A Gravity System Calculations

A.1 Introduction

Included in this Appendix are all the calculations completed for both the existing gravity system and the wood redesign gravity system. These calculations are provided to show more specifically what was done to reach the design choices and conclusions.

A.2 Existing Gravity System

Calculations determining loads in the existing gravity system follow. The methods and process used for determining the gravity loads is described in chapter 1.

h Report 2 Roof Loads	Samantha devries
Roof Dead Load	
Penthouse Root:	Load (pst)
- CONTRIDUCE FOOT	waa (pst)
Joist/Beam Allowance	10
Roof Decking	10
Rooting System	7
coeting system	[27 pst]
	El psi
12th Floor Terrace:	
FIOOR ICITACE	
Carden / Day	37
Joist Beam Allowance	10
Will Deam MIDWORCE	2
4" rigid insulation Drop Ceiling	3 5 15 3 25
MEP	15
Sprinklers	2
Pavers or Tiles	28
FUNCIS OF LINES	[98 pst]
	TIP Bell
Root Live Load	
Penthouse Roof:	
Code minimum is 20 pst	
(Table 4-1: Ordinary P	
Crashe wir Oramary e	(at roote)
Use [30 pst] (value	used in decion)
	1919-27
말만 잘 다 봐 봐 봐 봐 봐 봐 봐 봐 봐 봐 봐 봐 봐 봐 봐.	
12th Floor Terrace:	
Table 4-1: Roots used for	or assembly purposes
Table 4-1: Roots used for Use [100 pst] (same	
Ube [100 pst] (same	as design value)
Note drawing indicate that :	as design value)
* Note: drawing indicate that : be used instead as the live	as design value)
Note drawing indicate that :	as design value)
* Note: drawing indicate that : be used instead as the live	as design value)
* Note: drawing indicate that : be used instead as the live	as design value)

Figure A.1: Roof Load Calculations

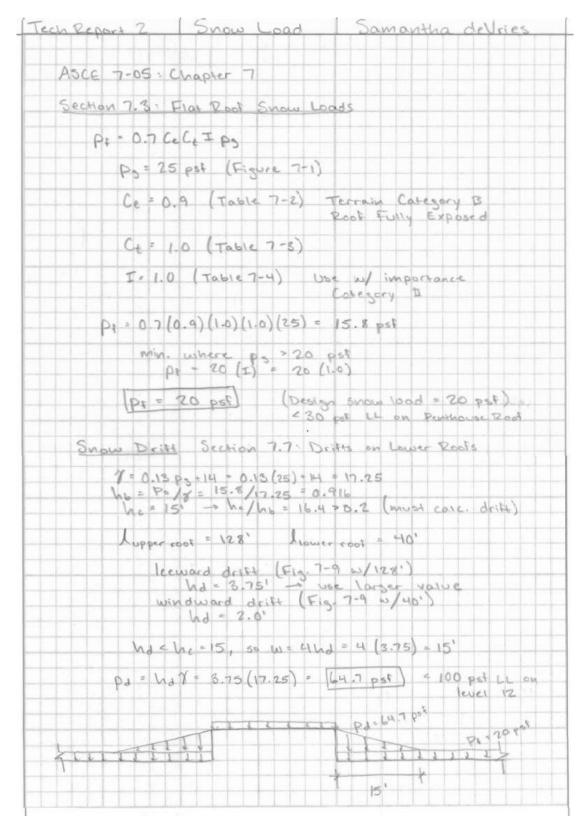


Figure A.2: Snow Load and Drift Calculations

ch Rep	5 430	Floor	Loads	Samantha	delices
				P8 2	
El	Dead Loa	1-			
I LOOP	bead Loa	05			
	Concrete F	loor		Load (pop)	
	Drop (cilin		5	
	MER	1		15	
	Sprink	lers		3	
-	Conc	rese 6	12"	81.25	
		05	8 " x 150 p	100	+++++++++++++++++++++++++++++++++++++++
		1/ n .	1. 10	E	
		0" 610	: 10	2 20 2	1 1 1 1
1111		a stab	: 112	5 b21	
			111		
	Steel Fre	and E	loors		
	Ceitin			5	
	MEP	7		15	
		KIERS			
		/Joisi A		15 37	
	Conce	ete / Dec	C.K.	57	
			+	75 pst	
				1. 10 POIL	
1111			1111		
Floor	Live Load	ls			
	Area			Code Min. (pst)	Design Value
	Residentio			40	40
	Lobbies / S	tairs / E	Mitta	100	100
	Penthouse		1	100	100
	Lobby Flok	about 19	Elone	40	40
	12th Floor	Corrido	CS.	.40	100
	Porking			40	40
	1.12				
	Note: Re	sidential	Accas 0	also receive	
	a	20 pst	portition	Allowance	
and the second se					

Figure A.3: Floor Load Calculations

ech	Report 2 Exterior Wall Loads Samantha della	ies
-	Typical Existing Building Wall Dead Load	
	Applied as a line load at the edge of the s	lab
	8" Brick Layer (assume hard brick)	
	130 pct x 8/12 = 87 pst x11' typ. = .9	257 -14
	Le X III II III III III III III II II III II II III II III II III I	or pu
	3/4" layer gypsum board	
	50 pcf = 0.75/12 = 11' = 34.4 pif	
	SO PER STILL II STILL PRE	
	Total = 992 pir	
	Typical Addition Wall Dead Load	
	Composite Melas Panel	
	5 psl × 11 ' = 55 p1F	
	CMU Intill (or Brick Facade w/out melal pas	(Isp
	29 pot (CMU) or 38 pot (brick medium u	seight)
	319 pir 418 pir	
	Water Membrane	
	2 psf × 11' = 22 p1F	
	3/4" gypsum board = 34.4 plf	
	김 김 것 것 것 같은 것 같은 것 같 것 같 것 것 것 것 것 것 것 것 것	
12	Fibrous glass insulation	
	1.1 pst × 11 = 12.1 pst	
-		
	Total: at metal partels = [443 p	121
	at brick faces = 487 p	1910

Figure A.4: Exterior Wall Load Calculations

un ref	2 210	Clorath	ouds	Dama	antho devices	TT
Non	- Typical	Dead Loc	ds			
+++-	Floors &	Roots i				
	At	3/4 " drop	pavels	(7' *7	1) existing bui	Idin
	3	14" × 150	pct = [9	1209		
	Exist	thy Buildo	y Perime	er Bea	vins	
		2" × 150 p	cf x 12" wid (avg.		[150 p1F]	
	1	6" depth		3	[200 p1F]	
	1	8"		ŋ	[225 pif]	
		24"		=	300 p18	
		30"			[375 pir]	11
	1	Note: there				++
		perimeter a samp	beam 5	izes, o	o this is	H
		of add	hional La	ad)	0	
						++
		1-1-1-1				++
						-
						11

Figure A.5: Non-Typical Load Calculations

A.3 Wood Redesign

A.3.1 CLT Panel Calculations

Included below are the excel tables used to determine final CLT panel sizes. These calculations follow the methods and process described in chapter 3.

Strength Checks												
Level	Span	Panel	FbSeff*	D+L*	Cd	Μ	Ok?					
Typical Level	20.8	5-ply	10400	76	1	4090.3	good					
12th Level	20.8	7-ply	18375	140	1	7534.8	good					
Penthouse Roof	20.8	5-ply	10400	66	1	3552.1	good					

	Deflection Checks														
Level	Span	Panel	EI	D	L	Defl L	Defl D+L	L limit	D+L limt	LOK?	D OK?				
Typical Level	20.8	5-ply	4.40E+08	36	40	0.38	1.03	0.69	1.04	good	good				
12th Level	20.8	7-ply	1.09E+09	40	100	0.38	0.69	0.69	1.04	good	good				
Penthouse Roof	20.8	5-ply	4.40E+08	36	30	0.28	0.97	0.69	1.04	good	good				

Fire Design Check												
Span	Panel	Orig. h	Resid. H	Approx	FbSeff	D+L*	M	OK?				
26	5-ply	9.625	7.125	5-ply	10400	43	3634	good				
26	7-ply	12.375	9.875	7-ply	18375	70	5915	good				
26	5-ply	9.625	7.125	5-ply	10400	39	3296	good				
	26 26	26 5-ply 26 7-ply	Span Panel Orig. h 26 5-ply 9.625 26 7-ply 12.375	Span Panel Orig. h Resid. H 26 5-ply 9.625 7.125 26 7-ply 12.375 9.875	Span Panel Orig. h Resid. H Approx 26 5-ply 9.625 7.125 5-ply 26 7-ply 12.375 9.875 7-ply	Span Panel Orig. h Resid. H Approx FbSeff 26 5-ply 9.625 7.125 5-ply 10400 26 7-ply 12.375 9.875 7-ply 18375	Span Panel Orig. h Resid. H Approx FbSeff D+L* 26 5-ply 9.625 7.125 5-ply 10400 43 26 7-ply 12.375 9.875 7-ply 18375 70	Span Panel Orig. h Resid. H Approx FbSeff D+L* M 26 5-ply 9.625 7.125 5-ply 10400 43 3634 26 7-ply 12.375 9.875 7-ply 18375 70 5915				

