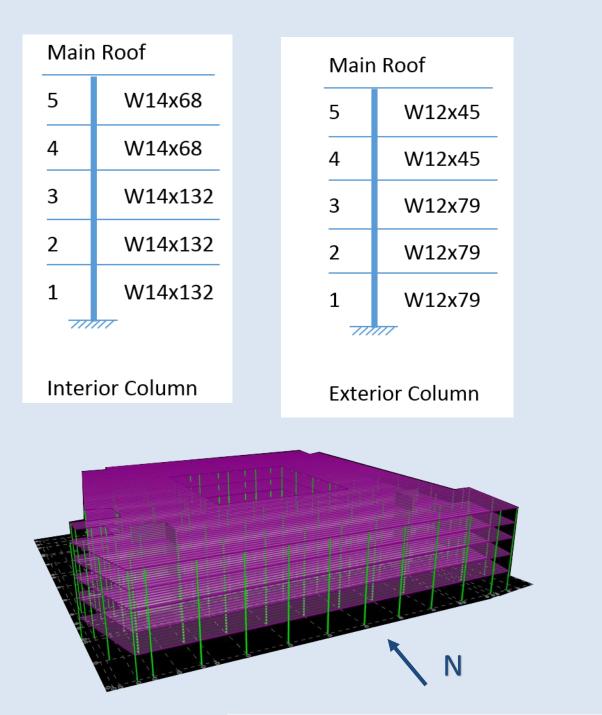


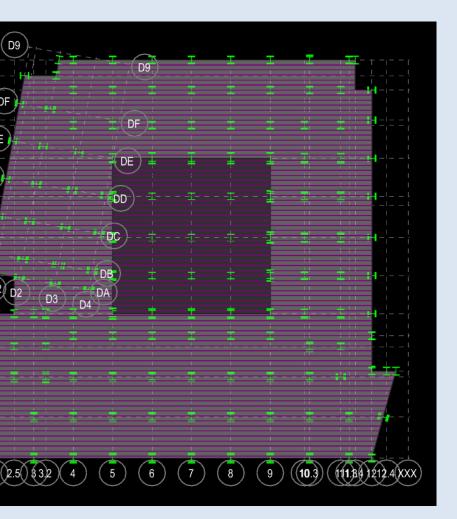
Introduction **Problem Statement and Solution** Structural Depth Gravity System **Gravity Loads** Typical Roof Bay Typical Floor Bay Columns Vibration Considerations Lateral System Green Roof Breadth **Enclosures Breadth** Conclusion

### **Gravity System- Columns**

- Wide flange steel columns
- Typical sizes
  - W14x132 (interior)
  - W12x79 (exterior)
- Spliced on level 3

