Samantha deVries

Advisor: Dr. Thomas Boothby

Department of Architectural Engineering The Pennsylvania State University Structural Option

Spring 2015

1141 Georgia Ave Wheaton, Maryland

Building Overview

- 158 Feet
- 14 Stories
- 180,000 Gross Square Feet
- \$44 Million
- Constructed Feb. 2013 Aug. 2014
- Apartment Building

Building Introduction

Problem Statement

Tall Timber Introduction

Image Source: The George Apartments online

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Project Team

Owner

General Contractor and CM

Architect

Structural Engineer

Site Information

- Wheaton, MD
- North of D.C.
- Close to Metro Station

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Appendix

- 1960's Concrete Office Building
- Renovation
- Concrete Layout
- Steel Addition Layout

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

- 1960's Concrete Office Building
- Renovation
- Concrete Layout
- Steel Addition Layout

Building Introduction

Problem Statement

Tall Timber Introduction

Gravity Redesign

Lateral Redesign

Construction Management

- 1960's Concrete Office Building
- Renovation
- Concrete Layout
- Steel Addition Layout

Building Introduction

Problem Statement

Tall Timber Introduction

- 1960's Concrete Office Building
- Renovation
- Concrete Layout
- Steel Addition Layout

Building Introduction

Problem Statement

Tall Timber Introduction

Problem Statement

Building Introduction

- Building Reuse and Renovation
- Lightweight Addition
- Sustainable Alternative

Problem Statement

Tall Timber Introduction

Proposed Solution

Redesign the Addition

Image Source: Whiting Turner Progress Photos

Construction Management

Gravity Redesign

Lateral Redesign

- Current Tall Wood Buildings
- Cross Laminated Timber
- Benefits and Challenges of tall wood

Image Source: Herald Sun Online

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Melbourne, Australia

- 10-story apartment building
- Forte at Victoria Harbour

Gravity Redesign

Lateral Redesign

- Current Tall Wood Buildings
- Cross Laminated Timber
- Benefits and Challenges of tall wood

Building Introduction

Problem Statement

Tall Timber Introduction

Berlin, Germany

- 7-story apartment building
- E3 Project

Proposed Solution

Gravity Redesign

Lateral Redesign

- Current Tall Wood Buildings
- Cross Laminated Timber
- Benefits and Challenges of tall wood

Image Source: Rendering from the Nordic Page

Building Introduction

Problem Statement

Tall Timber Introduction

Future Potential Tall Buildings

- 14-stories under construction in Norway
- 18-stories proposed in Canada
- 34-stories proposed in Sweden

Proposed Solution

Gravity Redesign

Lateral Redesign

- Current Tall Wood Buildings
- Cross Laminated Timber
- Benefits and Challenges of tall wood

Building Introduction

Problem Statement

Tall Timber Introduction

Cross Laminated Timber

- Engineered Wood Panel Product
- Layers glued perpendicular (dimensional stability)
- At least 3 plies between 5/8" and 2" thick
- Max manufactured size 10' x 40'

Proposed Solution

Gravity Redesign

Lateral Redesign

- Current Tall Wood Buildings
- Cross Laminated Timber
- Benefits and Challenges of tall wood

Building Introduction

Problem Statement

Tall Timber Introduction

Cross Laminated Timber

- Engineered Wood Panel Product
- Layers glued perpendicular (dimensional stability)
- At least 3 plies between 5/8" and 2" thick
- Max manufactured size 10' x 40'

Image Source: woodwindowstoday.blogspot.com

Proposed Solution

Gravity Redesign

Lateral Redesign

- Current Tall Wood Buildings
- Cross Laminated Timber
- Benefits and Challenges of tall wood

- Combustion during fire
- Connection details (steel loses strength in fire)
- Doesn't meet code for buildings over 4-6 stories
- Historical fires in wood buildings
- Not used widely in US, therefore knowledge is limited
- Several topics require further research

Building Introduction

Problem Statement

Tall Timber Introduction

Challenges of Using Wood in Tall Buildings

- Current Tall Wood Buildings
- Cross Laminated Timber
- Benefits and Challenges of tall wood

- Combustion during fire
- Connection details (steel loses strength in fire)
- Doesn't meet code for buildings over 4-6 stories
- Historical fires in wood buildings
- Not used widely in US, therefore knowledge is limited
- Several topics require further research

Building Introduction

Problem Statement

Tall Timber Introduction

Challenges of Using Wood in Tall Buildings

Benefits of Using Wood in Tall Buildings • Renewable construction material (sustainable)

- Versatile material
- Lightweight
- Fast construction time
- Aesthetically pleasing if left exposed
- Heavy Timber burns slowly

Proposed Solution

Gravity Redesign

Lateral Redesign

Proposed Solution

Image Source: Sourceable Industry New & Analysis

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Structural System

- CLT Panels Span between Glulam Girders
- Glulam Girders span to Glulam Columns
- Concrete Shear Walls

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Glulam Girders Glulam Columns

- CLT Floor Panel Design
- Glulam Girder Design
- Glulam Column Design
- Design Summary
- Comparison to Existing System

FI	ex	u	re

 $M \le F_b \times S_{required}$

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

- CLT Floor Panel Design
- Glulam Girder Design
- Glulam Column Design
- Design Summary
- Comparison to Existing System

FI	ex	u	re

 $\overline{M} \le F_b \times \overline{S_{required}}$

Building Introduction

Problem Statement

Tall Timber Introduction

Deflections

 $\Delta = \frac{5wl^4}{384EI}$

Live Load Deflection Limit: 1/360 Dead and Live Deflection Limit" 1/240

Proposed Solution

Gravity Redesign

Lateral Redesign

- CLT Floor Panel Design
- Glulam Girder Design
- Glulam Column Design
- Design Summary
- Comparison to Existing System

FI	ex	u	re

 $M \le F_b \times S_{required}$

Building Introduction

Problem Statement

Tall Timber Introduction

 $C_D = 1.6$ for Fire Performance

Deflections

Live Load Deflection Limit: 1/360 Dead and Live Deflection Limit" 1/240

Fire Performance (using encapsulation method)

Required Fire Resistance	Effective Charring Rate, eta_{err} (in./hr)	Visual Char Layer Thickness (in.)	Zero- strength Layer (in.)	Effective Char Layer Thickness, a _{char} (in.)
45 min (¾-h)	1.90	1.19	0.24	1.42
60 min (1-h)	1.80	1.50	0.30	1.80
90 min (1½-h)	1.67	2.09	0.42	2.50
120 min (2-h)	1.58	2.64	0.53	3.16

 $(D+L)_{reduced} = (0.75D) + (0.4L)$

 $M = \frac{(D+L)_{reduced} l^2}{2}$

 $\# plies_{residual} = \# plies_{original} - 2$

 $M_{fire} \leq (F_b \times S_{required})_{resid.}$

Proposed Solution

Gravity Redesign

Lateral Redesign

- CLT Floor Panel Design
- Glulam Girder Design
- Glulam Column Design
- Design Summary
- Comparison to Existing System

- More sides of material lost in fire performance design
- Volume factor, Cv used in design
- Assumed to be fully braced by floor

Building Introduction

Problem Statement

Tall Timber Introduction

Glulam Girder Design Process Same as CLT Except:

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

- CLT Floor Panel Design
- Glulam Girder Design
- Glulam Column Design
- Design Summary
- Comparison to Existing System

- More sides of material lost in fire performance design
- Volume factor, Cv used in design
- Assumed to be fully braced by floor

Building Introduction

Problem Statement

Tall Timber Introduction

Glulam Girder Design Process Same as CLT Except:

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

? = Approximate 1 Residual Girder Section

- CLT Floor Panel Design
- Glulam Girder Design
- Glulam Column Design
- Design Summary
- Comparison to Existing System

Compressive Strength

Building Introduction

Problem Statement

Tall Timber Introduction

 $F_c^* = C_V F_c$

 $E'_{min} = E'(1 - 1.645COV_E(1.05))/1.66$ $C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}$ $F_c' = F_c^* \times C_p$ $f_c = \frac{P}{A}$ $f_c \leq F'_c$

Fire Performance

4 sides now exposed to fire

 $F_c^* = C_V C_D F_c$

$$A_{residual} = (b -$$

 $f_c = \frac{P_{reduced}}{A_{residual}}$

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

$(-5") \times (d-5")$

- CLT Floor Panel Design
- Glulam Girder Design
- Glulam Column Design
- Design Summary
- Comparison to Existing System

E
Typ. CL
Typ. Gl
Floor P
Typic
At addit
Г
-
Gi
Perime
r
Girde
L
Col
T
Т
2
*Note: A
**All co

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Design Summary									
Structural Floor Elements									
lement	Typical Level	12th 1	Level	Penthouse Roof	# Gyp Layers				
T Floor Panel	5-ply	7-ply		7-ply		5-ply	1		
ılam Girder*	15" deep	18" deep		18" deep		15" deep	1		
anel (26' bay)	7-ply	9-p	9-ply 7-ply		1				
al Column	Interior			Exterior	510				
ion base	12" x 12 3/	12" x 12 3/8"		12" x 12 3/8"	1				

	Non-Typical Girders*										
rder Type		Typical Level	12th Level at Parapet	12th Level at Penthouse	Penthouse Roof						
ete	E-W dir.	15"	13"	15"	13"						
	E side	19 1/2"	19 1/2"	25 1/2"	18"						
rs	W side	19 1/2"	21"	25 1/2"	18"						

	JPreas Column.	and containing t	te e ther hereis	to be the rest of the first sector of the rest
olumn Type	Levels 7&8	Levels 9&10	Levels 11&12	Penthouse
Typ. Int.	12 3/8"	10 1/2"	8 1/2"	8 1/2"
Typ. Ext.	12 3/8"	10 1/2"	8 1/2"	
Α	12 3/8"	10 1/2"	8 1/2"	8 1/2"
B	10 1/2"	8 1/2"	8 1/2"	00 4 0
С	10 1/2"	10 1/2"	<mark>8 1/2"</mark>	8 1/2"
D	10 1/2"	8 1/2"	8 1/2"	8 1/2"
E	12 3/8"	10 1/2"	8 1/2"	
F	12 3/8"	10 1/2"	8 1/2"	0. - (

All girders have bf = 12" and bw = 4" for improved connection constructability olumns have bw = 12 to match the girder flange width

Design Summary

- 12th Level
 - 7-ply panel on 12th level
 - 18" deep girder
- All other levels
 - 5-ply panel
 - Typical girder 15" deep
- Typical Column 12" x 10 1/2" at base