Table A.1: CLT Panel Design for Typical bay

	Non Typical CLT Floor Panel Design											
Strength Checks												
Level	Span	Panel	FbSeff*	D+L*	Cd	M	Ok?					
Typical Level	26	7-ply	18375	80	1	6760	good					
12th Level	26	9-ply	18375	144	1	12168	good					
Penthouse Roof	26	7-ply	18375	70	1	5915	good					

*D+L controlled over other combinations

*9-ply would have higher FbSeff, however value was not tabulated and 7-ply value worked, so new FbSeff was not calculated to save time

				Defl	ection Ch	lecks					
Level	Span	Panel	EI	D	L	Defl L	Defl D+L	L limit	D+L limt	LOK?	DOK?
Typical Level	26	7-ply	1.09E+09	40	40	0.38	1.13	0.87	1.30	good	good
12th Level	26	9-ply	1.60E+09	44	100	0.64	1.21	0.87	1.30	good	good
Penthouse Roof	26	7-ply	1.09E+09	40	30	0.28	1.04	0.87	1.30	good	good

	Fire Design Check												
Level	Span	Panel	Orig. h	Resid. H	Approx	FbSeff	D+L*	M	OK?				
Typical Level	26	7-ply	9.625	7.125	5-ply	10400	46	3887	good				
12th Level	26	9-ply	12.375	9.875	7-ply	18375	73	6169	good				
Penthouse Roof	26	7-ply	9.625	7.125	5-ply	10400	42	3549	good				

Table A.2: CLT Panel Design for 26' bay

Typical Opening Calculation

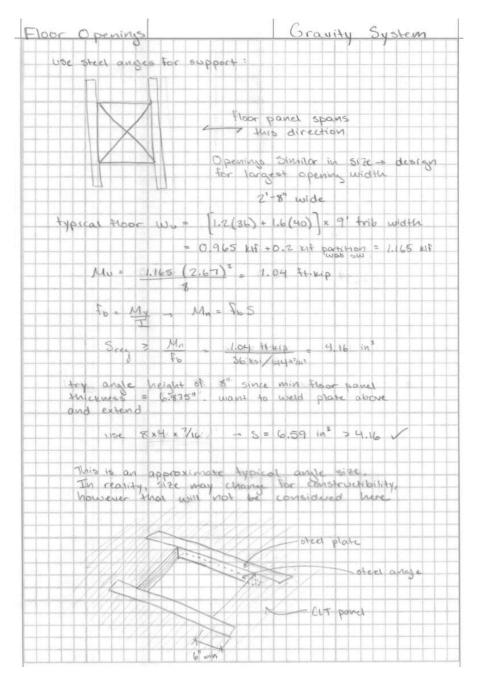


Figure A.6: Typical Opening Calculations

A.3.2 Girder (Calculations
----------------	--------------

	bw	bf	dc	dt	dtc	NA	1	St	Sb	EI
	4	12	6.875	27	20.125	11.44	12758.8	820.1	1115.0	2.30E+10
	4	12	6.875	25.5	18.625	10.71	10549.8	713.3	985.1	1.90E+10
	4	12	6.875	24	17.125	9.98	8623.1	615.0	864.1	1.55E+10
Conditions	4	12	6.875	22.5	15.625	9.25	6958.3	525.2	752.1	1.25E+10
diti	4	12	6.875	21	14.125	8.53	5535.1	443.8	649.0	9.96E+09
on	4	12	6.875	19.5	12.625	7.81	4333.2	370.7	554.8	7.80E+09
	4	12	6.875	18	11.125	7.10	3332.2	305.7	469.3	6.00E+09
Normal	4	12	6.875	16.5	9.625	6.40	2511.8	248.7	392.5	4.52E+09
ž	4	12	6.875	15	8.125	5.71	1851.3	199.3	324.1	3.33E+09
1	4	12	6.875	13.5	6.625	5.05	1330.0	157.4	263.5	2.39E+09
	4	12	6.875	12	5.125	4.42	927.0	122.2	209.9	1.67E+09
	4	12	6.875	10.5	3.625	3.85	620.3	93.2	161.3	1.12E+09
	4	7	6.875	24.5	17.625	11.05	6676.6	496.2	604.5	1.20E+10
0	4	7	6.875	23	16.125	10.32	5478.5	431.9	531.1	9.86E+09
Fire	4	7	6.875	21.5	14.625	9.59	4438.1	372.6	462.8	7.99E+09
ing	4	7	6.875	20	13.125	8.87	3543.7	318.3	399.7	6.38E+09
dur	4	7	6.875	18.5	11.625	8.15	2783.4	268.9	341.6	5.01E+09
Section during	4	7	6.875	17	10.125	7.44	2145.3	224.4	288.4	3.86E+09
ecti	4	7	6.875	15.5	8.625	6.74	1617.4	184.6	240.1	2.91E+09
	4	7	6.875	14	7.125	6.05	1187.9	149.4	196.3	2.14E+09
Residual	4	7	6.875	12.5	5.625	5.38	844.6	118.7	156.9	1.52E+09
Res	4	7	6.875	11	4.125	4.75	575.3	92.0	121.2	1.04E+09
28 - 1922 	4	7	6.875	9.5	2.625	4.16	367.4	68.8	88.3	6.61E+08
	4	7	6.875	8	1.125	3.67	207.1	47.9	56.4	3.73E+08

 Table A.3: Calculated Properties for Inverted T-Beam Girders

	Level	Span	Gird. sw	Floor L+D	D+L**	M (in-lbs)	bf	bw	Depth	Cv	Sact	Sreq	OK
Strength	Typical Level	20	26	700	726	435600	12	4	15	0.90	324.1	201.1	good
Design	12th Level	20	50	1400	1450	870000	12	4	18	0.89	469.3	409.0	good
15	Penthouse Roof	20	50	660	710	426000	12	4	15	0.90	324.1	196.7	g00
	r												
	Level	Span	L (plf)	D+L	EI	Defl. L	Defl. D+L	Lim. L	Lim. D+L	L OK?	D+L OK?		
Defl.	Typical Level	20	400	726	3.33E+09	0.432	0.96	0.667	1.0	good	good		
Design	12th Level	20	1000	1450	6.00E+09	0.600	1.00	0.667	1.0	good	good		
	Penthouse Roof	20	300	710	3.33E+09	0.324	0.989	0.667	1.0	good	good		
		G	D.I	0.1	0.11	D 11	D	G 66	DITI	N (2) D (2)	C	OV	1
Fire/	Level	Span	D+L	Orig w	Orig h	Resid w	Resid h	Seff	Red. Load	M (In-ID)	Sreq	OK?	
Char	Typical Level	20	726	12	15	7	12.5	182.3	404.5	242700	70	good	
Design	12th Level	20	1450	12	18	7	15.5	280.3	737.5	442500	130	good	
	Penthouse Roof	20	710	12	15	7	12.5	182.3	427.5	256500	74	good	1

Table A.4: Typical Girder Design for Inverted T-Shape

	Y					the E-W I			A			
	Level	Span	Wall sw	Gird. Sw	D (plf)*	M (in-lbs)	bw	Depth	Cv	Sact	Sreq	OK:
Strength	Typical Level	21	450	50	500	330750	12	15	0.90	324.1	153.4	good
	12th Level parapet	21	200	50	250	165375	12	13	0.91	209.9	75.6	good
Design	12th Level penthouse	21	350	50	400	264600	12	15	0.90	324.1	122.7	good
	Penthouse Roof	21	200	50	250	165375	12	13	0.91	209.9	75.6	good
	Level	Span	D (plf)*	EI	Defl.	Defl. Lim.	OK?					
	Typical Level	21	500	3.33E+09	0.985	1.05	good					
Defl.	12th Level parapet	21	250	1.67E+09	0.983	1.05	good					
Design	12th Level penthouse	21	400	3.33E+09	0.788	1.05	good					
	Penthouse Roof	21	250	1.67E+09	0.983	1.05	good					
	Level	Span	D (plf)*	Orig w	Orig h	Resid w	Resid h	Seff	Red. Load	M (in-lb)	Sreq	OK
Fire/	Typical Level	21	500	12	15	7	12.5	182.3	121.2	80201	23.3	good
	12th Level parapet	21	250	12	13	7	10.5	128.6	56.4	37308	10.7	good
Char			223552		15	7	12.5	182.3	88.3	58422	100	
Char Design	12th Level penthouse	21	400	12	15	1	12.3	104.3	00.0	38422	16.9	good

*Dead Loads here include approx, girder self-weight and exterior wall load. Floor dead and live loads are assumed to be carried to the typical floor girders by the CLT panel and are not included. Therefore there is no live on carried by this girder type.

