
Technical Report 2

Energy Model

October 6, 2014

NEIU El Centro Chicago, IL

Michael Gramarossa

Advisor: Dr. Freihaut

Table of Contents

Executive Summary	2
Building Overview	3
Mechanical Systems Overview	4
System Load Design Estimation	5
Design Conditions	5
Assumptions	6
Conlusion	7
Annual Energy Consumption and Operating Costs	8
Energy Consumption Breakdown	
Monthly Energy Usage	9
Annual Cost Conclusion	
Annual Pollutant Emissions	12
References	13
Appendices	14
Appendix A – System Checksums Output	
Appendix B – Energy Consumption Output	
Appendix C – Equipment Energy Consumption Output	17
Appendix D – Monthly Energy Consumption Output	19
Appendix E – Emission Factor Tables	20

Executive Summary

The purpose of Technical Report 2 is to examine the mechanical systems of NEIU El Centro with load modelling software. A Trane TRACE model was prepared to calculate: the various loads of the building, annual and monthly costs of fuel consumption, and the amount of pollutant emissions produced from fuel consumption. The analysis was conducted using the drawings and documents issued for construction. The results calculated here were also compared to the results calculated by the mechanical engineer.

The TRACE model produced a cooling load of 260 SF/ton and a heating load of 30.8 BTUh/SF. The heating load is relatively high because nearly the entire building façade is made up of a glass curtain wall. The number calculated here is higher than the designers' because the designer used -10°F outside air temperature, which is lower than what ASHRAE recommends. The total supply air calculated was 0.86 CFM/SF and the total ventilation supply air was 0.37 CFM/SF.

The heating plant was determined to use the most energy out of any of the systems in the building. This is most likely due to the high heating loads associated with having glass curtain wall construction in Chicago, which experiences very cold winters. The total annual cost of heating and powering the building was calculated to be about \$72,000. This results in a cost per square foot of 1.31 \$/SF. An energy analysis, including costs, was also conducted by the mechanical engineer to apply for LEED credits and determined the annual cost of energy to be about \$64,000. This is 11% lower than the amount calculated by the TRACE model in this report.

An emission analysis was also conducted to determine the amount of pollutants produced by fuel consumption that will be released into the environment each year. The total annual consumption is about 750,000 kWh of electricity and 1,550 cubic feet of natural gas each year. This will result in millions of pounds of carbon dioxide released into the air and thousands of pounds of solid waste.

Building Overview

Northeastern Illinois University (NEIU) El Centro is a new educational facility that is being built in the northwest side of Chicago, Illinois. It is located along Kennedy Expressway and will be passed by an estimated 400,000 vehicles per day. The building is set to be completed September 2014, in time for Fall Semester classes. It is a 55,000 square foot building with three stories; there is no basement in El Centro. The building will include classrooms, art studios, computer rooms, lecture halls, music studios, wet labs, damp labs, a library, student lounges, resource rooms, administrative space, and offices.

Nearly the entire building is enveloped in a curtain wall façade. The curtain wall features fins that are designed to limit solar gains on the building and to control the amount of natural daylight into the building. The fins will appear gold when driving into the city, and blue when leaving the city, reflecting the school colors as can be seen in the rendering below (courtesy of JGMA). Photovoltaic panels are mounted to the majority of the roof area. Other green initiatives include low flow plumbing fixtures, high-efficiency equipment, and creative lighting that have made this project eligible for a LEED gold rating.

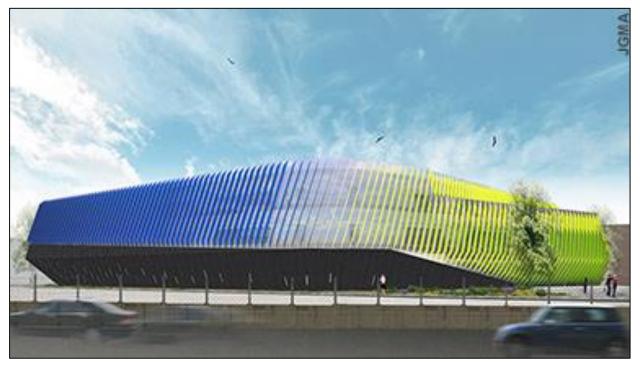
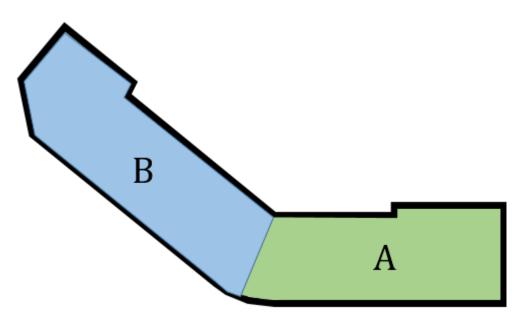



Image 1 - Showing El Centro's curtain wall and unique dual coloring of the fins

Mechanical Systems Overview

Roof Top Air Handling Units

There are two identical packaged air handling units located on the roof called RTU-1 and RTU-2 respectively. They will serve all of the ventilation and cooling requirements of the building year round. They each comprise of: (in order of airflow) return fan, economizer, filter, cooling coil, supply fan, indirect gas fired furnace, sound attenuator, and discharge plenum. RTU-1 and RTU-2 are both served by separate air cooled condensing units, also located on the roof. Architecturally and mechanically, the building is split up into two distinct zones: A and B. See the simplified floor plan sketch below. RTU-1 serves all of the first floor, and zone B on the second floor. RTU-2 serves zone B on the second floor and all of the third floor.