Gravity Redesign

Lateral Redesign

Construction Management

- CLT Floor Panel Design
- Glulam Girder Design
- Glulam Column Design
- Design Summary
- Comparison to Existing System

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

- CLT Floor Panel Design
- Glulam Girder Design
- Glulam Column Design
- Design Summary
- Comparison to Existing System

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

- CLT Floor Panel Design
- Glulam Girder Design
- Glulam Column Design
- Design Summary
- Comparison to Existing System

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

Rigid Diaphragm

• Semi-Rigid

• Flexible

Building Introduction

Problem Statement

Tall Timber Introduction

Construction Management

Proposed Solution

Gravity Redesign

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

In-Plane Deflections

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

In-Plane Deflections

- From ETABS Model
- Compare to L/360

In-Plane Floor Deflection Checks									
Location	"Length"	Max Displ.	Avg. lat. Disp.	Eff. Disp.	allowable disp.	OK?			
Grid 2-3	26.3	0.901	0.078	0.823	0.877	ok			
Grid 3-5	50.25	0.270	0.220	0.050	1.675	ok			
Grid 3-9	124.5	0.26	0.108	0.152	4.150	ok			
Grid 6a-10	76	0.178	0.225	-0.047	2.533	ok			
Grid 10-12	42	1.58	0.190	1.39	1.400	ok			

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

In-Plane Deflections

- From ETABS Model
- Compare to L/360

In-Plane Floor Deflection Checks									
Location	"Length"	Max Displ.	Avg. lat. Disp.	Eff. Disp.	allowable disp.	OK?			
Grid 2-3	26.3	0.901	0.078	0.823	0.877	ok			
Grid 3-5	50.25	0.270	0.220	0.050	1.675	ok			
Grid 3-9	124.5	0.26	0.108	0.152	4.150	ok			
Grid 6a-10	76	0.178	0.225	-0.047	2.533	ok			
Grid 10-12	42	1.58	0.190	1.39	1.400	ok			

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Conclusion

Appendix

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

Drift Check (L/400)

Drift Check at Shear Walls										
Shaan Wall	II.:- 14 (64)	X-d	irection	Y-d	irection	Allow.	Drift			
Shear Wall	Height (It)	Disp.	Drift	Displ.	Drift	Drift	Check			
Elev/ Stair Core	80	0.135	0.000141	0.542	0.000565	0.003	ok			
Stair Core	80	0.123	0.000128	0.238	0.000248	0.003	ok			
Grid 3 AB	63.3	0.078	0.000103	0.087	0.000115	0.003	ok			
Grid 3 CD	63.3	0.11	0.000145	0.066	0.000087	0.003	ok			
Grid 10	63.3	0.105	0.000138	0.265	0.000349	0.003	ok			

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Deflection of Lateral Elements Only

Gravity Redesign

Lateral Redesign

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

Drift Check (L/400)

Drift Check at Shear Walls										
Shear Wall	II sight (ft)	X-d	irection	Y-direction		Allow.	Drift			
	Height (It)	Disp.	Drift	Displ.	Drift	Drift	Check			
Elev/ Stair Core	80	0.135	0.000141	0.542	0.000565	0.003	ok			
Stair Core	80	0.123	0.000128	0.238	0.000248	0.003	ok			
Grid 3 AB	63.3	0.078	0.000103	0.087	0.000115	0.003	ok			
Grid 3 CD	63.3	0.11	0.000145	0.066	0.000087	0.003	ok			
Grid 10	63.3	0.105	0.000138	0.265	0.000349	0.003	ok			

Building Introduction

Problem Statement

Tall Timber Introduction

Deflection of Lateral Elements Only

- Drift due to both Diaphragm and Lateral Elements
- 1.0D + 0.5L + 0.7W for total building drift

Overal Drift Check (Including Diphragm Deflection							
Level	Height (ft)	Disp.	Drift	Allow.	Check		
Penthouse	80	0.42	0.00044	0.0025	ok		
Level 12	63.33	1.5	0.00197	0.0025	ok		

Proposed Solution

Gravity Redesign

Lateral Redesign

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

Drift Check (L/400)

Drift Check at Shear Walls									
	II.:-h4 (6)	X-direction		Y-direction		Allow.	Drift		
Snear wan	Height (ft)	Disp.	Drift	Displ.	Drift	Drift	Check		
Elev/ Stair Core	80	0.135	0.000141	0.542	0.000565	0.003	ok		
Stair Core	80	0.123	0.000128	0.238	0.000248	0.003	ok		
Grid 3 AB	63.3	0.078	0.000103	0.087	0.000115	0.003	ok		
Grid 3 CD	63.3	0.11	0.000145	0.066	0.000087	0.003	ok		
Grid 10	63.3	0.105	0.000138	0.265	0.000349	0.003	ok		

Building Introduction

Problem Statement

Tall Timber Introduction

Deflection of Lateral Elements Only

- Drift due to both Diaphragm and Lateral Elements
- 1.0D + 0.5L + 0.7W for total building drift
- 3/8" interstory drift for non-structural elements

Overal Drift Check (Including Diphragm Deflection							
Level	Height (ft)	Disp.	Drift	Allow.	Check		
Penthouse	80	0.42	0.00044	0.0025	ok		
Level 12	63.33	1.5	0.00197	0.0025	ok		

Interstory Drift							
Level	Height (ft)	Disp.	Allow. (in)	Check			
Penthouse	80	0.16	0.375	ok			
Level 12	63.33	0.37	0.375	ok			
Level 11	51.33	0.13	0.375	ok			
Level 10	41.33	0.07	0.375	ok			
Level 9	31	0.08	0.375	ok			
Level 8	20	0.18	0.375	ok			
Level 7	10.33	0.66	0.375	No Good			

Construction Management

Proposed Solution

Gravity Redesign

Lateral Redesign

Appendix

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

Drift Check (L/400)

Drift Check at Shear Walls									
	II.:-h4 (6)	X-direction		Y-direction		Allow.	Drift		
Snear wan	Height (ft)	Disp.	Drift	Displ.	Drift	Drift	Check		
Elev/ Stair Core	80	0.135	0.000141	0.542	0.000565	0.003	ok		
Stair Core	80	0.123	0.000128	0.238	0.000248	0.003	ok		
Grid 3 AB	63.3	0.078	0.000103	0.087	0.000115	0.003	ok		
Grid 3 CD	63.3	0.11	0.000145	0.066	0.000087	0.003	ok		
Grid 10	63.3	0.105	0.000138	0.265	0.000349	0.003	ok		

Building Introduction

Problem Statement

Tall Timber Introduction

Deflection of Lateral Elements Only

- Drift due to both Diaphragm and Lateral Elements
- 1.0D + 0.5L + 0.7W for total building drift
- 3/8" interstory drift for non-structural elements

Overal Drift Check (Including Diphragm Deflection							
Level	Height (ft)	Disp.	Drift	Allow.	Check		
Penthouse	80	0.42	0.00044	0.0025	ok		
Level 12	63.33	1.5	0.00197	0.0025	ok		

Interstory Drift							
Level	Height (ft)	Disp.	Allow. (in)	Check			
Penthouse	80	0.16	0.375	ok			
Level 12	63.33	0.37	0.375	ok			
Level 11	51.33	0.13	0.375	ok			
Level 10	41.33	0.07	0.375	ok			
Level 9	31	0.08	0.375	ok			
Level 8	20	0.18	0.375	ok			
Level 7	10.33	0.66	0.375	No Good			

Construction Management

Proposed Solution

Gravity Redesign

Lateral Redesign

Appendix

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

Overturning Moment

- Has been an issue in taller wood buildings due to low mass
- Typically design for uplift
- Original concrete portion very heavy
- OTM not an issue for this building

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Lateral Redesign

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

- Checked at critical section
- Enough concrete for shear
- Minimum reinforcing provided in field of wall
- Design controlled by flexure
- Reinforcing required at ends

Building Introduction

Problem Statement

Tall Timber Introduction

Hand Spot Check of Shear Wall Design

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Image Source: Structural Building Documents

Lateral Redesign

- Lateral Introduction
- Lateral System Behavior
- Shear Wall Design
- Lateral Design Summary

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

- 8" concrete wall w/ 2 curtains rebar
- #4's at 18" o.c. Vertical
- #4's at 10" o.c. Horizontal
- Typ. #6's in the Corners and Ends

- Introduction
- Schedule Analysis
- System Comparison

Breadth Topics:

- Mechanical
 - No concealed spaces, mechanical is exposed
 - Chose new mechanical system
- Construction Management
 - Schedule Analysis
 - Cost Analysis

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

- Introduction
- Schedule Analysis
- System Comparison

CM Scope

- Structure in Addition
- Partitions
- Sound insulation

Building Introduction

Problem Statement

Tall Timber Introduction

• Shear walls for full building

Proposed Solution

Gravity Redesign

Lateral Redesign

- Introduction
- Schedule Analysis
- System Comparison

Schedule Assumptions

- Pre-fabricated panels
- CLT not found in RS Means
- Construction similar to precast concrete
- Steel Addition Concrete topping needs to cure

Building Introduction

Problem Statement

Tall Timber Introduction

Estimated Schedule Time:

- Steel: 9 months
- Wood: 4 months

Proposed Solution

Gravity Redesign

Lateral Redesign

- Introduction
- Schedule Analysis
- Cost Analysis
- System Comparison

Cost Assumptions

- CLT product from Structurlam product info
- All other cost information from RS Means
- 5% estimate added to labor (not many CLT buildings in US)
- No addition for waste included due to prefabrication
- Lower General Conditions Costs in Wood

Building Introduction

Problem Statement

Tall Timber Introduction

Estimated Cost:

- Steel: \$2.17 Million
- Wood: \$2.76 Million

Proposed Solution

Gravity Redesign

Lateral Redesign

- Introduction
- Schedule Analysis
- System Comparison

Schedule Estimate

- Wood Addition: 9 months
- Existing Steel Addition: 4 months
- 5 months shorter for wood addition
- Approx. 19 months to 14 months

Building Introduction

Problem Statement

Tall Timber Introduction

Cost Estimate

- Wood Addition: \$2.76 Million (\$25 per SF)
- Existing Steel Addition: \$2.17 Million (\$19 per SF)
- 30% increase for wood addition
- \$44 million total cost to \$44.59 million (1.5% increase)