Table A.5: Non-typical Girder Design

				Perime	ter Girder	Along Gr	id 2* (Wes	it side)					
	Level	Span	Wall sw	Gird. sw	Floor L+D	D+L**	M (in-lbs)	bf	Depth	Cv	Sact	Sreq	OK?
	Typical Level	20	450	50	1092	1592	955200	12	19.5	0.88	554.8	452.7	good
Strength	12th Level parapet	20	200	50	1872	2122	1273200	12	21	0.87	649.0	607.9	good
Design	12th Level penthouse	20	350	50	2880	3280	1968000	12	25.5	0.86	985.1	958.0	good
	Penthouse Roof	20	200	50	962	1212	727200	12	18	0.89	469.3	341.9	good
	Level	Span	L (plf)	D+L	EI	Defl. L	Defl. D+L	Lim. L	Lim. D+L	L OK?	D+L OK?		
-	Typical Level	20	520	1592	7.80E+09	0.240	0.982	0.667	1	good	good		
Defl.	12th Level parapet	20	1300	2122	9.96E+09	0.470	0.915	0.667	1	good	good		
Design	12th Level penthouse	20	2000	3280	1.90E+10	0.379	0.743	0.667	1	good	good		
	Penthouse Roof	20	390	1212	6.00E+09	0.234	0.974	0.667	1	good	good		
	Level	Span	D+L	Orig w	Orig h	Resid bi	Resid h	Resid bw	Seff	Red. Load	M (in-lb)	Sreq	OK?
Fire/	Typical Level	20	1592	12	19.5	7	17	4	240.1	1012.0	607200	179.9	good
Char	12th Level parapet	20	2122	12	21	7	18.5	4	341.6	1136.5	681900	203.5	good
Design	12th Level penthouse	20	3280	12	25.5	7	23	4	531.1	1280.0	768000	233.7	good
	Penthouse Roof	20	1212	12	18	7	15.5	4	196.3	772.5	463500	136.2	good

 Point Determination
 Description
 <thDescription</th

Table A.6: Non-typical Girder Design

	Level	Span	Wall sw	Gird. sw	Floor L+D	D+L**	M (in-lbs)	bf	Depth	Cv	Sact	Sreq	OK?
	Typical Level	20	450	50	840	1340	804000	12	19.5	0.88	554.8	381.0	good
Strength	12th Level parapet	20	200	50	1512	1762	1057200	12	19.5	0.88	554.8	501.0	good
Design	12th Level penthouse	20	350	50	2880	3280	1968000	12	25.5	0.86	985.1	958.0	good
	Penthouse Roof	20	200	50	735	985	591000	12	18	0.89	469.3	277.9	good
	Level	Span	L (plf)	D+L.	EI	Defl. L	Dcfl. D+L	Lim. L	Lim. D+L	L OK?	D+L OK?		
	Typical Level	20	420	1340	7.80E+09	0.194	0.831	0.667	1	good	good		
Defl.	12th Level parapet	20	1050	1762	7.80E+09	0.485	0.978	0.667	1	good	good		
Design	12th Level penthouse	20	2000	3280	1.90E+10	0.379	0.743	0.667	1	good	good		
	Penthouse Roof	20	315	985	6.00E+09	0.189	0.792	0.667	1	good	good		
	Level	Span	D+L	Orig w	Orig h	Resid bi	Resid h	Resid bw	Seff	Red. Load	M (in-lb)	Sreq	OK?
Fire/	Typical Level	20	1340	12	19.5	7	17	4	240.1	858.0	514800	152	good
Char	12th Level parapet	20	1762	12	19.5	7	17	4	288.4	954.0	572400	170	good
Design	12th Level penthouse	20	3280	12	25.5	7	23	4	531.1	1280.0	768000	234	good
	Penthouse Roof	20	985	12	18	7	15.5	4	196.3	628.5	377100	111	good

Table A.7: Non-typical Girder Design

A.3.3 Column Calculations

Colu	unn_	1			1.12	_	1	I I I	T		1		
Coll		01	map			and the second second		de la constante de la constant					
	1		ense	fo	ade	hitia	4			1			Ļ
			101		- 10	2 21	11			O al a	2 -1 -	400	1
	donit	1+ -	e lin	The	d ci	dues	Tr	10 00	ea -	Li de la	201 =	100	ť
	Contraction of the second	2.1	- 1. h.	2 1	1 1 1		1						
	Dead	-	(35×	5) +	40+	35 }	* 40	14 OC	2 =	100,	00016	s	l
	Live	-	[(40,	(5)	+ 100	3+ 80	Jei	100	P42=	132,0	>00 U	\$	Ì
	SMOU	= v	201	freq	*40	¢ +	80	00 1	05				Î
	Load	Con	nbo's										İ
	N	= 11	00,00	00								1010	
	6	2+1	= 23	570	00	>	Court	als.				T	Î
	L L	5+5	= 10	80	00			621-2-					
	D	0+6	= 10 .751 *	0	155	= 20	5.0	00	1.1				
							1.20						
	Fc=19				1 1 1					1.6×16) ^b psi		1
	TA	£,	: = /	200		try	10 3	/4" X	18"				
	Cm=1	.0,	Ce	s = l.	ο,	Ç.	= 1.0	э,	Ci -	1.0		1.1.	
	CN 2	$\left(\frac{12}{16}\right)$	5) ^{Y10} x	(10	5.125 5.75) ×	(21 10.	33	° = (3.96			
	F*c	- 0).96 (195	= (o	187	2 P*		++			1-1-	1
	E'm	in = 1	ε' (ι-	1.64	5 (0.1)(1.0	05)/	1.66	= (),85×	106		1
	FLE :	- 0	.822	(0.9	10.75	$\frac{(4)}{(2)^{2}}$	- 0	250	psi.				
	Fre	/F	* =	57	250	/18-	12	= 1	2.8		++		1
			For	~					11				
	Cp=	1+	2.8	FJ	1+	2.8	2	2.1	-	5.95			
			* (1							
								1		- AD			
		21	05,00	18"	5 2	10 :	59 p	si <	8	psi	M		
						_			++-				

Figure A.7: Typical Column Calculations at Base of Addition

Wood	Desig	s.	TYP	. Int.	Col	mal		Gravity	System
			+		4-4-				
Lol	n nave	ds ex	chra	10 pc	Plan	NON	iseuser	- keep	
100	NION	· Try		cardn	1.00	nne			
	w/ si	me a	VESI	bus 1	aver	eFF	cho	r = 2.5	9
	after	Zur	3.	(30	white	avi	. + 1	90 min	char)
	residu	val c	rost	s DRO	chion	~	5.75	× 13"	
	-						620	lout ass	embly
+-+-+	_ redu	ced 1	bad	51		- / -	r.	1000	
++++		0.15(100,	000)	+ 0.	5 110	8,000	0 - 129	,000 lbs
	129	000	1	77.	-	< 1-	778		
		5×13	0	1.20	1201		1 1 0 1	2.3	
	1	TT							
	1.1	Leep	size	for	inco	eased	Fire	perform	nance
		USE	10	3/4" ×	18.				
				+++					
TYP E	xt. Co	lumn		+++	++-				
1	1.0.0	1		1	1		- 0	1519 00	
Loa	de are	have	ed.	Cnew	Trak	ane	0 + 123	00 11-)	
Dr.	L=116	000	165						
Fre	om A	PA de	sian	dip	di.	USe	10.75	"× 12"	column
	with	Co	allo	wabl-	e ax	ial 1	= boo	"× 12" 125,00	0 6 11
		- Andrew							
De	size 1	for fi	re i	resi	dual	sect	ion a	5.75 ×	7.4
	llowab		1.1.	120	50.00		070		
	LILUNGO	ve ax	ior.	(10:			110	psi	
			1	- C10-	IJANE	2			
r	educed	1000	1 =						
	0.7	5 (50	0,00	1+60	0.5 (54,00	= (00	64,500	Nos
			1		_				
		,500		1602	20	70	+		
	5:	15.7	++-	+++	++-				
	- 4	1000		0	++-	1 -	11 5 ¹¹		= 16.51
				710		a -	11.0	+ O char	- 6.0
		75×d	++	+++					
	Use	10 3/4	y x	16 1/2	16				
and the second se									
	And the second second second			113		11			
				1					
			-						

Figure A.8: Typical Column Calculations at Base of Addition

G	ravity Load	ls (psf, lbs	for SW)
Level	Dead	Live	C. SW (per floor)
Typical Level	36	40	415
12th Level	40	100	470
Roof	36	30	670
Floor Heig	hts (ft)		
Typical Level	10.33		
12th Level	11.67		

Wood I	Properties
Fc (psi)	1950
E' (psi)	1.60E+06
Cm	1
Cd	1
Ci	1
Ct	1
E'min	8.50E+05

Cal Transt	Trib Area	Wall Load (lbs)							
Col. Type*	Irib Area	Typ. Level	12th Level	Roof					
Typ. Int.	415	0	0	4150					
Typ. Ext.	208	9338	10686	-					
A	285	9338	10686	4150					
В	130	10350	11845	-					
С	335	0	0	0					
D	300	0	0	0					
Е	475	0	0	-					
F	260	10350	11845	÷					