Live Load Reduction


$$L = L_o \left( 0.2 \right)$$


Lo=65 psf KLL=1.0 At=38'x40' = 1520 sq ft

Designed using RAM Structural Systems- Columns

 $25 + \frac{4.57}{\sqrt{K_{LL}A_T}}$ 

L=41 psf

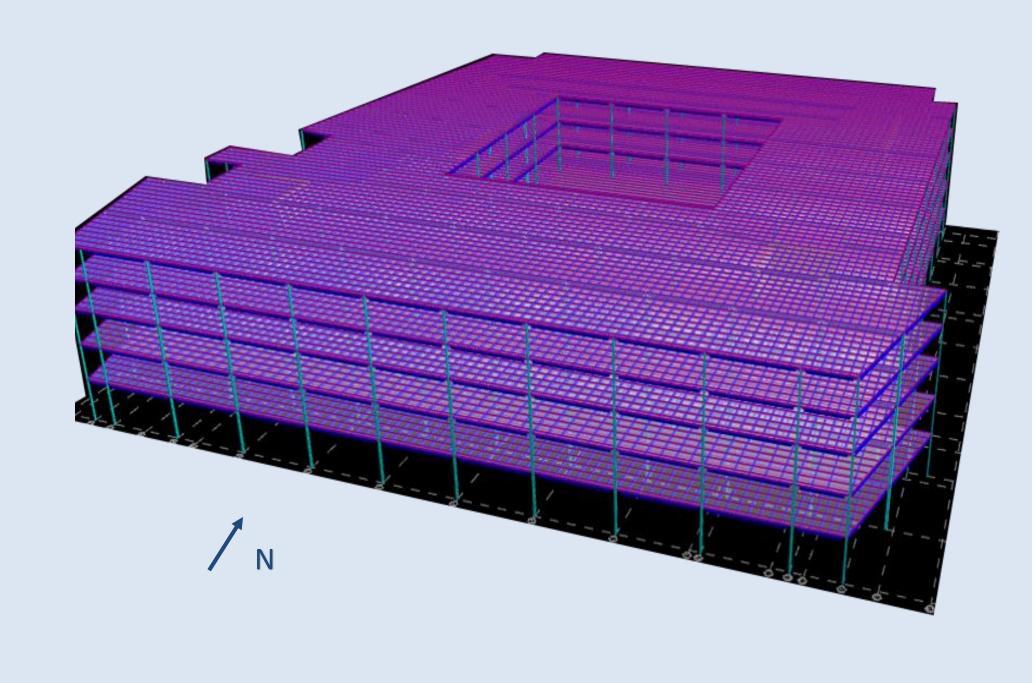




Introduction Problem Statement and Solution Structural Depth Gravity System Gravity Loads Typical Roof Bay Typical Floor Bay Columns Vibration Considerations Lateral System Green Roof Breadth **Enclosures Breadth** Conclusion

### **Gravity System- Vibration Considerations**

- Major area of concern in steel joist floor systems Helped limit joist spacing • Upper floors of building primary concern


Ap/g < 0.005 for office areas

Fn= 2.6 Hz Ap/g = 0.0015

Excitation

$$\frac{a_p}{g} = \frac{P_o \exp\left(-0.35f_n\right)}{\beta W}$$

Criteria found in AISC Design Guide 11, Ch 4, Design for Walking



Introduction Problem Statement and Solution Structural Depth Gravity System Lateral System Green Roof Breadth Enclosures Breadth Conclusion

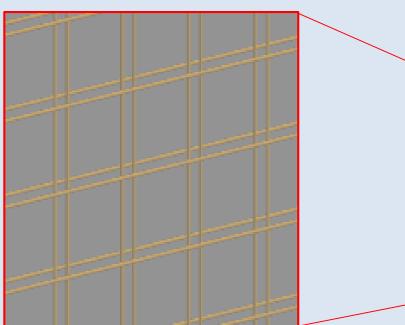
# Lateral System

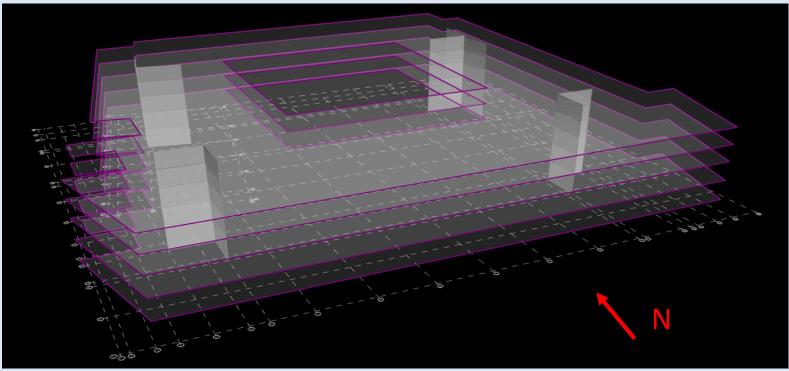


Introduction **Problem Statement and Solution** Structural Depth Gravity System Lateral System Lateral Loads Shear Wall Design Story Drift Green Roof Breadth **Enclosures Breadth** Conclusion

| Lateral System- Lateral Loads        |                   |            |             |  |  |
|--------------------------------------|-------------------|------------|-------------|--|--|
| East-West Wind Pressures Now Control |                   |            |             |  |  |
|                                      | Seis              | mic Pressu | ures        |  |  |
|                                      |                   |            | Overturning |  |  |
|                                      | Level             | Force (K)  | Moment      |  |  |
|                                      |                   |            | (ft-k)      |  |  |
|                                      | Main Roof         | 106.58     | 8882.38     |  |  |
|                                      | 5                 | 63.41      | 4354.36     |  |  |
|                                      | 4                 | 63.41      | 3424.14     |  |  |
|                                      | 3                 | 87.77      | 3276.45     |  |  |
|                                      | 2                 | 75.66      | 1513.2      |  |  |
|                                      | Base Shear<br>(K) | 397        | 21450.53    |  |  |