Simplified Typical Floor Plan Sketch

VAV Boxes

El Centro is served by 71 variable air volume boxes. The VAV boxes have reheat coils that are served by two boilers

Boilers

The buildings heating loads are served by two identical 750 MBH natural gas fired hot water boilers. A corridor wraps around the entire perimeter of the building to shield the classrooms from the noisy Kennedy Expressway. This leads to no heating loads in any of the rooms except the corridor. The boilers serve hot water radiant finned tubes that run the length of the perimeter of the building in the corridor. The boilers also serve the heating coils located in all of the VAV boxes in each space. A separate natural gas water heater is used for domestic hot water.

System Design Load Estimation

A model was generated in Trane TRACE 700 to determine the design load energy consumption of NEIU El Centro. Lighting, infiltration, ventilation, occupancy, mechanical equipment, solar gain, envelope, and miscellaneous electrical loads were taken into consideration and utilized in this analysis. Some information was taken directly from the project documents and load models created by the engineer of record, Primera Engineers. Other information was obtained from ASHRAE guidelines and reasonable assumptions. A block load analysis was conducted in this analysis to simplify the model. The results calculated here were compared to the design documents.

Design Conditions

Location

NEIU El Centro is located on the northwest side of Chicago, Illinois and falls under climate zone 5A. This zone is described as moist and humid and has moderately hot summers and cold winters. Table 1 below summarizes the design temperatures and set points used in the building for heating and cooling calculations.

Heating 99.6%	Coolin	g 0.4%	Dehur	nidificati	on 0.4%	Design Set Point			
DB (°F)	DB MCWB (°F) (°F)		DP HR MCD (°F) (°F)			Cooling DB (°F)	Heating DB (°F)	% RH	
-1.6	92.1	74.9	75	134.1	84.3	75	70	50	

Table 1 – Design Conditions (Source: ASHRAE 2009 Handbook of Fundamentals)

Building Construction

El Centro is enveloped almost entirely in a curtain wall. Most classrooms and offices do not have exterior walls so that they are shielded from the noisy Kennedy Expressway. They are surrounded by a corridor that runs the perimeter of the building which is enclosed by the curtain wall. The building has solar fins that help limit the amount of direct sunlight into the spaces. Below is a summary of the U-values used in this energy analysis (courtesy of Primera Engineers and JGMA).

Surface	Description	U-Value
Curtain Wall	Glazing	0.29
Solid Wall	CMU, metal studs, Insulation, GWB	0.056
Roof	Metal deck, NWC, PVC membrane	0.033

Table 2 – U-Values

Assumptions

Occupancy & Ventilation

The exact occupancy for some spaces, such as classrooms and offices, were given by the architect, JGMA. For other spaces, the occupancy was calculated on a SF/person basis from ASHRAE 62.1-2013. The minimum outdoor airflows required for each space were taken directly from the design documents.

Lighting & Miscellaneous Loads

The same lighting loads as the design engineer were used and were done on a watt per square foot basis. Miscellaneous loads were included to account for computers and other office equipment located throughout the building. The miscellaneous loads were also done on a watt per square foot basis, reflecting the same method used by the design engineer. Table 3 summarizes the loads used.

Type of Space	Lighting W/SF	Miscellaneous W/SF
Classroom	1.0	0.5
Office	1.0	0.5
Corridor	0.5	-
Storage	0.5	-
Restroom	0.5	-
Lounge	1.0	0.5

Table 3 – Lighting & Miscellaneous Loads

Infiltration

The building is tightly constructed and contains no operable windows. However, the design engineer used 0.4 air changes per hour for any space that had an exterior wall. This may be an overestimation but the same method was applied to this model.

Schedules

El Centro is a university building and will be open 24 hours a day for students who will be studying late. The greatest load is expected to be 8:00 AM to 6:00 PM when classes will be in session. The following schedule reflects the expected occupancy of the building throughout the day and was used in the energy model.

Start Time	End Time	Rate
Midnight	8:00 A.M.	Off-Peak
8:00 A.M.	6:00 P.M.	Peak
6:00 P.M.	9:00 P.M.	Mid-Peak
9:00 P.M.	Midnight	Off-Peak

Table 4 – Occupancy Schedule

System Equipment

The building is served by two roof top air handling units that serve the 71 VAV boxes throughout the spaces. Each RTU is served by a separate air cooled condensing unit. RTU-1 serves zones A and B on the ground floor and zone B on the second floor. RTU-2 serves zone A on the second floor and zones A and B on the third floor. See the mechanical systems overview section at the beginning of this report for reference and for more information about the systems.

Load Results

The results of the TRACE energy model show that the values calculated in this report are relatively close to the designer's values. Table 5 below compares the results modeled for this report against the designer's results.