(b) Exterior Wall Load Information Figure A.9: General Column Design Information

87

COIL	ımn Desi	gn: Variou	s Level	s, Stren	gth, F	ire Pe	rform	ance (S	ee Des	ign Su	ımma	ry for S	plicing a	nd Final	Sizing (Choices
Lev	Type*	D+L(lbs)	width	depth	Cv	F*c	Fce	Fce/F*c	Ср	F'c	fc	str ok?	red. D+L	resid. A	fc (fire)	fire ok
	Typ. Int.	250555	12	12.375	0.98	1917	6548	3.42	0.96	1844	1687	0.915	131061	51.6	2539	0.860
	Typ. Ext.	168079	12	12.375	0.98	1917	6548	3.42	0.96	1844	1132	0.614	113571	51.6	2200	0.745
225	A	231749	12	12.375	0.98	1917	6548	3.42	0.96	1844	1561	0.846	149435	51.6	2895	0.981
Level 7	В	133740	10.5	12	1.00	1948	5013	2.57	0.95	1842	1061	0.576	99434	38.5	2583	0.877
eve	С	199525	10.5	12	1.00	1948	5013	2.57	0.95	1842	1584	0.860	102911	38.5	2673	0.907
H	D	179015	10.5	12	1.00	1948	5013	2.57	0.95	1842	1421	0.771	92411	38.5	2400	0.815
	E	249545	12	12.375	0.98	1917	6548	3.42	0.96	1844	1680	0.911	125884	51.6	2438	0.826
1	F	201340	12	12.375	0.98	1917	6548	3.42	0.96	1844	1356	0.735	133364	51.6	2583	0.875
-	Typ. Int.	218600	10.5	12	1.00	1948	5013	2.57	0.95	1842	1735	0.942	112905	38.5	2933	0.995
	Typ. Ext.	142518	10.5	12	1.00	1948	5013	2.57	0.95	1842	1131	0.614	94978	38.5	2467	0.837
	A	200336	12	12.375	0.98	1917	6548	3.42	0.96	1844	1349	0.731	127531	51.6	2470	0.837
18	B	113095	10.5	12	1.00	1948	5013	2.57	0.95	1842	898	0.487	83183	38.5	2161	0.733
Level 8	C	173650	10.5	12	1.00	1948	5013	2.57	0.95	1842	1378	0.748	88195	38.5	2291	0.777
L	D	155800	10.5	12	1.00	1948	5013	2.57	0.95	1842	1237	0.671	79200	38.5	2057	0.698
	E	213030	10.5	12	1.00	1948	5013	2.57	0.95	1842	1691	0.918	105148	38.5	2731	0.927
	F	170815	10.5	12	1.00	1948	5013	2.57	0.95	1842	1356	0.736	111523	38.5	2897	0.927
_			-		100000000	-	-			-						
	Typ. Int.	186645	10.5	12	1.00	1948 1948	5013 5013	2.57	0.95	1842 1842	1481 928	0.804	94749 76385	38.5 38.5	2461	0.835
	Typ. Ext.	116958				1.									1984	
6	A	168924	10.5	12	1.00	1948	5013	2.57	0.95	1842	1341	0.728	105628	38.5	2744	0.931
Level 9	B	92450	8.5	12	1.02	1990	3285	1.65	0.89	1780	906	0.509	66931	24.5	2732	0.959
Le	С	147775	10.5	12	1.00	1948	5013	2.57	0.95	1842	1173	0.637	73479	38.5	1909	0.648
S224	D	132585	8.5	12	1.02	1990	3285	1.65	0.89	1780	1300	0.730	65989	24.5	2693	0.946
	E	176515	10.5	12	1.00	1948	5013	2.57	0.95	1842	1401	0.761	84411	38.5	2193	0.744
	F	140290	10.5	12	1.00	1948	5013	2.57	0.95	1842	1113	0.605	89681	38.5	2329	0.791
	Typ. Int.	154690	10.5	12	1.00	1948	5013	2.57	0.95	1842	1228	0.667	76593	38.5	1989	0.675
	Typ. Ext.	91397	8.5	12	1.02	1990	3285	1.65	0.89	1780	896	0.503	57792	24.5	2359	0.828
0	Α	137511	10.5	12	1.00	1948	5013	2.57	0.95	1842	1091	0.593	83724	38.5	2175	0.738
FI	B	71805	8.5	12	1.02	1990	3285	1.65	0.89	1780	704	0.396	50680	24.5	2069	0.726
Level 10	С	121900	8.5	12	1.02	1990	3285	1.65	0.89	1780	1195	0.672	58763	24.5	2398	0.842
	D	109370	8.5	12	1.02	1990	3285	1.65	0.89	1780	1072	0.602	52778	24.5	2154	0.757
	E	140000	8.5	12	1.02	1990	3285	1.65	0.89	1780	1373	0.771	63675	24.5	2599	0.913
	F	109765	8.5	12	1.02	1990	3285	1.65	0.89	1780	1076	0.605	67840	24.5	2769	0.972
	Typ. Int.	122735	8.5	12	1.02	1990	3285	1.65	0.89	1780	1203	0.676	58436	24.5	2385	0.838
	Typ. Ext.	65837	8.5	12	1.02	1990	3285	1.65	0.89	1780	645	0.363	39200	24.5	1600	0.562
-	Α	106099	8.5	12	1.02	1990	3285	1.65	0.89	1780	1040	0.584	61820	24.5	2523	0.886
Level 11	B	51160	8.5	12	1.02	1990	3285	1.65	0.89	1780	502	0.282	34429	24.5	1405	0.493
eve	С	96025	8.5	12	1.02	1990	3285	1.65	0.89	1780	941	0.529	44046	24.5	1798	0.631
-	D	86155	8.5	12	1.02	1990	3285	1.65	0.89	1780	845	0.475	39566	24.5	1615	0.567
	E	103485	8.5	12	1.02	1990	3285	1.65	0.89	1780	1015	0.570	42939	24.5	1753	0.615
1	F	79240	8.5	12	1.02	1990	3285	1.65	0.89	1780	777	0.437	45999	24.5	1878	0.659
	Typ. Int.	90780	8.5	10.5	1.02	1992	2574	1.29	0.84	1678	1017	0.606	40280	19.3	2092	0.779
	Typ. Ext.	40276	6.75	10.5	1.05	2039	1623	0.80	0.66	1355	568	0.419	20607	9.6	2141	0.988
	A	74686	8.5	10.5	1.02	1992	2574	1.29	0.84	1678	837	0.499	39916	19.3	2074	0.772
E	B	30515	6.75	10.5	1.05	2039	1623	0.80	0.66	1355	431	0.318	18178	9.6	1889	0.871
evel 12	C	70150	8.5	10.5	1.02	1992	2574	1.29	0.84	1678	786	0.468	29330	19.3	1524	0.567
Le	D	62940	6.75	12		2012		0.81		1349	777	0.576	26355	12.3	2151	0.997
	E	66970	6.75	12	1.03	2012	1623	0.81	0.67	1349	827	0.613	22203	12.3	1812	0.840
	F	48715	6.75	12	1.03	2012	1623	0.81	0.67	1349	601	0.446	24158	12.3	1972	0.914
e,	Typ. Int.	32210	8.5	10.5	0.99	1922	1250	0.65	0.57	1102	361	0.328	20838	19.3	1082	0.614
Penthouse		23630	8.5	10.5	0.99	1922	1250	0.65	0.57	1102	265	0.328	15768	19.3	819	0.465
the	A	23630			12000					742		0.240		111 111	20.54.06/2	0.465
en	C D	20470	6.75 6.75	12	1.00	1940 1940	788 788	0.41	0.38	742	281 253	0.341	13568 12203	12.3	1108	0.933
0	17	20470	0./3	12	1.00	1240	100	0.41	10.36	142	4.3.3	0.341	12205	12.3	996	0.839

Table A.8: Column Excel Calculations

B Lateral System Redesign Calculations

B.1 Introduction

Included in this Appendix are all the calculations completed for both the existing lateral system and the wood redesign lateral system. These calculations are provided to show more specifically what was done to reach the design choices and conclusions.

B.2 Existing Lateral System

Sample excel calculations determining loads in the existing lateral system follow. The methods and process used for determining the lateral loads is described in chapter 1.