| Wind Pressure North-South |           |                              |  |
|---------------------------|-----------|------------------------------|--|
| Floor                     | Force (K) | Overturning<br>Moment (ft-k) |  |
| roof                      | 39.325    | 3276.950                     |  |
| 5                         | 75.993    | 5218.444                     |  |
| 4                         | 80.988    | 4373.359                     |  |
| 3                         | 79.314    | 2960.800                     |  |
| 2                         | 78.998    | 1579.962                     |  |
| Base                      | 354.618   | 17409.515                    |  |


| Wind Pressure East-West |           |                              |  |  |
|-------------------------|-----------|------------------------------|--|--|
| Floor                   | Force (K) | Overturning<br>Moment (ft-k) |  |  |
| roof                    | 46.918    | 3909.638                     |  |  |
| 5                       | 90.690    | 6227.687                     |  |  |
| 4                       | 96.636    | 5218.328                     |  |  |
| 3                       | 94.645    | 3533.094                     |  |  |
| 2                       | 94.273    | 1885.466                     |  |  |
| Base                    | 423.162   | 20774.213                    |  |  |


Introduction Problem Statement and Solution Structural Depth Gravity System Lateral System Lateral Loads Shear Wall Design Story Drift Green Roof Breadth **Enclosures Breadth** Conclusion

#### Lateral System- Shear Wall Design

- Eight reinforced concrete shear walls
- Retained locations of existing lateral system
- Reinforced with minimum reinforcement
- #4's at 12" O.C. horizontal and vertical
- 8" thickness

**Reinforced Concrete Shear Walls** 









Introduction Problem Statement and Solution Structural Depth Gravity System Lateral System Lateral Loads Shear Wall Design Story Drift Green Roof Breadth **Enclosures Breadth** Conclusion

#### Lateral System- Story Drift

Wind drift limit



Seismic drift limit



| R         | edesign Seismic  | Drift            | Existing Seismic Drift       |       | Drift |
|-----------|------------------|------------------|------------------------------|-------|-------|
|           | Story Drift (in) | Total Drift (in) | Story Drift (in) Total Drift |       |       |
| Main Roof | 0.136            | 0.404            | Main Roof                    | 0.244 | 0.751 |
| Level 5   | 0.11             | 0.268            | Level 5                      | 0.208 | 0.507 |
| Level 4   | 0.083            | 0.158            | Level 4                      | 0.158 | 0.299 |
| Level 3   | 0.052            | 0.075            | Level 3                      | 0.1   | 0.141 |
| Level 2   | 0.023            | 0.023            | Level 2                      | 0.041 | 0.041 |

| Redesign Wind Drifts (E-W)   |                   |                  |  |  |
|------------------------------|-------------------|------------------|--|--|
| Story Drift (in) Total Drift |                   | Total Drift (in) |  |  |
| Main Roof                    | 0.272 0.816       |                  |  |  |
| Level 5                      | 0.222             | 0.544            |  |  |
| Level 4                      | 0.169             | 0.322            |  |  |
| Level 3                      | 0.106             | 0.153            |  |  |
| Level 2                      | 0.047             | 0.047            |  |  |
|                              |                   |                  |  |  |
|                              |                   |                  |  |  |
| Rec                          | lesign Wind Drift | ts (N-S)         |  |  |
|                              | Story Drift (in)  | Total Drift (in) |  |  |
| Main Roof                    | 0.194             | 0.592            |  |  |
| Level 5                      | 0.16              | 0.398            |  |  |
| Level 4                      | 0.123             | 0.238            |  |  |
| Level 3                      | 0.079             | 0.115            |  |  |
| Level 2                      | 0.036             | 0.036            |  |  |