	System	Cooling (SF/ton)	Heating (Btu/h·SF)	Total Supply Air (CFM/SF)	Ventilation Supply (CFM/SF)
	RTU-1	260	30.8	0.86	0.37
Modeled	RTU-2	285	29.2	0.80	0.36
	Average	275	29.9	0.83	0.37
	RTU-1	260	33.5	0.90	0.39
Designed	RTU-2	244	36.5	1.00	0.39
	Average	251	35.2	0.96	0.39
	% Difference	+9.5%	-17.8%	-15.7%	-5.4%

Table 5 - Model vs. Design Load Analysis Results

Load Results - Conclusion

For reference, the total square footage of El Centro is about 55,000 SF if you want to obtain the total CFM's required for a certain load above. The largest difference appears in the heating requirements of the building. This is probably because the designer used a design outdoor air temperature of -10°F, well below the -1.6°F value obtained in ASHRAE Handbook of Fundamentals. Errors could have occurred in fenestration calculations because they were based off of elevations and floor plans. Simplifications were also made modelling block loads, instead of individual rooms, and errors could have been made. There is also a tilt associated with some of the curtain wall in the building that was not taken into consideration for the load model because of time constraints.

Annual Energy Consumption and Operating Costs

An analysis of NEIU El Centro's annual energy consumption and operating costs was conducted using the same TRACE model. A full year energy simulation was conducted using the same ventilation rates, internal generation and envelope values for the load calculation. To do this, a cooling and heating plant was added to the TRACE model. The cooling plant consists of two separate packaged roof top air handling units which are served by their respective air-cooled condensing units. The heating plant consists of a natural gas fired boiler served by a hot water pump.

Energy Consumption Breakdown

The largest consumer of power in the building is the heating plant. This makes sense because the curtain wall enveloping El Centro causes high heating loads during the cold winters of Chicago. The best way to combat this problem is to use glazing with a lower uvalue or architecturally reducing the size of the curtain wall. Table 6 and Figure 1 display a breakdown of the total energy usage of the building.

Equipment	Electricity Consumption (kWh)	Natural Gas Consumption (kBtu)	Total Building Energy (kBtu/yr)	% of Total Building Energy
Cooling Plant	257,578	-	879,115	21.6
Heating Plant	4,964	1,516,747	1,533,689	37.6
Lights	388,218	-	1,324,987	32.5
Receptacles	99,337	-	338,038	8.3
Total	750,097	1,516,747	4,075,829	100

Table 6 – Model vs. Design Load Analysis Results

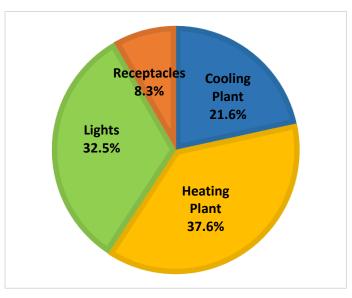


Figure 1 – Pie Chart of Energy Consumption

Monthly Operating Cost Breakdown

The following graph summarize the monthly operating costs of each system. As expected, heating and cooling operating costs vary with the season and mimic the natural gas and electricity consumption graphs below (Figures 3 & 4). Lighting and receptacle loads are fairly consistent throughout the year.

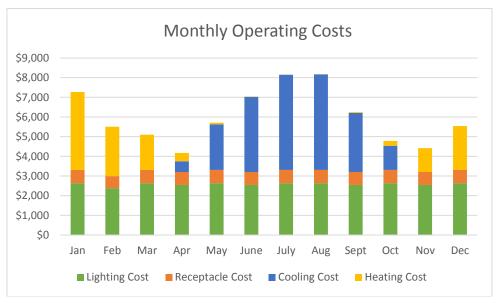


Figure 2 – Monthly System Cost

Monthly Energy Usage by source

The largest electricity consumption occurs during the summer months. This is expected because of the high cooling loads required and the roof top air handling units consume electric energy. The highest rates of natural gas consumption occur during the winter months. This is also expected because of the high heating loads associated with the winter and the boilers are fired from natural gas. Figures 3 and 4 below summarize the electric and natural gas consumption of El Centro.

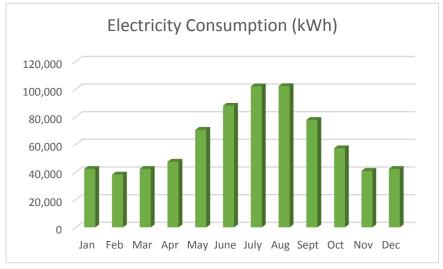


Figure 3 – Monthly Electricity Consumption

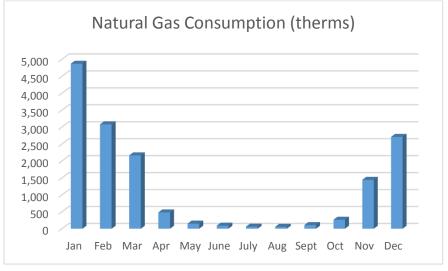


Figure 4 – Monthly Natural Gas Consumption

Annual and Monthly Operating Costs

The cost of electricity in Chicago averages about 0.08 \$/kWh. The average cost of natural gas is about 0.80 \$/therm. These values were obtained from the energy analysis conducted by Primera Engineers. The figures below summarize the annual and monthly fuel costs associated with El Centro.