Proposed Solution

Gravity Redesign

Lateral Redesign

- Summary
- Acknowledgements

Proposed Goals

Building Introduction

Problem Statement

Tall Timber Introduction

Redesign Addition Gravity System in Wood

• Design appropriate shear wall system for gravity design

• Investigate feasibility of wood in design for fire performance

• Investigate cost and schedule feasibility

Proposed Solution

Gravity Redesign

Lateral Redesign

- Summary
- Acknowledgements

Proposed Goals

Redesign Addition Gravity System in Wood

• Design appropriate shear wall system for gravity design

• Investigate feasibility of wood in design for fire performance

Building Introduction

Problem Statement

Tall Timber Introduction

Gravity system met goals for redesign

• Investigate cost and schedule feasibility

Proposed Solution

Gravity Redesign

Lateral Redesign

- Summary
- Acknowledgements

Proposed Goals

Building Introduction

Problem Statement

Tall Timber Introduction

- Redesign Addition Gravity System in Wood
- Gravity system met goals for redesign

• Design appropriate shear wall system for gravity design

• Investigate feasibility of wood in design for fire performance

• Investigate cost and schedule feasibility

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Lateral design met strength and deflection requirements

- Summary
- Acknowledgements

Proposed Goals

Building Introduction

Problem Statement

Tall Timber Introduction

- Gravity system met goals for redesign Redesign Addition Gravity System in Wood
- Design appropriate shear wall system for gravity design

• Investigate feasibility of wood in design for fire performance

• Investigate cost and schedule feasibility

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Lateral design met strength and deflection requirements

Deflection and vibration controlled over fire performance

- Summary
- Acknowledgements

Proposed Goals

• Investigate cost and schedule feasibility

Building Introduction

Problem Statement

Tall Timber Introduction

- Gravity system met goals for redesign Redesign Addition Gravity System in Wood
- Lateral design met strength and deflection requirements Design appropriate shear wall system for gravity design

- Investigate feasibility of wood in design for fire performance
- Deflection and vibration controlled over fire performance

than half the schedule

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Wood redesign 30% more expensive, but can be built in less

- Acknowledgements

- The engineers at Rathgeber/Goss Associates
- My parents
- The AE faculty and my advisor Dr. Thomas Boothby
- My classmates and friends

Building Introduction

Problem Statement

Tall Timber Introduction

Thank you to the following people:

Proposed Solution

Gravity Redesign

Lateral Redesign

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Thank You

Gravity Redesign

Lateral Redesign

Construction Management

• Appendix Contents

Gravity System

- Sound and Vibrations
- Typical Opening
- Floor Tables
- Beam Tables
- Column Tables
- Design Values

Building Introduction

Problem Statement

Tall Timber Introduction

Lateral System

- Drift
- In-Place Deflections
- Shear Wall Reinforcement
- Overturning Moment
- Hand Spot Check

CM Breadth

- CLT Cost Table
- Quantity Tables
- Cost Tables
- Schedule Tables
- Schedule

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Mech Breadth

- Plans
- Sample Apartment
- Hand Calculations

• Sound and Vibrations

Sound Performance

- Topping required for sound insulation
- Additional weight and height included in design

Building Introduction

Problem Statement

Tall Timber Introduction

	1 2 3 5 4 6		
Assembly Description from Top to Bottom	(7.1)	STC	пс
Sypsum fiberboard FERMACELL of 1.0 in. (25 mm Sub-floor ISOVER EP3 of 0.79 in. (20 mm) Honeycomb acoustic infill FERMACELL of 1.18 in. (Honeycomb acoustic infill FERMACELL of 1.18 in. (Kraft paper underlayment S-layer CLT panel of 5 5/16 in. (135 mm)) 30 mm) 30 mm)	62	59

Vibration Performance

- Single spans isolated apartments from each other
- Vibrations not as important for residential
- Thicker panel required for 12th level, assembly occupation

Type of CLT	Thickness (in.)	Vibration Controlled Span, L (ft.)	Equivalent UDL Criterion
5-layer (5s)	5 1/2	15.6	Span/417
5-layer (5s)	7 3/16	18.0	Span/497
7-layer (7ss)	9	23.0	Span/606

Image Source: CLT Handbook

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Image Source: CLT Handbook

Typical Opening

Building Introduction

Problem Statement

Tall Timber Introduction

AppendixFloor Tables

		Typical	CLT Floor	Panel Desig	n			6					1	Non Typi	cal CLT Floo	or Panel De	sign			65			
			Strength Cl	necks											Strength Cl	hecks		•	-				
Level	Span	Panel	FbSeff*	D+L*	Cd	M	Ok?					Level	Span	Panel	FbSeff*	D+L*	Cd	M	Ok?				
Typical Level	20.8	5-ply	10400	76	1	4090.3	good					Typical Level	26	7-ply	18375	80	1	6760	good				
12th Level	20.8	7-ply	18375	140	1	7534.8	good					12th Level	26	9-ply	18375	144	1	12168	good	-			
Penthouse Roof	20.8	5-ply	10400	66	1	3552.1	good					Penthouse Roof	26	7-ply	18375	70	1	5915	good	-			
*9-ply would have hi	igher Fb	Seff, ho	wever value	was not tab	ulated and	7-ply va	lue worked,					*D+L controlled ov	ver other	combinat	ions								
								1				*9-ply would have	higher Fl	Seff, ho	wever value	was not tab	ulated and	7-ply val	ue worked,				
	A41			Defl	ection Cho	ecks		~				so new FbSeff was	not calcu	lated to s	save time								
Level	Span	Panel	EI	D	L	Defl L	Defl D+L	L limit	D+L limt	LOK?	D OK?					Defl	ection Che	ecks					1
Typical Level	20.8	5-ply	4.40E+08	36	40	0.38	1.03	0.69	1.04	good	good	Level	Span	Panel	EI	D	L	Defl L	Defl D+L	L limit	D+L limt	LOK?	D OK?
12th Level	20.8	7-ply	1.09E+09	40	100	0.38	0.69	0.69	1.04	good	good	Typical Level	26	7-ply	1.09E+09	40	40	0.38	1.13	0.87	1.30	good	good
Penthouse Roof	20.8	5-ply	4.40E+08	36	30	0.28	0.97	0.69	1.04	good	good	12th Level	26	9-ply	1.60E+09	44	100	0.64	1.21	0.87	1.30	good	good
												Penthouse Roof	26	7-ply	1.09E+09	40	30	0.28	1.04	0.87	1.30	good	good
	45 X		Fir	e Design C	heck	*	121	121					7.V	22	Fir	e Design (heck	6	763	201 204		2 - 72 	
Level	Span	Panel	Orig. h	Resid. H	Approx	FbSeff	D+L*	M	OK?			Level	Span	Panel	Orig, h	Resid. H	Approx	FbSeff	D+L*	M	OK?	di seconda d	
Typical Level	26	5-ply	9.625	7.125	5-ply	10400	43	3634	good			Typical Level	26	7-plv	9.625	7.125	5-plv	10400	46	3887	good		
12th Level	26	7-ply	12.375	9.875	7-ply	18375	70	5915	good			12th Level	26	9-ply	12.375	9.875	7-ply	18375	73	6169	good		
Penthouse Roof	26	5-ply	9.625	7.125	5-ply	10400	39	3296	good			Penthouse Roof	26	7-ply	9.625	7.125	5-ply	10400	42	3549	good		
		*D+L is	reduced usin	ng the same	assumptio	ons as bef	fore							*D+L is	reduced usin	ng the same	assumptio	ons as bef	ore				

Building Introduction

Problem Statement

Tall Timber Introduction

?
d
d
d
ced,

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

AppendixGirder Tables

	bw	bf	dc	dt	dtc	NA	1	St	Sb	EI													
	4	12	6.875	27	20.125	11.44	12758.8	820.1	1115.0	2.30E+10													
	4	12	6.875	25.5	18.625	10.71	10549.8	713.3	985.1	1.90E+10													
	4	12	6.875	24	17.125	9.98	8623.1	615.0	864.1	1.55E+10					Troiler	Cindon D.	dagian fo	n Invested	C Chana				
Suo	4	12	6.875	22.5	15.625	9.25	6958.3	525.2	752.1	1.25E+10		12			1 ypica	il Giraer Ro	edesign 10	r inverted 1	I-Snape				
diti	4	12	6.875	21	14.125	8.53	5535.1	443.8	649.0	9.96E+09		Level	Span	Gird. sw	Floor L+D	D+L**	M (in-lbs)	bf	bw	Depth	Cv	Sact	Sreq OK?
Jon	4	12	6.875	19.5	12.625	7.81	4333.2	370.7	554.8	7.80E+09	Strength	Typical Level	20	26	700	726	435600	12	4	15	0.90	324.1	201 1 good
al	4	12	6.875	18	11.125	7.10	3332.2	305.7	469.3	6.00E+09	D	1 picur Lever	20	50	1400	1450	070000	12		10	0.50	160.0	100.0
	4	12	6.875	16.5	9.625	6.40	2511.8	248.7	392.5	4.52E+09	Design	12th Level	20	50	1400	1450	870000	12	4	18	0.89	469.3	409.0 good
ĬŽ	4	12	6.875	15	8.125	5.71	1851.3	199.3	324.1	3.33E+09		Penthouse Roof	20	50	660	710	426000	12	4	15	0.90	324.1	196.7 good
	4	12	6.875	13.5	6.625	5.05	1330.0	157.4	263.5	2.39E+09	80												
22	4	12	6.875	12	5.125	4.42	927.0	122.2	209.9	1.67E+09	î			1208 12 1924X		200 2000/2012/2012	er Franke senter		200312				
	4	12	6.875	10.5	3.625	3.85	620.3	93.2	161.3	1.12E+09		Level	Span	L (plf)	D+L	EI	Defl. L	Defl. D+L	Lim. L	Lim. D+L	L OK?	D+L OK?	
	4	7	6.875	24.5	17.625	11.05	6676.6	496.2	604.5	1.20E+10	Defl.	Typical Level	20	400	726	3.33E+09	0.432	0.96	0.667	1.0	good	good	
9	4	7	6.875	23	16.125	10.32	5478.5	431.9	531.1	9.86E+09	Design	12th Lovel	20	1000	1450	6 00E+00	0.600	1.00	0.667	1.0	boog	bood	
E	4	7	6.875	21.5	14.625	9.59	4438.1	372.6	462.8	7.99E+09	Design		20	1000	1430	0.00L109	0.000	1.00	0.007	1.0	good	good	
ling	4	7	6.875	20	13.125	8.87	3543.7	<mark>318.3</mark>	399.7	6.38E+09		Penthouse Roof	20	300	710	3.33E+09	0.324	0.989	0.667	1.0	good	good	
l ub	4	7	6.875	18.5	11.625	8.15	2783.4	268.9	341.6	5.01E+09													
ion	4	7	6.875	17	10.125	7.44	2145.3	224.4	288.4	3.86E+09		Lovol	Snan	DII	Orign	Origh	Dogid w	Dosid h	Soff	Dod Load	M (in lb)	Srog	OV2
ect	4	7	6.875	15.5	8.625	6.74	1617.4	184.6	240.1	2.91E+09	Fire/	Level	Span	D+L	Ong w	Orig ii	Resid w	Resid II	Sell	Red. Load	IVI (III-ID)	Sreq	UK:
al S	4	7	6.875	14	7.125	6.05	1187.9	149.4	196.3	2.14E+09	Chan	Typical Level	20	726	12	15	7	12.5	182.3	404.5	242700	70	good
sidu	4	7	6.875	12.5	5.625	5.38	844.6	118.7	156.9	1.52E+09	Char	12th Level	20	1450	12	18	7	15.5	2803	737 5	442500	130	boog
Res	4	7	6.875	11	4.125	4.75	575.3	92.0	121.2	1.04E+09	Design		20	710	10	15	-	10.0	102.2	107.5	256500	74	1
	4	7	6.875	9.5	2.625	4.16	367.4	68.8	88.3	6.61E+08		Penthouse Roof	20	/10	12	15	/	12.5	182.3	427.5	256500	/4	good
	4	7	6.875	8	1.125	3.67	207.1	47.9	56.4	3.73E+08					*Or alor	ng Grid 4 at	12th Leve	l and Pentho	ouse				22:

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Girder Tables

			-	Perime	ter Girder .	Along Gr	id 2* (We	st side)			-		-20					-	Perime	ter Girder A	long Gr	'id 12* (Ea	st side)		<i>2</i>	5	1. 1. 21
	Level	Span	Wall sw	Gird. sw	Floor L+D	D+L**	M (in-lbs)) bf	Depth	Cv	Sact	Sreq	OK?		Level	1	Span	Wall sw	Gird. sw	Floor L+D	D+L**	M (in-lbs)	bf	Depth	Cv	Sact	Sreq OK?
C4	Typical Level	20	450	50	1092	1592	955200	12	19.5	0.88	554.8	452.7	good	Steen	Typical Level		20	450	50	840	1340	804000	12	19.5	0.88	554.8	381.0 good
Strength	12th Level parapet	20	200	50	1872	2122	1273200	12	21	0.87	649.0	607.9	good	Strei	12th Level par	apet	20	200	50	1512	1762	1057200	12	19.5	0.88	554.8	501.0 good
Design	12th Level penthouse	20	350	50	2880	3280	1968000	12	25.5	0.86	985.1	958.0	good	Desi	12th Level per	thouse	20	350	50	2880	3280	1968000	12	25.5	0.86	985.1	958.0 good
	Penthouse Roof	20	200	50	962	1212	727200	12	18	0.89	469.3	341.9	good		Penthouse Ro	of	20	200	50	735	985	591000	12	18	0.89	469.3	277.9 good
												- 4								~							
5 C	Level	Span	L (plf)	D+L	EI	Defl. L	Defl. D+L	Lim. L	Lim. D+L	L OK?	D+L OK	?		Sé	Level		Span	L (plf)	D+L	EI	Defl. L	Defl. D+L	Lim. L	Lim. D+L	L OK?	D+L OK?	
Def	Typical Level	20	520	1592	7.80E+09	0.240	0.982	0.667	1	good	good			Det	Typical Level		20	420	1340	7.80E+09	0.194	0.831	0.667	1	good	good	
Dell.	12th Level parapet	20	1300	2122	9.96E+09	0.470	0.915	0.667	1	good	good			Des	1. 12th Level par	apet	20	1050	1762	7.80E+09	0.485	0.978	0.667	1	good	good	
Design	12th Level penthouse	20	2000	3280	1.90E+10	0.379	0.743	0.667	1	good	good			Desi	12th Level per	thouse	20	2000	3280	1.90E+10	0.379	0.743	0.667	1	good	good	
	Penthouse Roof	20	390	1212	6.00E+09	0.234	0.974	0.667	1	good	good				Penthouse Ro	of	20	315	985	6.00E+09	0.189	0.792	0.667	1	good	good	
	wi	500 512	54. 54.		681 D		× V	50. m 81. st.		941 272563 2.0 85 28		- 10	55		**		87. 578	54. 54.	ei e	13 14 14		57 20	54. (S)		941 77753 841	200 (1997) 206	
	Level	Span	D+L	Orig w	Orig h	Resid bf	Resid h	Resid bw	Seff	Red. Load	M (in-lb)	Sreq	OK?		Level	[Span	D+L	Orig w	Orig h	Resid bi	f Resid h	Resid bw	Seff	Red. Loa	d M (in-lb)	Sreq OK?
Fire/	Typical Level	20	1592	12	19.5	7	17	4	240.1	1012.0	607200	179.9	good	Fir	e/ Typical Level		20	1340	12	19.5	7	17	4	240.1	858.0	514800	152 good
Char	12th Level parapet	20	2122	12	21	7	18.5	4	341.6	1136.5	681900	203.5	good	Cha	r 12th Level par	apet	20	1762	12	19.5	7	17	4	288.4	954.0	572400	170 good
Design	12th Level penthouse	20	3280	12	25.5	7	23	4	531.1	1280.0	768000	233.7	good	Desi	gn 12th Level per	thouse	20	3280	12	25.5	7	23	4	531.1	1280.0	768000	234 good
2	Penthouse Roof	20	1212	12	18	7	15.5	4	196.3	772.5	463500	136.2	good		Penthouse Ro	of	20	985	12	18	7	15.5	4	196.3	628.5	377100	111 good
*Or along	Grid 4 at 12th Level and F	Penthou	use											*Or a	ong Grid 4 at 12th L	evel and P	Penthou	ıse									

**D+L was the controlling case for other girders, and will therefore be the only case considered in non typical giders

Building Introduction

Problem Statement

Tall Timber Introduction

**D+L was the controlling case for other girders, and will therefore be the only case considered in non typical giders

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Girder Tables

			T	ypical P	erimeter G	irder in	the E-W D	irection	1				
		Level	Span	Wall sw	Gird. Sw	D (plf)*	<mark>M (in-lbs)</mark>	bw	Depth	Cv	Sact	Sreq	OK?
	Strongth	Typical Level	21	450	50	500	330750	12	15	0.90	324.1	153.4	good
	Design	12th Level parapet	21	200	50	250	165375	12	13	0.91	209.9	75.6	good
	Design	12th Level penthouse	21	350	50	400	264600	12	15	0.90	324.1	122.7	good
		Penthouse Roof	21	200	50	250	165375	12	13	0.91	209.9	75.6	good
		#	v		9			2					
Cold Wood——		Level	Span	D (plf)*	EI	Defl.	Defl. Lim.	OK?					
	Doft	Typical Level	21	500	3.33E+09	0.985	1.05	good					
	Design	12th Level parapet	21	250	1.67E+09	0.983	1.05	good					
Heated Zone ————————————————————————————————————	Design	12th Level penthouse	21	400	3.33E+09	0.788	1.05	good					
		Penthouse Roof	21	250	1.67E+09	0.983	1.05	good					
		E											
Char Lavor		Level	Span	D (plf)*	Orig w	Orig h	Resid w	Resid h	Seff	Red. Load	M (in-lb)	Sreq	OK?
	Fire/	Typical Level	21	500	12	15	7	12.5	182.3	121.2	80201	23.3	good
	Char	12th Level parapet	21	250	12	13	7	10.5	128.6	56.4	37308	10.7	good
	Design	12th Level penthouse	21	400	12	15	7	12.5	182.3	88.3	58422	16.9	good
		Penthouse Roof	21	250	12	13	7	10.5	128.6	56.4	37308	10.7	good
	*Dead Lo	ads here include approx. g	irder s	elf-weigł	nt and exteri	or wall l	oad. Floor	dead an	d live lo	oads are ass	sumed to l	be carri	ied to
L	the typica	l floor girders by the CLT	panel a	and are n	ot included.	. Theref	ore there is	no live	on carri	ed by this g	girder type	:.	

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Image Source: CLT Handbook

AppendixColumn Tables

Gravity Loads (psf, lbs for SW)												
Level	Dead	Live	C. SW (per floor)									
Typical Level	36	40	415									
12th Level	40	100	470									
Roof	36	30	670									

Floor Heig	hts (ft)
Typical Level	10.33
12th Level	11.67
Roof	16.75

Building Introduction

Problem Statement

Tall Timber Introduction

Wood F	Properties
Fc (psi)	1950
E' (psi)	1.60E+06
Cm	1
Cd	1
Ci	1
Ct	1
E'min	8.50E+05

C	Column and E	xt. Wall Load	Information	
Col Trmot	Twih Anon	W	all Load (lbs)	
Col. Type"	Irib Area	Typ. Level	12th Level	Roof
Typ. Int.	415	0	0	4150
Typ. Ext.	208	9338	10686	-
Α	285	9338	10686	4150
B	130	10350	11845	÷
С	335	0	0	0
D	300	0	0	0
E	475	0	0	-
F	260	10350	11845	