| Existing Wind Drifts (E-W) |                   |                  |  |  |
|----------------------------|-------------------|------------------|--|--|
|                            | Story Drift (in)  | Total Drift (in) |  |  |
| Main Roof                  | 0.555             | 1.764            |  |  |
| Level 5                    | 0.488             | 1.209            |  |  |
| Level 4                    | 0.38              | 0.721            |  |  |
| Level 3                    | 0.241             | 0.341            |  |  |
| Level 2                    | 0.1               | 0.1              |  |  |
|                            |                   |                  |  |  |
|                            |                   |                  |  |  |
| Exi                        | sting Wind Drifts | 5 (N-S)          |  |  |
|                            | Story Drift (in)  | Total Drift (in) |  |  |
| Main Roof                  | 0.409             | 1.329            |  |  |
| Level 5                    | 0.363             | 0.92             |  |  |
| Level 4                    | 0.285             | 0.557            |  |  |
| Level 3                    | 0.188             | 0.272            |  |  |
| Level 2                    | 0.084             | 0.084            |  |  |

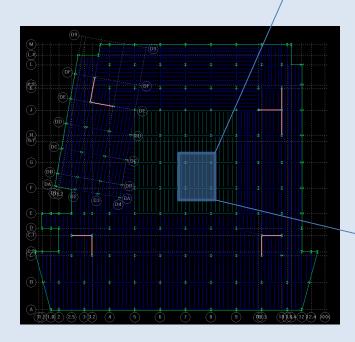
Introduction Problem Statement and Solution Structural Depth Gravity System Lateral System Green Roof Breadth **Enclosures Breadth** Conclusion

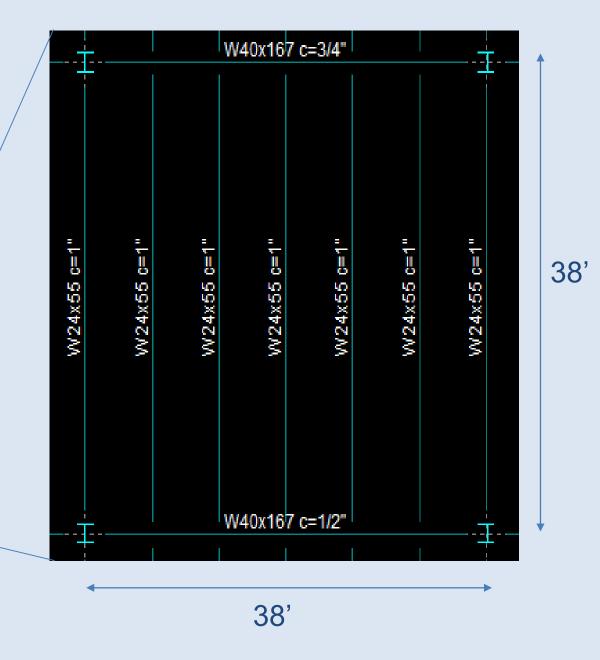


# **Green Roof Breadth**



Introduction Problem Statement and Solution Structural Depth Green Roof Breadth Loading and Framing **Design and Materials Enclosures Breadth** Conclusion


### **Green Roof Breadth- Loading and Framing**


- 6.67' spacing
- 1" camber
- ½" camber

• Tree area removed in order to decrease dead load • Steel beams and girders necessary to carry load • Slightly smaller bays (38'x38')

• Average beam size W24x55

• Average girder size W40x167





| Courtyard Green Roof Dead Loads (PSF) |        |       |  |  |  |
|---------------------------------------|--------|-------|--|--|--|
| Material                              | Garden | Paver |  |  |  |
| Ινιατειταί                            | Area   | Area  |  |  |  |
| Deck                                  | 3      | 3     |  |  |  |
| Concrete Topping                      | 31     | 31    |  |  |  |
| Vegitation                            | 20     |       |  |  |  |
| Engineered Fill (fully                | 55     | 55    |  |  |  |
| saturated)                            |        | JJ    |  |  |  |
| Filter Fabric                         | 1      | 1     |  |  |  |
| Drainage Layer                        | 2      | 2     |  |  |  |
| Root Barrier                          | 1      | 1     |  |  |  |
| Waterproofing                         | 1      | 1     |  |  |  |
| Membrane                              | Ŧ      | T     |  |  |  |
| Planter Allowance                     | 10     | 10    |  |  |  |
| Concrete Pavers                       |        | 30    |  |  |  |
| Total 124 134                         |        |       |  |  |  |

Introduction **Problem Statement and Solution** Structural Depth Green Roof Breadth Loading and Framing Design and Materials **Enclosures Breadth** Conclusion