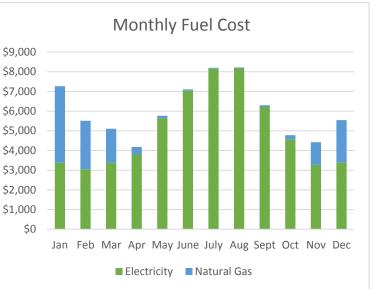


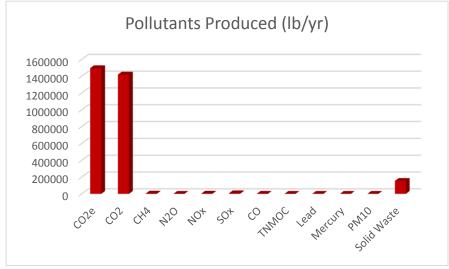
Figure 5 – Annual Fuel Cost

Figure 6 – Monthly Fuel Costs

Annual Costs Conclusion

The total annual cost of electricity is about \$60,000 and the total cost of natural gas is about \$12,000. This results in a total annual cost of \$72,000 to heat and power the building. The cost per square foot is about 1.31 \$/SF. An energy analysis was also conducted by the MEP engineer, Primera, using a TRACE model. The energy analysis was conducted to apply for energy efficient LEED credits. Primera estimated that the annual cost of operating the building would be \$64,000. These results are summarized in the table below. Since El Centro was recently completed in September 2014, there are not actual utility bills available to compare this data.

Analysis	Total Annual Cost	Cost/SF	% Difference From Design
Modeled	\$72,000	1.31 \$/SF	11%
Designer	\$64,000	1.18 \$/SF	-


Table 7 – Annual Fuel Cost Comparison

Annual Pollutant Emissions

The environmental impact of El Centro is due mainly to electricity consumption. The data in the table below were calculated using a report from the National Renewable Energy Laboratory entitled *Source Energy and Emission Factors for Energy Use in Buildings.* The total annual electricity consumption of the building is about 750,000 kWh and the total annual natural gas consumption is about 1546 cubic feet. This results in millions of pounds of carbon dioxide released into the atmosphere and thousands of pounds of solid waste each year.

Pollutant	Electricity Rate (Ib/kWh)	Natural Gas Rate (Ib/MCF)	Emissions due to Electricity (lb/yr)	Emissions due to Natural Gas (Ib/yr)	Total Emissions (lb/yr)
CO _{2e}	1.74E+00	1.23E+02	1305171	190158	1495329
CO ₂	1.64E+00	1.22E+02	1230161	188612	1418773
CH ₄	3.59E-03	2.50E-03	2693	4	2697
N ₂ O	N ₂ O 3.87E-05		29	4	33
NO _x	3.00E-03	1.11E-03	2250	2	2252
SO _x	8.57E-03	6.32E-04	6428	1	6429
СО	8.54E-04	9.33E-02	641	144	785
TNMOC	7.26E-05	6.13E-03	54	9	64
Lead	1.39E-07	5.00E-07	0	0	0
Mercury	3.36E-08	2.60E-07	0	0	0
PM10	9.26E-05	8.40E-03	69	13	82
Solid Waste	2.05E-01	0.00E+00	153770	0	153770

Table 8 – Annual Emissions due to Fuel Consumption

References

- ANSI/ASHRAE. (2013). *Standard 62.1 2013*, Ventilation for Acceptable Indoor Air Quality. Atlanta, GA: American Society of Heating, Refrigeration, and Air Conditioning Engineers, Inc.
- ANSI/ASHRAE. (2013). *Standard 90.1 2013*, Energy Standard for Buildings Except Low-Rise Residential Buildings. Atlanta, GA: American Society of Heating, Refrigeration, and Air Conditioning Engineers, Inc.
- ASHRAE. (2009). *2009 ASHRAE Handbook Fundamentals.* Atlanta, GA: American Society of Heating, Refrigeration, and Air Conditioning Engineers, Inc.
- Primera Engineers Ltd., Construction Documents, John Palasz and Lindsay Bose, Primera Engineers, Chicago, Illinois.

Appendix A

RTU-1

System Checksums By ACADEMIC

Variable Volume Reheat (30% Min Flow Default)