B.2.1 Wind Loads

Wind Load Calculations: Wind Perpendicular to Building ASCE 7-05, Chapter 6.5: Method 2 - Analytical Procedure Design Procedure from Section 6.5.3

Blue boxes are input boxes, all else are determined by equations

Building Information	В	214		
	L	60		
	h	153		
	z bar	145		
	Variable	Value	Units	Comments
1. Determine Basic Wind	Speed and D	irectonality Fa	ctor	
Basic Wind Speed	V	90	mph	(Fig. 6-1)
Directionality Factor	k _d	0.85		(Table 6-4)
2. Determine Importance	e Factor			
Occupancy Category		Ш		(Table 1-1)
Importance Factor	1	1		(Table 6-1)
3 & 9. Exposure Category	, Velocity Pre	essure Exposu	re Coef	ficient, and Velocity Pressure
Exposure Category		В		From Structural Drawings
Velocity Pressure Exposu	re Coefficient			
· · · · · · · · · · · · · · · · · · ·		e exposure B,	case 2	for MWEBS
		etermined by I		
		Height (ft)		q, or q _b
		8	0.570	11.82
		19	0.618	12.81
		30	0.700	14.52
		41	0.765	15.86
		51	0.814	16.88
		61	0.854	17.71
		73	0.902	18.70
		83	0.940	19.49
		94	0.972	20.16
		104	1.000	20.74
		114	1.025	21.25
		125	1.053	21.84
		136	1.080	22.39
		140	1.090	22.60
		153	1.116	23.14
		158	1.126	23.35
	is Fastor			
4. Determine Topograph	iic Factor			

Table B.1: Wind Load Excel Calculations

5. Determine Gust Effect Factor

The following is based on a flexible building (Section 6.5.8.2)

Input Variables				
	b bar	0.45	(Table 6-1)	
	αbar	0.25	(Table 6-1)	
	e bar	0.33	(Table 6-1)	
		320.00	(Table 6-1)	
	с	0.30	(Table 6-1)	
	β	1.50	(C6.5.8)	
Output Variables				
	n ₁	0.49		
	N_1	2.987	R	an 0.070
	ղ _հ	4.012	F	6 _h 0.218
	η _в	5.611	F	а _в 0.162
	ηι	5.267	F	R _L 0.172
	l _{z bar}	0.23	E	3.40
	L _{z bar}	524.125	l	gr 4.02
	V bar _{z bar}	86.000	E	sv 3.40
	Q	0.82		
	R	0.03		
Gust Effect Factor	G _f	0.83		
6. Determine the Encl	osure Classificatio	n		
Building is considered			(Section 6.5.9))
7. Determine the Inte	rnal Pressure Coef	ficient		
	Gc _{pi}	0.18	(Figure 6-5)	
	or	-0.18		
8. Determine Externa	Pressure Coefficie	ents		
Windward Wall	Cp	0.8	(Figure 6-6)	use with q_z
Leeward Wall	Cp	-0.5	(Figure 6-6)	use with q_h
Side Wall	Cp	-0.7	(Figure 6-6)	use with q _h
Roof (0' to 60')	Cp	-0.9	(Figure 6-6)	

Table B.2: Wind Load Excel Calculations

		q _z or		_		qiGCpi	Net Pres	sure (psf)
Location	z(ft)	qh	Cp	Gf	Gc _{pi}	(psf)	qzGfCp-qi(+GCpi)	qzGfCp-qi(-GCpi)
Windward	8	11.82	0.8	0.83	0.18	2.13	5.70	9.95
	19	12.81	0.8	0.83	0.18	2.31	6.17	10.79
	30	14.52	0.8	0.83	0.18	2.61	6.99	12.22
	41	15.86	0.8	0.83	0.18	2.86	7.64	13.35
	51	16.88	0.8	0.83	0.18	3.04	8.13	14.21
	61	17.71	0.8	0.83	0.18	3.19	8.53	14.91
	73	18.70	0.8	0.83	0.18	3.37	9.01	15.75
	83	19.49	0.8	0.83	0.18	3.51	9.39	16.41
	94	20.16	0.8	0.83	0.18	3.63	9.71	16.97
	104	20.74	0.8	0.83	0.18	3.73	9.99	17.46
	114	21.25	0.8	0.83	0.18	3.83	10.24	17.89
	125	21.84	0.8	0.83	0.18	3.93	10.52	18.38
	136	22.39	0.8	0.83	0.18	4.03	10.79	18.85
	153	23.14	0.8	0.83	0.18	4.17	11.15	19.48
Leeward	All	23.35	-0.5	0.83	0.18	4.20	-13.86	-5.46
Side	All	23.35	-0.7	0.83	0.18	4.20	-17.72	-9.32
Roof (0' to 60')	153	23.35	-0.9	0.83	0.18	4.20	-21.59	-13.18
Low Parapet WW	140	22.60			1.5	33.90		33.90
High Parapet WW	158	23.35		2	1.5	35.02		35.02
High Parapet LW	158	23.35		C	-1.0	-23.35		-23.35

Table B.3: Wind Load Excel Calculations

Level	Floor	Story Ht. * Pressur	
	Ht.	Perpendicular	Parallel
B2	8	79.6	81.4
B1	11	118.7	121.3
L1	11	134.4	137.4
L2	11	146.9	150.2
L3	10	142.1	145.3
L4	10	149.1	152.4
L5	12	189.0	193.1
L6	10	164.1	167.7
L7	11	186.6	190.8
L8	10	174.6	178.4
L9	10	178.9	182.9
L10	11	202.2	206.7
L11	11	207.4	212.0
L12	17	331.2	338.5
Base She	ear (kips)	963.9	226.6

Table B.4: Wind Load Excel Calculations

B.2.2 Seismic Loads

wh Report 2	Deismic	Loads	Damantha	delies
Seismic Load C	alculations.			
Acre 7-05	Financia in	5.1.	. D	
MOLE (TUS,	chapter 12	Los P	c Design Regu ilding Structure	irements
		ne po	noing ou baba	
1. Exemptions	(11.1.2)			
Building	not exempt			
0 6 0 0				
2. Site Class (M-7.2)			
C (From	structural di	Comments)	
11.4.1 (Fig. 1	22-1 10 22-6			
50 = 0.	155 g (From	structure	03	
5, 7 0.	050 3 200	uments)		
1142 14	st for site c	1055		
1.1.5 1010	an app and c	11.00		
Table	11.4-1, 5. 11.4-2, 5,	· 0.25	Fa = 1.2	
Table	11.4-2, 5,	± 0.1,	Fy = 1.7	
tan 1	1.4-1 Sms	= Fass =	1.2(0.155) =	0.186 3
Egn	11.4-6 DAVI	= + 1 21 =	1.7 (0.050) =	0.0853
11.4.4 Des	in Paramete	the state		
	0			
Egn. 1	11.4-3, 5ps	= 3 Sws	= (2/3)(0.186)	= 0.124 9
Egn. 1	11.4-4, SDI	= 35 Sm1	= (2/3) (0.085)	- 0.057 5
2 0 1		1		
3. Seismic Des	in corroch	(11.6)		
Table 111	4-1 5ps	4 0.167 -	- A . 1500	
Table 11.	6-2 50	< 0.067-	- A [500	
4. Select Analy	yois Procedus	ce (use	11.7)	
En 11 m	. E - 0 /			
	$V = F_X = 0.0$	a us x		
S. Calculate of	lective total	Seismaic U	acione (4)	
	1 + 20°10 SI	-		
Floors :	DL			
		1	N/an III	aler when
WRF F CF	senthouse) =	(125)(4	6) (27+0.2(20)) + 49,020	* (125 * 461) (31
		228,00	0.16	
the second se		660,00	N 103	

Figure B.1: Seismic Load Calculations

Tech Report ?-	Seismie Loads	Samantha	devices
WST FL =	(60')(214')(75 pst) + 963,000 + 268,520 1,232,000 165	2(60+214)(490	(119
UN CONC F. 61/2 49p.	L = (60)(214)(105 p = 1,348,200 + 54 = 1,892,000 165	st) + 2(60+214) 13,616	(992)
Total L	00d =		
	Wer + 6 (Worr) + + 228 x + 6 (1,232 x) 20,864 x		
6. Other Fact	26		
Basic Se Concrete	eismic Force - Resisting Monnent Frames	ny System: Or and Steel Mo	dinary ment Frames
Response	Modification Factor	r, R = 3 (Tab	le 12.2-1)
7. Calculate	Sciemic Base She	or (N)	
Egn. 1	2.8-1 N= CsW		
	$\frac{S_{DS}}{(\frac{P}{T})} = 0.124 / (3/1) = 0$		
	= 0.042 (20,864) =		
	1 N = 0.1 (14) = 1.4		8-8)
TL = 5	5.5. (Fig. 22-2)		
· Co	need not exceed 5.	0.11 (R/z)	6 > 0.042
	Distribution of Seisur	the second s)
Fx =	Cvx V = Wx Mx x Ewillie	J	
	K=1.5 (using linear		

Figure B.2: Seismic Load Calculations

Level	h _x (ft)	w _x (k)	w _x h _x ^k	Cvx	F _x (k)	V _x (k)	hx * Fx (ft*k)
Penthouse	153	228	526737	0.010	8.8	8.8	1353
12	136	1232	5881051	0.113	98.7	107.6	13426
11	125	1232	5405378	0.104	90.7	198.3	11342
10	114	1232	4929705	0.094	82.8	281.1	9434
9	104	1232	4497275	0.086	75.5	356.6	7851
8	94	1232	4064844	0.078	68.2	424.8	6414
7	83	1232	3589171	0.069	60.3	485.0	5001
6	73	1892	6007649	0.115	100.8	585.9	7362
5	61	1892	5020090	0.096	84.3	670.2	5141
4	51	1892	4197125	0.080	70.5	740.6	3593
3	41	1892	3374159	0.065	56.6	797.3	2322
2	30	1892	2468897	0.047	41.4	838.7	1243
1	19	1892	1563635	0.030	26.2	864.9	499
B1	8	1892	658373	0.013	11.1	876.0	88
Sum		20864	52184088	1.000	876.0		75070
							=OTM

Table B.5: Seismic Load Calculations

B.3 Wood Redesign

Included below are the various hand calculation spot checks of the software and any relevant software output for the redesigned lateral system.