### **Green Roof Breadth- Design and Materials**

- Engineered fill

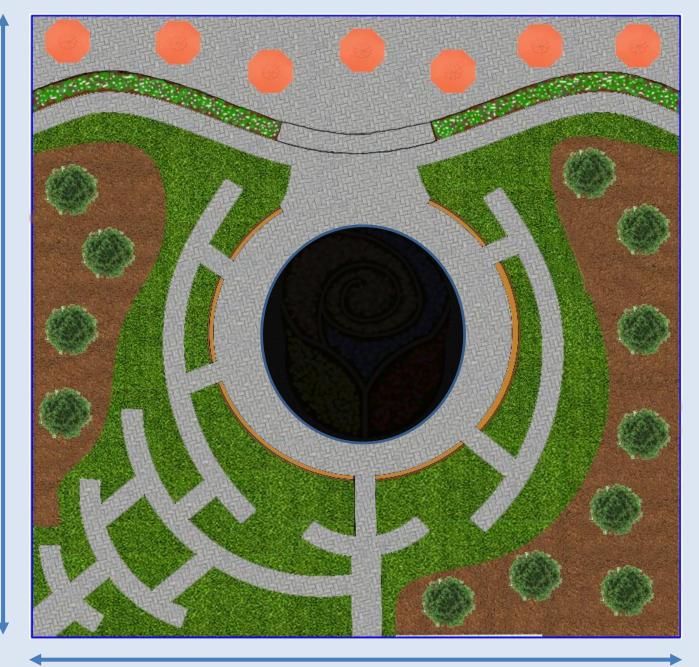
|            | Salar<br>A.C. |                |                                         |            |       |
|------------|---------------|----------------|-----------------------------------------|------------|-------|
|            |               |                |                                         |            |       |
|            |               | and the second |                                         | Partie and |       |
|            |               |                | 12. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            |       |
|            |               |                |                                         |            |       |
| The second | Ara line      | A.             |                                         | The second | 12.02 |

• Design focused around new feature planter • Takes a form symbolic to the building owner Features plants local to the building area • Walkways shown are 5' wide

Holland pavers for patio area • Easy snow removal due to smooth surface

Filters rainwater and buffers acid rain
















Design obscured for privacy rea



152'

Introduction Problem Statement and Solution Structural Depth Gravity System Lateral System Green Roof Breadth Enclosures Breadth Conclusion

# **Enclosures Breadth**



Introduction **Problem Statement and Solution** Structural Depth Green Roof Breadth **Enclosures Breadth** Membrane Comparison Water Testing and Drainage Plan Conclusion

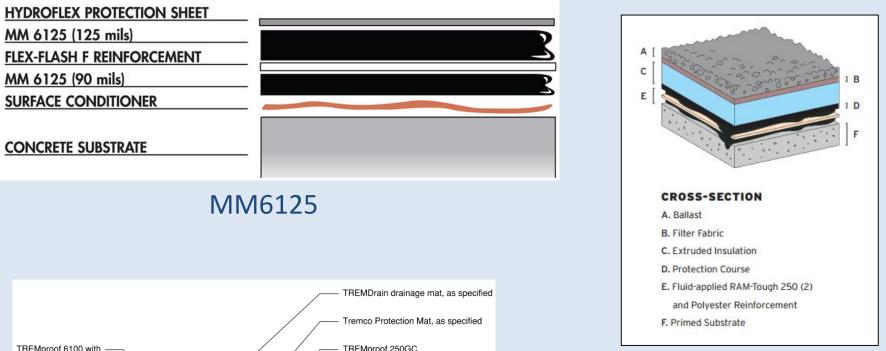
#### American Hydrotech MM6125

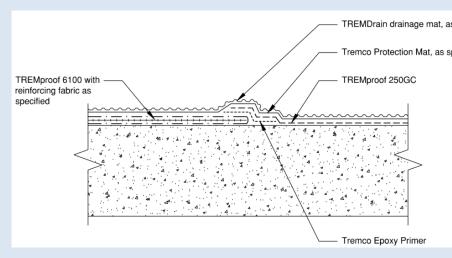
- No material failure in 50 years (+)
- Performed well in fertilizer resistance test (+)
- Can only be installed through trained Hydrotech professionals (-)