		OIL PEAK			CLG SPACE	PEAK		HEATING COIL	PEAK		ТЕМ	PERATURES	6
Peake	d at Time:	Mo/I	Hr: 7 / 15		Mo/Hr:	8 / 15		Mo/Hr: Heati			Cooling	Heating	
0	utside Air:	OADB/WB/H	IR: 91/73/9	6	OADB:	89		OADB: 0	0 0		SADB	55.0	84.0
											Ra Plenum	77.4	67.8
	Space	Plenum	Net	Percent	Space	Percent		Space Peak	Coil Peak	Percent	Return	77.4	67.8
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	Of Total		Space Sens	Tot Sens	Of Total	Ret/OA	83.3	20.4
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)	Fn MtrTD	0.4	0.0
Envelope Loads							Envelope Loads			()	Fn BldTD	0.9	0.0
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00	Fn Frict	2.6	0.0
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00			
Roof Cond	0	0	0	0	0	0	Roof Cond	0	0	0.00			
Glass Solar	164,288	0	164,288	15	184,606	37	Glass Solar	0	0	0.00		RFLOWS	
Glass/Door Cond	34,364	0	34,364	3	- / -	6	Glass/Door Cond	-237,539	-237,539	32.26		Cooling	Heating
Wall Cond	10,450	4,431	14,881	1:	10,502	2	Wall Cond	-22,694	-31,021	4.21	Diffuser	20,747	7,112
Partition/Door	0		0	0	0	0	Partition/Door	0	0	0.00	Terminal	20,747	7,112
Floor	0	0	0	0	-	0	Floor	0	0	0.00	Main Fan	20,747	7,112
Adjacent Floor Infiltration	0 67,351	0	0 67,351	0	0 24.267	0	Adjacent Floor Infiltration	107.007	0 -137,237	0 18.64	Sec Fan	20,7 17	0
	,		,		, -		Sub Total ==>	-137,237		55.11			
Sub Total ==>	276,453	4,431	280,883	25	247,445	49	Sud Total ==>	-397,469	-405,797	55.11	Nom Vent	8,810	4,977
							Internal Loads				AHU Vent	8,810	4,977
Internal Loads											Infil	1,824	1,824
Lights	59,265	14,816	74,081	7	,	12	Lights	0	0	0.00	MinStop/Rh	7,112	7,112
People	326,012	0	326,012	29	181,118	36	People	0	0	0.00	Return	22,571	8,936
Misc	23,232	0	23,232	2 ;		5	Misc	0	0	0.00	Exhaust	10,634	6,801
Sub Total ==>	408,509	14,816	423,325	38	263,615	52	Sub Total ==>	0	0	0.00	Rm Exh	0	0
											Auxiliary	0	0
Ceiling Load	-7,153	7,153	0	0	-7,205	-1/	Ceiling Load	-3,659	0	0.00	Leakage Dwn	0	0
Ventilation Load	0	0	336,712	30	0	0	Ventilation Load	0	-376,935	51.19	Leakage Ups	0	0
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0			
Dehumid. Ov Sizing			0	0			Ov/Undr Sizing	283,920	283,920	-38.56			
Ov/Undr Sizing	1,118		1,118	0 ;	1,243		Exhaust Heat		11,585	-1.57	ENGIN	IEERING CK	(S
Exhaust Heat		-16,734	-16,734	-2 :			OA Preheat Diff.		-205,417	27.90		Cooling	Heating
Sup. Fan Heat		0	84,299	8 :			RA Preheat Diff.		-36,928	5.01	% OA	42.5	70.0
Ret. Fan Heat		0 -44,276	0	0		;	Additional Reheat		-6,791	0.92	cfm/ft ²	0.86	0.30
Duct Heat Pkup Underfir Sup Ht Pku	n	-44,210	0	0			Underflr Sup Ht Pkup		0	0.00	cfm/ton	224.37	0.00
Supply Air Leakage	P	0	0	0			Supply Air Leakage		0	0.00	ft²/ton	260.34	
		0	0	0			Supply All Leakage		0	0.00	Btu/hr·ft ²	46.09	-30.81
Grand Total ==>	678,927	-34,610	1,109,604	100.00	505,098	100.00	Grand Total ==>	-117,208	-736,363	100.00	No. People	724	-30.01

		ON			AREAS			HEATING COIL SELECTION											
	Tota l ton	Capacity MBh	Sens Cap. MBh	Coil Airflow cfm	Ent °F	ter DB/W °F	/B/HR gr/lb	Lea °F	ve DB °F	/ WB/HR gr/lb	Gr	ross Total	Glas ft²	s (%)		Capacity MBh	Coil Airflow cfm	Ent °F	
Main Clg Aux Clg	92.5 0.0	1,109.6 0.0	735.7 0.0	20,322 0	83.3 0.0	67.5 0.0	78.1 0.0	49.2 0.0	49.1 0.0	52.9 0.0	Floor Part	24,073 0			Main Htg Aux Htg	-269.7 0.0	7,112 0	49.2 0.0	84.0 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Int Door ExFir	0 0			Preheat Reheat	-472.1 -152.1	8,810 7,112	0.0 49.2	49.2 68.8
Total	92.5	1,109.6									Roof Wall	0 15,639	0 8,444	0 54	Humidif Opt Vent	0.0 0.0	0		0.0 0.0
											Ext Door	0	0	0	Total	-741.8			

System Checksums By ACADEMIC

RTU-2

Variable Volume Reheat (30% Min Flow Default)