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

AppendixColumn Tables

Colu	ımn Desig	gn: Variou	s Level	s, Stren	gth, F	ire Pe	rform	ance (Se	ee Des	ign Su	mma	ry for S	plicing a	nd Final	Sizing (Choices)
Lev	Type*	D+L(lbs)	width	depth	Cv	F*c	Fce	Fce/F*c	Ср	F'c	fc	str ok?	red. D+L	resid. A	fc (fire)	fire ok?
	Typ. Int.	250555	12	12.375	0.98	1917	6548	3.42	0.96	1844	1687	0.915	131061	51.6	2539	0.860
	Typ. Ext.	168079	12	12.375	0.98	1917	6548	3.42	0.96	1844	1132	0.614	113571	51.6	2200	0.745
1	Α	231749	12	12.375	0.98	1917	6548	3.42	0.96	1844	1561	0.846	149435	51.6	2895	0.981
el	В	133740	10.5	12	1.00	1948	5013	2.57	0.95	1842	1061	0.576	99434	38.5	2583	0.877
ev	С	199525	10.5	12	1.00	1948	5013	2.57	0.95	1842	1584	0.860	102911	38.5	2673	0.907
	D	179015	10.5	12	1.00	1948	5013	2.57	0.95	1842	1421	0.771	92411	38.5	2400	0.815
	E	249545	12	12.375	0.98	1917	6548	3.42	0.96	1844	1680	0.911	125884	51.6	2438	0.826
	F	201340	12	12.375	0.98	1917	6548	3.42	0.96	1844	1356	0.735	133364	51.6	2583	0.875
	Typ. Int.	218600	10.5	12	1.00	1948	5013	2.57	0.95	1842	1735	0.942	112905	38.5	2933	0.995
	Typ. Ext.	142518	10.5	12	1.00	1948	5013	2.57	0.95	1842	1131	0.614	94978	38.5	2467	0.837
~	A	200336	12	12.375	0.98	1917	6548	3.42	0.96	1844	1349	0.731	127531	51.6	2470	0.837
el 8	В	113095	10.5	12	1.00	1948	5013	2.57	0.95	1842	898	0.487	83183	38.5	2161	0.733
.ev	С	173650	10.5	12	1.00	1948	5013	2.57	0.95	1842	1378	0.748	88195	38.5	2291	0.777
с п	D	155800	10.5	12	1.00	1948	5013	2.57	0.95	1842	1237	0.671	79200	38.5	2057	0.698
	Е	213030	10.5	12	1.00	1948	5013	2.57	0.95	1842	1691	0.918	105148	38.5	2731	0.927
	F	170815	10.5	12	1.00	1948	5013	2.57	0.95	1842	1356	0.736	111523	38.5	2897	0.983
	Typ. Int.	186645	10.5	12	1.00	1948	5013	2.57	0.95	1842	1481	0.804	94749	38.5	2461	0.835
	Typ. Ext.	116958	10.5	12	1.00	1948	5013	2.57	0.95	1842	928	0.504	76385	38.5	1984	0.673
	Α	168924	10.5	12	1.00	1948	5013	2.57	0.95	1842	1341	0.728	105628	38.5	2744	0.931
el 9	B	92450	8.5	12	1.02	1990	3285	1.65	0.89	1780	906	0.509	66931	24.5	2732	0.959
Ter	С	147775	10.5	12	1.00	1948	5013	2.57	0.95	1842	1173	0.637	73479	38.5	1909	0.648
357	D	132585	8.5	12	1.02	1990	3285	1.65	0.89	1780	1300	0.730	65989	24.5	2693	0.946
	E	176515	10.5	12	1.00	1948	5013	2.57	0.95	1842	1401	0.761	84411	38.5	2193	0.744
	F	140290	10.5	12	1.00	1948	5013	2.57	0.95	1842	1113	0.605	89681	38.5	2329	0.791

Building Introduction

Problem Statement

Tall Timber Introduction

	Typ. Int.	154690	10.5	12	1.00	1948	5013	2.57	0.95	1842	1228	0.667	76593	38.5	1989	0.675
	Typ. Ext.	91397	8.5	12	1.02	1990	3285	1.65	0.89	1780	896	0.503	57792	24.5	2359	0.828
	A	137511	10.5	12	1.00	1948	5013	2.57	0.95	1842	1091	0.593	83724	38.5	2175	0.738
II	B	71805	8.5	12	1.02	1990	3285	1.65	0.89	1780	704	0.396	50680	24.5	2069	0.726
eve	С	121900	8.5	12	1.02	1990	3285	1.65	0.89	1780	1195	0.672	58763	24.5	2398	0.842
I	D	109370	8.5	12	1.02	1990	3285	1.65	0.89	1780	1072	0.602	52778	24.5	2154	0.757
	E	140000	8.5	12	1.02	1990	3285	1.65	0.89	1780	1373	0.771	63675	24.5	2599	0.913
	F	109765	8.5	12	1.02	1990	3285	1.65	0.89	1780	1076	0.605	67840	24.5	2769	0.972
	Typ. Int.	122735	8.5	12	1.02	1990	3285	1.65	0.89	1780	1203	0.676	58436	24.5	2385	0.838
	Typ. Ext.	65837	8.5	12	1.02	1990	3285	1.65	0.89	1780	645	0.363	39200	24.5	1600	0.562
E I	Α	106099	8.5	12	1.02	1990	3285	1.65	0.89	1780	1040	0.584	61820	24.5	2523	0.886
El 1	В	51160	8.5	12	1.02	1990	3285	1.65	0.89	1780	502	0.282	34429	24.5	1405	0.493
eve	С	96025	8.5	12	1.02	1990	3285	1.65	0.89	1780	941	0.529	44046	24.5	1798	0.631
I	D	86155	8.5	12	1.02	1990	3285	1.65	0.89	1780	845	0.475	39566	24.5	1615	0.567
	E	103485	8.5	12	1.02	1990	3285	1.65	0.89	1780	1015	0.570	42939	24.5	1753	0.615
	F	79240	8.5	12	1.02	1990	3285	1.65	0.89	1780	777	0.437	45999	24.5	1878	0.659
	Typ. Int.	90780	8.5	10.5	1.02	1992	2574	1.29	0.84	1678	1017	0.606	40280	19.3	2092	0.779
	Typ. Ext.	40276	6.75	10.5	1.05	2039	1623	0.80	0.66	1355	568	0.419	20607	9.6	2141	0.988
	Α	74686	8.5	10.5	1.02	1992	2574	1.29	0.84	1678	837	0.499	39916	19.3	2074	0.772
	B	30515	675	10.5	1.05	2039	1623	0.80	0.66	1355	431	0.318	18178	9.6	1889	0.871
		50515	0.75	1010			A 754 (115 - 1						C			
eve	C	70150	8.5	10.5	1.02	1992	2574	1.29	0.84	1678	786	0.468	29330	19.3	1524	0.567
Leve	C D	70150 62940	8.5 6.75	10.5 12	1.02	1992 2012	2574 1623	1.29 0.81	0.84	1678 1349	786 777	0.468 0.576	29330 26355	19.3 12.3	1524 2151	0.567 0.997
Leve	C D E	70150 62940 66970	8.5 6.75 6.75	10.5 10.5 12 12	1.02 1.03 1.03	1992 2012 2012	2574 1623 1623	1.29 0.81 0.81	0.84 0.67 0.67	1678 1349 1349	786 777 827	0.468 0.576 0.613	29330 26355 22203	19.3 12.3 12.3	1524 2151 1812	0.567 0.997 0.840
Leve	C D E F	70150 62940 66970 48715	8.5 6.75 6.75 6.75	10.5 10.5 12 12 12 12	1.02 1.03 1.03 1.03	1992 2012 2012 2012 2012	2574 1623 1623 1623	1.29 0.81 0.81 0.81	0.84 0.67 0.67 0.67	1678 1349 1349 1349	786 777 827 601	0.468 0.576 0.613 0.446	29330 26355 22203 24158	19.3 12.3 12.3 12.3	1524 2151 1812 1972	0.567 0.997 0.840 0.914
ise Leve	C D E F Typ. Int.	70150 62940 66970 48715 32210	8.5 6.75 6.75 6.75 8.5	10.5 10.5 12 12 12 12 10.5	1.02 1.03 1.03 1.03 0.99	1992 2012 2012 2012 2012 1922	2574 1623 1623 1623 1250	1.29 0.81 0.81 0.81 0.65	0.84 0.67 0.67 0.67 0.57	1678 1349 1349 1349 1349 1102	786 777 827 601 361	0.468 0.576 0.613 0.446 0.328	29330 26355 22203 24158 20838	19.3 12.3 12.3 12.3 12.3 19.3	1524 2151 1812 1972 1082	0.567 0.997 0.840 0.914 0.614
house Leve	C D E F Typ. Int. A	30313 70150 62940 66970 48715 32210 23630	8.5 6.75 6.75 6.75 8.5 8.5	10.5 10.5 12 12 12 12 10.5 10.5	1.02 1.03 1.03 1.03 0.99 0.99	1992 2012 2012 2012 1922 1922	2574 1623 1623 1623 1250 1250	1.29 0.81 0.81 0.81 0.65 0.65	0.84 0.67 0.67 0.57 0.57	1678 1349 1349 1349 1102 1102	786 777 827 601 361 265	0.468 0.576 0.613 0.446 0.328 0.240	29330 26355 22203 24158 20838 15768	19.3 12.3 12.3 12.3 12.3 19.3 19.3	1524 2151 1812 1972 1082 819	0.567 0.997 0.840 0.914 0.614 0.465
anthouse Leve	C D E F Typ. Int. A C	30313 70150 62940 66970 48715 32210 23630 22780	8.5 6.75 6.75 6.75 8.5 8.5 6.75	10.5 10.5 12 12 12 12 10.5 10.5 12	1.02 1.03 1.03 1.03 0.99 0.99 1.00	1992 2012 2012 2012 1922 1922 1940	2574 1623 1623 1623 1250 1250 788	1.29 0.81 0.81 0.65 0.65 0.41	0.84 0.67 0.67 0.57 0.57 0.38	1678 1349 1349 1349 1102 1102 742	786 777 827 601 361 265 281	0.468 0.576 0.613 0.446 0.328 0.240 0.379	29330 26355 22203 24158 20838 15768 13568	19.3 12.3 12.3 12.3 12.3 19.3 19.3 19.3 12.3	1524 2151 1812 1972 1082 819 1108	0.567 0.997 0.840 0.914 0.614 0.465 0.933
Penthouse Leve	C D E F Typ. Int. A C D	30313 70150 62940 66970 48715 32210 23630 22780 20470	8.5 6.75 6.75 6.75 8.5 8.5 6.75 6.75	10.5 10.5 12 12 12 12 10.5 10.5 12 12 12	1.02 1.03 1.03 1.03 0.99 0.99 1.00 1.00	1992 2012 2012 2012 1922 1922 1940 1940	2574 1623 1623 1623 1250 1250 788 788	1.29 0.81 0.81 0.65 0.65 0.41 0.41	0.84 0.67 0.67 0.57 0.57 0.57 0.38 0.38	1678 1349 1349 1349 1102 1102 742 742	786 777 827 601 361 265 281 253	0.468 0.576 0.613 0.446 0.328 0.240 0.379 0.341	29330 26355 22203 24158 20838 15768 13568 12203	19.3 12.3 12.3 12.3 12.3 19.3 19.3 12.3 12.3	1524 2151 1812 1972 1082 819 1108 996	0.567 0.997 0.840 0.914 0.614 0.465 0.933 0.839

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

ole: As long as "OK?" column values are less than 1.0, the size has passed design checks. (value is ratio of ip/F c)