#### Barret Company ram-Tough 250

- Highest flash point (+)
- Highest softening point (+)
- Not tested for fertilizer resistance and animal droppings (-)

#### Tremco TREMproof 6100


- Manufactured near the project site (+)
- Second highest flash point (+)
- Performed well in a pinhole test (+)
- Requires special authorization to be applied over lightweight concrete topping (-)


#### **Enclosures Breadth**

• Resists animal droppings (+)

### Membrane Comparison

#### Monolithic Membrane 6125 Fabric Reinforced Assembly.





TREMproof 6100

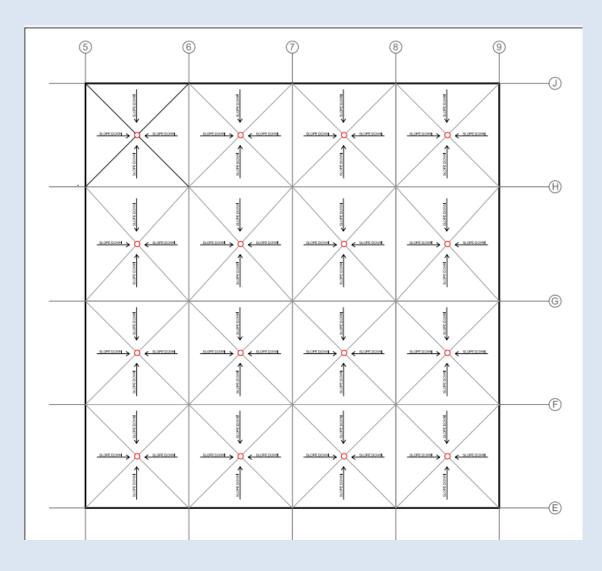
#### ram-Tough 250

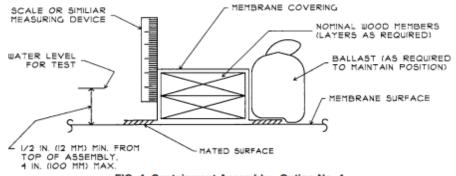
Introduction **Problem Statement and Solution** Structural Depth Green Roof Breadth Enclosures Breadth Membrane Comparison Water Testing and Drainage Plan Conclusion

#### Leakage Test- ASTM D7281-07

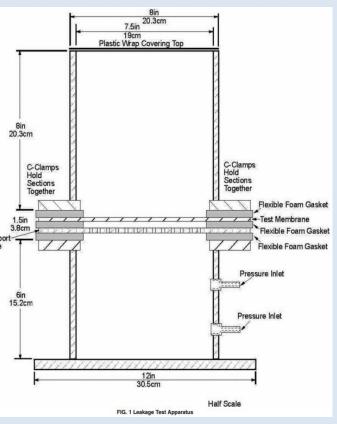
- Requires leakage test apparatus • 7 day test procedure under 6" of water • Utilizes pressurized air (6.9 kPa)

#### Flood Test- ASTM D5957-98


- Courtyard test
- Performed after membrane installation • Requires drains to be plugged
- 24-72 hour test
- 1-4" water


#### New Drainage Plan

- one drain per bay
- 16 drains total
- 1520 sq ft of membrane area per drain • Tie drains into existing system


#### **Enclosures Breadth**

### Water Testing and Drainage Plan









Introduction **Problem Statement and Solution** Structural Depth Green Roof Breadth **Enclosures Breadth** Conclusion

- building
- new gravity and lateral system were created
- Total drift and story drift decreased
- Courtyard green roof redesigned
- New watertight assembly chosen

#### Conclusion

- More office space was created on the upper three floors of the
  - Approximately 2,000 sq ft per floor, 6,000 sq ft total



Introduction Problem Statement and Solution Structural Depth Green Roof Breadth Enclosures Breadth Conclusion

#### <u>Acknowledgements</u>

**RTKL Corporation** 

WJE Cleveland

AE Faculty Heather Sustersic

AE 2015

Family and Friends



Introduction Problem Statement and Solution Structural Depth Green Roof Breadth **Enclosures Breadth** Conclusion



Mary Julia Haverty

Structural Option

Advisor H. Sustersic

AE Senior Thesis April 13<sup>th</sup>, 2015