	COOLING C	OIL PEAK			CLG SPACE	PEAK		HEATING COI	_ PEAK		TEMF	PERATURE	S
	d at Time: utside Air:		Mo/Hr: 7 / 14 OADB/WB/HR: 90 / 73 / 99			8 / 15 89		Mo/Hr: Heat OADB: 0	Mo/Hr: Heating Design OADB: 0		SADB	Cooling 55.0	Heating 84.0
	Space	Plenum	Net	Percent	Space	Percent		Space Peak	Coil Peak	Percent	Ra Plenum Return	78.3 78.3	65.4 65.4
	Sens. + Lat.	Sens. + Lat	Total	Of Total	Sensible	Of Total		Space Sens	Tot Sens		Ret/OA	84.1	15.3
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)	Fn MtrTD	0.4	0.0
Envelope Loads				(70)			Envelope Loads			(/0)	Fn BldTD	0.9	0.0
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00	Fn Frict	2.6	0.0
Skylite Cond	0	0	0	0	0	0	Skylite Cond	0	0	0.00			
Roof Cond	0	15,373	15,373	1	0	0	Roof Cond	0	-43,868	5.44			
Glass Solar	238,722	0—	238,722	20	278,892	51	Glass Solar	0	0	0.00	AI	RFLOWS	
Glass/Door Cond	38,923	0	38,923	3		7 :		-390,066	-390,066	48.36		Cooling	Heating
Wall Cond	3,285	3,829	7,114	1;	,	1;		-6,655	-14,114	1.75	Diffuser	22,111	7,391
Partition/Door	0		0	0	0	0	Partition/Door	0	0	0.00		,	,
Floor	109		109	0	138	0	Floor	-1,525	-1,525	0.19	Terminal	22,111 22,111	7,391
Adjacent Floor	0	0	0	0	0	0	Adjacent Floor	0	0	0	Main Fan	,	7,391
Infiltration	52,731		52,731	5	14,275	3	Infiltration	-104,079	-104,079	12.90	Sec Fan	0	0
Sub Total ==>	333,770	19,202	352,972	30 :	333,905	61	Sub Total ==>	-502,324	-553,651	68.63	Nom Vent	9,890	5,665
											AHU Vent	9,890	5,665
Internal Loads							Internal Loads				Infil	1,414	1,414
Lights	61,738	15,435	77,173	7	61,738	11	Lights	0	0	0.00	MinStop/Rh	7,391	7,391
People	245,700	0	245,700	21		25	People	0	0	0.00	Return	23,525	8,804
Misc	15,471	0	15,471	1	15,471	3	Misc	0	0	0.00	Exhaust	11,304	7,078
Sub Total ==>	322,909	15,435	338,344	29	213,709	39	Sub Total ==>	0	0	0.00	Rm Exh	0	0
	011,000									0.00	Auxiliary	0	0
Ceiling Load	-3,853	3,853	0	0	-4,089	-1	Ceiling Load	-24,547	0	0.00	Leakage Dwn	0	0
Ventilation Load	0	0	413,776	35	0	Ó	Ventilation Load	0	-428,778	53.15	Leakage Ups	0	0
Adj Air Trans Heat	0		0	0	0	0	Adj Air Trans Heat	0	0	0		-	-
Dehumid. Ov Sizing			0	0		-	Ov/Undr Sizing	403,924	403,924	-50.07			
Ov/Undr Sizing	931		931	0	931		Exhaust Heat		28,909	-3.58	ENCIN	EERING CH	23
Exhaust Heat	001	-25,096	-25.096	-2	501		OA Preheat Diff.		-226,425	28.07	LINGIN		
Sup. Fan Heat			85,546	7			RA Preheat Diff.		-30,647	3.80		Cooling	Heating
Ret. Fan Heat		0	0	0			Additional Reheat		0	0.00	% OA	44.7	76.6
Duct Heat Pkup		-44,931	0	0							cfm/ft ²	0.80	0.27
Underfir Sup Ht Pku	р		0	0		1	Underfir Sup Ht Pkup		0	0.00	cfm/ton	227.46	
Supply Air Leakage	-	0	0	0			Supply Air Leakage		0	0.00	ft²/ton	285.43	
											Btu/hr·ft ²	42.04	-29.20
Grand Total ==>	653,758	-31,537	1,166,474	100.00	544,457	100.00	Grand Total ==>	-122,948	-806,667	100.00	No. People	546	

	COOLING COIL SELECTION									AREAS			HEATING COIL SELECTION						
	Tota ton	l Capacity MBh	Sens Cap. MBh	Coil Airflow cfm	Ent °F	ter DB/W °F	/B/HR gr/lb	Lea °F	ve DB °F	/ WB/HR gr/lb	G	ross Total	Glas ft ²	s (%)		Capacity MBh	Coil Airflow cfm		
Main Clg Aux Clg	97.2 0.0	1,166.5 0.0	765.9 0.0	20,623 0	84.1 0.0	67.9 0.0	79.1 0.0	49.2 0.0	48.9 0.0	52.3 0.0	Floor Part	27,746 0			Main Htg Aux Htg	-280.2 0.0	7,391 0	49.2 0.0	84.0 0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Int Door ExFlr	0 660			Preheat Reheat	-530.0 -157.0	9,890 7.391	0.0 49.2	49.2 68.7
Total	97.2	1,166.5									Roof Wall	20,136 17,300	0 13,339	0 77	Humidif Opt Vent	0.0 0.0	0	0.0 0.0	0.0 0.0
											Ext Door	0	0	0	Total	-810.2			

Appendix B

ENERGY CONSUMPTION SUMMARY

By ACADEMIC

		-			
	Elect Cons. (kWh)	Gas Cons. (kBtu)	% of Total Building Energy	Total Building Energy (kBtu/yr)	Total Source Energy* (kBtu/yr)
Alternative 1					
Primary heating					
Primary heating		1,516,747	37.2 %	1,516,747	1,596,576
Other Htg Accessories	4,964		0.4 %	16,942	50,831
Heating Subtotal	4,964	1,516,747	37.6 %	1,533,689	1,647,407
Primary cooling					
Cooling Compressor	219,399		18.4 %	748,809	2,246,652
Tower/Cond Fans	37,716		3.2 %	128,726	386,216
Condenser Pump			0.0 %	0	0
Other Clg Accessories	463		0.0 %	1,580	4,741
Cooling Subtotal	257,578		21.6 %	879,115	2,637,610
Auxiliary					
Supply Fans			0.0 %	0	0
Pumps			0.0 %	0	0
Stand-alone Base Utilities			0.0 %	0	0
Aux Subtotal			0.0 %	0	0
Lighting					
Lighting	388,218		32.5 %	1,324,987	3,975,357
Receptacle					
Receptacles	99,337		8.3 %	339,038	1,017,215
Cogeneration					
Cogeneration			0.0 %	0	0
Totals					
Totals**	750,097	1,516,747	100.0 %	4,076,829	9,277,590
	750,097	1,516,747	100.0 %	4,076,829	

 $^{\star}\,$ Note: Resource Utilization factors are included in the Total Source Energy value .