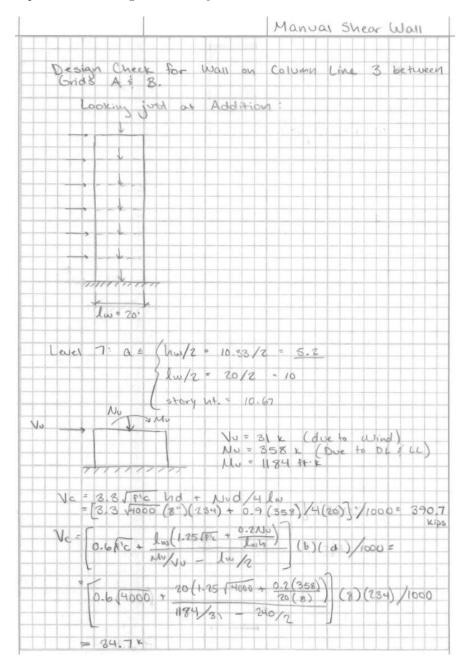


Figure B.3: Shear Wall Spot Check

		I I I I I I I I I I I I I I I I I I I		Manua	She	or Wal
or No	= ZJFC hd	= 2/400	0 (8)	234)/1	600 ÷	237K
	, > 0.5 d Vc					
	34.7 68	8.9, :	. no s	shear re	int. re	g
Inch	ode to me	et min	rein)	regis		
Hor	izontal :				10") (0.0	0075)= 4.
	3 = 1 min 1	w/5= 20 3h=3(1 18" - c	(5 = 4) (5) = 24 outrols	и и		
	#4 bar -				4 bar	\$
	2 curta	ins , 12	atul is e	ach sid	Le @	10" O.C.
Vert	ical :					
	Pe = /	0.0025 = 0.002 = 0.00	+ 0.5(1 5+0.5(1 025	2.5 - hus 2.5 - (10.53)(pe- /20))(0	0.0075) .0075-0.0
	8" (240")(0.00	25) = 4	4.8 in 2	-> 20	1 bars
	2 curtai	us, 12	*415 e	ach side	@ 18	" O. C.
	S= lw/ min 18"	3 = 20'/ = 24" -> conto				
Flexural	Design	(Lever	7 : 80	se Lev.	(1)	
Mu	= 1184 HK C	heck Et	tabs d	esign		
T	5 0 6 6		0%0	4 # 6 15		
	dt= 2	134"	*			
	me casel:					
M	me cosel: n=Asfyjd lu≥ ¢Mn →				5) = 19	53.H·K

Figure B.4: Shear Wall Spot Check $\frac{98}{98}$

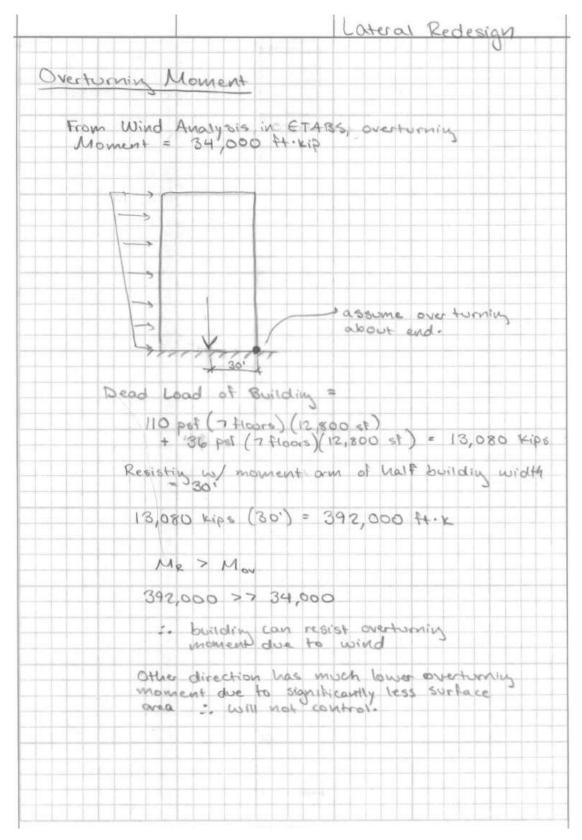


Figure B.5: Overturning Moment Check 99

	TITI		- aro ar	Redesign
T. DI	A			
T-N- 410	ne Diaphr	agm Deflect	NONS	
S.	= 5-13	0 25 VL	- <u>E(xAc</u> 2%	
odio	OF AVAL	1000 6	1 - 2	4
	serva	4000	-20	
		0	0	
	Ga= app	arent stiffue	is from nail	Slip
	glue	d product.	: does not	apply
	0			
	Ac = dia	phragm cho	rd splice si	AND GI
		- V		1
	·· Sdi	a Syl3 REAN		
		8EAW		
		the man is		
	- Y - 7.0 KI	F= 4800 pH		
	L = 26			
	E= 1.5 ×1	OF psi		
	A= 300	D in ²		
	W= 30'	(Bay act)	ndividually)	
2	dia = 5(98)	00)(26) (11)	(8) = 0.67	5 in
	8(1.5	E6) (3000) (3	6)	
5	5-105	S 0	0.00	
	rom EIMAD	: Sdia = 0.	002 600	
0	hydrola	11. Nimile	= 0.877	: acceptab
	and the startes	1360	1	unapres
	The have	a care is i	of tid a tec	wer,
	most likely	1 b/c the es	vation could	Jurt
	account	for shear a	untrolled del	lection.
	: hand a	alc may be	low, ETABS	noiy
	be consi	crevative.		
++++				

Figure B.6: In-plane deflection spot check $100\,$

C Design Tables

Introduction C.1

Included in this Appendix are the design value tables used in the gravity system redesign. The purpose of this appendix is to provide the specifically referenced tables used in this thesis.

CLT	Majo	Lam or Streng		s in the ection of	the CL	Laminations in the Minor Strength Direction of the CLT						
Grade	f _{b,0} (psi)	E₀ (10 ⁶ psi)	f _{t,0} (psi)	f _{c,0} (psi)	f _{v,0} (psi)	f _{s,0} (psi)	f _{b,90} (psi)	E ₉₀ (10 ⁶ psi)	f _{t,90} (psi)	f _{c,90} (psi)	f _{v,90} (psi)	f _{s,90} (psi)
E1	4,095	1.7	2,885	3,420	<mark>4</mark> 25	140	1,050	1.2	525	1,235	425	140
E2	3,465	1.5	2,140	3,230	565	190	1,100	1.4	680	1,470	565	190
E3	2,520	1.2	1,260	2,660	345	115	735	0.9	315	900	345	115
E4	4,095	1.7	2,885	3,420	550	180	1,205	1.4	680	1,565	550	180
V1	1,890	1.6	1,205	2,565	565	190	1,100	1.4	680	1,470	565	190
V2	1,835	1.4	945	2,185	425	140	1,050	1.2	525	1,235	425	140
V3	2,045	1.6	1,155	2,755	550	180	1,205	1.4	680	1,565	550	180

For SI: 1 psi = 6.895 kPa

^(a) The characteristic values may be obtained from the published allowable design values for lumber in the United States as follows:

 $f_{b,0} = 2.1 x$ published allowable bending stress (F_b), $f_{c0} = 2.1 x$ published allowable tensile stress (F_c), $f_{c,0} = 1.9 x$ published allowable compressive stress parallel to grain (F_c), $f_{s0} = 3.15 x$ published allowable shear stress (F_s), and $f_{x0} = 1/3 x$ calculated f_{x0} .

Table C.1: CLT Material Design Values Table. Source: CLT Handbook.

	CLT									or Stren Directior			Minor Strength Direction			
CLT Grade	Thick- ness (in.)	=	1		1	=	T	=	F₀S₀ਜ਼,₀ (lbft. ∕ft.)	EI _{eff,0} (10 ⁶ lb in.²/ft.)	GA _{eff,0} (10 ⁶ lb. /ft.)	F _b S _{eff,90} (lbft. /ft.)	EI _{eff,90} 10 ⁶ lb in. ² /ft.)	GA _{eff,90} (10 ⁶ lb. /ft.)		
	4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.46	160	3.1	0.61		
E1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,400	440	0.92	1,370	81	1.2		
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,375	1,089	1.4	3,125	309	1.8		
	4 1/8	1 3/8	1 3/8	1 3/8					3,825	102	0.53	165	3.6	0.56		
E2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			8,825	389	1.1	1,430	95	1.1		
8	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	15,600	963	1.6	3,275	360	1.7		
	4 1/8	1 3/8	1 3/8	1 3/8					2,800	81	0.35	110	2.3	0.44		
E3	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			6,400	311	0.69	955	61	0.87		
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	11,325	769	1.0	2,180	232	1.3		
	4 1/8	1 3/8	1 3/8	1 3/8					4,525	115	0.53	180	3.6	0.63		
E4	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			10,425	441	1.1	1,570	95	1.3		
8	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,400	1,090	1.6	3,575	360	1.9		
	4 1/8	1 3/8	1 3/8	1 3/8					2,090	108	0.53	165	3.6	0.59		
V1	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,800	415	1.1	1,430	95	1.2		
4	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,500	1,027	1.6	3,275	360	1.8		
	4 1/8	1 3/8	1 3/8	1 3/8					2,030	95	0.46	160	3.1	0.52		
V2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,675	363	0.91	1,370	81	1.0		
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	8,275	898	1.4	3,125	309	1.6		
	4 1/8	1 3/8	1 3/8	1 3/8					2,270	108	0.53	180	3.6	0.59		
V3	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			5,200	415	1.1	1,570	95	1.2		
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	9,200	1,027	1.6	3,575	360	1.8		

For SI: 1 in. = 25.4 mm; 1 ft. = 304.8 mm; 1 lb. = 4.448 N

(a) This table represents one of many possibilities that CLT could be manufactured by varying lamination grades, thicknesses, orientations, and layer arrangements in the lay-up.