AppendixDesign Values

0.7	CLT	Lami	Lamination Thickness in CLT Lay-up (in.)						Maj	or Stren Directior	gth 1	Minor Strength Direction			
Grade	ness (in.)		L		1	=	T	=	F₀S₀ਜ਼,₀ (Ibft. ∕ft.)	EI _{eff,0} (10 ⁶ lb in. ² /ft.)	GA _{eff,0} (10 ⁶ lb. /ft.)	F₅S _{eff,90} (Ibft. ∕ft.)	EI _{eff,90} 10 ⁶ lb in. ² /ft.)	GA _{eff,90} (10 ⁶ lb. /ft.)	
	4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.46	160	3.1	0.61	
E1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,400	440	0.92	1,370	81	1.2	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,375	1,089	1.4	3,125	309	1.8	
	4 1/8	1 3/8	1 3/8	1 3/8					3,825	102	0.53	165	3.6	0.56	
E2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			8,825	389	1.1	1,430	95	1.1	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	15,600	963	1.6	3,275	360	1.7	
	4 1/8	1 3/8	1 3/8	1 3/8					2,800	81	0.35	110	2.3	0.44	
E3	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			6,400	311	0.69	955	61	0.87	
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	11,325	769	1.0	2,180	232	1.3	
					_					Image	Sour	ce: CL	T Han	dbool	

CLT	Majo	Lami or Streng	s in the ection of	Laminations in the Minor Strength Direction of the CLT								
Grade	f _{b,0} (psi)	E₀ (10 ⁶ psi)	f _{t,o} (psi)	f _{c,0} (psi)	f _{v,0} (psi)	f _{s,0} (psi)	f _{b,90} (psi)	E ₉₀ (10 ⁶ psi)	f _{t,90} (psi)	f _{c,90} (psi)	f _{v,90} (psi) 425	f _{s,90} (psi)
E1	4,095	1.7	2,885	3,420	425	<mark>140</mark>	1,050	1.2	525	1,235	425	140
E2	3,465	1.5	2,140	3,230	565	190	1,100	1.4	680	1,470	565	190
E3	2,520	1.2	1,260	2,660	345	115	735	0.9	315	900	345	115
E4	4,095	1.7	2,885	3,420	550	180	1,205	1.4	680	1,565	550	180
V1	1,890	1.6	1,205	2,565	565	190	1,100	1.4	680	1,470	565	190
V2	1,835	1.4	945	2,185	425	140	1,050	1.2	525	1,235	425	140
V3	2,045	1.6	1,155	2,755	550	180	1,205	1.4	680	1,565	550	180

For SI: 1 psi = 6.895 kPa

as follows:

 $f_{b,0} = 2.1 \text{ x published allowable bending stress } (F_b), f_{c,0} = 2.1 \text{ x published allowable tensile stress } (F_r), f_{c,0} = 1.9 \text{ x published allowable compressive stress parallel to grain } (F_c), f_{v,0} = 3.15 \text{ x published allowable shear stress } (F_r),$ and $f_{x0} = 1/3 \text{ x calculated } f_{x0}$.

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

^(a) The characteristic values may be obtained from the published allowable design values for lumber in the United States

Image Source: CLT Handbook

Gravity Redesign

Lateral Redesign

Construction Management

3-1/8-INCH WIDTH															
Depth (in.)	6	7-1/2	9	10-1/2	12	13-1/2	15	16-1/2	18	19-1/2	21	22-1/2	24	25-1/2	27
Beam Weight (lb/ft)	4.6	5.7	6.8	8.0	9.1	10.3	11.4	12.5	13.7	14.8	16.0	17.1	18.2	19.4	20.5
A (in. ²)	18.75	23.44	28.13	32.81	37.50	42.19	46.88	51.56	56.25	60.94	65.63	70.31	75.00	79.69	84.38
S (in.3)	18.75	29.30	42.19	57.42	75.00	94.92	117.2	141.8	168.8	198.0	229.7	263.7	300.0	338.7	379.7
l (in.4)	56.25	109.9	189.8	301.5	450.0	640.7	878.9	1170	1519	1931	2412	2966	3600	4318	5126
EI (10 ⁶ lb-in. ²)	101.3	197.8	341.7	542.6	810.0	1153	1582	2106	2734	3476	4341	5339	6480	7773	9226
Moment Capacity (Ib-ft)	3750	5859	8438	11480	15000	18980	23440	28360	33750	39610	45940	52730	60000	67730	75940
Shear Capacity (Ib)	3313	4141	4969	5797	6625	7453	8281	9109	9938	10770	11590	12420	13250	14080	14910
3-1/2-INCH WIDTH															
Depth (in.)	6	7-1/2	9	10-1/2	12	13-1/2	15	16-1/2	18	19-1/2	21	22-1/2	24	25-1/2	27
Beam Weight (lb/ft)	5.1	6.4	7.7	8.9	10.2	11.5	12.8	14.0	15.3	16.6	17.9	19.1	20,4	21.7	23.0
A (in. ²)	21.00	26.25	31.50	36.75	42.00	47.25	52.50	57.75	63.00	68.25	73.50	78.75	84.00	89.25	94.50
S (in. ³)	21.00	32.81	47.25	64.31	84.00	106.3	131.3	158.8	189.0	221.8	257.3	295.3	336.0	379.3	425.3
l (in.4)	63.00	123.0	212.6	337.6	504.0	717.6	984.4	1310	1701	2163	2701	3322	4032	4836	5741
El (10 ⁶ lb-in. ²)	113.4	221.5	382.7	607.8	907.2	1292	1772	2358	3062	3893	4862	5980	7258	8705	10330
Moment Capacity (Ib-ft)	4200	6563	9450	12860	16800	21260	26250	31760	37800	44360	51450	59060	67200	75860	85050
Shear Capacity (Ib)	3710	4638	5565	6493	7420	8348	9275	10200	11130	12060	12990	13910	14840	15770	16700
5-1/8-INCH WIDTH															
Depth (in.)	12	13-1/2	15	16-1/2	18	19-1/2	21	22-1/2	24	25-1/2	27	28-1/2	30	31-1/2	33
Beam Weight (lb/ft)	14.9	16.8	18.7	20.6	22.4	24.3	26.2	28.0	29.9	31.8	33.6	35.5	37.4	39.2	41.1
A (in. ²)	61.50	69.19	76.88	84.56	92.25	99.94	107.6	115.3	123.0	130.7	138.4	146.1	153.8	161.4	169.1
S (in. ³)	123.0	155.7	192.2	232.5	276.8	324.8	376.7	432.4	492.0	555.4	622.7	693.8	768.8	847.5	930.2
1 (in.4)	738.0	1051	1441	1919	2491	3167	3955	4865	5904	7082	8406	9887	11530	13350	15350
El (10 ⁶ lb-in. ²)	1328	1891	2595	3453	4483	5700	7119	8757	10630	12750	15130	17800	20760	24030	27630
Moment Capacity (lb-ft)	24600	31130	38440	46510	55350	64960	75340	86480	98400	111100	124500	138800	153800	169500	186000
Shear Capacity (Ib)	10870	12220	13580	14940	16300	17660	19010	20370	21730	23090	24450	25800	27160	28520	29880
5-1/2-INCH WIDTH															
Depth (in.)	12	13-1/2	15	16-1/2	18	19-1/2	21	22-1/2	24	25-1/2	27	28-1/2	30	31-1/2	33
Beam Weight (lb/ft)	16.0	18.0	20.1	22.1	24.1	26.1	28.1	30.1	32.1	34.1	36.1	38.1	40.1	42.1	44.1

Conclusion

Appendix

• Wind Drift Check

1604.3 Serviceability.

CONSTRUCTION

Roof members:^e Supporting plaste Supporting nonpl Not supporting ce Floor members Exterior walls and partitions: With brittle finish With flexible finis Farm buildings Greenhouses

f. The wind load is permitted to be taken as 0.7 times the "component and cladding" loads for the purpose of determining deflection limits herein.

Building Introduction

Problem Statement

Tall Timber Introduction

Structural systems and members thereof shall be designed to have adequate stiffness to limit deflections and lateral drift.

	L	S or W ^f	D + L ^{d, g}
er ceiling	//360	//360	//240
laster ceiling	//240	//240	//180
eiling	//180	//180	//120
	//360	-	//240
nterior			
	-	//240	-
les	-	//120	-
hes			
	-	-	//180
	-	-	//120

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

CC.1.2 Drift of Walls and Frames. Drifts (lateral deflections) of concern in serviceability checking arise primarily from the effects of wind. Drift limits in common usage for building design are on the order of 1/600 to 1/400 of the building or story height [Ref. CC-7]. These limits generally are sufficient to minimize damage to cladding and nonstructural walls and partitions. Smaller drift limits may be appropriate if the cladding is brittle. An absolute limit on interstory drift may also need to be imposed in light of evidence that damage to non-structural partitions, cladding and glazing may occur if the interstory drift exceeds about 10 mm (3/8 in.) unless special detailing practices are made to tolerate movement [Refs. CC-6, CC-8]. Many components can accept deformations that are significantly larger.

Use of the factored wind load in checking serviceability is excessively conservative. The load combination with an annual probability of 0.05 of being exceeded, which can be used for checking short-term effects, is

D + 0.5L + 0.7W

obtained using a procedure similar to that used to derive Eqs. CC 1a and CC-1b. Wind load, W, is defined in Chapter 6. Due to its transient nature, wind load need not be considered in analyzing the effects of creep or other long-term actions.

Deformation limits should apply to the structural assembly as a whole. The stiffening effect of nonstructural walls and partitions may be taken into account in the analysis of drift if substantiating information regarding their effect is available. Where load cycling occurs, consideration should be given to the possibility that increases in residual deformations may lead to incremental structural collapse.

Conclusion

(CC-3)

In-Plane Deflection

Building Introduction

Problem Statement

Tall Timber Introduction

Solia = 5×L3 + 0.25×L + 2(xxx) 86AW 1000 6a 220
Ga = apparent stitues from noil slip glued product, :. does not apply
Ac · diaphragm chord splice slip, DNA : Sdia · SxL ³ REAW
y = 4.8 k/F = 4.800 pH
E= 1.5 × 10 ⁴ psi
A= 3000 in ² W= 30° (Bay act individually)
Solia = 5 (4800) (26) 3 (1728) = 0.675 in 8 (1.5 Eb) (3000) (30)
From ETABS: Sdia = 0.823 ()
calculated 1/360 limit = 0.877, . acceptable
The hand call is just a bit lower, most likely b/c the equation couldn't account for shear controlled detlection. .: hand call may be low, ETABS may be conservative.