** Note: This report can display a maximum of 7 utilities. If additional utilities are used, they will be included in the total.

Project Name: Dataset Name: Tech2.trc TRACE® 700 v6.3 calculated at 09:50 PM on 10/05/2014 Alternative - 1 Energy Consumption Summary report page 1

Appendix C

EQUIPMENT ENERGY CONSUMPTION By ACADEMIC

Alternative: 1 Tech_Report_2

						Мо	nthly Consu	mption						
Equipment - U	Itility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights														
-	Electric (kWh)	32,971.9	29,781.1	32,971.9	31,908.3	32,971.9	31,908.3	32,971.9	32,971.9	31,908.3	32,971.9	31,908.3	32,971.9	388,217.6
	Peak (kW)	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3
Misc. Ld														
	Electric (kWh)	8,436.9	7,620.4	8,436.9	8,164.7	8,436.9	8,164.7	8,436.9	8,436.9	8,164.7	8,436.9	8,164.7	8,436.9	99,337.2
	Peak (kW)	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3
Cooling Coil C	ondensate													
Recoverable	e Water (1000gal)	0.0	0.0	0.0	0.5	10.2	21.2	28.0	27.4	18.0	4.0	0.0	0.0	109.3
F	Peak (1000gal/Hr)	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1
Cpl 1: Cooling	plant - 001 [Sur	n of dsn coil	capacities=	=189.7 tons]										
	ominal Capacity/		-		 Orig F.L.Ra	te=227.6 kV	V1 (Coolin	g Equipmen	t)					
	Electric (kWh)	0.0	0.0	0.0	5,747.8	24,532.0	40,718.7	51,754.5	51,882.3	31,842.2	12,921.7	0.0	0.0	219,399.1
	Peak (kW)	0.0	0.0	0.0	64.7	133.3	170.4	190.2	183.9	152.5	94.9	37.9	0.0	190.2
Condenser far	n for Heat Pump	[Design Hea	at Reiection	/F.L.Rate=2	54.4 tons / 3	30.53 kW1								
	Electric (kWh)	0.0	0.0	0.0	1,065.9	4,349.1	6,987.8	8,642.4	8,721.1	5,588.0	2,362.0	0.0	0.0	37,716.3
	Peak (kW)	0.0	0.0	0.0	11.6	22.1	27.2	29.3	28.7	25.1	16.6	7.1	0.0	29.3
Cntl panel & ir	nterlocks - 0.1 K	N [F.L.Rate=	=0.10 kW]	(Misc Acce	ssory Equip	oment)								
	Electric (kWh)	0.0	0.0	0.0	39.5	74.4	72.0	74.4	74.4	72.0	56.3	0.0	0.0	463.0
	Peak (kW)	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1
Hol 1: Boiler [Sum of dsn coil o	capacities=5	49.9 mbhl											
	lominal Capacity			6 60 Therms	Heatin	g Equipmen	t)							
	Gas (therms)	1,671.2	1,116.8	863.4	328.6	90.6	18.2	5.4	5.8	45.5	236.2	692.4	1,062.0	6,135.9
	Peak (therms/Hr)	4.1	3.8	3.6	3.3	1.5	0.5	0.2	0.2	1.2	2.8	3.4	3.6	4.1
Boiler forced o	Iraft fan [F.L.Rat	e=0.55 kW1	(Misc Ac	cessory Equi	ipment)									
	Electric (kWh)	409.1	369.5	409.1	245.3	60.5	36.3	22.0	25.3	34.6	194.7	384.4	409.1	2,600.0
	Peak (kW)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Cntl panel & ir	nterlocks - 0.5 K	N [F.L.Rate=	=0.50 kW1	(Misc Acce	ssory Fauir	oment)								
	Electric (kWh)	372.0	336.0	372.0	223.0	55.0	33.0	20.0	23.0	31.5	177.0	349.5	372.0	2,364.0
	Peak (kW)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

Hpl 2: Heat Exchanger [Sum of dsn coil capacities=1,002 mbh]

EQUIPMENT ENERGY CONSUMPTION

By ACADEMIC

Alternative: 1 Tech_Report_2

					Мо	nthly Consu	Imption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Hpl 2: Heat Exchanger [Sum o	of dsn coil ca	apacities=1,0	002 mbh]	_									
Gas-fired heat exchanger - 002	2 [Nominal	Capacity/F.L	.Rate=1,002	mbh / 13.0	01 Therms]	(Heating E	Equipment)						
Gas (therms)	3,195.5	1,961.2	1,299.3	152.4	0.0	0.0	0.0	0.0	0.0	27.6	749.0	1,646.7	9,031.6
Peak (therms/Hr)	5.9	4.0	2.9	0.9	0.0	0.0	0.0	0.0	0.0	0.3	2.2	3.4	5.9