(b) Custom CLT grades that are not listed in this table are permitted in accordance with ANSI/APA PRG 320.

(c) The allowable properties can be converted to the characteristic properties by multiplying the tabulated F_bS by 2.1, and EI and GA by 1.0.

Table C.2: CLT Panel Design Table. Source: CLT Handbook.

DOUGLAS-FIR GLUED LAMINATED BEAM SECTION PROPERTIES AND CAPACITIES $\rm F_b$ = 2,400 psi, E = 1.80 x 10° psi, $\rm F_v$ = 265 psi

3-1/8-INCH WIDTH Depth (in.)	6	7-1/2	9	10-1/2	12	13-1/2	15	16-1/2	18	19-1/2	21	22-1/2	24	25-1/2	27
Beam Weight (lb/ft)	4.6	5.7	6.8	8.0	9.1	10.3	11.4	12.5	13.7	14.8	16.0	17.1	18.2	19.4	20.5
A (in. ²)	18.75	23.44	28.13	32.81	37.50	42.19	46.88	51.56	56.25	60.94	65.63	70.31	75.00	79.69	84.38
S (in. ³)	18.75	29.30	42.19	57.42	75.00	94.92	117.2	141.8		198.0	229.7	263.7	300.0	338.7	379.7
		109.9	189.8	301.5	450.0	640.7	878.9	11170	168.8 1519	198.0	2412	2966	3600	4318	5126
I (in.4)	56.25		and the second second	1.						0.00		1000000			
El (10 ⁶ lb-in. ²)	101.3	197.8	341.7	542.6	810.0	1153	1582	2106	2734	3476	4341	5339	6480	7773	9226
Moment Capacity (Ib-ft)	3750	5859	8438	11480	15000	18980	23440	28360	33750	39610	45940	52730	60000	67730	75940
Shear Capacity (Ib)	3313	4141	4969	5797	6625	7453	8281	9109	9938	10770	11590	12420	13250	14080	14910
3-1/2-INCH WIDTH															
Depth (in.)	6	7-1/2	9	10-1/2	12	13-1/2	15	16-1/2	18	19-1/2	21	22-1/2	24	25-1/2	27
Beam Weight (lb/ft)	5.1	6.4	7.7	8.9	10.2	11.5	12.8	14.0	15.3	16.6	17.9	19.1	20,4	21.7	23.0
A (in. ²)	21.00	26.25	31.50	36.75	42.00	47.25	52.50	57.75	63.00	68.25	73.50	78.75	84.00	89.25	94.50
S (in. ³)	21.00	32.81	47.25	64.31	84.00	106.3	131.3	158.8	189.0	221.8	257.3	295.3	336.0	379.3	425.3
1 (in.4)	63.00	123.0	212.6	337.6	504.0	717.6	984.4	1310	1701	2163	2701	3322	4032	4836	5741
El (10 ⁶ lb-in. ²)	113.4	221.5	382.7	607.8	907.2	1292	1772	2358	3062	3893	4862	5980	7258	8705	10330
Moment Capacity (Ib-ft)	4200	6563	9450	12860	16800	21260	26250	31760	37800	44360	51450	59060	67200	75860	85050
Shear Capacity (Ib)	3710	4638	5565	6493	7420	8348	9275	10200	11130	12060	12990	13910	14840	15770	16700
5-1/8-INCH WIDTH															
Depth (in.)	12	13-1/2	15	16-1/2	18	19-1/2	21	22-1/2	24	25-1/2	27	28-1/2	30	31-1/2	33
Beam Weight (lb/ft)	14.9	16.8	18.7	20.6	22.4	24.3	26.2	28.0	29.9	31.8	33.6	35.5	37.4	39.2	41.1
A (in. ²)	61.50	69.19	76.88	84.56	92.25	99.94	107.6	115.3	123.0	130.7	138.4	146.1	153.8	161.4	169.1
S (in.3)	123.0	155.7	192.2	232.5	276.8	324.8	376.7	432.4	492.0	555.4	622.7	693.8	768.8	847.5	930.2
1 (in.4)	738.0	1051	1441	1919	2491	3167	3955	4865	5904	7082	8406	9887	11530	13350	15350
El (10 ⁶ lb-in. ²)	1328	1891	2595	3453	4483	5700	7119	8757	10630	12750	15130	17800	20760	24030	27630
Moment Capacity (Ib-ft)	24600	31130	38440	46510	55350	64960	75340	86480	98400	111100	124500	138800	153800	169500	186000
Shear Capacity (Ib)	10870	12220	13580	14940	16300	17660	19010	20370	21730	23090	24450	25800	27160	28520	29880
and the second second second second second	10070	12220	10000	14740	10000	17000	17010	20070	21/00	20070	*****	20000	27100	20320	27000
5-1/2-INCH WIDTH Depth (in.)	12	13-1/2	15	16-1/2	18	19-1/2	21	22-1/2	24	25-1/2	27	28-1/2	30	31-1/2	33
Beam Weight (lb/ft)		18.0	20.1	22.1	24.1	26.1	28.1	30.1	32.1	34.1	36.1	38.1	40.1	42.1	44.1
	16.0														
A (in. ²)	66.00	74.25	82.50	90.75	99.00	107.3	115.5	123.8	132.0	140.3	148.5	156.8	165.0	173.3	181.5
S (in. ³)	132.0	167.1	206.3	249.6	297.0	348.6	404.3	464.1	528.0	596.1	668.3	744.6	825.0	909.6	998.3
1 (in.4)	792.0	1128	1547	2059	2673	3398	4245	5221	6336	7600	9021	10610	12380	14330	16470
El (10 ⁶ lb-in. ²)	1426	2030	2784	3706	4811	6117	7640	9397	11400	13680	16240	19100	22280	25790	29650
Moment Capacity (Ib-ft)	26400	33410	41250	49910	59400	69710	80850	92810	105600	119200	133700	148900	165000	181900	199700
Shear Capacity (lb)	11660	13120	14580	16030	17490	18950	20410	21860	23320	24780	26240	27690	29150	30610	32070
6-3/4-INCH WIDTH															
Depth (in.)	18	19-1/2	21	22-1/2	24	25-1/2	27	28-1/2	30	31-1/2	33	34-1/2	36	37-1/2	39
Beam Weight (lb/ft)	29.5	32.0	34.5	36.9	39.4	41.8	44.3	46.8	49.2	51.7	54.1	56.6	59.1	61.5	64.0
A (in. ²)	121.5	131.6	141.8	151.9	162.0	172.1	182.3	192.4	202.5	212.6	222.8	232.9	243.0	253.1	263.3
S (in. ³)	364.5	427.8	496.1	569.5	648.0	731.5	820.1	913.8	1013	1116	1225	1339	1458	1582	1711
I (in.4)	3281	4171	5209	6407	7776	9327	11070	13020	15190	17580	20210	23100	26240	29660	33370
EI (10º lb-in.2)	5905	7508	9377	11530	14000	16790	19930	23440	27340	31650	36390	41580	47240	53390	60060
Moment Capacity (lb-ft)	72900	85560	99230	113900	129600	146300	164000	182800	202500	223300	245000	267800	291600	316400	342200
Shear Capacity (Ib)	21470	23250	25040	26830	28620	30410	32200	33990	35780	37560	39350	41140	42930	44720	46510
8-3/4-INCH WIDTH															
Depth (in.)	24	25-1/2	27	28-1/2	30	31-1/2	33	34-1/2	36	37-1/2	39	40-1/2	42	43-1/2	45
Beam Weight (lb/ft)	51.0	54.2	57.4	60.6	63.8	67.0	70.2	73.4	76.6	79.8	82.9	86.1	89.3	92.5	95.7
A (in. ²)	210.0	223.1	236.3	249.4	262.5	275.6	288.8	301.9	315.0	328.1	341.3	354.4	367.5	380.6	393.8
S (in. ³)	840.0	948.3	1063	1185	1313	1447	1588	1736	1890	2051	2218	2392	2573	2760	2953
I (in.4)	10080	12090	14350	16880	19690	22790	26200	29940	34020	38450	43250	48440	54020	60020	66450
EI (10 ⁶ lb-in. ²)	18140	21760	25830	30380	35440	41020	47170	53900	61240	69210	77860	87190	97240	108000	119600
	168000	189700	212600	236900	262500	289400	317600	347200	378000	410200	443600	478400	514500	551900	590600
Moment Capacity (Ib.ff)		.0// 00		200700	-02000	-0/400	011000		5,0000						
Moment Capacity (lb-ft) Shear Capacity (lb)	37100	39420	41740	44060	46380	48690	51010	53330	55650	57970	60290	62610	64930	67240	69560

Notes: (1) Beam weight is based on density of 35 pcf. (2) Moment capacity must be adjusted for volume effect. The volume factor for various glulam sizes and simple spans, as well as the complete formula, is given in Appendix A. (3) Moment and shear capacities are based on a normal (10-year) duration of load and should be adjusted for the design duration of load per the applicable building code.