 $\delta_{dia} = \frac{5\nu L^3}{8EAW} + \frac{0.25\nu L}{1000G_a} + \frac{\sum(x\Delta_c)}{2W}$

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Shear Wall Reinforcement

	Typical Required Reinforcement in Wall Ends or Corners*											
Level	Grid 10	Elev Stair Core	Stair Core	Grid 3, Wall AB	Grid 3, Wall CD							
PH	(4) #4	(4) #4	(6) #6		(7 .)							
12	(4) #6	(4) #4	(6) #6	(4) #6	(4) #6							
11	(4) #6	(4) #4	(6) #6	(4) #6	(6) #6							
10	(4) #6	(4) #4	(6) #6	(4) #6	(8) #6							
9	(6) #6	(4) #4	(6) #6	(4) #6	(8) #6							
8	(6) #6	(4) #4	(6) #6	(4) #6	(8) #6							
7	(8) #6	(4) #4	(6) #6	(4) #6	(10) #6							
*All wa	*All walls typically have 2 curtains of #4's at 18" o.c. vertical and 10" o.c. horizontal											
in the f	in the field of the wall											

Building Introduction

Problem Statement

Tall Timber Introduction

Modeling Assumptions Using ETABS:

- All bases pinned
- Only lateral system and loads modeled
- 4000 psi NW concrete
- Concrete cracking modifier of 0.7 for walls
- CLT floor modeled as orthotropic
- Only addition modeled
- Actual elevations above ground level used
- Automatic ASCE 7-05 wind loads used and verified

Proposed Solution

Gravity Redesign

Lateral Redesign

Overturning Moment

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Shear Wall Hand Check at Critical Section

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Shear Wall Hand Check at Critical Section

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

or Nc = 2 JFC hd = 2 J4000 (8) (234) /1000 = 237K NU > 0.5 d Vc = 0.5 (0.75) (237) = 88.9 34.7 < 88.9, : no shear reint. reg. Include to meet min reint, regis Horizonial: p1 = 0.0025 = 8"(240") (0.0025) = 4.8:" 5 = 1 + 5 = 20/5 = 4' = 4.8'' 3 + 3(8) = 24''min $18'' \rightarrow controls$ 35 #4 bar - A= 0.2 in2/bar 24 bars 2 curtains, 12 #41's each side @ 10" O.C. = 0.0025 + 0.5(2.5 - 100)(pe - 0.0025) = 0.0025 + 0.5(2.5 - (10.53/20))(0.0025 - 0.0025)P1 7min = 0.0025

Gravity Redesign

Lateral Redesign

Construction Management

CM Cost Analysis

Structurlam Products Ltd Budget Pricing for CrossLam (Cross Laminated Timber Panels) CDN\$

		1	2	3			
# of	Panel	Blank Panel	Hand Framing (Floor/Roof)	5 Axis Robotic Framing (Walls)	Fasterner, Hardware,	Shop Drawings	Visual Grade
Laminations	Thickness	\$/Sq. Ft	\$/Sq. Ft	\$/Sq. Ft	Floor/Roof \$/Sq. Ft.	Walls \$/Sq. Ft.	\$/Sq. Ft
3	99mm	5.80	6.05	7.02	2.50	3.00	1.0
5	169mm	9.68	9.93	11.21	2.50	3.00	1.0
7	239mm	13.77	14.02	15.93	3.00	3.50	1.0
9	309mm	17.53	17.97	19.90	3.00	3.50	1.0
	# of Laminations 3 5 7 9	# ofPanelLaminationsThickness399mm5169mm7239mm9309mm	# of Panel Blank Panel Laminations Thickness \$/Sq. Ft 3 99mm 5.80 5 169mm 9.68 7 239mm 13.77 9 309mm 17.53	Image: Panel state Panel state <td>Image: Laminations Panel Blank Panel Hand Framing (Floor/Roof) 5 Axis Robotic Framing (Walls) Laminations Thickness \$/Sq. Ft \$/Sq. Ft \$/Sq. Ft 3 99mm 5.80 6.05 \$/Sq. Ft 5 169mm 9.68 9.93 11.21 7 239mm 13.77 14.02 15.93 9 309mm 17.53 17.97 19.90</td> <td>Image: Panel Panel Panel Blank Panel Hand Framing (Floor/Roof) 5 Axis Robotic Framing (Walls) Fasterner, Hardware, Floor/Roof Laminations Thickness \$/Sq. Ft \$/S</td> <td>Image: Panel Panel Panel Blank Panel Hand Framing (Floor/Roof) 5 Axis Robotic Framing (Walls) Fasterner, Hardware, Shop Drawings Image: Imag</td>	Image: Laminations Panel Blank Panel Hand Framing (Floor/Roof) 5 Axis Robotic Framing (Walls) Laminations Thickness \$/Sq. Ft \$/Sq. Ft \$/Sq. Ft 3 99mm 5.80 6.05 \$/Sq. Ft 5 169mm 9.68 9.93 11.21 7 239mm 13.77 14.02 15.93 9 309mm 17.53 17.97 19.90	Image: Panel Panel Panel Blank Panel Hand Framing (Floor/Roof) 5 Axis Robotic Framing (Walls) Fasterner, Hardware, Floor/Roof Laminations Thickness \$/Sq. Ft \$/S	Image: Panel Panel Panel Blank Panel Hand Framing (Floor/Roof) 5 Axis Robotic Framing (Walls) Fasterner, Hardware, Shop Drawings Image: Imag

Note: it's columns 1 or 2 or 3... not 1 + 2 or 1 + 3 or 1 + 2 + 3

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

AppendixCM Cost Analysis

I	tem Qua	ntities			
	TTesta	Qu	antity Per Leve	el	T-4-1
Gravity System Items	Unit	Typ. Level	12th Level	Penthouse	Total
5-ply CLT Panels (including visual grading)	S.F.	10780	0	5500	59400
7-ply CLT Panels (including visual grading)	S.F.	1560	10780	0	18580
9-ply CLT Panels (including visual grading)	S.F.	0	1560	0	1560
Double 3-ply Partitions	S.F.	6600	7400	1990	42390
Wall Insulation	S.F.	5980	6704	1803	38405
Studs 2" x 3", pneumatic nailed	MBF	9	10	3	56
Sound Attenuation for Floor	S.F.	12340	12340	5500	79540
Glulam Typ Beams	Ea	27	27	18	180
Glulam Perimeter Beams	Ea	20	20	12	132
Glulam Columns	MBF	3640	4110	3760	26070
Shoon Wall Senton Items	TInit	Qu	antity Per Leve	el	Tatal
Snear wall System Items	Unit	Existing Typ.	Addition Typ.	Penthouse 5500 0 0 1990 1803 3 5500 18 12 3760 1 Penthouse 64 0 705	Total
Cast in Place Concrete	C.Y.	50	50	64	714
Rebar (#4's @ 18" O.C.)	Ton	0.51	0.51	0.705	7.335

Building Introduction

Problem Statement

Tall Timber Introduction

Item Quantities												
Creavity System Itoms	Unit	Qu	antity Per Leve	el	Total							
Gravity System Items	om	Typ. Level	12th Level	Per Level Penthouse 513 270 2.34 11.43 336 0 798 0 0 625 0 310 105 0 700 0 0 1100 2840 0 0 4300 82 30 207 138 250 830 294 196 2840 4300 750 130 Per Level Typ 510 1140	Iotai							
Steel Columns	L.F.	455	513	270	3058							
Steel Columns	Ton	10.9	12.34	11.43	78.27							
W 12x22	L.F.	336	336	0	2016							
W10x33	L.F.	798	798	0	4788							
W16x26	L.F.	0	0	625	625							
W14x22	L.F.	0	0	310	310							
W12x30	L.F.	105	105	0	630							
Open Web Joist 12K3	L.F.	2700	2700	0	16200							
Open Web Joist 16K3	L.F.	0	0	1100	1100							
Floor Deck	S.F.	12840	12840	0	77040							
Roof Deck	S.F.	0	0	4300	4300							
Moment Connection Weld	L.F.	82	82	30	522							
Shear Connection Weld	L.F.	207	207	138	1380							
Bolts	Ea	1250	1250	830	8330							
Connection Angle	L.F.	294	294	196	1960							
Welded Wire Fabric	C.S.F.	12840	12840	4300	813.4							
Concrete deck topping	CY	12840	12840	4300	81340							
Partitions	L.F.	750	750	130	4630							
Shear Wall System Itoms	Unit	Qu	antity Per Leve	Vel Penthouse 270 11.43 0 625 310 0 625 310 0 11.00 0 1100 0 138 830 196 4300 130 vel Typ 1140	Total							
Shear wan System Items	Omt	B2	B 1	Тур	10141							
CMU	S.F.	1650	1510	1140	8860							
Rebar (#5's @ 24" O.C.)	Ton	0.51	0.47	0.36	2.78							

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

AppendixCM Cost Analysis

										1
Project Name: 1	1141 Georgia Ave Wood Addition									
Location:	Wheaton Ave, Maryland									
Line Number	Description	Qty	Unit		Material		Labor		Estimate Tota	1
From Structurlam	5-ply CLT Panels (including visual grading)	59400	S.F.	\$	571,558.68	\$	11,731.50			0
Products Budget	7-ply CLT Panels (including visual grading)	18580	S.F.	\$	246,153.41	\$	3,669.55			
Pricing Provided in a	9-ply CLT Panels (including visual grading)	1560	S.F.	\$	25,301.17	\$	542.26			
CLT Presentation	3-ply Partitions	42390	S.F.	\$	261,207.18	\$	8,372.03			
07 21 16.20 1320	Blanket Insulation, mineral wool batts 3.5" thick	38405	S.F.	\$	23,043.20	\$	8,833.23			
06 11 10.40 6125	Studs 2" x 3", pneumatic nailed	56	MBF	\$	42,367.50	\$	57,902.25			
09 81 16.10 4200	Sound Attenuation for Floor	79540	S.F.	\$	132,036.40	\$	192,486.80			
06 18 13.20 8138	Straight Glulam Beam, 20' span, 6.75" x 15" (Typ.)	180	Ea	\$	86,400.00	\$	11,610.00			
06 18 13.20 8142	Straight Glulam Beam, 20' span, 6.75" x 18" (Perim.)	132	Ea	\$	75,900.00	\$	8,844.00			
06 18 13.20 4400	Alternate Pricing, columns including hardware	26.07	MBF	\$	79,513.50	\$	24,375.45			
Division 06	Subtotal			\$	1,543,481.05	\$	328,367.06	\$	1,871,848.11	Division 06
03 30 53.40 4200	Wall, free-standing, 8" thick	714	C.Y.	\$	108,528.00	\$	138,516.00			
03 21 11.60 0700	Reinforcing in place, walls, #3 to #7	7.335	Ton	\$	7,335.00	\$	3,960.90			
Division 03/04	Subtotal			\$	115,863.00	\$	142,476.90	\$	258,339.90	Division 03/04
		Subtotal		\$	1,659,344.05	\$	470,843.96	\$	2,130,188.01	Subtotal
Division 01	General Requirements @5%			\$	82,967.20	\$	23,542.20			Gen. Requirements
		Estimate Subtota	1	\$	1,742,311.25	\$	494,386.16	\$	2,236,697.41	Estimate Subtotal
		Sales Tax @ 5.7	5%	\$	100,182.90					Sales Tax
		Subtotal A		\$	1,842,494.15	\$	494,386.16			Subtotal
		GC O & P		\$	92,124.71	\$	271,418.00			GC O&P
		Subtotal B		\$	1,934,618.86	\$	765,804.16	\$	2,700,423.01	Subtotal
		Contingency @5	%					\$	135,021.15	Contingency
		Sutotal C					\$	2,835,444.17	Subtotal	
		Location Adjustn	97.2				-\$	79,392.44	Location Adjustment	
		Grand Total						\$	2,756,051.73	Grand Total