ONLY

Appendix D

MONTHLY ENERGY CONSUMPTION

By ACADEMIC

				-	Mor	thly Energy	/ Consump	tion					
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Tota
Alternative: 1	Tech	_Report_2											
Electric							_ 7 /						
On-Pk Cons. (kWh)	42,190	38,107	42,190	47,394	70,480	87,921	101,922	102,135	77,641	57,120	40,807	42,190	750,098
On-Pk Demand (kW)	57	57	57	133	211	253	275	268	233	167	102	57	275
Off-Pk Demand (kW)	57	57	57	82	110	159	195	194	137	96	57	57	195
Mid-Pk Demand (kW)	57	57	57	65	92	108	130	124	102	67	57	57	130
Gas													
On-Pk Cons. (therms)	2,311	1,411	952	282	90	18	5	6	46	211	617	1,110	7,059
Off-Pk Cons. (therms)	2,119	1,449	1,073	199	0	0	0	0	0	53	762	1,397	7,051
Mid-Pk Cons. (therms)	437	218	138	0	0	0	0	0	0	0	62	202	1,057
On-Pk Demand (therms/hr)	10	8	6	3	2	0	0	0	1	3	4	6	10
Off-Pk Demand (therms/hr)	9	7	5	2	0	0	0	0	0	1	4	6	9
Mid-Pk Demand (therms/hr)	6	4	2	0	0	0	0	0	0	0	1	3	6
Energy Consum	ption			E	Invironmer	ntal Impact	Analysis						
Building 78,67	4 Btu/(ft2-ye	ar)		CC	2	830,065 lbm/	year						
	8 Btu/(ft2-ye	ar)		SO		2,179 gm/ye	ear						
				NC		919 gm/yea	ar						
Floor Area 51,81	9 ft2												

ONLY

Appendix E

Pollutant (lb)	National	Eastern	Western	ERCOT	Alaska	Hawaii
CO _{2e}	1.67E+00	1.74E+00	1.31E+00	1.84E+00	1.71E+00	1.91E+00
CO ₂	1.57E+00	1.64E+00	1.22E+00	1.71E+00	1.55E+00	1.83E+00
CH4	3.71E-03	3.59E-03	3.51E-03	5.30E-03	6.28E-03	2.96E-03
N ₂ O	3.73E-05	3.87E-05	2.97E-05	4.02E-05	3.05E-05	2.00E-05
NOx	2.76E-03	3.00E-03	1.95E-03	2.20E-03	1.95E-03	4.32E-03
SOx	8.36E-03	8.57E-03	6.82E-03	9.70E-03	1.12E-02	8.36E-03
CO	8.05E-04	8.54E-04	5.46E-04	9.07E-04	2.05E-03	7.43E-03
TNMOC	7.13E-05	7.26E-05	6.45E-05	7.44E-05	8.40E-05	1.15E-04
Lead	1.31E-07	1.39E-07	8.95E-08	1.42E-07	6.30E-08	1.32E-07
Mercury	3.05E-08	3.36E-08	1.86E-08	2.79E-08	3.80E-08	1.72E-07
PM10	9.16E-05	9.26E-05	6.99E-05	1.30E-04	1.09E-04	1.79E-04
Solid Waste	1.90E-01	2.05E-01	1.39E-01	1.66E-01	7.89E-02	7.44E-02

Table 3 Total Emission Factors for Delivered Electricity (Ib of pollutant per kWh of electricity)

Table 8 Emission Factors for On-Site Combustion in a Commercial Boile	er
(lb of pollutant per unit of fuel)	

	Commercial Boiler											
Pollutant (lb)	Bituminous Coal *	Lignite Coal **	Natural Gas	Residual Fuel Oil	Distillate Fuel Oil	LPG						
	1000 lb	1000 lb	1000 ft ³ ***	1000 gal	1000 gal	1000 gal						
CO _{2e}	2.74E+03	2.30E+03	1.23E+02	2.56E+04	2.28E+04	1.35E+04						
CO2	2.63E+03	2.30E+03	1.22E+02	2.55E+04	2.28E+04	1.32E+04						
CH₄	1.15E-01	2.00E-02	2.50E-03	2.31E-01	2.32E-01	2.17E-01						
N₂O	3.68E-01	ND [†]	2.50E-03	1.18E-01	1.19E-01	9.77E-01						
NOx	5.75E+00	5.97E+00	1.11E-01	6.41E+00	2.15E+01	1.57E+01						
SOx	1.66E+00	1.29E+01	6.32E-04	4.00E+01	3.41E+01	0.00E+00						
co	2.89E+00	4.05E-03	9.33E-02	5.34E+00	5.41E+00	2.17E+00						
VOC	ND [†]	NDŤ	6.13E-03	3.63E-01	2.17E-01	3.80E-01						
Lead	1.79E-03	6.86E-02	5.00E-07	1.51E-06	ND†	ND†						
Mercury	6.54E-04	6.54E-04	2.60E-07	1.13E-07	ND †	NDŤ						
PM10	2.00E+00	ND [†]	8.40E-03	4.64E+00	1.88E+00	4.89E-01						

* from the U.S. LCI data module: Bituminous Coal Combustion in an Industrial Boiler (NREL 2005)
** from the U.S. LCI data module: Lignite Coal Combustion in an Industrial Boiler (NREL 2005)

*** Gas volume at 60°F and 14.70 psia. [†] no data available