Table C.3: Glulam Beam Design Table. Source: APA - The Engineered Wood Association

D Breadth Calculations

D.1 Introduction

Included in this appendix are additional breadth tables and calculations.

D.1.1 Construction Management Breadth

Structurlam Products Ltd Budget Pricing for CrossLam (Cross Laminated Timber Panels) CDN\$

10			1	2	3			
Panel	# of	Panel	Blank Panel	Hand Framing (Floor/Roof)	5 Axis Robotic Framing (Walls)	Fasterner, Hardware	, Shop Drawings	Visual Grade
Туре	Laminations	Thickness	\$/Sq. Ft	\$/Sq. Ft	\$/Sq. Ft	Floor/Roof \$/Sq. Ft.	Walls \$/Sq. Ft.	\$/Sq. Ft
SLT3	3	99mm	5.80	6.05	7.02	2.50	3.00	1.00
SLT5	5	169mm	9.68	9.93	11.21	2.50	3.00	1.00
SLT7	7	239mm	13.77	14.02	15.93	3.00	3.50	1.00
SLT9	9	309mm	17.53	17.97	19.90	3.00	3.50	1.00

Note: it's columns 1 or 2 or 3... not 1 + 2 or 1 + 3 or 1 + 2 + 3

Table D.1: Structurlam CLT costs given in Canadian dollars. Source: Michael Green's Presentation on How to Develop a CLT Project

Item Quantities						
Consider Senters Home	Unit	Qu	T 1			
Gravity System Items		Typ. Level	12th Level	Penthouse	Total	
Steel Columns	L.F.	455	513	270	3058	
Steel Columns	Ton	10.9	12.34	11.43	78.27	
W 12x22	L.F.	336	336	0	2016	
W10x33	L.F.	798	798	0	4788	
W16x26	L.F.	0	0	625	625	
W14x22	L.F.	0	0	310	310	
W12x30	L.F.	105	105	0	630	
Open Web Joist 12K3	L.F.	2700	2700	0	16200	
Open Web Joist 16K3	L.F.	0	0	1100	1100	
Floor Deck	S.F.	12840	12840	0	77040	
Roof Deck	S.F.	0	0	4300	4300	
Moment Connection Weld	L.F.	82	82	30	522	
Shear Connection Weld	L.F.	207	207	138	1380	
Bolts	Ea	1250	1250	830	8330	
Connection Angle	L.F.	294	294	196	1960	
Welded Wire Fabric	C.S.F.	12840	12840	4300	813.4	
Concrete deck topping	CY	12840	12840	4300	81340	
Partitions	L.F.	750	750	130	4630	
	Trate	Quantity Per Level				
Shear Wall System Items	Unit	B2	B1	Тур	Total	
СМИ	S.F.	1650	1510	1140	8860	
Rebar (#5's @ 24" O.C.)	Ton	0.51	0.47	0.36	2.78	

Table D.2: Quantities found for Steel Addition

I	tem Qua	intities			
		Qu	antity Per Leve		
Gravity System Items	Unit	Typ. Level	12th Level	Penthouse	Total
5-ply CLT Panels (including visual grading)	S.F.	10780	0	5500	59400
7-ply CLT Panels (including visual grading)	S.F.	1560	10780	0	18580
9-ply CLT Panels (including visual grading)	S.F.	0	1560	0	1560
Double 3-ply Partitions	S.F.	6600	7400	1990	42390
Wall Insulation	S.F.	5980	6704	1803	38405
Studs 2" x 3", pneumatic nailed	MBF	9	10	3	56
Sound Attenuation for Floor	S.F.	12340	12340	5500	79540
Glulam Typ Beams	Ea	27	27	18	180
Glulam Perimeter Beams	Ea	20	20	12	132
Glulam Columns	MBF	3640	4110	3760	26070
		Quantity Per Level			
Shear Wall System Items	Unit	Existing Typ.	Addition Typ.	Penthouse	Total
Cast in Place Concrete	C.Y.	50	50	64	714
Rebar (#4's @ 18" O.C.)	Ton	0.51	0.51	0.705	7.335

Table D.3: Quantities found for Wood Addition

Item	Qty	Crew Type	# on Crew	Daily Output	Labor Hours	Hrs per item
W10x49	3058	E-2	8	550	0.102	39.0
W12x22	2016	E-2	8	880	0.064	16.1
W10x33	4788	E-2	8	550	0.102	61.0
W12x35	625	E-2	8	810	0.069	5.4
W16x26	310	E-2	8	1000	0.056	2.2
W14x22	630	E-2	8	990	0.057	4.5
Open Web Joist 12K3	16200	E-7	13	1500	0.053	66.0
Open Web Joist 16K3	1100	E-7	13	1800	0.044	3.7
Floor Decking, Composite decking, 1.5" deep, 20 ga.	77040	E-4	8	3800	0.008	77.0
Roof Decking, under 50 squares, 1.5" deep, 22 ga.	4300	E-4	8	4500	0.007	3.8
Weld, 4 passes, 1/2" thick plus avg 150% for half overhead	522	E-14	2	22	0.364	95.0
Weld, 4 passes, 1/2" thick + 20% for vertical	1380	E-14	2	22	0.364	251.2
3/4" diameter bolts 2" long	8330	1 Sswk	1	120	0.067	558.1
Angles, 3"x3"	1960	2 Sswk	2	500	0.032	31.4
Welded Wire Fabric 6x6 W2.1xW2.1	813.4	2 Rodm	2	31	0.516	209.9
Elevated Slab, regular 4000 psi conc., 2-1/2" thick floor fill	81340	C-8	8	2685	0.022	223.7
Framing, stud walls, 10' high, 6" wide, studs 12" O.C.	4630	2 Carp	2	51	0.314	726.9
8" CMU solid grouted reinforced altenate cources	8860	D-8	5	355	0.113	200.2
Reinforcing in place, walls, #3 to #7	2.78	4 Rodm	4	3	10.667	7.4
					Total (days)	322.8
					Weeks (5 d/wk)	64.6
					Months (4 wk/m)	16.1

Table D.4: Scheduling time found for Steel Addition

Item	Qty	Crew Type	# on Crew	Daily Output	Labor Hours	Hrs per item
03 41 13.50 Precaset Slab Planks (5-ply CLT)	59400	C-11	10	2400	0.03	178.2
03 41 13.50 Precaset Slab Planks (7-ply CLT)	18580	C-11	10	2800	0.026	48.3
03 41 13.50 Precaset Slab Planks (9-ply CLT)	1560	C-11	10	3200	0.023	3.6
03 47 13.40 Tilt-up walls (Double 3-ply Partitions)	42390	C-14	19	1600	0.09	200.8
Mineral Wool Wall Insulation	38405	1 Carp	1	1600	0.005	192.0
2x3 Studs in wall	56	2 Carp	2	22.222	0.72	20.3
Sound Attenuation for Floor	79540	1 Caro	2	1600	0.0005	19.9
Straight Glulam Beam, 20' span, 6.75" x 15" (Typ Beams)	180	F-3	6	29	1.379	41.4
Straight Glulam Beam, 20' span, 6.75" x 18" (Perim. Beams)	132	F-3	6	28	1.429	31.4
Alternate Pricing, columns including hardware	26.07	F-3	6	2	20	86.9
Wall, free-standing, 8" thick	714	C-14D	27	45.83	4.364	115.4
Reinforcing in place, walls, #3 to #7	7.335	4 Rodm	4	3	10.667	19.6
					Total (days) Weeks (5 d/wk)	119. [°] 23. [°]
					Months (4 wk/m)	6.

Table D.5: Scheduling time found for Wood Addition

D.1.2 Mechanical Breadth

1-1-1-	Mechanical Breadt
+++-	
Most	Rooms have an AHU-1
Co	olin BTU capacity = 24,000 cating BTU capacity = 27,300
Us	se higher capacity in design
VEN	System
5	ize pipes for refrigerant:
	0/27,300 BTU
	gair = 1.1 CEMAT
	greef = SOO GPM AT
	typ. at for air = 30"
	typ. AT for retrie. = 12"
	CFM = 920 from mechanical drawings per apartur assume 500 for living from 420 to bedro 1.1 CFM at = 500 GPM atret
	GPM = 1.1CFM ATom = 1.1 (500) (30) 500 D Tref. 500 (12)
	= 2.75 GPM
	Using Water Pipe Sizing Table from HNAC Design Manual by BR+A:
	reg. pipe size = 3/4"

Figure D.1: Mechanical Equipment Sizing Calculations