Building Introduction

Problem Statement

Tall Timber Introduction

Project Name: 1	1141 Georgia Ave Existing Addition							
Location:	Wheaton Ave, Maryland							
Line Number	Description	Qty	Unit		Material	Labor	Estimate Total	
05 12 23.75 0900	W 10x49	3058	L.F.	\$	218,922.22	\$ 15,595.80		
05 12 23.75 1300	W 12x22	2016	L.F.	\$	64,512.00	\$ 6,431.04		
05 12 23.75 0740	W10x33	4788	L.F.	\$	229,824.00	\$ 24,418.80		
05 12 23.75 1520	W12x35	625	L.F.	\$	31,875.00	\$ 2,168.75		
05 12 23.75 2700	W16x26	310	L.F.	\$	11,780.00	\$ 871.10		
05 12 23.75 1520	W14x22	630	L.F.	\$	23,940.00	\$ 1,789.20		
05 21 19 10 0160	Open Web Joist 12K3	16200	L.F.	\$	76,464.00	\$ 63,342.00		
05 21 19 10 0200	Open Web Joist 16K3	1100	L.F.	\$	5,720.00	\$ 2,475.00		
05 31 13.50 5140	Floor Decking, Composite decking, 1.5" deep, 20 ga.	77040	S.F.	\$	180,504.72	\$ 36,208.80		
05 31 13.50 2100	Roof Decking, under 50 squares, 1.5" deep, 22 ga.	4300	S.F.	\$	9,318.10	\$ 1,720.00		
05 05 21.90 2010	Weld, 4 passes, 1/2" thick plus avg 150% (half over head)	522	L.F.	\$	872.78	\$ 15,111.90		
05 05 21.90 2010	Weld, 4 passes, 1/2" thick + 20% for vertical	1380	L.F.	\$	2,307.36	\$ 31,960.80		
05 05 23.10 2200	3/4" diameter bolts 2" long	8330	Ea	\$	13,119.75	\$ 28,405.30		
05 12 23.78 0320	Angles, 3"x3"	1960	L.F.	\$	3,743.60	\$ 3,214.40		
03 22 11.10 0200	Welded Wire Fabric 6x6 W2.1xW2.1	813.4	C.S.F	\$	15,389.53	\$ 21,148.40		
03 30 53.40 3250	Elevated Slab, regular 4000 psi conc., 2-1/2" floor fill	81340	S.F.	\$	81,421.34	\$ 69,139.00		
05 41 13.30 5190	Framing, stud walls, 10' high, 6" wide, studs 12" O.C.	4630	L.F.	\$	74,080.00	\$ 66,672.00		
Division 05	Subtotal			\$ 1	1,043,794.40	\$ 390,672.29	\$ 1,434,466.69	Division 05
04 22 10.34 5600	8" CMU solid grouted reinforced altenate cources	8860	S.F.	\$	33,579.40	\$ 42,085.00		
03 21 11.60 0700	Reinforcing in place, walls, #3 to #7	2.78	Ton	\$	2,780.00	\$ 1,501.20		
Division 03/04	Subtotal	and the second		\$	36,359.40	\$ 43,586.20	\$ 79,945.60	Division 03/04
		Subtotal		\$ 1	1,080,153.80	\$ 434,258.49	\$ 1,514,412.29	Subtotal
Division 01	General Requirements @10%			\$	108,015.38	\$ 43,425.85		Gen. Requirements
		Estimate Subtot	al	\$ 1	1,188,169.18	\$ 477,684.34	\$ 1,665,853.52	Estimate Subtotal
		Sales Tax @ 5.7	75%	\$	68,319.73			Sales Tax
		Subtotal A		\$ 1	1,256,488.91	\$ 477,684.34		Subtotal
		GC O & P		\$	125,648.89	\$ 262,248.70		GC O&P
		Subtotal B		\$ 1	1,382,137.80	\$ 739,933.04	\$ 2,122,070.84	Subtotal
		Contingency @	5%				\$ 106,103.54	Contingency
		Sutotal C					\$ 2,228,174.38	Subtotal
		Location Adjust	tment Factor		97.2		-\$ 62,388.88	Location Adjustment
-		Grand Total					\$ 2,165,785.50	Grand Total

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

CM Schedule Analysis

Schedule Analysis: 11141 Georgia Ave Wood Addition	Redesign	8				
Item	Qty	Crew Type	# on Crew	Daily Output	Labor Hours	Hrs per item
03 41 13.50 Precaset Slab Planks (5-ply CLT)	59400	C-11	10	2400	0.03	178.2
03 41 13.50 Precaset Slab Planks (7-ply CLT)		C-11	10	2800	0.026	48.3
03 41 13.50 Precaset Slab Planks (9-ply CLT)	1560	C-11	10	3200	0.023	3.6
03 47 13.40 Tilt-up walls (Double 3-ply Partitions)	42390	C-14	19	1600	0.09	200.8
Mineral Wool Wall Insulation	38405	1 Carp	1	1600	0.005	192.0
2x3 Studs in wall	56	2 Carp	2	22.222	0.72	20.3
Sound Attenuation for Floor	79540	1 Caro	2	1600	0.0005	19.9
Straight Glulam Beam, 20' span, 6.75" x 15" (Typ Beams)	180	F-3	6	29	1.379	41.4
Straight Glulam Beam, 20' span, 6.75'' x 18'' (Perim. Beams)	132	F-3	6	28	1.429	31.4
Alternate Pricing, columns including hardware	26.07	F-3	6	2	20	86.9
Wall, free-standing, 8" thick	714	C-14D	27	45.83	4.364	115.4
Reinforcing in place, walls, #3 to #7	7.335	4 Rodm	4	3	10.667	19.6
					Total (days)	119.7
					Weeks (5 d/wk)	23.9
					Months (4 wk/m)	6.0

Building Introduction

Problem Statement

Tall Timber Introduction

Schedule Analysis: 11141 Georgia Ave Existing Addition										
Item	Qty	Crew Type	# on Crew	Daily Output	Labor Hours	Hrs per item				
W10x49	3058	E-2	8	550	0.102	39.0				
W12x22	2016	E-2	8	880	0.064	16.1				
W10x33	4788	E-2	8	550	0.102	61.0				
W12x35	625	E-2	8	810	0.069	5.4				
W16x26	310	E-2	8	1000	0.056	2.2				
W14x22	630	E-2	8	990	0.057	4.5				
Open Web Joist 12K3	16200	E-7	13	1500	0.053	66.0				
Open Web Joist 16K3	1100	E-7	13	1800	0.044	3.7				
Floor Decking, Composite decking, 1.5" deep, 20 ga.	77040	E-4	8	3800	0.008	77.0				
Roof Decking, under 50 squares, 1.5" deep, 22 ga.	4300	E-4	8	4500	0.007	3.8				
Weld, 4 passes, 1/2" thick plus avg 150% for half overhead	522	E-14	2	22	0.364	95.0				
Weld, 4 passes, 1/2" thick + 20% for vertical	1380	E-14	2	22	0.364	251.2				
3/4" diameter bolts 2" long	8330	1 Sswk	1	120	0.067	558.1				
Angles, 3"x3"	1960	2 Sswk	2	500	0.032	31.4				
Welded Wire Fabric 6x6 W2.1xW2.1	813.4	2 Rodm	2	31	0.516	209.9				
Elevated Slab, regular 4000 psi conc., 2-1/2" thick floor fill	81340	C-8	8	2685	0.022	223.7				
Framing, stud walls, 10' high, 6" wide, studs 12" O.C.	4630	2 Carp	2	51	0.314	726.9				
8" CMU solid grouted reinforced altenate cources	8860	D-8	5	355	0.113	200.2				
Reinforcing in place, walls, #3 to #7	2.78	4 Rodm	4	3	10.667	7.4				
					Total (days)	322.8				
					Weeks (5 d/wk)	64.6				
					Months (4 wk/m)	16.1				

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

CM Schedule Analysis

Building Introduction

Problem Statement

Tall Timber Introduction

far-13	29-Mar-13	12-Apr-13	26-Apr-13	10-h	Jav-13	24-May-13	7-Jun-13
		-			1.12	252	
-							
	- 2						
		3 					
-							
		33.12	_				
			1.000				
				16			
						33	
							1 m 1
- 200	2						
_							
		1017					
			100				
				-			
					-		1000 C

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Conclusion

Appendix

Mechanical Plans

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Appendix

Mechanical Sample Apartment

Building Introduction

Problem Statement

Tall Timber Introduction

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Conclusion

Appendix

Mechanical Calcs

Building Introduction

Problem Statement

Tall Timber Introduction

St Rooms have an AHU-1
Cooling BTU capacity = 24,000 Heating BTU capacity = 27,300
Use higher capacity in design
EV Systems
size pipes for refrigerant:
W/27,300 BTU
gair = 1.1 CFMAT
gref = SOO GRM AT
typ. at for air = 30"
typ. AT for retries = 12"
CEM = 920 from mechanical drawings per apartment assume 500 for livin from 420 to bedra. 1.1 CEMAT = 500 GPU AT.
GPM = 1.1CFM ATain = 1.1 (500) (30) 500 0 Tree. 500 (12)
= 2.75 GPM
Using Water Pipe Sizin Table From HNAC Design Manual by BRTA:
reg. pipe size = 3/4"

Proposed Solution

Gravity Redesign

Lateral Redesign

Construction Management

Conclusion

